1
|
Benedusi M, Lee H, Lim Y, Valacchi G. Oxidative State in Cutaneous Melanoma Progression: A Question of Balance. Antioxidants (Basel) 2024; 13:1058. [PMID: 39334716 PMCID: PMC11428248 DOI: 10.3390/antiox13091058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) are highly bioactive molecules involved not only in tissue physiology but also in the development of different human conditions, including premature aging, cardiovascular pathologies, neurological and neurodegenerative disorders, inflammatory diseases, and cancer. Among the different human tumors, cutaneous melanoma, the most aggressive and lethal form of skin cancer, is undoubtedly one of the most well-known "ROS-driven tumor", of which one of the main causes is represented by ultraviolet (UV) rays' exposure. Although the role of excessive ROS production in melanoma development in pro-tumorigenic cell fate is now well established, little is known about its contribution to the progression of the melanoma metastatic process. Increasing evidence suggests a dual role of ROS in melanoma progression: excessive ROS production may enhance cellular growth and promote therapeutic resistance, but at the same time, it can also have cytotoxic effects on cancer cells, inducing their apoptosis. In this context, the aim of the present work was to focus on the relationship between cell redox state and the signaling pathways directly involved in the metastatic processes. In addition, oxidative or antioxidant therapeutic strategies for metastatic melanoma were also reviewed and discussed.
Collapse
Affiliation(s)
- Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Giuseppe Valacchi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Major E, Lin KH, Lee SC, Káldi K, Győrffy B, Tigyi GJ, Benyó Z. LPA suppresses HLA-DR expression in human melanoma cells: a potential immune escape mechanism involving LPAR1 and DR6-mediated release of IL-10. Acta Pharmacol Sin 2024:10.1038/s41401-024-01373-x. [PMID: 39187677 DOI: 10.1038/s41401-024-01373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
While immune checkpoint inhibitors (ICIs) are promising in the treatment of metastatic melanoma, about half of patients do not respond well to them. Low levels of human leukocyte antigen-DR (HLA-DR) in tumors have been shown to negatively influence prognosis and response to ICIs. Lysophosphatidic acid (LPA) is produced in large amounts by melanoma and is abundantly present in the tumor microenvironment. LPA induces the release of various cytokines and chemokines from tumor cells, which affect cancer development, metastasis, and tumor immunity. In the present study, we investigated the role of LPA-induced IL-10 release in regulating HLA-DR expression and the underlying mechanisms in human melanoma cells. We showed that LPA (0.001-10 μM) dose-dependently increased DR6 transcript levels through activating LPAR1 in HEK293T cells. Knockdown of NF-κB1 abrogated the LPA-increased DR6 expression without affecting basal DR6 expression in both A2058 and A375 melanoma cell lines. LPA (10 µM) significantly increased IL-10 transcripts in A2058 and A375 melanoma cells, the effect was abolished by pharmacological inhibition of LPAR1 or knockdown of DR6. We found a statistically significant correlation between the expression of LPAR1, DR6 and IL-10 in human melanoma tissue and an association between increased expression of LPAR1 and reduced effectiveness of ICI therapy. We demonstrated that LPA (10 µM) markedly suppressed HLA-DR expression in both A375 and A2058 melanoma cells via activating the LPAR1-DR6-IL-10 pathway. These data suggest that the LPAR1-DR6-IL-10 autocrine loop could constitute a novel mechanism used by tumor cells to evade immunosurveillance by decreasing HLA-DR expression.
Collapse
Affiliation(s)
- Enikő Major
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Cerebrovascular and Neurocognitive Disease Research Group, Budapest, Hungary
| | - Kuan-Hung Lin
- Department of Physiology, University of Tennessee Health Science Centre, Memphis, TN, USA
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, China
| | - Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Centre, Memphis, TN, USA
| | - Krisztina Káldi
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Gábor J Tigyi
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Physiology, University of Tennessee Health Science Centre, Memphis, TN, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.
