1
|
Min Y, Li Q, Yu H, Du S. Examination of wnt signaling mediated melanin transport and shell color formation in Pacific oyster ( Crassostrea gigas). MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:488-501. [PMID: 39219677 PMCID: PMC11358575 DOI: 10.1007/s42995-024-00221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 09/04/2024]
Abstract
Mollusca exhibit remarkable diversity in shell coloration, attributed to the presence of melanin, a widely distributed pigment with various essential roles, such as mechanical strengthening, antioxidation and thermoregulation. However, the regulatory network governing melanogenesis and melanin transport in molluscs remains poorly understood. In this study, we conducted a systematic analysis of melanin distribution and transport in the Pacific oyster, utilizing light microscopy and high-resolution transmission electron microscopy. In addition, we characterized CgWnt1 and CgWnt2b-a in Crassostrea gigas, and analyzed Wnt signaling in melanocyte formation. Expression analysis revealed that these genes were predominantly expressed in the mantle of black-shelled individuals, particularly in the outer fold of the mantle. Furthermore, we employed RNA interference and inhibitors to specifically inhibit Wnt signaling in both in vivo and in vitro. The results revealed impaired melanogenesis and diminished tyrosinase activity upon Wnt signaling inhibition. These findings suggest the crucial role of Wnt ligands and downstream factors in melanogenesis. In summary, our study provides valuable insights into the regulatory mechanism of shell pigmentation in C. gigas. By demonstrating the promotion of melanogenesis through Wnt signaling modulation, we contribute to a better understanding of the complex processes underlying molluscan melanin production and shell coloration. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00221-5.
Collapse
Affiliation(s)
- Yue Min
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003 China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003 China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, 21240 USA
| |
Collapse
|
2
|
Choi YS, Hong JG, Lim DY, Kim MS, Park SH, Kang HC, Seo WS, Lee J. Small Peptide Derived from SFRP5 Suppresses Melanogenesis by Inhibiting Wnt Activity. Curr Issues Mol Biol 2024; 46:5420-5435. [PMID: 38920996 PMCID: PMC11201734 DOI: 10.3390/cimb46060324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Melanocytes, located in the epidermis' basal layer, are responsible for melanin pigment production, crucial for skin coloration and protection against UV radiation-induced damage. Melanin synthesis is intricately regulated by various factors, including the Wnt signaling pathway, particularly mediated by the microphthalmia-associated transcription factor (MITF). While MITF is recognized as a key regulator of pigmentation, its regulation by the Wnt pathway remains poorly understood. This study investigates the role of Sfrp5pepD, a peptide antagonist of the Wnt signaling pathway, in modulating melanogenesis and its potential therapeutic implications for pigmentary disorders. To tackle this issue, we investigated smaller peptides frequently utilized in cosmetics or pharmaceuticals. Nevertheless, there is a significant scarcity of reports on peptides associated with melanin-related signal modulation or inhibiting melanin production. Results indicate that Sfrp5pepD effectively inhibits Wnt signaling by disrupting the interaction between Axin-1 and β-catenin, thus impeding downstream melanogenic processes. Additionally, Sfrp5pepD suppresses the interaction between MITF and β-catenin, inhibiting their nuclear translocation and downregulating melanogenic enzyme expression, ultimately reducing melanin production. These inhibitory effects are validated in cell culture models suggesting potential clinical applications for hyperpigmentation disorders. Overall, this study elucidates the intricate interplay between Wnt signaling and melanogenesis, highlighting Sfrp5pepD as a promising therapeutic agent for pigmentary disorders. Sfrp5pepD, with a molecular weight of less than 500 Da, is anticipated to penetrate the skin unlike SFRPs. This suggests a strong potential for their use as cosmetics or transdermal absorption agents. Additional investigation into its mechanisms and clinical significance is necessary to enhance its effectiveness in addressing melanin-related skin conditions.
Collapse
Affiliation(s)
- Yoon-Seo Choi
- Graduate School-Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jin-Gwen Hong
- Research and Development Department, Benex Co., Ltd., Cheongju 28118, Republic of Korea;
| | - Dong-Young Lim
- R&D Center, Supadelixir Co., Ltd., Chuncheon 24232, Republic of Korea; (D.-Y.L.); (M.-S.K.)
| | - Min-Seo Kim
- R&D Center, Supadelixir Co., Ltd., Chuncheon 24232, Republic of Korea; (D.-Y.L.); (M.-S.K.)
| | - Sang-Hoon Park
- Department of Plastic Surgery, ID Hospital, Gangnam 06039, Republic of Korea;
| | - Hee-Cheol Kang
- Materials Division Affiliated Research Center, GFC Life Science Co., Ltd., Hwaseong 18471, Republic of Korea;
| | - Won-Sang Seo
- Materials Division Affiliated Research Center, GFC Life Science Co., Ltd., Hwaseong 18471, Republic of Korea;
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Li Y, Zeng Y, Chen Z, Tan X, Mei X, Wu Z. The role of aryl hydrocarbon receptor in vitiligo: a review. Front Immunol 2024; 15:1291556. [PMID: 38361944 PMCID: PMC10867127 DOI: 10.3389/fimmu.2024.1291556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Vitiligo is an acquired autoimmune dermatosis characterized by patchy skin depigmentation, causing significant psychological distress to the patients. Genetic susceptibility, environmental triggers, oxidative stress, and autoimmunity contribute to melanocyte destruction in vitiligo. Due to the diversity and complexity of pathogenesis, the combination of inhibiting melanocyte destruction and stimulating melanogenesis gives the best results in treating vitiligo. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that can regulate the expression of various downstream genes and play roles in cell differentiation, immune response, and physiological homeostasis maintenance. Recent studies suggested that AhR signaling pathway was downregulated in vitiligo. Activation of AhR pathway helps to activate antioxidant pathways, inhibit abnormal immunity response, and upregulate the melanogenesis gene, thereby protecting melanocytes from oxidative stress damage, controlling disease progression, and promoting lesion repigmentation. Here, we review the relevant literature and summarize the possible roles of the AhR signaling pathway in vitiligo pathogenesis and treatment, to further understand the links between the AhR and vitiligo, and provide new potential therapeutic strategies.
Collapse
Affiliation(s)
- Yiting Li
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yibin Zeng
- Department of Dermatology, Minhang Hospital, Fudan University, Shanghai, China
| | - Zile Chen
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Tan
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyu Mei
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhouwei Wu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Hu S, Wang L. The potential role of ubiquitination and deubiquitination in melanogenesis. Exp Dermatol 2023; 32:2062-2071. [PMID: 37846904 DOI: 10.1111/exd.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Melanogenesis is a critical biochemical process in which melanocytes produce melanin, a crucial element involved in the formation of coat colour in mammals. According to several earlier studies, melanocytes' post-translational modifications of proteins primarily control melanogenesis. Among the many post-translational changes that can affect melanin production, ubiquitination and deubiquitination can keep melanin production going by changing how proteins that are related to melanin are broken down or kept stable. Ubiquitination and deubiquitination maintain ubiquitin homeostasis, which is a highly dynamic process in balance under the action of E3 ubiquitin ligase and deubiquitinating enzymes. However, the regulatory mechanisms underlying ubiquitination and deubiquitination in melanogenesis are yet to be thoroughly investigated. As a result, there has been a growing focus on exploring the potential correlation between melanogenesis, ubiquitination and deubiquitination. This study discusses the mechanisms of ubiquitination and deubiquitination in the context of melanogenesis, a crucial process for enhancing mammalian coat coloration and addressing pigment-related diseases.
Collapse
Affiliation(s)
- Shuaishuai Hu
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Lu Wang
- College of Life Science, Luoyang Normal University, Luoyang, China
| |
Collapse
|
5
|
Silva P, Atukorallaya D. Characterising the Effect of Wnt/β-Catenin Signalling on Melanocyte Development and Patterning: Insights from Zebrafish ( Danio rerio). Int J Mol Sci 2023; 24:10692. [PMID: 37445870 DOI: 10.3390/ijms241310692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Zebrafish (Danio rerio) is a well-established model organism for studying melanocyte biology due to its remarkable similarity to humans. The Wnt signalling pathway is a conserved signal transduction pathway that plays a crucial role in embryonic development and regulates many aspects of the melanocyte lineage. Our study was designed to investigate the effect of Wnt signalling activity on zebrafish melanocyte development and patterning. Stereo-microscopic examinations were used to screen for changes in melanocyte count, specific phenotypic differences, and distribution in zebrafish, while microscopic software tools were used to analyse the differences in pigment dispersion of melanocytes exposed to LiCl (Wnt enhancer) and W-C59 (Wnt inhibitor). Samples exposed to W-C59 showed low melanocyte densities and defects in melanocyte phenotype and patterning, whereas LiCl exposure demonstrated a stimulatory effect on most aspects of melanocyte development. Our study demonstrates the crucial role of Wnt signalling in melanocyte lineage and emphasises the importance of a balanced Wnt signalling level for proper melanocyte development and patterning.
Collapse
Affiliation(s)
- Praneeth Silva
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Devi Atukorallaya
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| |
Collapse
|
6
|
Zhou R, Zhou D, Ding Z, Bao X, Jin Q. Effects of polystyrene nanoplastics on melanin interference toxicity and transgenerational toxicity of ethylhexyl salicylate based on DNA methylation sequencing. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106402. [PMID: 36709616 DOI: 10.1016/j.aquatox.2023.106402] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/07/2022] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Organic ultraviolet filters (OUVFs) are new hydrophobic organic pollutants in the aquatic environment. When ingested by aquatic organisms, OUVFs can induce a variety of toxic effects in organisms and be transferred to offspring. However, as the main active ingredient in sunscreens, OUVFs have rarely been investigated for their melanin interference toxicity or transgenerational toxic effects on aquatic organisms and their interactive toxic effects with nanoplastics (NPs). Here, we show the mechanism by which OUVFs interfere with melanogenesis in parental or offspring zebrafish and the effect of polystyrene (PS) NPs on the melanin-interference effect of OUVFs. We found that EHS induced significant enrichment of the melanogenesis pathway, inhibited the expression of the key melanin gene microphthalmia-associated transcription factor a (mitfa) and induced the mitf tyrosinase (tyr)-dopachrome tautomerase (dct)-tyrosinase related protein 1 (tyrp1) signaling cascade in parents, which ultimately induced a decrease in melanin content. After reproduction, transgenerational melanin interference effects of EHS may occur through the maternal inheritance of mitfa. Coexisting PS-NPs may inhibit the melanin interference toxicity or transgenerational toxicity of EHS by reducing ultraviolet irritation to the skin through adsorption of EHS. Our results demonstrate the ecotoxic potential of OUVFs in terms of melanin interference and the interference of PS-NP carrier effects on the toxicity of OUVFs. We anticipate that our assay will contribute to the assessment of the toxic effects of OUVFs and provide a basis for the interactive ecotoxicity assessment of PS-NPs and hydrophobic organic pollutants.
Collapse
Affiliation(s)
- Ranran Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Dao Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Zhuhong Ding
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China.
| | - Xuhui Bao
- Shanghai Investigation, Design & Research Institute Co., Ltd, No.1-6, Lane 65, Linxin Road, Changning District, Shanghai 200335, China
| | - Qijie Jin
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| |
Collapse
|
7
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
8
|
Kunene LM, Muchadeyi FC, Hadebe K, Mészáros G, Sölkner J, Dugmore T, Dzomba EF. Genetics of Base Coat Colour Variations and Coat Colour-Patterns of the South African Nguni Cattle Investigated Using High-Density SNP Genotypes. Front Genet 2022; 13:832702. [PMID: 35747604 PMCID: PMC9209731 DOI: 10.3389/fgene.2022.832702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
Nguni cattle are a Sanga type breed with mixed B. taurus and B. indicus ancestry and proven resistance to ticks, diseases and other harsh conditions of the African geographical landscape. The multi-coloured Nguni coats have found a niche market in the leather industry leading to breeding objectives towards the promotion of such diversity. However, there is limited studies on the genomic architecture underlying the coat colour and patterns hampering any potential breeding and improvement of such trait. This study investigated the genetics of base coat colour, colour-sidedness and the white forehead stripe in Nguni cattle using coat colour phenotyped Nguni cattle and Illumina Bovine HD (770K) genotypes. Base coat colour phenotypes were categorised into eumelanin (n = 45) and pheomelanin (n = 19). Animals were categorised into either colour-sided (n = 46) or non-colour-sided (n = 94) and similarly into presence (n = 15) or absence (n = 67) of white forehead stripe. Genome-wide association tests were conducted using 622,103 quality controlled SNPs and the Efficient Mixed Model Association eXpedited method (EMMAX) implemented in Golden Helix SNP Variation Suite. The genome-wide association studies for base coat colour (eumelanin vs. pheomelanin) resulted into four indicative SNPs on BTA18 and a well-known gene, MC1R, was observed within 1 MB from the indicative SNPs (p < 0.00001) and found to play a role in the melanogenesis (core pathway for melanin production) and the MAPK signalling pathway. GWAS for colour-sidedness resulted in four indicative SNPs, none of which were in close proximity to the KIT candidate gene known for colour-sidedness. GWAS for the white forehead stripe resulted in 17 indicative SNPs on BTA6. Four genes MAPK10, EFNA5, PPP2R3C and PAK1 were found to be associated with the white forehead stripe and were part of the MAPK, adrenergic and Wnt signalling pathways that are synergistically associated with the synthesis of melanin. Overall, our results prove prior knowledge of the role of MC1R in base coat colours in cattle and suggested a different genetic mechanism for forehead stripe phenotypes in Nguni cattle.
Collapse
Affiliation(s)
- Langelihle Mbali Kunene
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | | | - Khanyisile Hadebe
- Agricultural Research Council, Biotechnology Platform, Onderstepoort, South Africa
| | - Gábor Mészáros
- Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Johann Sölkner
- Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Trevor Dugmore
- KZN Department of Agriculture and Rural Development, Pietermaritzburg, South Africa
| | - Edgar Farai Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
- *Correspondence: Edgar Farai Dzomba,
| |
Collapse
|
9
|
Bourhim T, Villareal MO, Gadhi C, Isoda H. Elucidation of Melanogenesis-Associated Signaling Pathways Regulated by Argan Press Cake in B16 Melanoma Cells. Nutrients 2021; 13:nu13082697. [PMID: 34444857 PMCID: PMC8398289 DOI: 10.3390/nu13082697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/30/2022] Open
Abstract
The beneficial effect on health of argan oil is recognized worldwide. We have previously reported that the cake that remains after argan oil extraction (argan press-cake or APC) inhibits melanogenesis in B16 melanoma cells in a time-dependent manner without cytotoxicity. In this study, the global gene expression profile of B16 melanoma cells treated with APC extract was determined in order to gain an understanding of the possible mechanisms of action of APC. The results suggest that APC extract inhibits melanin biosynthesis by down-regulating microphthalmia-associated transcription factor (Mitf) and its downstream signaling pathway through JNK signaling activation, and the inhibition of Wnt/β-catenin and cAMP/PKA signaling pathways. APC extract also prevented the transport of melanosomes by down-regulating Rab27a expression. These results suggest that APC may be an important natural skin whitening product and pharmacological agent used for clinical treatment of pigmentary disorders.
Collapse
Affiliation(s)
- Thouria Bourhim
- Faculty of Sciences Semlalia, Cadi Ayyad University, Avenue Prince Moulay Abdellah, B.P. 2390, Marrakesh 40000, Morocco;
| | - Myra O. Villareal
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Japan;
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Japan
| | - Chemseddoha Gadhi
- Faculty of Sciences Semlalia, Cadi Ayyad University, Avenue Prince Moulay Abdellah, B.P. 2390, Marrakesh 40000, Morocco;
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Japan;
- Correspondence: (C.G.); (H.I.)
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Japan;
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Japan
- Correspondence: (C.G.); (H.I.)
| |
Collapse
|
10
|
Kulikova IV. Molecular Mechanisms and Gene Regulation of Melanic Plumage Coloration in Birds. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542108007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Hossain MR, Ansary TM, Komine M, Ohtsuki M. Diversified Stimuli-Induced Inflammatory Pathways Cause Skin Pigmentation. Int J Mol Sci 2021; 22:3970. [PMID: 33921371 PMCID: PMC8070342 DOI: 10.3390/ijms22083970] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The production of melanin pigments by melanocytes and their quantity, quality, and distribution play a decisive role in determining human skin, eye, and hair color, and protect the skin from adverse effects of ultraviolet radiation (UVR) and oxidative stress from various environmental pollutants. Melanocytes reside in the basal layer of the interfollicular epidermis and are compensated by melanocyte stem cells in the follicular bulge area. Various stimuli such as eczema, microbial infection, ultraviolet light exposure, mechanical injury, and aging provoke skin inflammation. These acute or chronic inflammatory responses cause inflammatory cytokine production from epidermal keratinocytes as well as dermal fibroblasts and other cells, which in turn stimulate melanocytes, often resulting in skin pigmentation. It is confirmed by some recent studies that several interleukins (ILs) and other inflammatory mediators modulate the proliferation and differentiation of human epidermal melanocytes and also promote or inhibit expression of melanogenesis-related gene expression directly or indirectly, thereby participating in regulation of skin pigmentation. Understanding of mechanisms of skin pigmentation due to inflammation helps to elucidate the relationship between inflammation and skin pigmentation regulation and can guide development of new therapeutic pathways for treating pigmented dermatosis. This review covers the mechanistic aspects of skin pigmentation caused by inflammation.
Collapse
Affiliation(s)
| | | | - Mayumi Komine
- Department of Dermatology, Faculty of Medicine, Jichi Medical University, Tochigi 329-0498, Japan; (M.R.H.); (T.M.A.); (M.O.)
| | | |
Collapse
|
12
|
Chen H, Xu L, Shan ZL, Chen S, Hu H. GPX8 is transcriptionally regulated by FOXC1 and promotes the growth of gastric cancer cells through activating the Wnt signaling pathway. Cancer Cell Int 2020; 20:596. [PMID: 33317536 PMCID: PMC7735419 DOI: 10.1186/s12935-020-01692-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Glutathione Peroxidase 8 (GPX8) as a member of the glutathione peroxidase (GPx) family plays an important role in anti-oxidation. Besides, dysregulation of GPX8 has been found in gastric cancer, but its detailed molecular mechanism in gastric cancer has not been reported. METHODS Our study detected the expression of GPX8 in gastric cancer tissues and cell lines using immunohistochemistry (IHC), western blot and qRT-PCR, and determined the effect of GPX8 on gastric cancer cells using CCK-8, colony formation, transwell migration and invasion assays. Besides, the effect of GPX8 on the Wnt signaling pathway was determined by western blot. Furthermore, the transcription factor of GPX8 was identified by bioinformatics methods, dual luciferase reporter and chromatin immunoprecipitation (CHIP) assays. In addition, the effect of GPX8 on tumor formation was measured by IHC and western blot. RESULTS The over-expression of GPX8 was observed in gastric cancer tissues and cells, which facilitated the proliferation, migration and invasion of gastric cancer cells as well as the tumor growth. GPX8 knockdown effectively inhibited the growth of gastric cancer cells and tumors. Moreover, GPX8 could activate the Wnt signaling pathway to promote the cellular proliferation, migration and invasion through. Furthermore, FOXC1 was identified as a transcription factor of GPX8 and mediated GPX8 expression to affect cell development processes. CONCLUSIONS These findings contribute to understanding the molecular mechanism of GPX8 in gastric cancer. Additionally, GPX8 can be a potential biomarker for gastric cancer therapy.
Collapse
Affiliation(s)
- Hong Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Soochow University, No.899, Pinghai Road, Suzhou, 215000, Jiangsu, China
- Department of General Surgery, Suzhou Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215000, Jiangsu, China
| | - Lu Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Soochow University, No.899, Pinghai Road, Suzhou, 215000, Jiangsu, China
| | - Zhi-Li Shan
- Department of General Surgery, Suzhou Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215000, Jiangsu, China
| | - Shu Chen
- Affiliated Hospital of Jiangsu University, Zhenjiang, Zhenjiang, 212000, China
| | - Hao Hu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Soochow University, No.899, Pinghai Road, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
13
|
Yamada T, Hasegawa S, Iwata Y, Arima M, Kobayashi T, Numata S, Nakata S, Sugiura K, Akamatsu H. UV irradiation-induced DNA hypomethylation around WNT1 gene: Implications for solar lentigines. Exp Dermatol 2020; 28:723-729. [PMID: 31020703 DOI: 10.1111/exd.13949] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/13/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
Abstract
Wnt/β-catenin signalling promotes melanogenesis in melanocytes and also induces melanocytogenesis from melanocyte stem cells (McSCs). Previous study reported that WNT1, a ligand which activates Wnt/β-catenin signalling pathway, was more highly expressed in the epidermis at SLs than in normal skin areas, suggesting that WNT1 causes hyperpigmentation. To elucidate the mechanism by which WNT1 expression is increased in SLs, we examined the methylation of 5-carbon of cytosine (5mC), that is 5-methylcytosine (5mC) level, in a region within the WNT1 promoter; the methylation of the region was known to negatively regulate WNT1 gene expression. We used an immortalized cell line of human interfollicular epidermal stem cells to analyse the effect of UVB irradiation on DNA methylation level of WNT1 promoter and found that UVB irradiation caused demethylation of WNT1 promoter and promoted WNT1 mRNA expression. It was also found that UVB irradiation reduced the expression of DNA methyltransferase 1 (DNMT1), an enzyme responsible for maintaining methylation patterns during cell division. Pathological analysis of SLs and non-SL regions in the human skin revealed that both DNMT1 expression and 5mC level were decreased at SLs compared to non-SL skins. Furthermore, bisulphite sequencing showed that the methylated CpG level in WNT1 promoter was also lower at SLs than in non-SL skins. Thus, in the skin exposed to a high amount of UV rays, excessive expression of WNT1 is thought to be caused by the demethylation of WNT1 promoter, and the upregulated WNT1 promotes melanocytogenesis and melanogenesis, then resulting in SL formation.
Collapse
Affiliation(s)
- Takaaki Yamada
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan.,Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, Toyoake, Japan.,Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Seiji Hasegawa
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan.,Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan.,Nagoya University-MENARD Collaborative Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yohei Iwata
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masaru Arima
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tsukane Kobayashi
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Shigeki Numata
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Satoru Nakata
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
| | - Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hirohiko Akamatsu
- Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
14
|
Bruders R, Van Hollebeke H, Osborne EJ, Kronenberg Z, Maclary E, Yandell M, Shapiro MD. A copy number variant is associated with a spectrum of pigmentation patterns in the rock pigeon (Columba livia). PLoS Genet 2020; 16:e1008274. [PMID: 32433666 PMCID: PMC7239393 DOI: 10.1371/journal.pgen.1008274] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Rock pigeons (Columba livia) display an extraordinary array of pigment pattern variation. One such pattern, Almond, is characterized by a variegated patchwork of plumage colors that are distributed in an apparently random manner. Almond is a sex-linked, semi-dominant trait controlled by the classical Stipper (St) locus. Heterozygous males (ZStZ+ sex chromosomes) and hemizygous Almond females (ZStW) are favored by breeders for their attractive plumage. In contrast, homozygous Almond males (ZStZSt) develop severe eye defects and often lack plumage pigmentation, suggesting that higher dosage of the mutant allele is deleterious. To determine the molecular basis of Almond, we compared the genomes of Almond pigeons to non-Almond pigeons and identified a candidate St locus on the Z chromosome. We found a copy number variant (CNV) within the differentiated region that captures complete or partial coding sequences of four genes, including the melanosome maturation gene Mlana. We did not find fixed coding changes in genes within the CNV, but all genes are misexpressed in regenerating feather bud collar cells of Almond birds. Notably, six other alleles at the St locus are associated with depigmentation phenotypes, and all exhibit expansion of the same CNV. Structural variation at St is linked to diversity in plumage pigmentation and gene expression, and thus provides a potential mode of rapid phenotypic evolution in pigeons. The genetic changes responsible for different animal color patterns are poorly understood, due in part to a paucity of research organisms that are both genetically tractable and phenotypically diverse. Domestic pigeons (Columba livia) have been artificially selected for many traits, including an enormous variety of color patterns that are variable both within and among different breeds of this single species. We investigated the genetic basis of a sex-linked color pattern in pigeons called Almond that is characterized by a sprinkled pattern of plumage pigmentation. Pigeons with one copy of the Almond allele have desirable color pattern; however, male pigeons with two copies of the Almond mutation have severely depleted pigmentation and congenital eye defects. By comparing the genomes of Almond and non-Almond pigeons, we discovered that Almond pigeons have extra copies of a chromosome region that contains a gene that is critical for the formation of pigment granules. We also found that different numbers of copies of this region are associated with varying degrees of pigment reduction. The Almond phenotype in pigeons bears a remarkable resemblance to Merle coat color mutants in dogs, and our new results from pigeons suggest that similar genetic mechanisms underlie these traits in both species. Our work highlights the role of gene copy number variation as a potential driver of rapid phenotypic evolution.
Collapse
Affiliation(s)
- Rebecca Bruders
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Hannah Van Hollebeke
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Edward J. Osborne
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Zev Kronenberg
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Emily Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Michael D. Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
15
|
Larivé E, Nicolas M, Kaya G, Riggi N, Moulin AP. β-Catenin Expression and Activation in Conjunctival Melanoma. Dermatopathology (Basel) 2019; 6:50-62. [PMID: 31700844 PMCID: PMC6827456 DOI: 10.1159/000500682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose To assess the role of the canonical Wnt pathway via activation of β-catenin in tumor progression of conjunctival melanoma. Methods β-Catenin localization was assessed by immunohistochemistry in 43 conjunctival nevi, 48 primary acquired melanoses (PAM; conjunctival melanocytic intraepithelial neoplasia), and 44 conjunctival melanomas. Activation of the canonical or the noncanonical Wnt pathway was tested in vitro in 4 conjunctival melanoma cell lines with stimulation of either Wnt5a or Wnt3a. Wound healing assays were performed with Wnt5a. Results Nuclear β-catenin expression was found in 16% of the nevi, in 15% of the melanomas, and in 4% of the PAM. Membranous β-catenin expression was identified in all the nevi and PAM and in 97.7% of the melanomas. In vitro, Wnt5a stimulation in the 4 conjunctival melanomas and in 1 skin melanoma cell line did not induce nuclear translocation of β-catenin, nor did it increase cell motility in the wound healing assays. Wnt3a stimulation did not induce nuclear localization of β-catenin in any of the cell lines tested. Conclusions In conjunctival melanoma, nuclear localization and activation of β-catenin appear to be limited, suggesting that inhibition of ARF6, responsible for β-catenin activation, in subsets of skin melanoma may not represent a treatment option for this tumor. In vitro, Wnt3a or Wnt5a did not induce nuclear β-catenin localization.
Collapse
Affiliation(s)
| | - Michael Nicolas
- Jules-Gonin Eye Hospital, Lausanne University, FAA, Lausanne, Switzerland
| | - Gürkan Kaya
- Dermatopathology Unit, Department of Dermatology, University Hospital of Geneva, Geneva, Switzerland
| | - Nicolo Riggi
- Experimental Pathology, Lausanne University Pathology Institute, Lausanne, Switzerland
| | - Alexandre P Moulin
- Jules-Gonin Eye Hospital, Lausanne University, FAA, Lausanne, Switzerland
| |
Collapse
|
16
|
Serre C, Busuttil V, Botto JM. Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. Int J Cosmet Sci 2018; 40:328-347. [PMID: 29752874 DOI: 10.1111/ics.12466] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/04/2018] [Indexed: 12/11/2022]
Abstract
In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly converge to MITF, a transcription factor integrating upstream signalling and regulating downstream genes involved in the various inherent mechanisms modulating melanogenesis. The synthesis of melanin pigments occurs in melanocytes inside melanosomes where melanogenic enzymes (tyrosinase and related proteins) are addressed with the help of specific protein complexes. The melanosomes loaded with melanin are then transferred to keratinocytes. A more elaborate level of melanogenesis regulation comes into play via the action of non-coding RNAs (microRNAs, lncRNAs). Besides this canonical regulation, melanogenesis can also be modulated by other non-specific intrinsic pathways (hormonal environment, inflammation) and by extrinsic factors (solar irradiation such as ultraviolet irradiation, environmental pollution). We developed a bioinformatic interaction network gathering the multiple aspects of melanogenesis and skin pigmentation as a resource to better understand and study skin pigmentation biology.
Collapse
Affiliation(s)
- C Serre
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| | - V Busuttil
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| | - J-M Botto
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| |
Collapse
|
17
|
Yang S, Liu B, Ji K, Fan R, Dong C. MicroRNA-5110 regulates pigmentation by cotargeting melanophilin and WNT family member 1. FASEB J 2018; 32:5405-5412. [PMID: 29733692 PMCID: PMC6133708 DOI: 10.1096/fj.201800040r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mammalian pigmentation requires the production of melanin by melanocytes and its transfer to neighboring keratinocytes. These complex processes are regulated by several molecular pathways. Melanophilin ( MLPH) and WNT family member 1 ( WNT1), known to be involved in melanin transfer and melanin production, respectively, were predicted to be targets of microRNA-5110 using bioinformatics. In the current study, we investigated the effects of microRNA-5110 on pigmentation in alpaca ( Vicugna pacos) melanocytes. In situ hybridization identified high levels of microRNA-5110 in the cytoplasm of alpaca melanocytes. Luciferase activity assays confirmed that MLPH and WNT1 were targeted by microRNA-5110 in these cells. Overexpression and knockdown of microRNA-5110 in alpaca melanocytes downregulated and upregulated MLPH and WNT1 expression at the mRNA and protein levels, respectively. In addition, overexpression and knockdown of microRNA-5110 in alpaca melanocytes decreased and increased, respectively, the mRNA levels of the melanin transfer-related genes, rat sarcoma (RAS)-associated binding ( RAB27a) and myosin 5a ( MYO5a); the mRNA levels of microphthalmia-associated transcription factor ( MITF), tyrosinase ( TYR), and tyrosinase-related protein ( TYRP) 1; and the production of total alkali melanin and pheomelanin. In contrast, overexpression and knockdown of microRNA-5110 increased and decreased the mRNA levels of TYRP2, respectively. Overexpression of microRNA-5110 also increased eumelanin. These results indicate that microRNA-5110 regulates pigmentation in alpaca melanocytes by directly targeting MLPH and WNT1 to affect eumelanin production and transfer.-Yang, S., Liu, B., Ji, K., Fan, R., Dong, C. MicroRNA-5110 regulates pigmentation by cotargeting melanophilin and WNT family member 1.
Collapse
Affiliation(s)
- Shanshan Yang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Bo Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Kaiyuan Ji
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Ruiwen Fan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Changsheng Dong
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
18
|
Hernando B, Peña-Chilet M, Ibarrola-Villava M, Martin-Gonzalez M, Gomez-Fernandez C, Ribas G, Martinez-Cadenas C. Genetic 3'UTR variation is associated with human pigmentation characteristics and sensitivity to sunlight. Exp Dermatol 2017; 26:896-903. [PMID: 28266728 DOI: 10.1111/exd.13333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2017] [Indexed: 12/14/2022]
Abstract
Sunlight exposure induces signalling pathways leading to the activation of melanin synthesis and tanning response. MicroRNAs (miRNAs) can regulate the expression of genes involved in pigmentation pathways by binding to the complementary sequence in their 3'untranslated regions (3'UTRs). Therefore, 3'UTR SNPs are predicted to modify the ability of miRNAs to target genes, resulting in differential gene expression. In this study, we investigated the role in pigmentation and sun-sensitivity traits, as well as in melanoma susceptibility, of 38 different 3'UTR SNPs from 38 pigmentation-related genes. A total of 869 individuals of Spanish origin (526 melanoma cases and 343 controls) were analysed. The association of genotypic data with pigmentation traits was analysed via logistic regression. Web-based tools for predicting the effect of genetic variants in microRNA-binding sites in 3'UTR gene regions were also used. Seven 3'UTR SNPs showed a potential implication in melanoma risk phenotypes. This association is especially noticeable for two of them, rs2325813 in the MLPH gene and rs752107 in the WNT3A gene. These two SNPs were predicted to disrupt a miRNA-binding site and to impact on miRNA-mRNA interaction. To our knowledge, this is the first time that these two 3'UTR SNPs have been associated with sun-sensitivity traits. We state the potential implication of these SNPs in human pigmentation and sensitivity to sunlight, possibly as a result of changes in the level of gene expression through the disruption of putative miRNA-binding sites.
Collapse
Affiliation(s)
- Barbara Hernando
- Department of Medicine, Jaume I University of Castellon, Castellon, Spain
| | - Maria Peña-Chilet
- Department of Medical Oncology, Biomedical Research Institute - INCLIVA, Valencia, Spain.,Network Centre for Biomedical Cancer Research (CIBERONC), Valencia, Spain
| | - Maider Ibarrola-Villava
- Department of Medical Oncology, Biomedical Research Institute - INCLIVA, Valencia, Spain.,Network Centre for Biomedical Cancer Research (CIBERONC), Valencia, Spain
| | | | | | - Gloria Ribas
- Department of Medical Oncology, Biomedical Research Institute - INCLIVA, Valencia, Spain.,Network Centre for Biomedical Cancer Research (CIBERONC), Valencia, Spain
| | | |
Collapse
|
19
|
Paracrine Secreted Frizzled-Related Protein 4 Inhibits Melanocytes Differentiation in Hair Follicle. Stem Cells Int 2017; 2017:2857478. [PMID: 28337220 PMCID: PMC5350338 DOI: 10.1155/2017/2857478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/04/2017] [Accepted: 01/24/2017] [Indexed: 02/04/2023] Open
Abstract
Wnt signaling plays crucial role in regulating melanocyte stem cells/melanocyte differentiation in the hair follicle. However, how the Wnt signaling is balanced to be overactivated to control follicular melanocytes behavior remains unknown. Here, by using immunofluorescence staining, we showed that secreted frizzled-related protein 4 (sFRP4) is preferentially expressed in the skin epidermal cells rather than in melanocytes. By overexpression of sFRP4 in skin cells in vivo and in vitro, we found that sFRP4 attenuates activation of Wnt signaling, resulting in decrease of melanocytes differentiation in the regenerating hair follicle. Our findings unveiled a new regulator that involves modulating melanocytes differentiation through a paracrine mechanism in hair follicle, supplying a hope for potential therapeutic application to treat skin pigmentation disorders.
Collapse
|
20
|
Signaling Pathways in Melanogenesis. Int J Mol Sci 2016; 17:ijms17071144. [PMID: 27428965 PMCID: PMC4964517 DOI: 10.3390/ijms17071144] [Citation(s) in RCA: 543] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/03/2016] [Accepted: 07/08/2016] [Indexed: 12/25/2022] Open
Abstract
Melanocytes are melanin-producing cells found in skin, hair follicles, eyes, inner ear, bones, heart and brain of humans. They arise from pluripotent neural crest cells and differentiate in response to a complex network of interacting regulatory pathways. Melanins are pigment molecules that are endogenously synthesized by melanocytes. The light absorption of melanin in skin and hair leads to photoreceptor shielding, thermoregulation, photoprotection, camouflage and display coloring. Melanins are also powerful cation chelators and may act as free radical sinks. Melanin formation is a product of complex biochemical events that starts from amino acid tyrosine and its metabolite, dopa. The types and amounts of melanin produced by melanocytes are determined genetically and are influenced by a variety of extrinsic and intrinsic factors such as hormonal changes, inflammation, age and exposure to UV light. These stimuli affect the different pathways in melanogenesis. In this review we will discuss the regulatory mechanisms involved in melanogenesis and explain how intrinsic and extrinsic factors regulate melanin production. We will also explain the regulatory roles of different proteins involved in melanogenesis.
Collapse
|
21
|
Guo H, Xing Y, Liu Y, Luo Y, Deng F, Yang T, Yang K, Li Y. Wnt/β-catenin signaling pathway activates melanocyte stem cells in vitro and in vivo. J Dermatol Sci 2016; 83:45-51. [DOI: 10.1016/j.jdermsci.2016.04.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/07/2016] [Accepted: 04/15/2016] [Indexed: 12/31/2022]
|
22
|
Morphological Characters and Transcriptome Profiles Associated with Black Skin and Red Skin in Crimson Snapper (Lutjanus erythropterus). Int J Mol Sci 2015; 16:26991-7004. [PMID: 26569232 PMCID: PMC4661863 DOI: 10.3390/ijms161126005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/28/2015] [Accepted: 11/04/2015] [Indexed: 11/23/2022] Open
Abstract
In this study, morphology observation and illumina sequencing were performed on two different coloration skins of crimson snapper (Lutjanus erythropterus), the black zone and the red zone. Three types of chromatophores, melanophores, iridophores and xanthophores, were organized in the skins. The main differences between the two colorations were in the amount and distribution of the three chromatophores. After comparing the two transcriptomes, 9200 unigenes with significantly different expressions (ratio change ≥ 2 and q-value ≤ 0.05) were found, of which 5972 were up-regulated in black skin and 3228 were up-regulated in red skin. Through the function annotation, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the differentially transcribed genes, we excavated a number of uncharacterized candidate pigment genes as well as found the conserved genes affecting pigmentation in crimson snapper. The patterns of expression of 14 pigment genes were confirmed by the Quantitative real-time PCR analysis between the two color skins. Overall, this study shows a global survey of the morphological characters and transcriptome analysis of the different coloration skins in crimson snapper, and provides valuable cellular and genetic information to uncover the mechanism of the formation of pigment patterns in snappers.
Collapse
|
23
|
Kwon MJ, Lee KY, Lee HW, Kim JH, Kim TY. SOD3 Variant, R213G, Altered SOD3 Function, Leading to ROS-Mediated Inflammation and Damage in Multiple Organs of Premature Aging Mice. Antioxid Redox Signal 2015; 23:985-99. [PMID: 25927599 DOI: 10.1089/ars.2014.6035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIMS Among the isoforms of superoxide dismutase, SOD3 is uniquely associated with the extracellular matrix (ECM) by virtue of its heparin-binding domain (HBD). Substitution of arginine by glycine at amino acid 213 (R213G) of its HBD was first identified in patients with heart failure, followed by many studies that focused on the role of this variant (SOD3(R213G)) in ischemic heart disease and cardiovascular disease. However, the biological significance of this mutation in a physiological context is largely unknown. RESULTS As a first step, we generated SOD3(R213G) transgenic mice, in which the variant gene was driven by the β-actin promoter allowing expression in all tissues. Unexpectedly, we found that SOD3(R213G) transgenic mice exhibited premature aging, including hair graying, abnormal gait, and a shortened life span. Specifically, the aged mice showed systemic inflammation and organ degeneration. In addition, aged SOD3(R213G) mice are susceptible to neutrophil-mediated inflammation. Among other functions, the neutrophils of SOD3(R213G) mice produce high amounts of reactive oxygen species, which would normally be controlled by SOD3 in ECM. INNOVATION These findings showed for the first time that arginine 213 in the HBD of SOD3 is critical for maintaining proper organ function through moderating the normal innate immune response, which would otherwise lead to chronic inflammation and degenerative diseases in aged mice. CONCLUSION Therefore, patients with this variant may be treated with SOD3 as a therapeutic strategy to prevent or cure these diseases.
Collapse
Affiliation(s)
- Myung-Ja Kwon
- 1 Department of Dermatology, Catholic Research Institute of Medical Science , College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyo-Young Lee
- 2 Department of Hospital Pathology, College of Medicine, The Catholic University of Korea , Seoul, Republic of Korea
| | - Han-Woong Lee
- 3 Department of Biochemistry, College of Life Science and Biotechnology , Yonsei University, Seoul, Republic of Korea
| | - Jung-Ho Kim
- 1 Department of Dermatology, Catholic Research Institute of Medical Science , College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Yoon Kim
- 1 Department of Dermatology, Catholic Research Institute of Medical Science , College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
24
|
MicroRNA-27a-3p Inhibits Melanogenesis in Mouse Skin Melanocytes by Targeting Wnt3a. Int J Mol Sci 2015; 16:10921-33. [PMID: 26006230 PMCID: PMC4463683 DOI: 10.3390/ijms160510921] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 05/06/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) play an essential role in the regulation of almost all the biological processes, including melanogenesis. MiR-27a-3p is nearly six times higher in white alpaca skin compared to brown skin, which indicates that miR-27a-3p may be a candidate regulator for melanogenesis. Wnt3a plays an important role in promoting melanoblasts to differentiate into melanocytes and melanogenesis. To confirm the function of miR-27a-3p to melanogenesis in mammals, miR-27a-3p mimic, inhibitor and their negative control were transfected into mouse melanocytes. As a result, miR-27a-3p inhibits melanogenesis by repressing Wnt3a at post-transcriptional level. A significant decrease in Wnt3a luciferase activity was observed in 293T cells co-transfected with the matched luciferase reporter vector and pre-miR-27a. Furthermore, the presence of exogenous miR-27a-3p significantly decreased Wnt3a protein expression rather than mRNA and reduced β-catenin mRNA levels in melanocytes. The over-expression of miR-27a-3p significantly increased the melanin content of melanocytes. However, miR-27a-3p inhibitor performs an opposite effect on melanogenesis. Wnt3a is one target of miR-27a-3p. MiR-27a-3p could inhibit Wnt3a protein amount by post-transcriptional regulation and melanogenesis in mouse melanocytes. Previous studies reported that Wnt3a promoted melanogenensis in mouse melanocytes. Thus, miR-27-3p inhibits melanogenesis by repressing Wnt3a protein expression.
Collapse
|
25
|
Narytnyk A, Gillinder K, Verdon B, Clewes O, Sieber-Blum M. Neural crest stem cell-specific deletion of the Pygopus2 gene modulates hair follicle development. Stem Cell Rev Rep 2015; 10:60-8. [PMID: 23955574 PMCID: PMC3907677 DOI: 10.1007/s12015-013-9466-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We show that neural crest stem cells affect mouse hair follicle development. During embryogenesis hair follicle induction is regulated by complex reciprocal and functionally redundant signals between epidermis and dermis, which remain to be fully understood. Canonical Wnt signalling is a hallmark of neural crest cells and also a prerequisite for hair follicle induction prior to hair placode formation in the epidermis. As neural crest stem cells invade the epidermis during early embryonic development we aimed at determining whether neural crest cells affect hair follicle development. To attenuate, but not silence, canonical Wnt signalling specifically in neural crest cells, we analyzed Wnt1-cre(+/−)::Pygo2(−/−) mice in which the β-catenin co-activator gene, Pygopus 2 (Pygo2), is deleted specifically in neural crest cells. Both, hair density and hair thickness were reduced in mutant mice. Furthermore, hair development was delayed and the relative ratio of hair types was affected. There was a decrease in zig-zag hairs and an increase in awl hairs. Mouse neural crest stem cells expressed ectodysplasin, an essential effector in the formation of zig-zag hair. Taken together, our data support the novel notion that neural crest cells are involved in the earliest stages of hair follicle development.
Collapse
Affiliation(s)
- Alla Narytnyk
- Institute of Genetic Medicine, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | | | | | | | | |
Collapse
|
26
|
Yamada T, Hasegawa S, Inoue Y, Date Y, Arima M, Yagami A, Iwata Y, Takahashi M, Yamamoto N, Mizutani H, Nakata S, Matsunaga K, Akamatsu H. Accelerated differentiation of melanocyte stem cells contributes to the formation of hyperpigmented maculae. Exp Dermatol 2014; 23:652-8. [DOI: 10.1111/exd.12496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Takaaki Yamada
- Research Laboratories; Nippon Menard Cosmetic Co. Ltd.; Nagoya Aichi Japan
- Department of Applied Cell and Regenerative Medicine; Fujita Health University School of Medicine; Toyoake Aichi Japan
- Department of Dermatology; Fujita Health University School of Medicine; Toyoake Aichi Japan
| | - Seiji Hasegawa
- Research Laboratories; Nippon Menard Cosmetic Co. Ltd.; Nagoya Aichi Japan
- Department of Dermatology; Fujita Health University School of Medicine; Toyoake Aichi Japan
| | - Yu Inoue
- Research Laboratories; Nippon Menard Cosmetic Co. Ltd.; Nagoya Aichi Japan
| | - Yasushi Date
- Research Laboratories; Nippon Menard Cosmetic Co. Ltd.; Nagoya Aichi Japan
| | - Masaru Arima
- Research Laboratories; Nippon Menard Cosmetic Co. Ltd.; Nagoya Aichi Japan
| | - Akiko Yagami
- Department of Dermatology; Fujita Health University School of Medicine; Toyoake Aichi Japan
| | - Yohei Iwata
- Department of Dermatology; Fujita Health University School of Medicine; Toyoake Aichi Japan
| | - Masayuki Takahashi
- Department of Dermatology; Fujita Health University School of Medicine; Toyoake Aichi Japan
| | - Naoki Yamamoto
- Laboratory of Molecular Biology; Fujita Health University Joint Research Laboratory; Toyoake Aichi Japan
| | - Hiroshi Mizutani
- Research Laboratories; Nippon Menard Cosmetic Co. Ltd.; Nagoya Aichi Japan
| | - Satoru Nakata
- Research Laboratories; Nippon Menard Cosmetic Co. Ltd.; Nagoya Aichi Japan
| | - Kayoko Matsunaga
- Department of Dermatology; Fujita Health University School of Medicine; Toyoake Aichi Japan
| | - Hirohiko Akamatsu
- Department of Applied Cell and Regenerative Medicine; Fujita Health University School of Medicine; Toyoake Aichi Japan
| |
Collapse
|
27
|
Chang CH, Tsai RK, Tsai MH, Lin YH, Hirobe T. The roles of Frizzled-3 and Wnt3a on melanocyte development: in vitro studies on neural crest cells and melanocyte precursor cell lines. J Dermatol Sci 2014; 75:100-8. [PMID: 24815018 DOI: 10.1016/j.jdermsci.2014.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 04/13/2014] [Accepted: 04/21/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Wnt3a and Frizzled-3 are both expressed in the dorsal neural tube that gives rise to the neural crest in Xenopus, zebrafish and mice. Melanocytes originate from the neural crest (NC) and postnatally, melanocyte stem cells reside in the hair follicle bulge and in the dermis. However, the roles of Wnt3a and Frizzled-3 in melanocyte development have not been clarified. OBJECTIVE The aim of this study was to delineate the expression of Frizzled-3 in murine melanocyte lineage and human melanocytes, and to study the effects of Wnt3a on melanocyte development at various stages. METHODS Murine NC explant cultures and three NC-derived melanocyte lineage cell lines, including NCCmelb4M5 (Kit(-) melanocyte precursors), NCCmelb4 (Kit(+) melanoblasts) and NCCmelan5 (differentiated melanocytes), and human epidermal melanocytes were treated with pure recombinant Wnt3a protein and their cell behaviors were analyzed including their proliferation, Kit expression, tyrosinase (Tyr) activity, melanin production, dendrite formation and migration. RESULTS Frizzled-3 was expressed in Tyr-related protein (TRP)-1(+) cells in NC explant cultures, in all 3 melanocyte precursor cell lines and in human melanocytes. Wnt3a increased the population of TRP-1(+) cells, the number of L-3,4-dihydroxyphenylalanine (DOPA)(+) cells and dendrite formation in NC explant cultures. Wnt3a stimulated the proliferation of all 3 melanocyte precursor cell lines in a dose-dependent manner and also stimulated human melanocyte proliferation. Moreover, Wnt3a increased Tyr activity and melanin content of differentiated melanocytes, but did not activate Tyr activity in melanoblasts. Wnt3a stimulated dendrite formation in differentiated melanocytes, but not in melanoblasts. Wnt3a did not affect melanoblast or melanocyte migration. Wnt3a did not induce c-Kit expression in Kit(-) NCCmelb4M5 cells and did not affect c-Kit expression in any cell line tested. CONCLUSIONS Frizzled-3 is constitutively expressed in murine melanocyte precursors, melanocytes and human melanocytes. Wnt3a and Frizzled-3 signalings play important roles in regulating the proliferation and differentiation of murine NCCs and various developmental stages of melanocyte precursors. The effect of Wnt3a on human melanocytes is similar to its effects on murine melanocytes. Therefore Wnt3a/Frizzled-3 signaling is a promising target for human melanocyte regeneration.
Collapse
Affiliation(s)
- Chung-Hsing Chang
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Rong-Kung Tsai
- Institute of Eye Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan; Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.
| | - Ming-Hsien Tsai
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsiung Lin
- National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu, Taiwan
| | - Tomohisa Hirobe
- Fukushima Project Headquarters, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
28
|
Park TJ, Kim M, Kim H, Park SY, Park KC, Ortonne JP, Kang HY. Wnt inhibitory factor (WIF)-1 promotes melanogenesis in normal human melanocytes. Pigment Cell Melanoma Res 2013; 27:72-81. [DOI: 10.1111/pcmr.12168] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 09/16/2013] [Indexed: 01/04/2023]
Affiliation(s)
- Tae Jun Park
- Department of Biochemistry; Ajou University School of Medicine; Suwon Korea
- Department of Biomedical Science; Ajou University School of Medicine; Suwon Korea
| | - Misun Kim
- Department of Biomedical Science; Ajou University School of Medicine; Suwon Korea
- Department of Dermatology; Ajou University School of Medicine; Suwon Korea
| | - Hyeran Kim
- Department of Biomedical Science; Ajou University School of Medicine; Suwon Korea
- Department of Dermatology; Ajou University School of Medicine; Suwon Korea
| | - Sun Yi Park
- Department of Biomedical Science; Ajou University School of Medicine; Suwon Korea
- Department of Dermatology; Ajou University School of Medicine; Suwon Korea
| | - Kyoung-Chan Park
- Department of Dermatology; Seoul National University Bundang Hospital; Seongnam Korea
| | | | - Hee Young Kang
- Department of Biomedical Science; Ajou University School of Medicine; Suwon Korea
- Department of Dermatology; Ajou University School of Medicine; Suwon Korea
| |
Collapse
|
29
|
Yang J, Wang J, Pan L, Li H, Rao C, Zhang X, Niu G, Qu J, Hou L. BMP4 is required for the initial expression of MITF in melanocyte precursor differentiation from embryonic stem cells. Exp Cell Res 2013; 320:54-61. [PMID: 24080013 DOI: 10.1016/j.yexcr.2013.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/06/2013] [Accepted: 09/21/2013] [Indexed: 11/19/2022]
Abstract
Although the differentiation of melanoblasts to melanocytes is known to depend on many distinct factors, it is still poorly understood which factors lead to the induction of melanoblasts. To determine which factors might induce melanoblasts, we examined a set of candidate factors for their ability to induce expression of MITF, a master regulator of melanoblast development, in an ES cell-based melanocyte differentiation system. It appears that BMP4 is capable of inducing MITF expression in stem cells. In contrast, a number of other factors normally implicated in the development of the melanocyte lineage, including WNT1, WNT3a, SCF, EDN3, IGF1, PDGF, and RA, cannot induce MITF expression. Nevertheless, BMP4 alone does not allow MITF-expressing precursors to become differentiated melanocytes, but the addition of EDN3 further promotes differentiation of the precursors into mature melanocytes. Our results support a model in which BMP4 induces MITF expression in pluripotent stem cells and EDN3 subsequently promotes differentiation of these MITF expressing cells along the melanocyte lineage.
Collapse
Affiliation(s)
- Juan Yang
- Developmental Cell Biology and Disease Program, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325003, China; State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou 325003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang J, Li Y, Wu Y, Yang T, Yang K, Wang R, Yang J, Guo H. Wnt5a inhibits the proliferation and melanogenesis of melanocytes. Int J Med Sci 2013; 10:699-706. [PMID: 23569434 PMCID: PMC3619119 DOI: 10.7150/ijms.5664] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/17/2013] [Indexed: 11/25/2022] Open
Abstract
Wnt5a, which is a noncanonical Wnt molecule, has been shown to be involved in a variety of developmental processes and cellular functions. In this study, we used "melan-a" cells as a cell model to investigate the effects of Wnt5a on melanocyte proliferation and melanogenesis, and to elucidate the possible mechanisms involved. We infected melan-a cells with recombinant Wnt5a adenoviruses to express Wnt5a protein and to simulate the Wnt5a processing environment. MTT assay and BrdU incorporation assay revealed that Wnt5a significantly inhibited the proliferation of melan-a cells. Melanin content and tyrosinase activity assays showed that Wnt5a was an inhibitor of melanin synthesis. Furthermore, RT-PCR and Western blot showed that this suppressive effect depended on noncanonical Wnt/Ror2 pathway activation and accessed the inhibition of the canonical Wnt pathway. The above results provided a novel insight into the role of Wnt5a and its related signaling in melanocyte homeostasis.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Chon E, Thompson V, Schmid S, Stein TJ. Activation of the canonical Wnt/β-catenin signalling pathway is rare in canine malignant melanoma tissue and cell lines. J Comp Pathol 2012; 148:178-87. [PMID: 22901430 DOI: 10.1016/j.jcpa.2012.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/22/2012] [Accepted: 07/02/2012] [Indexed: 12/18/2022]
Abstract
Canine malignant melanoma is a highly aggressive tumour associated with a poor overall survival rate due to both local disease recurrence and its highly metastatic nature. Similar to advanced melanoma in man, canine oral melanoma is poorly responsive to conventional anti-cancer therapies. The lack of sustainable disease control warrants investigation of novel therapies, preferably targeting features specific to the tumour and different from normal cells. The Wnt signalling pathway is known to contribute to melanocytic lineage development in vertebrates and perturbation of the Wnt/β-catenin pathway has been implicated in numerous cancer types. Alterations of the Wnt/β-catenin pathway are suggested to occur in a subset of human melanomas, although the precise role of the Wnt/β-catenin pathway in melanoma is yet to be defined. This study investigates the activation status of the canonical Wnt/β-catenin pathway in canine malignant melanoma and its potential as a therapeutic target for treating this disease. The data indicate that canonical Wnt/β-catenin pathway activation is a rare event in canine oral malignant melanoma tissue and canine malignant melanoma cell lines.
Collapse
Affiliation(s)
- E Chon
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
32
|
Fenina M, Simon-Chazottes D, Vandormael-Pournin S, Soueid J, Langa F, Cohen-Tannoudji M, Bernard BA, Panthier JJ. I-SceI-mediated double-strand break does not increase the frequency of homologous recombination at the Dct locus in mouse embryonic stem cells. PLoS One 2012; 7:e39895. [PMID: 22761925 PMCID: PMC3383693 DOI: 10.1371/journal.pone.0039895] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/28/2012] [Indexed: 11/20/2022] Open
Abstract
Targeted induction of double-strand breaks (DSBs) at natural endogenous loci was shown to increase the rate of gene replacement by homologous recombination in mouse embryonic stem cells. The gene encoding dopachrome tautomerase (Dct) is specifically expressed in melanocytes and their precursors. To construct a genetic tool allowing the replacement of Dct gene by any gene of interest, we generated an embryonic stem cell line carrying the recognition site for the yeast I-SceI meganuclease embedded in the Dct genomic segment. The embryonic stem cell line was electroporated with an I-SceI expression plasmid, and a template for the DSB-repair process that carried sequence homologies to the Dct target. The I-SceI meganuclease was indeed able to introduce a DSB at the Dct locus in live embryonic stem cells. However, the level of gene targeting was not improved by the DSB induction, indicating a limited capacity of I-SceI to mediate homologous recombination at the Dct locus. These data suggest that homologous recombination by meganuclease-induced DSB may be locus dependent in mammalian cells.
Collapse
Affiliation(s)
- Myriam Fenina
- Mouse functional Genetics, Institut Pasteur, Paris, France
- CNRS URA 2578, Institut Pasteur, Paris, France
- Life Sciences Department, L’Oréal Recherche and Innovation, Clichy, France
| | - Dominique Simon-Chazottes
- Mouse functional Genetics, Institut Pasteur, Paris, France
- CNRS URA 2578, Institut Pasteur, Paris, France
| | | | - Jihane Soueid
- Mouse functional Genetics, Institut Pasteur, Paris, France
- CNRS URA 2578, Institut Pasteur, Paris, France
| | - Francina Langa
- Mouse Genetics Engineering Center, Institut Pasteur, Paris, France
| | - Michel Cohen-Tannoudji
- Mouse functional Genetics, Institut Pasteur, Paris, France
- CNRS URA 2578, Institut Pasteur, Paris, France
| | - Bruno A. Bernard
- Life Sciences Department, L’Oréal Recherche and Innovation, Clichy, France
| | - Jean-Jacques Panthier
- Mouse functional Genetics, Institut Pasteur, Paris, France
- CNRS URA 2578, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
33
|
Guo H, Yang K, Deng F, Xing Y, Li Y, Lian X, Yang T. Wnt3a inhibits proliferation but promotes melanogenesis of melan-a cells. Int J Mol Med 2012; 30:636-42. [PMID: 22710324 DOI: 10.3892/ijmm.2012.1028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/14/2012] [Indexed: 11/05/2022] Open
Abstract
Melanocytes are pigment-producing cells responsible for coloration of skin and hair. Although the importance of Wnt3a in melanocyte development has been well recognized, the role of Wnt3a in mature melanocytes has not been elucidated. This study was conducted to further explore the effects of Wnt3a on melanocyte proliferation and melanogenesis, and to elucidate the possible mechanisms involved. We infected melan-a cells with AdWnt3a to serve as the production source of the Wnt3a protein. MTT assay, 5-bromodeoxyuridine incorporation assay and flow cytometric analysis showed that Wnt3a inhibited the proliferation of melan-a cells and this was associated with decrease of cells in the S phase and increase of cells in the G(1) phase. Melanin content and tyrosinase activity assay revealed that Wnt3a significantly promoted melanogenesis of melan-a cells. Furthermore, western blot analysis showed that Wnt3a upregulated the expression of microphthalmia-associated transcription factor and its downstream target genes, tyrosinase and tyrosinase-related protein 1 in melan-a cells. Collectively, our results suggest that Wnt3a plays an important role in melanocyte homeostasis.
Collapse
Affiliation(s)
- Haiying Guo
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, P.R. China
| | | | | | | | | | | | | |
Collapse
|
34
|
Pavan WJ, Raible DW. Specification of neural crest into sensory neuron and melanocyte lineages. Dev Biol 2012; 366:55-63. [PMID: 22465373 PMCID: PMC3351495 DOI: 10.1016/j.ydbio.2012.02.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/29/2012] [Indexed: 11/27/2022]
Abstract
Elucidating the mechanisms by which multipotent cells differentiate into distinct lineages is a common theme underlying developmental biology investigations. Progress has been made in understanding some of the essential factors and pathways involved in the specification of different lineages from the neural crest. These include gene regulatory networks involving transcription factor hierarchies and input from signaling pathways mediated from environmental cues. In this review, we examine the mechanisms for two lineages that are derived from the neural crest, peripheral sensory neurons and melanocytes. Insights into the specification of these cell types may reveal common themes in the specification processes that occur throughout development.
Collapse
Affiliation(s)
- William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
35
|
Guo H, Yang K, Deng F, Ye J, Xing Y, Li Y, Lian X, Yang T. Wnt3a promotes melanin synthesis of mouse hair follicle melanocytes. Biochem Biophys Res Commun 2012; 420:799-804. [DOI: 10.1016/j.bbrc.2012.03.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
|
36
|
Influence of human adipose-derived stromal cells on Wnt signaling in organotypic skin culture. J Craniofac Surg 2011; 22:694-8. [PMID: 21415638 DOI: 10.1097/scs.0b013e3182077fa2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Human adipose-derived stromal cells (hASCs) produce various cytokines. Also, there is a growing opinion that a large proportion of the useful effects of cell therapy may be attributable to the secretion of cytokines. Several reports suggested beneficial effects of hASCs on skin. These include antioxidant activity, accelerated wound healing, whitening effects, and antiaging. We investigated the effect of hASCs on skin Wnt signaling, which is associated with skin regeneration and differentiation. METHODS Pieces of human skin were cocultured with hASCs, and 2 chambered transwell culture plates were used to prevent direct contact between hASCs and skin. In the control group, pieces of skin were cultured without hASCs. Wnt1, Axin2, TCF1, LEF1, and DKK1 mRNA expressions were quantitatively assessed using real-time polymerase chain reaction. The expression levels of β-catenin were compared using Western blot and immunohistochemical analyses. RESULTS The Wnt1 and LEF1 mRNA expression of cultured skin was positively influenced by the presence of hASCs in culture medium (P<0.05). The total β-catenin protein level in hASC-cocultured skin was higher than that of the control group. Immunohistochemical staining showed that the β-catenin-stained area of dermis was larger in the hASC-cocultured group than in the control group, and most of the positively stained cells in the dermis were fibroblasts. CONCLUSIONS The results of the current study showed that hASCs promoted canonical Wnt signaling in organotypic skin culture through paracrine effects, and the increased Wnt signaling was mainly due to dermal fibroblasts.
Collapse
|
37
|
McKinney AJ, Holmen SL. Animal models of melanoma: a somatic cell gene delivery mouse model allows rapid evaluation of genes implicated in human melanoma. CHINESE JOURNAL OF CANCER 2011; 30:153-62. [PMID: 21352692 PMCID: PMC4013311 DOI: 10.5732/cjc.011.10007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 01/10/2011] [Accepted: 01/26/2011] [Indexed: 01/13/2023]
Abstract
The increasing incidence and mortality associated with advanced stages of melanoma are cause for concern. Few treatment options are available for advanced melanoma and the 5-year survival rate is less than 15%. Targeted therapies may revolutionize melanoma treatment by providing less toxic and more effective strategies. However, maximizing effectiveness requires further understanding of the molecular alterations that drive tumor formation, progression, and maintenance, as well as elucidating the mechanisms of resistance. Several different genetic alterations identified in human melanoma have been recapitulated in mice. This review outlines recent progress made in the development of mouse models of melanoma and summarizes what these findings reveal about the human disease. We begin with a discussion of traditional models and conclude with the recently developed RCAS/TVA somatic cell gene delivery mouse model of melanoma.
Collapse
Affiliation(s)
- Andrea J McKinney
- Department of Drug and Target Discovery, Nevada Cancer Institute, Las Vegas, NV 89135, USA
| | | |
Collapse
|
38
|
Bellei B, Pitisci A, Catricalà C, Larue L, Picardo M. Wnt/β-catenin signaling is stimulated by α-melanocyte-stimulating hormone in melanoma and melanocyte cells: implication in cell differentiation. Pigment Cell Melanoma Res 2011; 24:309-25. [PMID: 21040502 DOI: 10.1111/j.1755-148x.2010.00800.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Wnt/β-catenin signaling plays important roles in many developmental processes including neural crest-derived melanocyte development and migration. However, the effective contribution of Wnt/β-catenin pathway in melanogenesis in adult human melanocytes has not been fully elucidated. Here, we report that in melanoma cells and in normal human melanocytes, melanogenesis stimulation by α-melanocyte-stimulating hormone (α-MSH) induces phosphorylation of β-catenin-Ser675 and stabilization of β-catenin protein. Activation of protein kinase A by α-MSH attenuates glycogen synthase kinase-3β, which regulates ubiquitin-dependent degradation of β-catenin, suggesting a coordinated mechanism of β-catenin activity stimulation. Consistent with increased nuclear β-catenin, cyclic adenosine monophosphate (cAMP) elevation facilitates β-catenin-dependent transactivation of many Wnt target genes. Moreover, chromatin immunoprecipitation assays demonstrated an increased association of β-catenin with the proximal promoter of microphthalmia-associated transcription factor, the master regulator of pigmentation. These results demonstrate the existence of cross talk between the cAMP and Wnt pathways in melanocytes, suggesting that β-catenin could play a key role in the physiological regulation of epidermal melanogenesis.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopatology, San Gallicano Dermatologic Institute, IRCCS, Rome, Italy.
| | | | | | | | | |
Collapse
|
39
|
CtBP2 downregulation during neural crest specification induces expression of Mitf and REST, resulting in melanocyte differentiation and sympathoadrenal lineage suppression. Mol Cell Biol 2011; 31:955-70. [PMID: 21199918 DOI: 10.1128/mcb.01062-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Trunk neural crest (NC) cells differentiate to neurons, melanocytes, and glia. In NC cultures, cyclic AMP (cAMP) induces melanocyte differentiation while suppressing the neuronal sympathoadrenal lineage, depending on the signal intensity. Melanocyte differentiation requires activation of CREB and cAMP-dependent protein kinase A (PKA), but the role of PKA is not understood. We have demonstrated, in NC cultures, cAMP-induced transcription of the microphthalmia-associated transcription factor gene (Mitf) and the RE-1 silencing transcription factor gene (REST), both Wnt-regulated genes. In NC cultures and zebrafish, knockdown of the corepressor of Wnt-mediated transcription C-terminal binding protein 2 (CtBP2) but not CtBP1 derepressed Mitf and REST expression and enhanced melanocyte differentiation. cAMP in NC and B16 melanoma cells decreased CtBP2 protein levels, while inhibition of PKA or proteasome rescued CtBP2 degradation. Interestingly, knockdown of homeodomain-interacting protein kinase 2 (HIPK2), a CtBP stability modulator, increased CtBP2 levels, suppressed expression of Mitf, REST, and melanocyte differentiation, and increased neuronal gene expression and sympathoadrenal lineage differentiation. We conclude that cAMP/PKA via HIPK2 promotes CtBP2 degradation, leading to Mitf and REST expression. Mitf induces melanocyte specification, and REST suppresses neuron-specific gene expression and the sympathoadrenal lineage. Our studies identify a novel role for REST in NC cell differentiation and suggest cross talk between cAMP and Wnt signaling in NC lineage specification.
Collapse
|
40
|
VanBrocklin MW, Robinson JP, Lastwika KJ, Khoury JD, Holmen SL. Targeted delivery of NRASQ61R and Cre-recombinase to post-natal melanocytes induces melanoma in Ink4a/Arflox/lox mice. Pigment Cell Melanoma Res 2010; 23:531-41. [PMID: 20444198 PMCID: PMC2906690 DOI: 10.1111/j.1755-148x.2010.00717.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have developed a somatic cell gene delivery mouse model of melanoma that allows for the rapid validation of genetic alterations identified in this disease. A major advantage of this system is the ability to model the multi-step process of carcinogenesis in immune-competent mice without the generation and cross breeding of multiple strains. We have used this model to evaluate the role of RAS isoforms in melanoma initiation in the context of conditional Ink4a/Arf loss. Mice expressing the tumor virus A (TVA) receptor specifically in melanocytes under control of the dopachrome tautomerase (DCT) promoter were crossed to Ink4a/Arf(lox/lox) mice and newborn DCT-TVA/Ink4a/Arf(lox/lox) mice were injected with retroviruses containing activated KRAS, NRAS and/or Cre-recombinase. No mice injected with viruses containing KRAS and Cre or NRAS alone developed tumors; however, more than one-third of DCT-TVA/Ink4a/Arf(lox/lox) mice injected with NRAS and Cre viruses developed melanoma and two-thirds developed melanoma when NRAS and Cre expression was linked.
Collapse
|
41
|
Sihn G, Rousselle A, Vilianovitch L, Burckle C, Bader M. Physiology of the (pro)renin receptor: Wnt of change? Kidney Int 2010; 78:246-56. [DOI: 10.1038/ki.2010.151] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Wnt and related signaling pathways in melanomagenesis. Cancers (Basel) 2010; 2:1000-12. [PMID: 24281103 PMCID: PMC3835115 DOI: 10.3390/cancers2021000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 12/16/2022] Open
Abstract
Given the pivotal roles of morphogen pathways including Wnt, Notch, Hedgehog, and BMP pathways in the development of the neural crest lineage, it is not surprising that these signaling networks have also been implicated in the biology of malignant melanoma. Understanding the mechanisms by which these pathways can alter cell fate and other biological properties in tumor cells will be essential for determining whether the therapeutic targeting of these pathways has a potential role in melanoma treatment. This review highlights some of the recent findings with regards to how morphogen signaling may regulate melanoma cell biology.
Collapse
|
43
|
O'Connell MP, Weeraratna AT. Hear the Wnt Ror: how melanoma cells adjust to changes in Wnt. Pigment Cell Melanoma Res 2009; 22:724-39. [PMID: 19708915 DOI: 10.1111/j.1755-148x.2009.00627.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The interplay between canonical and non-canonical Wnt pathways in development and tumorigenesis is tightly regulated. In this review we will describe the yin and the yang of canonical and non-canonical Wnt signaling pathways during melanocyte development, and melanoma genesis. Canonical Wnt signaling, represented by Wnts such as Wnt1 and Wnt3A, signals via beta-catenin to promote melanocyte differentiation and tumor development. Non-canonical Wnt signaling, specifically Wnt5A, regulates canonical pathways, and signals to induce melanoma metastasis. This review will focus on the role of Wnt5A during melanoma progression, and its relationship to canonical Wnt signaling.
Collapse
Affiliation(s)
- Michael P O'Connell
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore MD, USA
| | | |
Collapse
|
44
|
Cooper CD, Linbo TH, Raible DW. Kit and foxd3 genetically interact to regulate melanophore survival in zebrafish. Dev Dyn 2009; 238:875-86. [PMID: 19301400 DOI: 10.1002/dvdy.21910] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have investigated the role of foxd3 activity in conjunction with signaling by the kit tyrosine kinase receptor in zebrafish black pigment cell (melanophore) development. As loss-of-function of these molecules individually has distinct effects on melanophore number, we have examined the phenotype of double mutants. Individuals with a null mutation in kit have fewer melanophores than wild-type, with cells lost through death. When kit mutants are injected with foxd3 antisense morpholino oligonucleotides or crossed with a foxd3 zebrafish mutant, they have more melanophores than their uninjected or foxd3+ counterparts. Examination of foxd3 loss-of-function in two additional kit mutants that differentially alter kit-dependent migration and survival indicates a change in melanophore number in survival mutants only. Consistently, TUNEL (terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end-labeling) analysis confirms a partial rescue of melanophores from cell death. Ectopic expression of foxd3 indicates that foxd3 promotes early melanophore death only when kit is inactive. Taken together, these data suggest a kit-dependent role for foxd3 in the regulation of melanophore survival.
Collapse
Affiliation(s)
- Cynthia D Cooper
- Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| | | | | |
Collapse
|
45
|
Osório L, Teillet MA, Catala M. Role of noggin as an upstream signal in the lack of neuronal derivatives found in the avian caudal-most neural crest. Development 2009; 136:1717-26. [PMID: 19369402 DOI: 10.1242/dev.028373] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural crest cells (NCCs) arising from trunk neural tube (NT) during primary and secondary neurulation give rise to melanocytes, glia and neurons, except for those in the caudal-most region during secondary neurulation (somites 47 to 53 in the chick embryo), from which no neurons are formed, either in vivo or in vitro. To elucidate this discrepancy, we have specifically analyzed caudal-most NCC ontogeny. In this region, NCCs emerge at E5/HH26, one day after full cavitation of the NT and differentiation of flanking somites. The absence of neurons does not seem to result from a defect in NCC specification as all the usual markers, with the exception of Msx1, are expressed in the dorsal caudal-most NT as early as E4/HH24. However, Bmp4-Wnt1 signaling, which triggers trunk NCC delamination, is impaired in this region due to persistence of noggin (Nog) expression. Concomitantly, a spectacular pattern of apoptosis occurs in the NT dorsal moiety. Rostral transplantation of either the caudal-most somites or caudal-most NT reveals that the observed features of caudal-most NCCs relate to properties intrinsic to these cells. Furthermore, by forced Nog expression in the trunk NT, we can reproduce most of these particular features. Conversely, increased Bmp4-Wnt1 signaling through Nog inhibition in the caudal-most NT at E4/HH24 induces proneurogenic markers in migratory NCCs, suggesting that noggin plays a role in the lack of neurogenic potential characterizing the caudal-most NCCs.
Collapse
Affiliation(s)
- Liliana Osório
- UPMC Univ Paris 06, UMR 7622, Laboratoire de Biologie du Développement, F-75005, Paris, France.
| | | | | |
Collapse
|
46
|
Zabierowski SE, Herlyn M. Embryonic stem cells as a model for studying melanocyte development. Methods Mol Biol 2009; 584:301-16. [PMID: 19907984 DOI: 10.1007/978-1-60761-369-5_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Melanocytes are neural crest-derived pigment-producing cells that reside in the inner ear, in the uveal tract, in hair follicles, and in the skin. The main function of melanocytes is to provide pigmentation through melanin production and secretion to the immediate surrounding area. Although much is known about mature melanocyte function and regulation, particularly in the skin, little is known with regard to the signals and gene expression patterns that ensue upon melanocyte development and differentiation from embryonic precursors. The ability to examine these patterns in an in vitro specified setting through the use of embryonic stem cells holds great potential for understanding melanocyte biology. In this chapter, we outline our procedures for the differentiation of human embryonic stem cells toward mature pigment-producing melanocytes that express the appropriate melanocytic markers and home to the epidermal basal layer in 3D skin reconstructs.
Collapse
|
47
|
Hou L, Pavan WJ. Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development: do all roads lead to Mitf? Cell Res 2008; 18:1163-76. [PMID: 19002157 DOI: 10.1038/cr.2008.303] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human neurocristopathies include a number of syndromes, tumors, and dysmorphologies of neural crest (NC) stem cell derivatives. In recent years, many white spotting genes have been associated with hypopigmentary disorders and deafness in neurocristopathies resulting from NC stem cell-derived melanocyte deficiency during development. These include PAX3, SOX10, MITF, SNAI2, EDNRB, EDN3, KIT, and KITL. Recent studies have revealed surprising new insights into a central role of MITF in the complex network of interacting genes in melanocyte development. In this perspective, we provide an overview of some of the current findings and explore complex functional roles of these genes during NC stem cell-derived melanocyte development.
Collapse
Affiliation(s)
- Ling Hou
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of China Ministry of Health, Eye Hospital, Wenzhou Medical College, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China.
| | | |
Collapse
|
48
|
Thomas AJ, Erickson CA. The making of a melanocyte: the specification of melanoblasts from the neural crest. Pigment Cell Melanoma Res 2008; 21:598-610. [DOI: 10.1111/j.1755-148x.2008.00506.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
Adams PD, Enders GH. Wnt-signaling and senescence: A tug of war in early neoplasia? Cancer Biol Ther 2008; 7:1706-11. [PMID: 18836285 DOI: 10.4161/cbt.7.11.6943] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Studies of early neoplasia have revealed fundamental molecular pathways that drive tumorigenesis. Despite this progress, synthesis of principles of tumorigenesis that span tissue types has lagged. Such forays into the 'comparative anatomy' of cancer can stimulate new models and refine key questions. We envision commonality of pathways important in formation of two early benign neoplasms that are found in different tissues and which are not generally thought to be similar: dysplastic nevi of the skin and intestinal aberrant crypt foci. We propose that these neoplasms result from an ongoing 'tug of war' between the tumor suppression barrier posed by cellular senescence and the tumor-promoting activity of Wnt-signaling. Whether or not such neoplasms progress to malignancy or persist in a benign state for many years might be largely determined by the outcome of this tug of war and its modulation by other genetic and epigenetic alterations, such as inactivation of p16(INK4a).
Collapse
Affiliation(s)
- Peter D Adams
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
50
|
Cooper CD, Raible DW. Mechanisms for reaching the differentiated state: Insights from neural crest-derived melanocytes. Semin Cell Dev Biol 2008; 20:105-10. [PMID: 18935965 DOI: 10.1016/j.semcdb.2008.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 09/25/2008] [Indexed: 01/02/2023]
Abstract
Black pigment cells, or melanocytes, are the major contributing cells to pigmentation in vertebrate organisms. Although the function of these cells is distinct depending on the organism, the events involved in their development are remarkably similar. Here, we review the mechanisms involved in the early development of melanocytes from neural crest, many of which are conserved in organisms as diverse as zebrafish, birds and humans. We also discuss recent studies that provide further insight into how melanocyte differentiation is achieved and maintained.
Collapse
Affiliation(s)
- Cynthia D Cooper
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|