1
|
Bertolesi GE, Debnath N, Heshami N, Bui R, Zadeh‐Haghighi H, Simon C, McFarlane S. Interplay of Light, Melatonin, and Circadian Genes in Skin Pigmentation Regulation. Pigment Cell Melanoma Res 2025; 38:e13220. [PMID: 39825699 PMCID: PMC11742648 DOI: 10.1111/pcmr.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/08/2024] [Accepted: 12/04/2024] [Indexed: 01/20/2025]
Abstract
Circadian regulation of skin pigmentation is essential for thermoregulation, ultraviolet (UV) protection, and synchronization of skin cell renewal. This regulation involves both cell-autonomous photic responses and non-cell-autonomous hormonal control, particularly through melatonin produced in a light-sensitive manner. Photosensitive opsins, cryptochromes, and melatonin regulate circadian rhythms in skin pigment cells. We studied light/dark cycles and melatonin coordination in melanin synthesis and cell proliferation of Xenopus laevis melanophores. In vivo, tadpole pigmentation shows robust circadian regulation mainly hormone-driven, in that isolated melanophores respond strongly to melatonin but only slightly to light. Melanophore proliferation is faster in the dark and slower with melatonin as compared to a 12/12 light/dark cycle. Expression of circadian core genes (clock, bmal1, per1, per2, per3, cry1, cry2, and cry4) in melatonin-treated cells during the light phase mimics dark phase expression. Overexpression of individual Crys did not affect melanization or cell proliferation, likely due to their cooperative actions. Melanin synthesis was inhibited by circadian cycle deregulation through (a) pharmacological inhibition of Cry1 and Cry2 degradation with KL001, (b) continuous light or dark conditions, and (c) melatonin treatment. Our findings suggest that circadian cycle regulation, rather than proliferative capacity, alters melanization of melanophores.
Collapse
Affiliation(s)
- Gabriel E. Bertolesi
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Nilakshi Debnath
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Neda Heshami
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Ryan Bui
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Hadi Zadeh‐Haghighi
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Physics and Astronomy, Institute for Quantum Science and TechnologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Christoph Simon
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Physics and Astronomy, Institute for Quantum Science and TechnologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
2
|
Hattori A, Suzuki N. Receptor-Mediated and Receptor-Independent Actions of Melatonin in Vertebrates. Zoolog Sci 2024; 41:105-116. [PMID: 38587523 DOI: 10.2108/zs230057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/02/2023] [Indexed: 04/09/2024]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indolamine that is synthesized from tryptophan in the pineal glands of vertebrates through four enzymatic reactions. Melatonin is a quite unique bioactive substance, characterized by a combination of both receptor-mediated and receptor-independent actions, which promote the diverse effects of melatonin. One of the main functions of melatonin, via its membrane receptors, is to regulate the circadian or seasonal rhythm. In mammals, light information, which controls melatonin synthesis, is received in the eye, and transmitted to the pineal gland, via the suprachiasmatic nucleus, where the central clock is located. Alternatively, in many vertebrates other than mammals, the pineal gland cells, which are involved in melatonin synthesis and secretion and in the circadian clock, directly receive light. Recently, it has been reported that melatonin possesses several metabolic functions, which involve bone and glucose, in addition to regulating the circadian rhythm. Melatonin improves bone strength by inhibiting osteoclast activity. It is also known to maintain brain activity during sleep by increasing glucose uptake at night, in an insulin-independent manner. Moreover, as a non-receptor-mediated action, melatonin has antioxidant properties. Melatonin has been proven to be a potent free radical scavenger and a broad-spectrum antioxidant, even protecting organisms against radiation from space. Melatonin is a ubiquitously distributed molecule and is found in bacteria, unicellular organisms, fungi, and plants. It is hypothesized that melatonin initially functioned as an antioxidant, then, in vertebrates, it combined this role with the ability to regulate rhythm and metabolism, via its receptors.
Collapse
Affiliation(s)
- Atsuhiko Hattori
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Niiza, Saitama 352-8558, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan,
| |
Collapse
|
3
|
Areshidze DA, Kozlova MA, Mishchenko DV, Chernikov VP, Bezuglova TV, Mnikhovich MV, Gioeva ZV, Allayarova UY, Anurkina AI. Influence of various light regimes on some circadian rhythms of transplantable melanoma B16. MEDICAL ACADEMIC JOURNAL 2023; 23:21-32. [DOI: 10.17816/maj607446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
BACKGROUND: Today it is known that disturbance of the lighting regime, expressed both by lengthening of the light period and its reduction, can not only affect the regulation of circadian rhythms of the organism, but also contributes to the initiation of neoplasm growth.
AIM: The aim of the study was to investigate circadian rhythmicity of melatonin level, some micromorphometric indices of tumor cells and expression of genes Bmal1, Clock and Per2 in them in mice with transplanted melanoma B16.
MATERIALS AND METHODS: The study was conducted on 75 mice with subcutaneously transplanted melanoma B16, divided into 3 groups: control group, in which animals were kept under fixed light regime (light/darkness 10/14 hours with light on at 8:00 and off at 18:00), group under dark deprivation conditions, with animals kept under constant light 24 hours a day and group, in which animals were kept in constant darkness. The duration of the experiment was 2 weeks.
RESULTS: It was shown that under conditions of fixed light there are reliable circadian rhythms for all studied parameters, except for the nuclear-cytoplasmic ratio, the circadian rhythms of which was not revealed in any group. Constant darkness leads to rearrangement of all identified rhythms, and constant light causes destruction of all circadian rhythms except the Clock expression rhythm.
CONCLUSIONS: This study shows that light disturbances, whether constant light or constant darkness, lead to significant changes in the structure of the studied circadian rhythms.
Collapse
Affiliation(s)
- David A. Areshidze
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery
| | - Maria A. Kozlova
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery
| | - Denis V. Mishchenko
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry Russian Academy of Sciences
| | - Valery P. Chernikov
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery
| | - Tatyana V. Bezuglova
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery
| | - Maxim V. Mnikhovich
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery
| | - Zarina V. Gioeva
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery
| | - Uguljan Yu. Allayarova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry Russian Academy of Sciences
| | - Anna I. Anurkina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry Russian Academy of Sciences
| |
Collapse
|
4
|
Horn K, Shidemantle G, Velasquez I, Ronan E, Blackwood J, Reinke BA, Hua J. Evaluating the interactive effects of artificial light at night and background color on tadpole crypsis, background adaptation efficacy, and growth. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122056. [PMID: 37343910 DOI: 10.1016/j.envpol.2023.122056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Artificial light at night (ALAN) is a global pollutant of rising concern. While alterations to natural day-night cycles caused by ALAN can affect a variety of traits, the broader fitness and ecological implications of these ALAN-induced shifts remain unclear. This study evaluated the interactive effects of ALAN and background color on traits that have important implications for predator-prey interactions and fitness: crypsis, background adaptation efficacy, and growth. Using three amphibian species as our models, we discovered that: (1) Exposure to ALAN reduced the ability for some species to match their backgrounds (background adaptation efficacy), (2) Crypsis and background adaptation efficacy were enhanced when tadpoles were exposed to dark backgrounds only, emphasizing the importance of environmental context when evaluating the effects of ALAN, (3) ALAN and background color have a combined effect on a common metric of fitness (growth), and (4) Effects of ALAN were not generalizable across amphibian species, supporting calls for more studies that utilize a diversity of species. Notably, to our knowledge, we found the first evidence that ALAN can diminish background adaptation efficacy in an amphibian species (American toad tadpoles). Collectively, our study joins others in highlighting the complex effects of ALAN on wildlife and underscores the challenges of generalizing ALAN's effect across species, emphasizing the need for a greater diversity of species and approaches used in ALAN research.
Collapse
Affiliation(s)
- Kelsey Horn
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY 13902, USA.
| | - Grascen Shidemantle
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY 13902, USA
| | - Isabela Velasquez
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY 13902, USA; Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Emily Ronan
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY 13902, USA
| | - Jurnee Blackwood
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY 13902, USA
| | - Beth A Reinke
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA
| | - Jessica Hua
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY 13902, USA; Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
5
|
Horodincu L, Solcan C. Influence of Different Light Spectra on Melatonin Synthesis by the Pineal Gland and Influence on the Immune System in Chickens. Animals (Basel) 2023; 13:2095. [PMID: 37443893 DOI: 10.3390/ani13132095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
It is well known that the pineal gland in birds influences behavioural and physiological functions, including those of the immune system. The purpose of this research is to examine the endocrine-immune correlations between melatonin and immune system activity. Through a description of the immune-pineal axis, we formulated the objective to determine and describe: the development of the pineal gland; how light influences secretory activity; and how melatonin influences the activity of primary and secondary lymphoid organs. The pineal gland has the ability to turn light information into an endocrine signal suitable for the immune system via the membrane receptors Mel1a, Mel1b, and Mel1c, as well as the nuclear receptors RORα, RORβ, and RORγ. We can state the following findings: green monochromatic light (560 nm) increased serum melatonin levels and promoted a stronger humoral and cellular immune response by proliferating B and T lymphocytes; the combination of green and blue monochromatic light (560-480 nm) ameliorated the inflammatory response and protected lymphoid organs from oxidative stress; and red monochromatic light (660 nm) maintained the inflammatory response and promoted the growth of pathogenic bacteria. Melatonin can be considered a potent antioxidant and immunomodulator and is a critical element in the coordination between external light stimulation and the body's internal response.
Collapse
Affiliation(s)
- Loredana Horodincu
- Preclinics Department, Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" Iasi University of Life Sciences, Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Carmen Solcan
- Preclinics Department, Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" Iasi University of Life Sciences, Mihail Sadoveanu Alley, 700489 Iasi, Romania
| |
Collapse
|
6
|
Akat Çömden E, Yenmiş M, Çakır B. The Complex Bridge between Aquatic and Terrestrial Life: Skin Changes during Development of Amphibians. J Dev Biol 2023; 11:6. [PMID: 36810458 PMCID: PMC9944868 DOI: 10.3390/jdb11010006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Amphibian skin is a particularly complex organ that is primarily responsible for respiration, osmoregulation, thermoregulation, defense, water absorption, and communication. The skin, as well as many other organs in the amphibian body, has undergone the most extensive rearrangement in the adaptation from water to land. Structural and physiological features of skin in amphibians are presented within this review. We aim to procure extensive and updated information on the evolutionary history of amphibians and their transition from water to land-that is, the changes seen in their skin from the larval stages to adulthood from the points of morphology, physiology, and immunology.
Collapse
Affiliation(s)
| | - Melodi Yenmiş
- Department of Biology, Faculty of Science, Ege University, 35040 Izmir, Turkey
| | | |
Collapse
|
7
|
Bae SH, Park JH, Kim SH, Yun SJ, Kim JG, Lee JB. Cutaneous Photorejuvenation of Light Emitting Diodes via the Melatonin Membrane Receptor Pathway. Ann Dermatol 2022; 34:401-411. [PMID: 36478422 PMCID: PMC9763911 DOI: 10.5021/ad.21.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/13/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Melatonin receptors are present in the human skin and retina. These receptors can be stimulated by light emitting diodes (LEDs) at specific wavelengths, thereby inducing cutaneous photorejuvenation. However, the underlying mechanism remains unclear. OBJECTIVE To evaluate the influence of LEDs at specific wavelengths on melatonin membrane receptor (MT1) and cutaneous photorejuvenation via the MT1 pathway in vitro. METHODS Normal human dermal fibroblasts (HDFs) were irradiated using LEDs at different wavelengths (410~940 nm) at a dose of 1 J/cm². MT1 activity was evaluated after melatonin stimulation and LED irradiation. Thereafter, the expressions of collagen (COL) and matrix metalloproteinases (MMPs), with and without luzindole (MT1/2 receptor antagonist), were investigated via semi-quantitative reverse transcription polymerase chain reaction (PCR), real-time PCR, western blotting, and enzyme-linked immunosorbent assay. RESULTS In HDFs, the MT1 mRNA and protein levels increased significantly in response to melatonin (dose, 50 nM) (p<0.01) and LED irradiation at 595, 630, 850, and 940 nm (p<0.01). LED irradiation up-regulated COL type I and down-regulated MMP-1. Compared to LED irradiation without luzindole, LED irradiation with luzindole produced no significant increase in COL type I mRNA and protein levels (p<0.01). CONCLUSION We found that LED irradiation induces collagen synthesis and MMP-1 inhibition in HDFs via MT1 activation. Additionally, multiple LED wavelengths (595, 630, 850, and 940 nm) stimulated MT1 in HDFs, unlike in the eyes, where only blue light induced plasma melatonin suppression. This suggests the possibility of the melatoninergic pathway in photorejuvenation.
Collapse
Affiliation(s)
- Soo Hyeon Bae
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Jun Hyeong Park
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Soo-Hyun Kim
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Sook Jung Yun
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Jae Gwan Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jee-Bum Lee
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
8
|
Shidemantle G, Blackwood J, Horn K, Velasquez I, Ronan E, Reinke B, Hua J. The morphological effects of artificial light at night on amphibian predators and prey are masked at the community level. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119604. [PMID: 35691446 DOI: 10.1016/j.envpol.2022.119604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Artificial light at night (ALAN) is a pervasive pollutant that influences wildlife at both the individual and community level. In this study, we tested the individual-level effects of ALAN on three species of tadpole prey and their newt predators by measuring prey pigmentation and predator and prey mass. Then we evaluated whether the individual-level effects of ALAN on pigmentation and mass had cascading community-level effects by assessing the outcome of predator-prey interactions. We found that spring peepers exposed to ALAN were significantly darker than those reared under control conditions. Additionally, wood frogs reared in ALAN conditions were significantly smaller than those reared in control conditions. In contrast, Eastern newts collected earlier in the spring that were exposed to ALAN were significantly larger than controls while those collected later in the spring were not affected by ALAN, suggesting phenological differences in the effect of ALAN. To understand how changes in pigmentation and size due to ALAN influence predation rates, we ran predation assays in both ALAN-polluted and ALAN-free outdoor environments. After the predation assay, the size disparity in wood frogs reared in ALAN was eliminated such that there was no longer a treatment difference in wood frog size, likely due to size-selective predation. This demonstrates the beneficial nature of predators' selective pressure on prey populations. Lastly, despite individual-level effects of ALAN on pigmentation and mass, we did not detect cascading community-level effects on predation rates. Overall, this study highlights important species-level distinctions in the effects of ALAN. It also emphasizes the need to incorporate ecological complexity to understand the net impact of ALAN.
Collapse
Affiliation(s)
| | - Jurnee Blackwood
- Binghamton University, 4400 Vestal Pkway East, Binghamton, NY, 13902, USA
| | - Kelsey Horn
- Binghamton University, 4400 Vestal Pkway East, Binghamton, NY, 13902, USA
| | - Isabela Velasquez
- Binghamton University, 4400 Vestal Pkway East, Binghamton, NY, 13902, USA
| | - Emily Ronan
- Binghamton University, 4400 Vestal Pkway East, Binghamton, NY, 13902, USA
| | - Beth Reinke
- Northeastern Illinois University, 5500 N St Louis Ave, Chicago, IL, 60625, USA
| | - Jessica Hua
- Binghamton University, 4400 Vestal Pkway East, Binghamton, NY, 13902, USA
| |
Collapse
|
9
|
The microbiota-gut-brain axis in sleep disorders. Sleep Med Rev 2022; 65:101691. [DOI: 10.1016/j.smrv.2022.101691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/04/2022] [Accepted: 08/19/2022] [Indexed: 12/25/2022]
|
10
|
Alachkar A. Aromatic patterns: Tryptophan aromaticity as a catalyst for the emergence of life and rise of consciousness. Phys Life Rev 2022; 42:93-114. [PMID: 35905538 DOI: 10.1016/j.plrev.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
Sunlight held the key to the origin of life on Earth. The earliest life forms, cyanobacteria, captured the sunlight to generate energy through photosynthesis. Life on Earth evolved in accordance with the circadian rhythms tied to sensitivity to sunlight patterns. A unique feature of cyanobacterial photosynthetic proteins and circadian rhythms' molecules, and later of nearly all photon-sensing molecules throughout evolution, is that the aromatic amino acid tryptophan (Trp) resides at the center of light-harvesting active sites. In this perspective, I review the literature and integrate evidence from different scientific fields to explore the role Trp plays in photon-sensing capabilities of living organisms through its resonance delocalization of π-electrons. The observations presented here are the product of apparently unrelated phenomena throughout evolution, but nevertheless share consistent patterns of photon-sensing by Trp-containing and Trp-derived molecules. I posit the unique capacity to transfer electrons during photosynthesis in the earliest life forms is conferred to Trp due to its aromaticity. I propose this ability evolved to assume more complex functions, serving as a host for mechanisms underlying mental aptitudes - a concept which provides a theoretical basis for defining the neural correlates of consciousness. The argument made here is that Trp aromaticity may have allowed for the inception of the mechanistic building blocks used to fabricate complexity in higher forms of life. More specifically, Trp aromatic non-locality may have acted as a catalyst for the emergence of consciousness by instigating long-range synchronization and stabilizing the large-scale coherence of neural networks, which mediate functional brain activity. The concepts proposed in this perspective provide a conceptual foundation that invites further interdisciplinary dialogue aimed at examining and defining the role of aromaticity (beyond Trp) in the emergence of life and consciousness.
Collapse
Affiliation(s)
- Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA; UC Irvine Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, CA 92697, USA; Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
11
|
Wu N, Carpino G, Ceci L, Baiocchi L, Francis H, Kennedy L, Zhou T, Chen L, Sato K, Kyritsi K, Meadows V, Ekser B, Franchitto A, Mancinelli R, Onori P, Gaudio E, Glaser S, Alpini G. Melatonin receptor 1A, but not 1B, knockout decreases biliary damage and liver fibrosis during cholestatic liver injury. Hepatology 2022; 75:797-813. [PMID: 34743371 PMCID: PMC8930565 DOI: 10.1002/hep.32233] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS Melatonin reduces biliary damage and liver fibrosis in cholestatic models by interaction with melatonin receptors 1A (MT1) and 1B (MT2). MT1 and MT2 can form heterodimers and homodimers, but MT1 and MT2 can heterodimerize with the orphan receptor G protein-coupled receptor 50 (GPR50). MT1/GPR50 dimerization blocks melatonin binding, but MT2/GPR50 dimerization does not affect melatonin binding. GPR50 can dimerize with TGFβ receptor type I (TGFβRI) to activate this receptor. We aimed to determine the differential roles of MT1 and MT2 during cholestasis. APPROACH AND RESULTS Wild-type (WT), MT1 knockout (KO), MT2KO, and MT1/MT2 double KO (DKO) mice underwent sham or bile duct ligation (BDL); these mice were also treated with melatonin. BDL WT and multidrug resistance 2 KO (Mdr2-/- ) mice received mismatch, MT1, or MT2 Vivo-Morpholino. Biliary expression of MT1 and GPR50 increases in cholestatic rodents and human primary sclerosing cholangitis (PSC) samples. Loss of MT1 in BDL and Mdr2-/- mice ameliorated biliary and liver damage, whereas these parameters were enhanced following loss of MT2 and in DKO mice. Interestingly, melatonin treatment alleviated BDL-induced biliary and liver injury in BDL WT and BDL MT2KO mice but not in BDL MT1KO or BDL DKO mice, demonstrating melatonin's interaction with MT1. Loss of MT2 or DKO mice exhibited enhanced GPR50/TGFβR1 signaling, which was reduced by loss of MT1. CONCLUSIONS Melatonin ameliorates liver phenotypes through MT1, whereas down-regulation of MT2 promotes liver damage through GPR50/TGFβR1 activation. Blocking GPR50/TGFβR1 binding through modulation of melatonin signaling may be a therapeutic approach for PSC.
Collapse
Affiliation(s)
- Nan Wu
- Hepatology and Gastroenterology, MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Guido Carpino
- Department of MovementHuman and Health SciencesDivision of Health SciencesUniversity of Rome "Foro Italico,"RomeItaly
| | - Ludovica Ceci
- Hepatology and Gastroenterology, MedicineIndiana UniversityIndianapolisIndianaUSA
| | | | - Heather Francis
- Hepatology and Gastroenterology, MedicineIndiana UniversityIndianapolisIndianaUSA.,Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| | - Lindsey Kennedy
- Hepatology and Gastroenterology, MedicineIndiana UniversityIndianapolisIndianaUSA.,Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| | - Tianhao Zhou
- Hepatology and Gastroenterology, MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Lixian Chen
- Hepatology and Gastroenterology, MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Keisaku Sato
- Hepatology and Gastroenterology, MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Konstantina Kyritsi
- Hepatology and Gastroenterology, MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Vik Meadows
- Hepatology and Gastroenterology, MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Burcin Ekser
- Division of Transplant SurgeryDepartment of SurgeryIndiana UniversityIndianapolisIndianaUSA
| | - Antonio Franchitto
- Department of AnatomicalHistologicalForensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Romina Mancinelli
- Department of AnatomicalHistologicalForensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Paolo Onori
- Department of AnatomicalHistologicalForensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Eugenio Gaudio
- Department of AnatomicalHistologicalForensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Shannon Glaser
- Department of Medical PhysiologyTexas A&M University College of MedicineBryanTexasUSA
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, MedicineIndiana UniversityIndianapolisIndianaUSA.,Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| |
Collapse
|
12
|
Ahluwalia M, Kumar M, Ahluwalia P, Rahimi S, Vender JR, Raju RP, Hess DC, Baban B, Vale FL, Dhandapani KM, Vaibhav K. Rescuing mitochondria in traumatic brain injury and intracerebral hemorrhages - A potential therapeutic approach. Neurochem Int 2021; 150:105192. [PMID: 34560175 PMCID: PMC8542401 DOI: 10.1016/j.neuint.2021.105192] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are dynamic organelles responsible for cellular energy production. Besides, regulating energy homeostasis, mitochondria are responsible for calcium homeostasis, signal transmission, and the fate of cellular survival in case of injury and pathologies. Accumulating reports have suggested multiple roles of mitochondria in neuropathologies, neurodegeneration, and immune activation under physiological and pathological conditions. Mitochondrial dysfunction, which occurs at the initial phase of brain injury, involves oxidative stress, inflammation, deficits in mitochondrial bioenergetics, biogenesis, transport, and autophagy. Thus, development of targeted therapeutics to protect mitochondria may improve functional outcomes following traumatic brain injury (TBI) and intracerebral hemorrhages (ICH). In this review, we summarize mitochondrial dysfunction related to TBI and ICH, including the mechanisms involved, and discuss therapeutic approaches with special emphasis on past and current clinical trials.
Collapse
Affiliation(s)
- Meenakshi Ahluwalia
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Manish Kumar
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Scott Rahimi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Raghavan P Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Fernando L Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
13
|
Hu N, Wang J, Zhao Y, Wei H, Li X, Li Y. Daily cycle of melatonin in different tissues of dybowski’s frog (Rana dybowskii). BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2021.1926079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Nan Hu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Junnan Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yingying Zhao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Hua Wei
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xiang Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yingdong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
14
|
The regulation of skin pigmentation in response to environmental light by pineal Type II opsins and skin melanophore melatonin receptors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 212:112024. [DOI: 10.1016/j.jphotobiol.2020.112024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/19/2020] [Accepted: 09/05/2020] [Indexed: 11/21/2022]
|
15
|
Tian X, Cui Z, Liu S, Zhou J, Cui R. Melanosome transport and regulation in development and disease. Pharmacol Ther 2020; 219:107707. [PMID: 33075361 DOI: 10.1016/j.pharmthera.2020.107707] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Melanosomes are specialized membrane-bound organelles that synthesize and organize melanin, ultimately providing color to the skin, hair, and eyes. Disorders in melanogenesis and melanosome transport are linked to pigmentary diseases, such as Hermansky-Pudlak syndrome, Chediak-Higashi syndrome, and Griscelli syndrome. Clinical cases of these pigmentary diseases shed light on the molecular mechanisms that control melanosome-related pathways. However, only an improved understanding of melanogenesis and melanosome transport will further the development of diagnostic and therapeutic approaches. Herein, we review the current literature surrounding melanosomes with particular emphasis on melanosome membrane transport and cytoskeleton-mediated melanosome transport. We also provide perspectives on melanosome regulatory mechanisms which include hormonal action, inflammation, autophagy, and organelle interactions.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ziyong Cui
- Harvard College, Cambridge, MA 02138, United States of America
| | - Song Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China; State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Khan S, Khurana M, Vyas P, Vohora D. The role of melatonin and its analogues in epilepsy. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2019-0088/revneuro-2019-0088.xml. [PMID: 32950966 DOI: 10.1515/revneuro-2019-0088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/01/2020] [Indexed: 12/31/2022]
Abstract
Extensive research has gone into proposing a promising link between melatonin administration and attenuation of epileptic activity, the majority of which suggest its propensity as an antiseizure with antioxidant and neuroprotective properties. In the past few years, a number of studies highlighting the association of the melatonergic ligands with epilepsy have also emerged. In this context, our review is based on discussing the recent studies and various mechanisms of action that the said category of drugs exhibit in the context of being therapeutically viable antiseizure drugs. Our search revealed several articles on the four major drugs i.e. melatonin, agomelatine, ramelteon and piromelatine along with other melatonergic agonists like tasimelteon and TIK-301. Our review is suggestive of antiseizure effects of both melatonin and its analogues; however, extensive research work is still required to study their implications in the treatment of persons with epilepsy. Further evaluation of melatonergic signaling pathways and mechanisms may prove to be helpful in the near future and might prove to be a significant advance in the field of epileptology.
Collapse
Affiliation(s)
- Sumaira Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mallika Khurana
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Preeti Vyas
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
17
|
Boo YC. Up- or Downregulation of Melanin Synthesis Using Amino Acids, Peptides, and Their Analogs. Biomedicines 2020; 8:biomedicines8090322. [PMID: 32882959 PMCID: PMC7555855 DOI: 10.3390/biomedicines8090322] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Harmonious synthesis and distribution of melanin in the skin contribute to the expression of beauty and the maintenance of health. When skin pigmentary disorders occur because of internal or external factors or, when there is a need to artificially increase or reduce the pigmentation level of the skin for aesthetic or therapeutic purposes, various pharmacological therapies are applied but the results are not always satisfactory. Studies have been conducted to improve the efficacy and safety of these treatment strategies. In this review, we present the latest studies regarding peptides and related compounds that may be useful in artificially increasing or reducing skin melanin levels. Certain analogs of α-melanocyte stimulating hormone (MSH) and oligopeptides with the sequences derived from the hormone were shown to promote melanin synthesis in cells and in vivo models. Various amino acids, peptides, their analogs, and their hybrid compounds with other chemical moieties were shown to inhibit tyrosinase (TYR) catalytic activity or downregulate TYR gene expression. Certain peptides were shown to inhibit melanosome biogenesis or induce autophagy, leading to decreased pigmentation. In vivo and clinical evidence are available for some compounds, including [Nle4-D-Phe7]-α-MSH, glutathione disulfide, and glycinamide hydrochloride. For many other compounds, additional studies are required to verify their efficacy and safety in vivo and in clinical trials. The accumulating information regarding pro- and antimelanogenic activity of peptides and related compounds will lead to the development of novel drugs for the treatment of skin pigmentary disorders.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; ; Tel.: +82-53-420-4946
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
18
|
From extraocular photoreception to pigment movement regulation: a new control mechanism of the lanternshark luminescence. Sci Rep 2020; 10:10195. [PMID: 32576969 PMCID: PMC7311519 DOI: 10.1038/s41598-020-67287-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/28/2020] [Indexed: 11/08/2022] Open
Abstract
The velvet belly lanternshark, Etmopterus spinax, uses counterillumination to disappear in the surrounding blue light of its marine environment. This shark displays hormonally controlled bioluminescence in which melatonin (MT) and prolactin (PRL) trigger light emission, while α-melanocyte-stimulating hormone (α-MSH) and adrenocorticotropic hormone (ACTH) play an inhibitory role. The extraocular encephalopsin (Es-Opn3) was also hypothesized to act as a luminescence regulator. The majority of these compounds (MT, α-MSH, ACTH, opsin) are members of the rapid physiological colour change that regulates the pigment motion within chromatophores in metazoans. Interestingly, the lanternshark photophore comprises a specific iris-like structure (ILS), partially composed of melanophore-like cells, serving as a photophore shutter. Here, we investigated the role of (i) Es-Opn3 and (ii) actors involved in both MT and α-MSH/ACTH pathways on the shark bioluminescence and ILS cell pigment motions. Our results reveal the implication of Es-Opn3, MT, inositol triphosphate (IP3), intracellular calcium, calcium-dependent calmodulin and dynein in the ILS cell pigment aggregation. Conversely, our results highlighted the implication of the α-MSH/ACTH pathway, involving kinesin, in the dispersion of the ILS cell pigment. The lanternshark luminescence then appears to be controlled by the balanced bidirectional motion of ILS cell pigments within the photophore. This suggests a functional link between photoreception and photoemission in the photogenic tissue of lanternsharks and gives precious insights into the bioluminescence control of these organisms.
Collapse
|
19
|
Ma N, Zhang J, Reiter RJ, Ma X. Melatonin mediates mucosal immune cells, microbial metabolism, and rhythm crosstalk: A therapeutic target to reduce intestinal inflammation. Med Res Rev 2020; 40:606-632. [PMID: 31420885 DOI: 10.1002/med.21628] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
Nowadays, melatonin, previously considered only as a pharmaceutical product for rhythm regulation and sleep aiding, has shown its potential as a co-adjuvant treatment in intestinal diseases, however, its mechanism is still not very clear. A firm connection between melatonin at a physiologically relevant concentration and the gut microbiota and inflammation has recently established. Herein, we summarize their crosstalk and focus on four novelties. First, how melatonin is synthesized and degraded in the gut and exerts potentially diverse phenotypic effects through its diverse metabolites. Second, how melatonin mediates the activation and proliferation of intestinal mucosal immune cells with paracrine and autocrine properties. By modulating T/B cells, mast cells, macrophages and dendritic cells, melatonin immunomodulatory involved in regulating T-cell differentiation, intervening T/B cell interaction and attenuating the production of pro-inflammatory factors, achieving its antioxidant action via specific receptors. Third, how melatonin exerts antimicrobial action and modulates microbial components, such as lipopolysaccharide, amyloid-β peptides via nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) or signal transducers and activators of transcription (STAT1) pathway to modulate intestinal immune function in immune-pineal axis. The last, how melatonin mediates the effect of intestinal bacterial activity signals on the body rhythm system through the NF-κB pathway and influences the mucosal epithelium oscillation via clock gene expression. These processes are achieved at mitochondrial and nuclear levels to control the host immune cell development. Considering unclear mechanisms and undiscovered actions of melatonin in gut-microbiome-immune axis, it's time to reveal them and provide new insight for the outlook of melatonin as a potential therapeutic target in the treatment and management of intestinal diseases.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie Zhang
- Animal Husbandry and Veterinary Department, Beijing Vocational College of Agriculture, Beijing, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Internal Medicine and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
20
|
Díaz-Galindo MDC, Calderón-Vallejo D, Olvera-Sandoval C, Quintanar JL. Therapeutic approaches of trophic factors in animal models and in patients with spinal cord injury. Growth Factors 2020; 38:1-15. [PMID: 32299267 DOI: 10.1080/08977194.2020.1753724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Trophic factors are naturally produced by different tissues that participate in several functions such as the intercellular communication, in the development, stability, differentiation and regeneration at the cellular level. Specifically, in the case of spinal injuries, these factors can stimulate neuronal recovery. They are applied both in experimental models and in clinical trials in patients. The trophic factors analysed in this review include gonadotropin-releasing hormone (GnRH), thyrotropin-releasing hormone (TRH), growth hormone (GH), melatonin, oestrogens, the family of fibroblast growth factors (FGFs), the family of neurotrophins and the glial cell-derived neurotrophic factor (GDNF). There are some trophic (neurotrophic) factors that already been tested in patients with spinal cord injury (SCI), but only shown partial recovery effect. It is possible that, the administration of these trophic factors together with physical rehabilitation, act synergistically and, therefore, significantly improve the quality of life of patients with SCI.
Collapse
Affiliation(s)
- María Del Carmen Díaz-Galindo
- Department of Physiology and Pharmacology, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes. Av, Aguascalientes, México
| | - Denisse Calderón-Vallejo
- Department of Physiology and Pharmacology, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes. Av, Aguascalientes, México
- Department of Morphology, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes. Av, Aguascalientes, México
| | - Carlos Olvera-Sandoval
- Facultad de Medicina-Mexicali, Universidad Autónoma de Baja California, México. Dr. Humberto Torres Sanginés S/N. Centro Cívico, Mexicali, México
| | - J Luis Quintanar
- Department of Physiology and Pharmacology, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes. Av, Aguascalientes, México
| |
Collapse
|
21
|
Baiocchi L, Zhou T, Liangpunsakul S, Ilaria L, Milana M, Meng F, Kennedy L, Kusumanchi P, Yang Z, Ceci L, Glaser S, Francis H, Alpini G. Possible application of melatonin treatment in human diseases of the biliary tract. Am J Physiol Gastrointest Liver Physiol 2019; 317:G651-G660. [PMID: 31509434 PMCID: PMC6879895 DOI: 10.1152/ajpgi.00110.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Melatonin was discovered in 1958 by Aaron Lerner. Its name comes from the ability of melatonin to change the shape of amphibian melanophores from stellate to roundish. Starting from the 1980s, the role of melatonin in the regulation of mammalian circadian and seasonal clocks has been elucidated. Presently, several other effects have been identified in different organs. For example, the beneficial effects of melatonin in models of liver damage have been described. This review gives first a general background on experimental and clinical data on the use of melatonin in liver damage. The second part of the review focuses on the findings related to the role of melatonin in biliary functions, suggesting a possible use of melatonin therapy in human diseases of the biliary tree.
Collapse
Affiliation(s)
- Leonardo Baiocchi
- 1Liver Unit, Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Tianhao Zhou
- 2Department of Medical Physiology, Texas A & M University, College of Medicine, Bryan, Texas
| | - Suthat Liangpunsakul
- 3Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana,4Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lenci Ilaria
- 1Liver Unit, Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Martina Milana
- 1Liver Unit, Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Fanyin Meng
- 3Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana,4Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lindsey Kennedy
- 4Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Praveen Kusumanchi
- 4Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zhihong Yang
- 4Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ludovica Ceci
- 4Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Shannon Glaser
- 2Department of Medical Physiology, Texas A & M University, College of Medicine, Bryan, Texas
| | - Heather Francis
- 3Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana,4Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gianfranco Alpini
- 3Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana,4Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
22
|
Dose-Dependent Effect of Hyperbaric Oxygen Treatment on Burn-Induced Neuropathic Pain in Rats. Int J Mol Sci 2019; 20:ijms20081951. [PMID: 31010055 PMCID: PMC6514672 DOI: 10.3390/ijms20081951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
Hyperbaric oxygen treatment (HBOT) has been used to reduce neuropathic pain. Melatonin and opioid receptors are involved in neuropathic pain, but it is not known if HBOT works through these pathways to achieve its antinociceptive effect. We divided anesthetized rats into two treatment and three sham groups. The two treatment groups received third-degree burns on their right hind paws, one treated in a hyperbaric chamber for a week and the other for two weeks. We evaluated the mechanical paw-withdrawal threshold (MWT) and expression of melatonin receptor 1 (MT1), melatonin receptor 2 (MT2), μ (MOR) and κ (KOR) opioid receptor, brain-derived neurotrophic factor (BDNF), Substance P, and calcitonin gene-related peptide (CGRP) in cuneate nucleus, dorsal horn, and hind paw skin by immunohistochemical, immunofluorescence assays and real-time quantitative polymerase chain reaction (RT-PCR). The group receiving one-week HBOT had increased expressions of MT1, MT2, MOR and KOR and decreased expressions of BDNF, Substance P, and CGRP. Their mechanically measured pain levels returned to normal within a week and lasted three weeks. This anti-allodynia effect lasted twice as long in those treated for two weeks. Our findings suggest that increasing the duration of HBOT can reduce burn-induced mechanical allodynia for an extended period of time in rats. The upregulation of melatonin and opioid receptors observed after one week of HBOT suggests they may be partly involved in attenuation of the mechanical allodynia. Downregulation of BDNF, substance P and CGRP may have also contributed to the overall beneficial effect of HBOT.
Collapse
|
23
|
Talpur HS, Chandio IB, Brohi RD, Worku T, Rehman Z, Bhattarai D, Ullah F, JiaJia L, Yang L. Research progress on the role of melatonin and its receptors in animal reproduction: A comprehensive review. Reprod Domest Anim 2018; 53:831-849. [PMID: 29663591 DOI: 10.1111/rda.13188] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/03/2018] [Indexed: 12/15/2022]
Abstract
Melatonin and its receptors play a crucial role in the regulation of the animal reproductive process, primarily in follicular development. However, the role that melatonin performs in regulating hormones related with reproduction remains unclear. Melatonin and its receptors are present both in female and male animals' organs, such as ovaries, heart, brain and liver. Melatonin regulates ovarian actions and is a key mediator of reproductive actions. Melatonin has numerous effects on animal reproduction, such as protection of gametes and embryos, response to clock genes, immune-neuroendocrine, reconciliation of seasonal variations in immune function, and silence or blockage of genes. The growth ratio of reproductive illnesses in animals has raised a remarkable concern for the government, animal caretakers and farm managers. In order to resolve this challenging issue, it is very necessary to conduct state-of-the-art research on melatonin and its receptors because melatonin has considerable physiognomies. This review article presents a current contemporary research conducted by numerous researchers from the entire world on the role of melatonin and its receptors in animal reproduction, from the year 1985 to the year 2017. Furthermore, this review shows scientific research challenges related to melatonin receptors and their explanations based on the findings of 172 numerous research articles, and also represents significant proficiencies of melatonin in order to show enthusiastic study direction for animal reproduction researchers.
Collapse
Affiliation(s)
- H S Talpur
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, China
| | - I B Chandio
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - R D Brohi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, China
| | - T Worku
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, China
| | - Z Rehman
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, China
| | - D Bhattarai
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, China
| | - F Ullah
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, China
| | - L JiaJia
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, China
| | - L Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
The effect of intravitreal cholinergic drugs on motor control. Behav Brain Res 2018; 339:232-238. [DOI: 10.1016/j.bbr.2017.11.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 11/22/2022]
|
25
|
The effect of directed photic stimulation of the pineal on experimental Parkinson's disease. Physiol Behav 2017; 182:1-9. [PMID: 28919247 DOI: 10.1016/j.physbeh.2017.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/31/2017] [Accepted: 09/14/2017] [Indexed: 12/24/2022]
Abstract
The role of the circadian system in Parkinson's disease (PD) is a topic of increasing scientific interest. This has emerged from recent studies demonstrating an altered response of PD patients to treatment in relation to the phase of the light/dark cycle and from other work defining the functional significance of melanocytes in PD: a cell type that the nigro-striatal dopamine (NSD) system and circadian system both contain. The present study was undertaken to determine the sensitivity of the pineal, as the final common pathway of the circadian system, to light delivered directly to the pineal via surgical implantation of LEDs. Direct photic stimulation of the pineal altered the course of experimental PD while anatomical controls receiving stimulation of the frontal cortex exhibited a negative impact on the course of recovery of these animals. These effects were closely linked to the phase of the light/dark cycle. The present results suggest that while pineal photoreceptors are regarded as vestigial, functional photo-reactivity of the pineal remains. It is inferred that melanocytes are the active cells responsible for the observed effect since they remain functionally intact in mammalian pineal even though pineal photoreceptors are functionally inert. Although the stimuli applied in the present study may be regarded as artificial this study demonstrates that brain parenchyma remains differentially reactive to direct light exposure and presents a novel mechanism in circadian structures that needs to be explored.
Collapse
|
26
|
Jang H, Na Y, Hong K, Lee S, Moon S, Cho M, Park M, Lee OH, Chang EM, Lee DR, Ko JJ, Lee WS, Choi Y. Synergistic effect of melatonin and ghrelin in preventing cisplatin-induced ovarian damage via regulation of FOXO3a phosphorylation and binding to the p27 Kip1 promoter in primordial follicles. J Pineal Res 2017; 63. [PMID: 28658519 DOI: 10.1111/jpi.12432] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/23/2017] [Indexed: 12/31/2022]
Abstract
Premature ovarian failure during chemotherapy is a serious problem for young women with cancer. To preserve the fertility of these patients, approaches to prevent chemotherapy-induced ovarian failure are needed. In a previous study, we reported that melatonin treatment prevents the depletion of the dormant follicle pool via repression of the simultaneous activation of dormant primordial follicles by cisplatin. However, melatonin's protective effect was only partial and thus insufficient. In this study, we found that the hormone ghrelin enhances the protective effect of melatonin against cisplatin-induced ovarian failure in mouse model. Co-administration of melatonin and ghrelin more effectively prevented cisplatin-induced follicle disruption. Simultaneous treatment with melatonin and ghrelin almost restored the number of primordial follicles and the corpus luteum in cisplatin-treated ovaries, compared with single administration. We found melatonin and ghrelin receptors on the cell membrane of premature oocytes of primordial follicles. In addition, melatonin and ghrelin co-administration inhibited the cisplatin-induced phosphorylation of PTEN and FOXO3a that induces cytoplasmic translocation of FOXO3a. Inhibition of FOXO3a phosphorylation by melatonin and ghrelin increased the binding affinity of FOXO3a for the p27Kip1 promoter in primordial follicles. Co-administration of melatonin and ghrelin in cisplatin-treated ovaries restored the expression of p27Kip1 , which is critical for retention of the dormant status of primordial follicles. In conclusion, these findings suggest that melatonin and ghrelin co-administration is suitable for use as a fertoprotective adjuvant therapy during cisplatin chemotherapy in young female cancer patients.
Collapse
Affiliation(s)
- Hoon Jang
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| | - Younghwa Na
- College of Pharmacy, CHA University, Gyeonggi, Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Korea
| | - Sangho Lee
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| | - Sohyeon Moon
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| | - Minha Cho
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| | - Miseon Park
- Fertility Center of CHA Gangnam Medical Center, Department of Obstetrics and Gynecology, CHA University, Seoul, Korea
| | - Ok-Hee Lee
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| | - Eun Mi Chang
- Fertility Center of CHA Gangnam Medical Center, Department of Obstetrics and Gynecology, CHA University, Seoul, Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| | - Jung Jae Ko
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
- Fertility Center of CHA Gangnam Medical Center, Department of Obstetrics and Gynecology, CHA University, Seoul, Korea
| | - Woo Sik Lee
- Fertility Center of CHA Gangnam Medical Center, Department of Obstetrics and Gynecology, CHA University, Seoul, Korea
| | - Youngsok Choi
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| |
Collapse
|
27
|
Willis GL, Freelance CB. Emerging preclinical interest concerning the role of circadian function in Parkinson's disease. Brain Res 2017; 1678:203-213. [PMID: 28958865 DOI: 10.1016/j.brainres.2017.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 02/08/2023]
Abstract
The importance of circadian function in the aetiology, progression and treatment of Parkinson's disease is a topic of increasing interest to the scientific and clinical community. While clinical studies on this theme are relatively new and limited in number there are many preclinical studies which explore possible circadian involvement in Parkinson's disease and speculate as to the mechanism by which clinical benefit can be derived by manipulating the circadian system. The present review explores the sequelae of circadian related studies from a historical perspective and reveals mechanisms that may be involved in the aetiology and progression of the disease. A systematic review of these studies also sets the stage for understanding the basic neuroscientific approaches which have been applied and provides new direction from which circadian function can be explored.
Collapse
Affiliation(s)
- Gregory L Willis
- The Bronowski Institute of Behavioural Neuroscience, Coliban Medical Centre, 19 Jennings Street, Kyneton, Vic 3444, Australia.
| | - Christopher B Freelance
- The Bronowski Institute of Behavioural Neuroscience, Coliban Medical Centre, 19 Jennings Street, Kyneton, Vic 3444, Australia
| |
Collapse
|
28
|
Li T, Yang Z, Jiang S, Di W, Ma Z, Hu W, Chen F, Reiter RJ, Yang Y. Melatonin: does it have utility in the treatment of haematological neoplasms? Br J Pharmacol 2017; 175:3251-3262. [PMID: 28880375 DOI: 10.1111/bph.13966] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
Melatonin, discovered in 1958 in the bovine pineal tissue, is an indoleamine that modulates circadian rhythms and has a wide variety of other functions. Haematological neoplasms are the leading cause of death in children and adolescents throughout the world. Research has demonstrated that melatonin is a low-toxicity protective molecule against experimental haematological neoplasms, but the mechanisms remain poorly defined. Here, we provide an introduction to haematological neoplasms and melatonin, especially as they relate to the actions of melatonin on haematological carcinogenesis. Secondly, we summarize what is known about the mechanisms of action of melatonin in the haematological system, including its pro-apoptotic, pro-oxidative, anti-proliferative and immunomodulatory actions. Thirdly, we discuss the advantages of melatonin in combination with other drugs against haematological malignancy, as well as its other benefits on the haematological system. Finally, we summarize the findings that are contrary to the suppressive effects of melatonin on cancers of haematological origin. We hope that this information will be helpful in the design of studies related to the therapeutic efficacy of melatonin in haematological neoplasms. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Tian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China.,Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Wencheng Di
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China.,Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
29
|
Zhang L, Chen F, Cao J, Dong Y, Wang Z, Chen Y. Melatonin modulates monochromatic light-induced melatonin receptor expression in the hypothalamus of chicks. Acta Histochem 2017; 119:733-739. [PMID: 28943001 DOI: 10.1016/j.acthis.2017.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 12/01/2022]
Abstract
To study the mechanism of the effect of monochromatic light on physiological function in chicken, a total of 192 newly hatched chicks were randomly divided into intact, sham-operated and pinealectomy groups then exposed to white light (WL), red light (RL), green light (GL) and blue light (BL) using a light-emitting diode (LED) system for two weeks. At P14, the hypothalami were immediately collected for immunohistochemical staining of melatonin receptor subtypes (Mel1a and Mel1b) and detection of Mel1a and Mel1b expressions using RT-PCR and western blot. Immunohistochemical staining of the hypothalamus showed that the Mel1a-ir cells were distributed in the preoptic area (POA), nucleus preopticus periventricularis (POP) and suprachiasmatic nuclei (SCN), and the Mel1b-ir cells were presented in the POA and SCN. Analysis of RT-PCR and western blot showed that the mRNA and protein levels of Mel1a and Mel1b in the hypothalamus of chick exposed to GL were increased by 10.7-29.3%, 9.18-35.9% and 8.97-27.3% compared to those in the chicks exposed to WL (P=0.029-0.002), RL (P=0.027-0.001) and BL (P=0.038-0.007) in the intact group, respectively. After pinealectomy, however, these parameters decreased and there were no significant differences among the WL, RL, GL and BL groups. These findings suggested that melatonin plays a critical role in GL illumination-enhanced Mel1a and Mel1b expressions in the hypothalamus of chicks.
Collapse
Affiliation(s)
- Liwei Zhang
- Laboratory of Anatomy of Domestic Animal, College of Animal Medicine, China Agricultural University, Beijing 100193, China
| | - Funing Chen
- Changping Hospital of Integrated Chinese and Western Medicine, Beijing 102208, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animal, College of Animal Medicine, China Agricultural University, Beijing 100193, China
| | - Yulan Dong
- Laboratory of Anatomy of Domestic Animal, College of Animal Medicine, China Agricultural University, Beijing 100193, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animal, College of Animal Medicine, China Agricultural University, Beijing 100193, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animal, College of Animal Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
30
|
|
31
|
Rebai R, Jasmin L, Boudah A. The antidepressant effect of melatonin and fluoxetine in diabetic rats is associated with a reduction of the oxidative stress in the prefrontal and hippocampal cortices. Brain Res Bull 2017; 134:142-150. [PMID: 28746841 DOI: 10.1016/j.brainresbull.2017.07.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/10/2017] [Accepted: 07/19/2017] [Indexed: 12/16/2022]
Abstract
In the past few years possible mechanisms that link diabetes and depression have been found. One of these mechanisms is the increase in lipid peroxidation and decrease in antioxidant activity in the hippocampal and prefrontal cortices, which are brain areas involved in mood. The goal of the present study was to evaluate the effect of an antidepressant and of an antioxidant on behavior and oxidative activity in brains of diabetic rats. Rats rendered diabetic after a treatment with streptozotocin (STZ) (60mg/kg) were treated with fluoxetine (15mg/kg), melatonin (10mg/kg), or vehicle for 4 weeks. All animals were tested for signs of depression and anxiety using the elevated plus maze (EPM), open field test (OFT) and the forced swim test (FST). Four groups were compared: (1) normoglycemic, (2) hyperglycemic vehicle treated, and hyperglycemic (3) fluoxetine or (4) melatonin treated rats. On the last day of the study, blood samples were obtained to determine the levels of hemoglobin A1c (HbA1c). Also, brain samples were collected to measure the oxidative stress in the hippocampal and prefrontal cortices using the thiobarbituric acid reactive substances (TBARS) assay. The activity of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx), and glutathione S-transferase (GST) were also measured on the brain samples. The results show that both fluoxetine and melatonin decrease the signs of depression and anxiety in all tests. Concomitantly, the levels of HbA1c were reduced in drug treated rats, and to a greater degree in the fluoxetine group. In the cerebral cortex of diabetic rats, TBARS was increased, while the activity of CAT, GPx and GST were decreased. Fluoxetine and melatonin treatments decreased TBARS in both cortices. In the prefrontal cortex, fluoxetine and melatonin restored the activity of CAT, while only melatonin improved the activity of GPx and GST. In the hippocampus, the activity of GPx alone was restored by melatonin, while fluoxetine had no effect. These results suggest that antidepressants and antioxidants can counter the mood and oxidative disorders associated with diabetes. While these effects could result from a decreased production of reactive oxygen species (ROS) remains to be established.
Collapse
Affiliation(s)
- Redouane Rebai
- Department of Biochemistry & Molecular and Cellular Biology, Faculty of Natural and Life Sciences, University of Mentouri Brothers, Constantine BP, 325 Road of Ain El Bey, 25017 Constantine, Algeria.
| | - Luc Jasmin
- Department of Oral and Maxillofacial Surgery, University of California, 521 Parnassus Ave, Campus Box 0440, San Francisco, CA 94143, USA.
| | - Abdennacer Boudah
- National Higher School of Biotechnology, Ville universitaire Ali Mendjeli, BP E66 25100 Constantine, Algeria.
| |
Collapse
|
32
|
Ren W, Liu G, Chen S, Yin J, Wang J, Tan B, Wu G, Bazer FW, Peng Y, Li T, Reiter RJ, Yin Y. Melatonin signaling in T cells: Functions and applications. J Pineal Res 2017; 62. [PMID: 28152213 DOI: 10.1111/jpi.12394] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 01/27/2017] [Indexed: 12/21/2022]
Abstract
Melatonin affects a variety of physiological processes including circadian rhythms, cellular redox status, and immune function. Importantly, melatonin significantly influences T-cell-mediated immune responses, which are crucial to protect mammals against cancers and infections, but are associated with pathogenesis of many autoimmune diseases. This review focuses on our current understanding of the significance of melatonin in T-cell biology and the beneficial effects of melatonin in T-cell response-based diseases. In addition to expressing both membrane and nuclear receptors for melatonin, T cells have the four enzymes required for the synthesis of melatonin and produce high levels of melatonin. Meanwhile, melatonin is highly effective in modulating T-cell activation and differentiation, especially for Th17 and Treg cells, and also memory T cells. Mechanistically, the influence of melatonin in T-cell biology is associated with membrane and nuclear receptors as well as receptor-independent pathways, for example, via calcineurin. Several cell signaling pathways, including ERK1/2-C/EBPα, are involved in the regulatory roles of melatonin in T-cell biology. Through modulation in T-cell responses, melatonin exerts beneficial effects in various inflammatory diseases, such as type 1 diabetes, systemic lupus erythematosus, and multiple sclerosis. These findings highlight the importance of melatonin signaling in T-cell fate determination, and T cell-based immune pathologies.
Collapse
Affiliation(s)
- Wenkai Ren
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Gang Liu
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Shuai Chen
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Jie Yin
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Jing Wang
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Bie Tan
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Yuanyi Peng
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Tiejun Li
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yulong Yin
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
- School of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
33
|
Miranda-Páez A, Zamudio SR, Vázquez-León P, Sandoval-Herrera V, Villanueva-Becerril I, Carli G. Effect of melatonin injection into the periaqueductal gray on antinociception and tonic immobility in male rats. Horm Behav 2017; 89:23-29. [PMID: 27988316 DOI: 10.1016/j.yhbeh.2016.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 10/20/2022]
Abstract
Melatonin (MLT) is a neurohormone with significant involvement in several biological functions, of which antinociception and tonic immobility (TI) may be the key neurobehavioral components to survive in adverse conditions such as a predator attack. TI-induced antinociception can be elicited, facilitated, or increased through opioid and γ-aminobutyric acid (GABA) among other chemical mediators at several levels of the central nervous system, mainly in the periaqueductal gray (PAG). The aim of this study was to assess the effect of the microinjection of MLT into the main PAG regions that are related to different integrated defensive responses, namely dorsal (D) and ventrolateral (VL), on both antinociception through the tail-flick (TF) test and TI duration as single behavioral response and on combined behavioral responses (TF/TI). We found that the microinjection of MLT into the main PAG areas produced antinociception but did not affect the TI duration. The microinjection of MLT into the D-PAG decreased TF latency during TI in the combined trial (TF/TI), which implies that TI-induced antinociception was blocked. The microinjection of MLT into the VL-PAG maintained the antinociceptive capability of the TI without addition or increase in the antinociceptive effects, implying a permissive effect by MLT on the TI-induced antinociception. MLT administration into the D-PAG decreased the TI duration on the TF/TI, whereas MLT administration into the VL-PAG had the opposite effect of significantly increasing TI duration with the TF/TI trial.
Collapse
Affiliation(s)
- Abraham Miranda-Páez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, CP 07738, Del. Gustavo A. Madero, México City, Mexico.
| | - Sergio R Zamudio
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, CP 07738, Del. Gustavo A. Madero, México City, Mexico
| | - Priscila Vázquez-León
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, CP 07738, Del. Gustavo A. Madero, México City, Mexico
| | - Vicente Sandoval-Herrera
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, CP 07738, Del. Gustavo A. Madero, México City, Mexico
| | - Ivan Villanueva-Becerril
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, CP 07738, Del. Gustavo A. Madero, México City, Mexico
| | - Giancarlo Carli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Via A. Moro, 2, Room 10/127, 53100 Siena, Italy
| |
Collapse
|
34
|
Bertolesi GE, Vazhappilly ST, Hehr CL, McFarlane S. Pharmacological induction of skin pigmentation unveils the neuroendocrine circuit regulated by light. Pigment Cell Melanoma Res 2016; 29:186-98. [PMID: 26582755 DOI: 10.1111/pcmr.12442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/12/2015] [Indexed: 12/24/2022]
Abstract
Light-regulated skin colour change is an important physiological process in invertebrates and lower vertebrates, and includes daily circadian variation and camouflage (i.e. background adaptation). The photoactivation of melanopsin-expressing retinal ganglion cells (mRGCs) in the eye initiates an uncharacterized neuroendocrine circuit that regulates melanin dispersion/aggregation through the secretion of alpha-melanocyte-stimulating hormone (α-MSH). We developed experimental models of normal or enucleated Xenopus embryos, as well as in situ cultures of skin of isolated dorsal head and tails, to analyse pharmacological induction of skin pigmentation and α-MSH synthesis. Both processes are triggered by a melanopsin inhibitor, AA92593, as well as chloride channel modulators. The AA9253 effect is eye-dependent, while functional data in vivo point to GABAA receptors expressed on pituitary melanotrope cells as the chloride channel blocker target. Based on the pharmacological data, we suggest a neuroendocrine circuit linking mRGCs with α-MSH secretion, which is used normally during background adaptation.
Collapse
Affiliation(s)
- Gabriel E Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sherene T Vazhappilly
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Carrie L Hehr
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
35
|
Bertolesi GE, Hehr CL, Munn H, McFarlane S. Two light-activated neuroendocrine circuits arising in the eye trigger physiological and morphological pigmentation. Pigment Cell Melanoma Res 2016; 29:688-701. [DOI: 10.1111/pcmr.12531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/22/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Gabriel E. Bertolesi
- Department of Cell Biology and Anatomy; Hotchkiss Brain Institute; Alberta Children's Hospital Research Institute; University of Calgary; Calgary AB Canada
| | - Carrie L. Hehr
- Department of Cell Biology and Anatomy; Hotchkiss Brain Institute; Alberta Children's Hospital Research Institute; University of Calgary; Calgary AB Canada
| | - Hayden Munn
- Department of Cell Biology and Anatomy; Hotchkiss Brain Institute; Alberta Children's Hospital Research Institute; University of Calgary; Calgary AB Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy; Hotchkiss Brain Institute; Alberta Children's Hospital Research Institute; University of Calgary; Calgary AB Canada
| |
Collapse
|
36
|
Song G, Yoon KA, Chi H, Roh J, Kim JH. Decreased concentration of serum melatonin in nighttime compared with daytime female medical technologists in South Korea. Chronobiol Int 2016; 33:1305-1310. [PMID: 27385051 DOI: 10.1080/07420528.2016.1199562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Working during the night can disrupt the normal circadian rhythm by altering the melatonin level. A low level of melatonin is associated with an increased risk of cancer, possibly by decreasing the expression of tumor-suppressor genes, such as p53. To determine whether nighttime work is associated with melatonin level in serum as well as the expression of related genetic markers, we enrolled 100 female nighttime medical technologists employed at a hospital in South Korea. Melatonin concentration and melatonin receptor 1 (MT1) expression were significantly lower in nighttime than in daytime workers (1.84 pg/mL versus 4.04 pg/mL; 1.16 versus 1.61, respectively). However, p53 expression showed no difference between the groups. In summary, nighttime work could be an important risk factor for circadian disruption, but not a direct risk factor for cancer in medical technologists in South Korea.
Collapse
Affiliation(s)
- GiSeon Song
- a Seegene Medical Foundation , Seoul , Korea.,c Samkwang Medical Laboratories , Seoul , Korea
| | - Kyong-Ah Yoon
- b College of Veterinary Medicine, Konkuk University , Seoul , Korea
| | | | - Jaehoon Roh
- d The Institute for Occupational Health , Department of Preventive Medicine and Public Health , Seoul , Korea.,e The Institute for Occupational Health , Yonsei University College of Medicine , Seoul , Korea.,f Graduate School of Public Health , Yonsei University College of Medicine , Seoul , Korea
| | - Jin-Hee Kim
- g Department of Biomedical Laboratory Science, College of Health Science , Cheongju University , Cheongju , Korea
| |
Collapse
|
37
|
Sun J, Geng X, Guo J, Zang X, Li P, Li D, Xu C. Proteomic analysis of the skin from Chinese fire-bellied newt and comparison to Chinese giant salamander. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 19:71-77. [PMID: 27343457 DOI: 10.1016/j.cbd.2016.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/07/2016] [Accepted: 06/12/2016] [Indexed: 12/18/2022]
Abstract
Animal skin that directly interfaces with the external environment has developed diverse adaptive functions to a variety of ecological conditions laden with pathogenic infection and physical harm. Amphibians exhibit various adaptations related to their "incomplete" shift from the aquatic to the terrestrial habitat. Therefore, it is very necessary to explore the molecular basis of skin function and adaptation in amphibians. Currently, the studies on the molecular mechanisms of skin functions in anuran amphibians have been reported, but in urodele amphibians are rare. This study identified the skin proteomes of Chinese fire-bellied newt Cynops orientalis by a proteomic method, and compared the results to the skin proteomes of Chinese giant salamander Andrias davidianus obtained previously. A total of 452 proteins were identified in the newt skin by MALDI-TOF/MS, and functional annotation results by DAVID analysis showed that special functions such as wound healing, immune response, defense and respiration, were significantly enriched. Comparison results showed that the two species had a great difference in the aspects of protein kinds and abundance, and the highly expressed proteins may tightly correlate with living conditions. Moreover, the newt skin might have stronger immunity, but weaker respiration than the giant salamander skin to adapt to various living environments. This research provides a molecular basis for further studies on amphibian skin function and adaptation.
Collapse
Affiliation(s)
- Jingyan Sun
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Xiaofang Geng
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Jianlin Guo
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Xiayan Zang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Pengfei Li
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Deming Li
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Cunshuan Xu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
38
|
Yin XJ, Geng CA, Huang XY, Chen H, Ma YB, Chen XL, Sun CL, Yang TH, Zhou J, Zhang XM, Chen JJ. Bioactivity-guided synthesis of tropine derivatives as new agonists for melatonin receptors. RSC Adv 2016. [DOI: 10.1039/c6ra06748d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Twenty-three tropine derivatives as new melatonin receptor (MT1 and MT2) agonists were synthesized and evaluated on HEK293 cells in vitro.
Collapse
|
39
|
New coumarin-based fluorescent melatonin ligands. Design, synthesis and pharmacological characterization. Eur J Med Chem 2015; 103:370-3. [DOI: 10.1016/j.ejmech.2015.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 11/17/2022]
|
40
|
Geng X, Wei H, Shang H, Zhou M, Chen B, Zhang F, Zang X, Li P, Sun J, Che J, Zhang Y, Xu C. Proteomic analysis of the skin of Chinese giant salamander (Andrias davidianus). J Proteomics 2015; 119:196-208. [DOI: 10.1016/j.jprot.2015.02.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/07/2015] [Accepted: 02/11/2015] [Indexed: 12/18/2022]
|
41
|
Central depressant and nootropic effects of daytime melatonin in mice. Ann Neurosci 2014; 21:90-6. [PMID: 25206072 PMCID: PMC4158777 DOI: 10.5214/ans.0972.7531.210304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/17/2014] [Accepted: 06/20/2014] [Indexed: 12/14/2022] Open
Abstract
Background Effects of orally administered daytime melatonin on novelty induced behaviors and spatial working memory in mice were evaluated using the open field, the Y maze and the radial arm maze. Purpose To ascertain the possible nootropic and/or central excitatory or inhibitory effects of daytime oral melatonin in mice. Methods Adult male mice from our colony, assigned to three and four groups for open field tests and memory tests respectively were given vehicle (normal saline), a standard drug Scopolamine at 0.5 mg/kg i.p, single dose, 30 minutes before behavioral study) or one of two doses of melatonin (5 and 10 mg/kg daily for a period of 30 days). All administrations were done between 8.00 a.m. and 9.00 a.m. daily. Behavioral tests were carried out on day 30 after administration. Results were analysed using a one-way ANOVA followed by a posthoc test (Student-Newman-Keul’s) and expressed as mean ± S.E.M. Results Open field tests revealed a significant reduction in rearing and grooming behaviors at both doses tested while no significant changes in horizontal locomotion were seen. Y maze studies showed an improvement in spatial memory in mice that received 5 mg/kg of melatonin when compared to scopolamine control. At 10 mg/kg, no significant improvement was seen. A significant increase in the radial arm maze spatial working memory following melatonin administration was seen at 5 mg/kg and 10 mg/kg compared to scopolamine control. Radial arm maze exploration was also significantly reduced. Conclusion The study demonstrates the ability of exogenously administered melatonin, to affect both central excitation and spatial working memory in mice even when given orally.
Collapse
|
42
|
Delgado O, Delgado F, Vega JA, Trabanco AA. N-Bridged 5,6-bicyclic pyridines: Recent applications in central nervous system disorders. Eur J Med Chem 2014; 97:719-31. [PMID: 25542766 DOI: 10.1016/j.ejmech.2014.12.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 12/21/2022]
Abstract
The search for novel heterobicyclic compounds within the drug-like chemical space continues to be an area of interest in medicinal chemistry. Unsaturated N-bridgehead heterocycles are well represented in marketed drugs for a variety of therapeutic areas, and continue to play an important role in central nervous system (CNS) drug discovery programs. Examples of medicinal chemistry strategies that make use of N-bridged 5,6-bicyclic pyridines are discussed here in this Minireview, which covers the literature from 2010 up to 2014. B1-class imidazopyridines and B3-class pyrazolopyridines have proven to be at the forefront of molecular prototypes that are capable of interacting with disease relevant targets in neurodegeneration and neuropsychiatry.
Collapse
Affiliation(s)
- Oscar Delgado
- Neuroscience Medicinal Chemistry, Janssen Research & Development, Janssen-Cilag S.A., C/Jarama 75, 45007 Toledo, Spain
| | - Francisca Delgado
- Neuroscience Medicinal Chemistry, Janssen Research & Development, Janssen-Cilag S.A., C/Jarama 75, 45007 Toledo, Spain
| | - Juan Antonio Vega
- Neuroscience Medicinal Chemistry, Janssen Research & Development, Janssen-Cilag S.A., C/Jarama 75, 45007 Toledo, Spain
| | - Andrés A Trabanco
- Neuroscience Medicinal Chemistry, Janssen Research & Development, Janssen-Cilag S.A., C/Jarama 75, 45007 Toledo, Spain.
| |
Collapse
|
43
|
Nasrabadi NN, Ataee R, Abediankenari S, Shokrzadeh M, Najafi M, Hoseini SV, Jan HHA. Expression of MT2 receptor in patients with gastric adenocarcinoma and its relationship with clinicopathological features. J Gastrointest Cancer 2014; 45:54-60. [PMID: 24142542 DOI: 10.1007/s12029-013-9552-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gastric cancer accounts 8% of the total cancer cases and 10% of total cancer deaths worldwide. The indoleamine N-acetyl-5-methoxytryptamine, better known as melatonin, is the principal hormone produced by the pineal gland. Recently, it has shown some anticancer role in some malignancies such as breast and colon cancer; also, some of its protective roles in the GI tract are as free radical scavenger and as antimitogenic and apoptotic agents. Based on the anticancer effects of melatonin and wide distribution of this neurohormone in the GI tract and some proposed physiologic and pharmacologic roles for this neurohormone, this study is initially scheduled to determine the expression of melatonin receptor MT2 in tissue samples of adenocarcinoma cancer patients. METHODS For this aim, a total of 30 gastric adenocarcinoma patients and 30 normal individuals were selected and examined for MT2 gene expression by real-time PCR. RESULTS Our results have shown interestingly high expression for MT2 receptor in cancer and marginal cancer tissues compared with normal people. CONCLUSIONS According to our results, it is concluded that for the first time, the expression of MT2 receptor in gastric adenocarcinoma tissues which was in parallel with breast and colon cancer studies and high expression of this receptor in the marginal tissues indicate refractory mechanism which shows the defending role of melatonin in the GI system. Our experiments has not shown any relationship between MT2 receptor expression and grade and clinicopathological features of gastric tumor, so we cannot conclude any relationship between this receptor expression and progression of the tumor, although this expression can be considered as an etiology.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Case-Control Studies
- Female
- Follow-Up Studies
- Humans
- Male
- Middle Aged
- Neoplasm Staging
- Prognosis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
Collapse
Affiliation(s)
- Nafiseh Nasri Nasrabadi
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | | | | | | | | | |
Collapse
|
44
|
Joshi N, Biswas J, Nath C, Singh S. Promising Role of Melatonin as Neuroprotectant in Neurodegenerative Pathology. Mol Neurobiol 2014; 52:330-40. [DOI: 10.1007/s12035-014-8865-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 08/14/2014] [Indexed: 12/14/2022]
|
45
|
She M, Laudon M, Yin W. Melatonin receptors in diabetes: a potential new therapeutical target? Eur J Pharmacol 2014; 744:220-3. [PMID: 25160745 DOI: 10.1016/j.ejphar.2014.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 08/08/2014] [Accepted: 08/18/2014] [Indexed: 01/13/2023]
Abstract
Melatonin is synthesized and secreted mainly by the pineal gland in a circadian fashion, and it thus mediates endogenous circadian rhythms and influences other physiological functions. Both the G-protein coupled receptors MT1 (encoded by MTNR1A) and MT2 (encoded by MTNR1B) in mammals mediate the actions of melatonin. Evidence from in vivo and in vitro studies proved a key role of melatonin in the regulation of glucose metabolism and the pathogenesis of diabetes, as further confirmed by the recent studies of human genetic variants of MTNR1B. Remarkably, it was also suggested that genetic variations within MTNR1B disordered β-cells function directly, i.e. insulin secretion. This indicated the functional link between MT2 and T2D risk at the protein level, and it may represent the prevailing pathomechanism for how impaired melatonin signaling causes metabolic disorders and increases the T2D risk. It is speculated that melatonin and its receptors may be a new therapeutic avenue in diabetes.
Collapse
Affiliation(s)
- Meihua She
- Institute of Cardiovascular Research, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China; Department of Biochemistry and Molecular Biology, School of Pharmaceutical and Biological Science, University of South China, Hengyang, China
| | - Moshe Laudon
- Drug Discovery, Neurim Pharmaceuticals Ltd., Tel Aviv, Israel
| | - Weidong Yin
- Institute of Cardiovascular Research, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China; Department of Biochemistry and Molecular Biology, School of Pharmaceutical and Biological Science, University of South China, Hengyang, China.
| |
Collapse
|
46
|
Tsotinis A, Afroudakis PA, Garratt PJ, Bocianowska-Zbrog A, Sugden D. Benzocyclobutane, Benzocycloheptane and Heptene Derivatives as Melatonin Agonists and Antagonists. ChemMedChem 2014; 9:2238-43. [DOI: 10.1002/cmdc.201402122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Indexed: 12/15/2022]
|
47
|
Regulation of melanopsins and Per1 by α -MSH and melatonin in photosensitive Xenopus laevis melanophores. BIOMED RESEARCH INTERNATIONAL 2014; 2014:654710. [PMID: 24959583 PMCID: PMC4052817 DOI: 10.1155/2014/654710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 12/21/2022]
Abstract
α-MSH and light exert a dispersing effect on pigment granules of Xenopus laevis melanophores; however, the intracellular signaling pathways are different. Melatonin, a hormone that functions as an internal signal of darkness for the organism, has opposite effects, aggregating the melanin granules. Because light functions as an important synchronizing signal for circadian rhythms, we further investigated the effects of both hormones on genes related to the circadian system, namely, Per1 (one of the clock genes) and the melanopsins, Opn4x and Opn4m (photopigments). Per1 showed temporal oscillations, regardless of the presence of melatonin or α-MSH, which slightly inhibited its expression. Melatonin effects on melanopsins depend on the time of application: if applied in the photophase it dramatically decreased Opn4x and Opn4m expressions, and abolished their temporal oscillations, opposite to α-MSH, which increased the melanopsins' expressions. Our results demonstrate that unlike what has been reported for other peripheral clocks and cultured cells, medium changes or hormones do not play a major role in synchronizing the Xenopus melanophore population. This difference is probably due to the fact that X. laevis melanophores possess functional photopigments (melanopsins) that enable these cells to primarily respond to light, which triggers melanin dispersion and modulates gene expression.
Collapse
|
48
|
Ogundele OM, Okunnuga AA, Fabiyi TD, Olajide OJ, Akinrinade ID, Adeniyi PA, Ojo AA. NMDA-R inhibition affects cellular process formation in Tilapia melanocytes; a model for pigmented adrenergic neurons in process formation and retraction. Metab Brain Dis 2014; 29:541-51. [PMID: 24242214 DOI: 10.1007/s11011-013-9447-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/22/2013] [Indexed: 12/23/2022]
Abstract
Parkinson's disease has long been described to be a product of dopamine and (or) melanin loss in the substanstia nigra (SN). Although most studies have focused on dopaminergic neurons, it is important to consider the role of pigment cells in the etiology of the disease and to create an in vitro live cell model for studies involving pigmented adrenergic cells of the SN in Parkinsonism. The Melanocytes share specific features with the pigmented adrenergic neurons as both cells are pigmented, contain adrenergic receptors and have cellular processes. Although the melanocyte cellular processes are relatively short and observable only when stimulated appropriately by epinephrine and other factors or molecules. This study employs the manipulation of N-Methyl-D-Aspartate Receptor (NMDA-R), a major receptor in neuronal development, in the process formation pattern of the melanocyte in order to create a suitable model to depict cellular process elongation and shortening in pigmented adrenergic cells. NMDA-R is an important glutamate receptor implicated in neurogenesis, neuronal migration, maturation and cell death, thus we investigated the role of NMDA-R potentiation by glutamate/KCN and its inhibition by ketamine in the behavior of fish scale melanocytes in vitro. This is aimed at establishing the regulatory role of NMDA-R in this cell type (melanocytes isolated form Tilapia) in a similar manner to what is observable in the mammalian neurons. In vitro live cell culture was prepared in modified Ringer's solution following which the cells were treated as follows; Control, Glutamate, Ketamine, Glutamate + Ketamine, KCN + Ketamine and KCN. The culture was maintained for 10 min and the changes were captured in 3D-Time frame at 0, 5 and 10 min for the control and 5, 7 and 10 min for each of the treatment category. Glutamate treatment caused formation of short cellular processes localized directly on the cell body while ketamine treatment (inhibition of NMDA-R) facilitated elongation of secondary cellular processes (highly branched) from primary major processes (Less branched); co-incubation of glutamate and ketamine induced short and highly branched process formation. Cyanide toxicity induced degeneration and reduction of cell size while co-treatment of cyanide and ketamine gave changes similar to that observed in glutamate-ketamine co-incubation. NMDA-R is present in the melanocytes. Activation of the receptor reduced elongation process, while inhibition of the receptor facilitated cell process elongation and branching. This confirms that like pigmented adrenergic cells of the nervous system, this cell contains NMDA-R and this receptor also regulates cell process elongation. The study also showed that inhibition of NMDA-R in melanocytes gave opposite outcomes to the role of the receptor in developing neurons; a function that is protective in adult neurons.
Collapse
Affiliation(s)
- Olalekan Michael Ogundele
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria,
| | | | | | | | | | | | | |
Collapse
|
49
|
Tang ZJ, Lue SI, Tsai MJ, Yu TL, Thiyagarajan V, Lee CH, Huang WT, Weng CF. The Hormonal Regulation of Color Changes in the Sexually Dichromatic FrogBuergeria robusta. Physiol Biochem Zool 2014; 87:397-410. [DOI: 10.1086/675678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Haslam IS, Roubos EW, Mangoni ML, Yoshizato K, Vaudry H, Kloepper JE, Pattwell DM, Maderson PFA, Paus R. From frog integument to human skin: dermatological perspectives from frog skin biology. Biol Rev Camb Philos Soc 2013; 89:618-55. [DOI: 10.1111/brv.12072] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 10/03/2013] [Accepted: 10/22/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Iain S. Haslam
- The Dermatology Centre, Salford Royal NHS Foundation Trust, Institute of Inflammation and Repair; University of Manchester; Oxford Road Manchester M13 9PT U.K
| | - Eric W. Roubos
- Department of Anatomy; Radboud University Medical Centre; Geert Grooteplein Noord 2, 6525 EZ, Nijmegen P.O. Box 9101, 6500 HB Nijmegen The Netherlands
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Istituto Pasteur-Fondazione Cenci Bolognetti; La Sapienza University of Rome, Piazzale Aldo Moro, 5-00185; Rome Italy
| | - Katsutoshi Yoshizato
- Academic Advisors Office, Synthetic Biology Research Center; Osaka City University Graduate School of Medicine; Osaka Japan
- Phoenixbio Co. Ltd; 3-4-1, Kagamiyama; Higashihiroshima Hiroshima 739-0046 Japan
| | - Hubert Vaudry
- European Institute for Peptide Research; University of Rouen; Mont-Saint-Aignan Place Emile Blondel 76821 France
- INSERM U-982, CNRS; University of Rouen; Mont-Saint-Aignan Place Emile Blondel 76821 France
| | - Jennifer E. Kloepper
- Klinik für Dermatologie, Allergologie und Venerologie; Universitätsklinikum Schleswig-Holstein, Ratzeburger Allee 160; 23538 Lübeck Germany
| | - David M. Pattwell
- Leahurst Campus, Institute of Learning & Teaching; School of Veterinary Science, University of Liverpool; Neston CH64 7TE U.K
| | | | - Ralf Paus
- The Dermatology Centre, Salford Royal NHS Foundation Trust, Institute of Inflammation and Repair; University of Manchester; Oxford Road Manchester M13 9PT U.K
- Klinik für Dermatologie, Allergologie und Venerologie; Universitätsklinikum Schleswig-Holstein, Ratzeburger Allee 160; 23538 Lübeck Germany
| |
Collapse
|