- HUN-REN-SU Cerebrovascular and Neurocognitive Disease Research Group, Budapest, Hungary.
| |
Collapse
|
3
|
De Backer J, Hoogewijs D. The cytoglobin-dependent transcriptome in melanoma indicates a protective function associated with oxidative stress, inflammation and cancer-associated pathways. Sci Rep 2024; 14:18175. [PMID: 39107431 PMCID: PMC11303788 DOI: 10.1038/s41598-024-69224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Cytoglobin (CYGB) is a member of the oxygen-binding globin superfamily. In this study we generated stable CYGB overexpressing A375 melanoma cells and performed RNA-sequencing to comprehensively explore the CYGB-dependent transcriptome. Our findings reveal that ectopic expression of CYGB dysregulated multiple cancer-associated genes, including the mTORC1 and AKT/mTOR signaling pathways, which are frequently overactivated in tumors. Moreover, several cancer-associated pathways, such as epithelial-mesenchymal transition (EMT) mediated by CSPG4, were downregulated upon CYGB overexpression. Intriguingly, ectopic expression suggested anti-inflammatory potential of CYGB, as exemplified by downregulation of key inflammasome-associated genes, including NLRP1, CASP1 and CD74, which play pivotal roles in cytokine regulation and inflammasome activation. Consistent with established globin functions, CYGB appears to be involved in redox homeostasis. Furthermore, our study indicates CYGB's association to DNA repair mechanisms and its regulation of NOX4, reinforcing its functional versatility. Additionally, multiple significantly enriched pathways in CYGB overexpressing cells were consistently dysregulated in opposite direction in CYGB depleted cells. Collectively, our RNA-sequencing based investigations illustrate the diverse functions of CYGB in melanoma cells, pointing to its putative roles in cellular protection against oxidative stress, inflammation, and cancer-associated pathways. These findings pave the way for further research into the physiological role of CYGB and its potential as a candidate therapeutic target in melanoma.
Collapse
Affiliation(s)
- Joey De Backer
- Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Fribourg, Switzerland
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - David Hoogewijs
- Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
4
|
Slominski RM, Kim TK, Janjetovic Z, Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R, Crossman DK, Elmets C, Raman C, Jetten AM, Indra AK, Slominski AT. Malignant Melanoma: An Overview, New Perspectives, and Vitamin D Signaling. Cancers (Basel) 2024; 16:2262. [PMID: 38927967 PMCID: PMC11201527 DOI: 10.3390/cancers16122262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Melanoma, originating through malignant transformation of melanin-producing melanocytes, is a formidable malignancy, characterized by local invasiveness, recurrence, early metastasis, resistance to therapy, and a high mortality rate. This review discusses etiologic and risk factors for melanoma, diagnostic and prognostic tools, including recent advances in molecular biology, omics, and bioinformatics, and provides an overview of its therapy. Since the incidence of melanoma is rising and mortality remains unacceptably high, we discuss its inherent properties, including melanogenesis, that make this disease resilient to treatment and propose to use AI to solve the above complex and multidimensional problems. We provide an overview on vitamin D and its anticancerogenic properties, and report recent advances in this field that can provide solutions for the prevention and/or therapy of melanoma. Experimental papers and clinicopathological studies on the role of vitamin D status and signaling pathways initiated by its active metabolites in melanoma prognosis and therapy are reviewed. We conclude that vitamin D signaling, defined by specific nuclear receptors and selective activation by specific vitamin D hydroxyderivatives, can provide a benefit for new or existing therapeutic approaches. We propose to target vitamin D signaling with the use of computational biology and AI tools to provide a solution to the melanoma problem.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Department of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Tae-Kang Kim
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Zorica Janjetovic
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Ewa Podgorska
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Katie M. Dixon
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Rebecca S. Mason
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Rahul Sharma
- Department of Biomedical Informatics and Data Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - David K. Crossman
- Department of Genetics and Bioinformatics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Craig Elmets
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Chander Raman
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anton M. Jetten
- Cell Biology Section, NIEHS—National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrzej T. Slominski
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, Veteran Administration Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
5
|
Sukniam K, Manaise HK, Popp K, Popp R, Gabriel E. Role of Surgery in Metastatic Melanoma and Review of Melanoma Molecular Characteristics. Cells 2024; 13:465. [PMID: 38534309 PMCID: PMC10969165 DOI: 10.3390/cells13060465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
We aimed to review the molecular characteristics of metastatic melanoma and the role of surgery in metastasectomy for metastatic melanoma. We performed a systematic literature search on PubMed to identify relevant studies focusing on several mutations, including NRAS, BRAF, NF1, MITF, PTEN, TP53, CDKN2A, TERT, TMB, EGFR, and c-KIT. This was performed in the context of metastatic melanoma and the role of metastasectomy in the metastatic melanoma population. A comprehensive review of these molecular characteristics is presented with a focus on their prognosis and role in surgical metastasectomy.
Collapse
Affiliation(s)
- Kulkaew Sukniam
- Department of General Surgery, Duke University Medical Center, Durham, NC 27707, USA
| | - Harsheen K. Manaise
- Department of Medicine, Government Medical College and Hospital, Chandigarh 160047, India
| | - Kyle Popp
- Department of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Reed Popp
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Emmanuel Gabriel
- Department of General Surgery, Division of Surgical Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| |
Collapse
|
6
|
Kharouf N, Flanagan TW, Alamodi AA, Al Hmada Y, Hassan SY, Shalaby H, Santourlidis S, Hassan SL, Haikel Y, Megahed M, Brodell RT, Hassan M. CD133-Dependent Activation of Phosphoinositide 3-Kinase /AKT/Mammalian Target of Rapamycin Signaling in Melanoma Progression and Drug Resistance. Cells 2024; 13:240. [PMID: 38334632 PMCID: PMC10854812 DOI: 10.3390/cells13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant activation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway showed less efficiency in clinical trials than might have been expected, since the suppression of the PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can be expressed in the form of genetically divergent subpopulations including a small fraction of cancer stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass. Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of melanoma progression, drug resistance, and recurrence is reviewed.
Collapse
Affiliation(s)
- Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | | | - Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
7
|
Boudreault J, Wang N, Ghozlan M, Lebrun JJ. Transforming Growth Factor-β/Smad Signaling Inhibits Melanoma Cancer Stem Cell Self-Renewal, Tumor Formation and Metastasis. Cancers (Basel) 2024; 16:224. [PMID: 38201651 PMCID: PMC10778361 DOI: 10.3390/cancers16010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The secreted protein transforming growth factor-beta (TGFβ) plays essential roles, ranging from cell growth regulation and cell differentiation in both normal and cancer cells. In melanoma, TGFβ acts as a potent tumor suppressor in melanoma by blocking cell cycle progression and inducing apoptosis. In the present study, we found TGFβ to regulate cancer stemness in melanoma through the Smad signaling pathway. We discovered that TGFβ/Smad signaling inhibits melanosphere formation in multiple melanoma cell lines and reduces expression of the CD133+ cancer stem cell subpopulation in a Smad3-dependent manner. Using preclinical models of melanoma, we further showed that preventing Smad3/4 signaling, by means of CRISPR knockouts, promoted both tumorigenesis and lung metastasis in vivo. Collectively, our results define new functions for the TGFβ/Smad signaling axis in melanoma stem-cell maintenance and open avenues for new therapeutic approaches to this disease.
Collapse
Affiliation(s)
| | | | | | - Jean-Jacques Lebrun
- Cancer Research Program, Department of Medicine, Research Institute of McGill University Health Center, Montreal, QU H4A 3J1, Canada; (J.B.); (N.W.); (M.G.)
| |
Collapse
|
8
|
Rafiyan M, Davoodvandi A, Reiter RJ, Mansournia MA, Rasooli Manesh SM, Arabshahi V, Asemi Z. Melatonin and cisplatin co-treatment against cancer: A mechanistic review of their synergistic effects and melatonin's protective actions. Pathol Res Pract 2024; 253:155031. [PMID: 38103362 DOI: 10.1016/j.prp.2023.155031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Combination chemotherapy appears to be a preferable option for some cancer patients, especially when the medications target multiple pathways of oncogenesis; individuals treated with combination treatments may have a better prognosis than those treated with single agent chemotherapy. However, research has revealed that this is not always the case, and that this technique may just enhance toxicity while having little effect on boosting the anticancer effects of the medications. Cisplatin (CDDP) is a chemotherapeutic medicine that is commonly used to treat many forms of cancer. However, it has major adverse effects such as cardiotoxicity, skin necrosis, testicular toxicity, and nephrotoxicity. Many research have been conducted to investigate the effectiveness of melatonin (MLT) as an anticancer medication. MLT operates in a variety of ways, including decreasing cancer cell growth, causing apoptosis, and preventing metastasis. We review the literature on the role of MLT as an adjuvant in CDDP-based chemotherapies and discuss how MLT may enhance CDDP's antitumor effects (e.g., by inducing apoptosis and suppressing metastasis) while protecting other organs from its adverse effects, such as cardio- and nephrotoxicity.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Vajiheh Arabshahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
9
|
Steinhoff M, Alam M, Ahmad A, Uddin S, Buddenkotte J. Targeting oncogenic transcription factors in skin malignancies: An update on cancer stemness and therapeutic outcomes. Semin Cancer Biol 2022; 87:98-116. [PMID: 36372325 DOI: 10.1016/j.semcancer.2022.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The skin is the largest organ of the human body and prone to various diseases, including cancer; thus, provides the first line of defense against exogenous biological and non-biological agents. Skin cancer, a complex and heterogenic process, with steep incidence rate often metastasizes due to poor understanding of the underlying mechanisms of pathogenesis and clinical challenges. Indeed, accumulating evidence indicates that deregulation of transcription factors (TFs) due to genetic, epigenetic and signaling distortions plays essential role in the development of cutaneous malignancies and therapeutic challenges including cancer stemness features and reprogramming. This review highlights the recent developments exploring underlying mechanisms how deregulated TFs (e.g., NF-κB, AP-1, STAT etc.,) orchestrates cutaneous onco-pathogenesis, reprogramming, stemness and poor clinical outcomes. Along this line, bioactive drugs, and their derivatives from natural and or synthetic origin has gained attention due to their multitargeting potential, potentially safer and effective therapeutic outcome for human malignancies. We also discussed therapeutic importance of targeting aberrantly expressed TFs in skin cancers with bioactive natural products and or synthetic agents.
Collapse
Affiliation(s)
- Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar.
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Center, Qatar University, Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
10
|
Global Trends in Research of NF-κB in Melanoma from 2000 to 2021: A Study of Bibliometric Analysis. JOURNAL OF ONCOLOGY 2022; 2022:3684228. [PMID: 36124033 PMCID: PMC9482551 DOI: 10.1155/2022/3684228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
In the pathogenesis of melanoma, NF-κB is a key signaling pathway. Appling bibliometric analysis, we identify the frontiers and hotspots about NF-κB in melanoma, as well as distinguishing features of scientific research and output all over the world during the past 22 years. 2226 publications published from 2000 to 2021 and related information were retrieved based on Science Citation Index Expanded (SCI-expanded) of Web of Science Core Collection (WoSCC). VOSviewer and Citespace were used to analyze bibliometric indicators and visualize the hotspots and research trend of studies on NF-κB in melanoma. The results indicated that despite fluctuations, the number of publications (Np) related to the research of NF-κB in melanoma per year increased over the past 22 years. The USA had the most publications. H-index and the number of citations (Nc) of the USA were also in the first place. PloS One was the most productive journal, and League of European Research Universities (LERU) was the most productive affiliation. Recently, the keywords “NF-kappa-b,” “melanoma,” “apoptosis,” “expression,” “activation,” “cancer,” and “metastasis” appeared most frequently. Our study suggested that articles associated with NF-κB in melanoma tend to increase. In this field, the USA was an influential country and a big producer. Most publications focused on clinical and basic research in the past 22 years, and keywords “tumor necrosis factor” and “trail induced apoptosis” had the highest burst strength.
Collapse
|
11
|
Castaneda-Garcia C, Iyer V, Nsengimana J, Trower A, Droop A, Brown KM, Choi J, Zhang T, Harland M, Newton-Bishop JA, Bishop DT, Adams DJ, Iles MM, Robles-Espinoza CD. Defining novel causal SNPs and linked phenotypes at melanoma-associated loci. Hum Mol Genet 2022; 31:2845-2856. [PMID: 35357426 PMCID: PMC9433725 DOI: 10.1093/hmg/ddac074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
A number of genomic regions have been associated with melanoma risk through genome-wide association studies; however, the causal variants underlying the majority of these associations remain unknown. Here, we sequenced either the full locus or the functional regions including exons of 19 melanoma-associated loci in 1959 British melanoma cases and 737 controls. Variant filtering followed by Fisher's exact test analyses identified 66 variants associated with melanoma risk. Sequential conditional logistic regression identified the distinct haplotypes on which variants reside, and massively parallel reporter assays provided biological insights into how these variants influence gene function. We performed further analyses to link variants to melanoma risk phenotypes and assessed their association with melanoma-specific survival. Our analyses replicate previously known associations in the melanocortin 1 receptor (MC1R) and tyrosinase (TYR) loci, while identifying novel potentially causal variants at the MTAP/CDKN2A and CASP8 loci. These results improve our understanding of the architecture of melanoma risk and outcome.
Collapse
Affiliation(s)
- Carolina Castaneda-Garcia
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, México 76230, USA
| | - Vivek Iyer
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB101SA, UK
| | - Jérémie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4BN, UK
| | - Adam Trower
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds LS9 7TF, USA
| | - Alastair Droop
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB101SA, UK
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Harland
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Julia A Newton-Bishop
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - D Timothy Bishop
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds LS9 7TF, USA
| | - David J Adams
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB101SA, UK
| | - Mark M Iles
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds LS9 7TF, USA
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, México 76230, USA
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB101SA, UK
| |
Collapse
|
12
|
Dieterich LC. Mechanisms of extracellular vesicle-mediated immune evasion in melanoma. Front Immunol 2022; 13:1002551. [PMID: 36081494 PMCID: PMC9445580 DOI: 10.3389/fimmu.2022.1002551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Melanoma-derived extracellular vesicles (EVs) have been found to promote tumor growth and progression, and to predict patient responsiveness to immunotherapy. Consequently, EVs have been implicated in tumor immune evasion, and multiple studies reported immune-regulatory activities of melanoma EVs in vitro and in vivo. This review highlights mechanistic insights in EV-mediated regulation of various immune cell types, including effects on inflammatory, apoptotic, stress-sensing and immune checkpoint pathways as well as antigen-dependent responses. Additionally, current challenges in the field are discussed that need to be overcome to determine the clinical relevance of these various mechanisms and to develop corresponding therapeutic approaches to promote tumor immunity and immunotherapy responsiveness in melanoma patients in the future.
Collapse
|
13
|
Cytoglobin Silencing Promotes Melanoma Malignancy but Sensitizes for Ferroptosis and Pyroptosis Therapy Response. Antioxidants (Basel) 2022; 11:antiox11081548. [PMID: 36009267 PMCID: PMC9405091 DOI: 10.3390/antiox11081548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
Despite recent advances in melanoma treatment, there are still patients that either do not respond or develop resistance. This unresponsiveness and/or acquired resistance to therapy could be explained by the fact that some melanoma cells reside in a dedifferentiated state. Interestingly, this dedifferentiated state is associated with greater sensitivity to ferroptosis, a lipid peroxidation-reliant, iron-dependent form of cell death. Cytoglobin (CYGB) is an iron hexacoordinated globin that is highly enriched in melanocytes and frequently downregulated during melanomagenesis. In this study, we investigated the potential effect of CYGB on the cellular sensitivity towards (1S, 3R)-RAS-selective lethal small molecule (RSL3)-mediated ferroptosis in the G361 melanoma cells with abundant endogenous expression. Our findings show that an increased basal ROS level and higher degree of lipid peroxidation upon RSL3 treatment contribute to the increased sensitivity of CYGB knockdown G361 cells to ferroptosis. Furthermore, transcriptome analysis demonstrates the enrichment of multiple cancer malignancy pathways upon CYGB knockdown, supporting a tumor-suppressive role for CYGB. Remarkably, CYGB knockdown also triggers activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and subsequent induction of pyroptosis target genes. Altogether, we show that silencing of CYGB expression modulates cancer therapy sensitivity via regulation of ferroptosis and pyroptosis cell death signaling pathways.
Collapse
|
14
|
Targeting EGFR in melanoma - The sea of possibilities to overcome drug resistance. Biochim Biophys Acta Rev Cancer 2022; 1877:188754. [PMID: 35772580 DOI: 10.1016/j.bbcan.2022.188754] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/15/2022] [Accepted: 06/23/2022] [Indexed: 12/21/2022]
Abstract
Melanoma is considered one of the most aggressive skin cancers. It spreads and metastasizes quickly and is intrinsically resistant to most conventional chemotherapeutics, thereby presenting a challenge to researchers and clinicians searching for effective therapeutic strategies to treat patients with melanoma. The use of inhibitors of mutated serine/threonine-protein kinase B-RAF (BRAF), e.g., vemurafenib and dabrafenib, has revolutionized melanoma chemotherapy. Unfortunately, the response to these drugs lasts a limited time due to the development of acquired resistance. One of the proteins responsible for this process is epidermal growth factor receptor (EGFR). In this review, we summarize the role of EGFR signaling in the multidrug resistance of melanomas and discuss possible applications of EGFR inhibitors to overcome the development of drug resistance in melanoma cells during therapy.
Collapse
|
15
|
Salviolone from Salvia miltiorrhiza Roots Impairs Cell Cycle Progression, Colony Formation, and Metalloproteinase-2 Activity in A375 Melanoma Cells: Involvement of P21(Cip1/Waf1) Expression and STAT3 Phosphorylation. Int J Mol Sci 2022; 23:ijms23031121. [PMID: 35163058 PMCID: PMC8835475 DOI: 10.3390/ijms23031121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Melanoma is a highly malignant solid tumor characterized by an elevated growth and propagation rate. Since, often, melanoma treatment cannot prevent recurrences and the appearance of metastasis, new anti-melanoma agents need to be discovered. Salvia miltiorrhiza roots are a source of diterpenoid derivatives, natural compounds with several biological activities, including antiproliferative and anticancer effects. Seven diterpenoid derivatives were purified from S. miltiorrhiza roots and identified by NMR and MS analysis. Tanshinone IIA and cryptotanshinone were detected as the main components of S. miltiorrhiza root ethanol extract. Although their antitumor activity is already known, they have been confirmed to induce a reduction in A375 and MeWo melanoma cell growth. