1
|
Wang X, Tewari N, Sato F, Tanimoto K, Thangavelu L, Makishima M, Bhawal UK. Biphasic Functions of Sodium Fluoride (NaF) in Soft and in Hard Periodontal Tissues. Int J Mol Sci 2022; 23:ijms23020962. [PMID: 35055148 PMCID: PMC8780524 DOI: 10.3390/ijms23020962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Sodium fluoride (NaF) is widely used in clinical dentistry. However, the administration of high or low concentrations of NaF has various functions in different tissues. Understanding the mechanisms of the different effects of NaF will help to optimize its use in clinical applications. Studies of NaF and epithelial cells, osteoblasts, osteoclasts, and periodontal cells have suggested the significant roles of fluoride treatment. In this review, we summarize recent studies on the biphasic functions of NaF that are related to both soft and hard periodontal tissues, multiple diseases, and clinical dentistry.
Collapse
Affiliation(s)
- Xingzhi Wang
- Department of Biochemistry, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Nitesh Tewari
- Centre for Dental Education and Research, Division of Pedodontics and Preventive Dentistry, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Fuyuki Sato
- Shizuoka Cancer Center, Pathology Division, Shizuoka 411-8777, Japan;
| | - Keiji Tanimoto
- Department of Translational Cancer Research, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Lakshmi Thangavelu
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India;
| | - Makoto Makishima
- Department of Biochemistry, Nihon University School of Medicine, Tokyo 173-8610, Japan;
- Correspondence: (M.M.); (U.K.B.)
| | - Ujjal K. Bhawal
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India;
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
- Correspondence: (M.M.); (U.K.B.)
| |
Collapse
|
2
|
Li J, Wang P, Gao J, Fei X, Liu Y, Ruan J. NaF Reduces KLK4 Gene Expression by Decreasing Foxo1 in LS8 Cells. Biol Trace Elem Res 2018; 186:498-504. [PMID: 29633120 DOI: 10.1007/s12011-018-1325-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
Abstract
Decreased expression and increased phosphorylation of Forkhead box o1 (Foxo1) in ameloblasts were observed both in vivo and in vitro when treated by fluoride. The present study aims to investigate the possible relationship between Foxo1 and enamel matrix proteinases, matrix metalloproteinase 20 (MMP20), and kallikrein 4 (KLK4), in NaF-treated ameloblasts. Ameloblast-like cells (LS8 cells) were exposed to NaF at selected concentration (0/2 mM) for 24 h. Gene overexpression and silencing experiments were used to up- and down-regulate Foxo1 expression. The expression levels of Foxo1, MMP20, and KLK4 were detected by quantitative real-time PCR and western blot. Dual luciferase reporter assay was performed to evaluate the regulation of Foxo1 on the transcriptional activity of KLK4 promoter. The results showed that KLK4 expression was decreased in LS8 cells treated by NaF, while MMP20 expression was not changed. Foxo1 activation led to significantly up-regulation of KLK4 in LS8 cells under NaF condition. Knockout of Foxo1 markedly decreased klk4 expression in mRNA level, and intensified inhibition occurred in LS8 cells when combined with NaF treatment. However, the variation trend of MMP20 was not clear. Dual luciferase reporter assay showed that Foxo1 activation enhanced the transcriptional activity of KLK4 promoter. These findings suggest that the decrease of Foxo1 expression induced by high fluoride was a cause for low KLK4 expression.
Collapse
Affiliation(s)
- Juedan Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, 710004, People's Republic of China
- Department of General Dentistry, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, 710004, People's Republic of China
| | - Peng Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, 710004, People's Republic of China
| | - Jianghong Gao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, 710004, People's Republic of China
- Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, 710004, People's Republic of China
| | - Xiuzhi Fei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, 710004, People's Republic of China
- Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, 710004, People's Republic of China
| | - Yan Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, 710004, People's Republic of China
- Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, 710004, People's Republic of China
| | - Jianping Ruan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, 710004, People's Republic of China.
- Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, 710004, People's Republic of China.
| |
Collapse
|
3
|
Waugh DT, Potter W, Limeback H, Godfrey M. Risk Assessment of Fluoride Intake from Tea in the Republic of Ireland and its Implications for Public Health and Water Fluoridation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E259. [PMID: 26927146 PMCID: PMC4808922 DOI: 10.3390/ijerph13030259] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 11/16/2022]
Abstract
The Republic of Ireland (RoI) is the only European Country with a mandatory national legislation requiring artificial fluoridation of drinking water and has the highest per capita consumption of black tea in the world. Tea is a hyperaccumulator of fluoride and chronic fluoride intake is associated with multiple negative health outcomes. In this study, fifty four brands of the commercially available black tea bag products were purchased and the fluoride level in tea infusions tested by an ion-selective electrode method. The fluoride content in all brands tested ranged from 1.6 to 6.1 mg/L, with a mean value of 3.3 mg/L. According to our risk assessment it is evident that the general population in the RoI is at a high risk of chronic fluoride exposure and associated adverse health effects based on established reference values. We conclude that the culture of habitual tea drinking in the RoI indicates that the total cumulative dietary fluoride intake in the general population could readily exceed the levels known to cause chronic fluoride intoxication. Evidence suggests that excessive fluoride intake may be contributing to a wide range of adverse health effects. Therefore from a public health perspective, it would seem prudent and sensible that risk reduction measures be implemented to reduce the total body burden of fluoride in the population.
Collapse
Affiliation(s)
- Declan T Waugh
- EnviroManagement Services, 11 Riverview, Dohertys Rd, Bandon, Co. Cork P72 YF10, Ireland.
| | - William Potter
- Department of Chemistry and Biochemistry, KEH M2225, University of Tulsa, Tulsa, OK 74104-3189, USA.
| | - Hardy Limeback
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G 1G6, Canada.
| | - Michael Godfrey
- Bay of Plenty Environmental Health, 1416A Cameron Road, Tauranga 3012, New Zealand.
| |
Collapse
|
4
|
Gao J, Ruan J, Gao L. Excessive fluoride reducesFoxo1expression in dental epithelial cells of the rat incisor. Eur J Oral Sci 2014; 122:317-23. [DOI: 10.1111/eos.12148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jianghong Gao
- Department of Oral Prevention; School of Stomatology; Xi'an Jiaotong University; Xi'an Shaanxi China
| | - Jianping Ruan
- Department of Oral Prevention; School of Stomatology; Xi'an Jiaotong University; Xi'an Shaanxi China
| | - Liping Gao
- Department of Oral Prevention; School of Stomatology; Xi'an Jiaotong University; Xi'an Shaanxi China
| |
Collapse
|
5
|
Fluorosed mouse ameloblasts have increased SATB1 retention and Gαq activity. PLoS One 2014; 9:e103994. [PMID: 25090413 PMCID: PMC4121220 DOI: 10.1371/journal.pone.0103994] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 07/06/2014] [Indexed: 02/05/2023] Open
Abstract
Dental fluorosis is characterized by subsurface hypomineralization and increased porosity of enamel, associated with a delay in the removal of enamel matrix proteins. To investigate the effects of fluoride on ameloblasts, A/J mice were given 50 ppm sodium fluoride in drinking water for four weeks, resulting serum fluoride levels of 4.5 µM, a four-fold increase over control mice with no fluoride added to drinking water. MicroCT analyses showed delayed and incomplete mineralization of fluorosed incisor enamel as compared to control enamel. A microarray analysis of secretory and maturation stage ameloblasts microdissected from control and fluorosed mouse incisors showed that genes clustered with Mmp20 appeared to be less downregulated in maturation stage ameloblasts of fluorosed incisors as compared to control maturation ameloblasts. One of these Mmp20 co-regulated genes was the global chromatin organizer, special AT-rich sequence-binding protein-1 (SATB1). Immunohistochemical analysis showed increased SATB1 protein present in fluorosed ameloblasts compared to controls. In vitro, exposure of human ameloblast-lineage cells to micromolar levels of both NaF and AlF3 led to a significantly increase in SATB1 protein content, but not levels of Satb1 mRNA, suggesting a fluoride-induced mechanism protecting SABT1 from degradation. Consistent with this possibility, we used immunohistochemistry and Western blot to show that fluoride exposed ameloblasts had increased phosphorylated PKCα both in vivo and in vitro. This kinase is known to phosphorylate SATB1, and phosphorylation is known to protect SATB1 from degradation by caspase-6. In addition, production of cellular diacylglycerol (DAG) was significantly increased in fluorosed ameloblasts, suggesting that the increased phosphorylation of SATB1 may be related to an effect of fluoride to enhance Gαq activity of secretory ameloblasts.
Collapse
|
6
|
Lyaruu DM, Medina JF, Sarvide S, Bervoets TJM, Everts V, Denbesten P, Smith CE, Bronckers ALJJ. Barrier formation: potential molecular mechanism of enamel fluorosis. J Dent Res 2013; 93:96-102. [PMID: 24170372 DOI: 10.1177/0022034513510944] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Enamel fluorosis is an irreversible structural enamel defect following exposure to supraoptimal levels of fluoride during amelogenesis. We hypothesized that fluorosis is associated with excess release of protons during formation of hypermineralized lines in the mineralizing enamel matrix. We tested this concept by analyzing fluorotic enamel defects in wild-type mice and mice deficient in anion exchanger-2a,b (Ae2a,b), a transmembrane protein in maturation ameloblasts that exchanges extracellular Cl(-) for bicarbonate. Defects were more pronounced in fluorotic Ae2a,b (-/-) mice than in fluorotic heterozygous or wild-type mice. Phenotypes included a hypermineralized surface, extensive subsurface hypomineralization, and multiple hypermineralized lines in deeper enamel. Mineral content decreased in all fluoride-exposed and Ae2a,b(-/-) mice and was strongly correlated with Cl(-). Exposure of enamel surfaces underlying maturation-stage ameloblasts to pH indicator dyes suggested the presence of diffusion barriers in fluorotic enamel. These results support the concept that fluoride stimulates hypermineralization at the mineralization front. This causes increased release of protons, which ameloblasts respond to by secreting more bicarbonates at the expense of Cl(-) levels in enamel. The fluoride-induced hypermineralized lines may form barriers that impede diffusion of proteins and mineral ions into the subsurface layers, thereby delaying biomineralization and causing retention of enamel matrix proteins.
Collapse
Affiliation(s)
- D M Lyaruu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam, and MOVE Research Institute, VU University Amsterdam, Amsterdam, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|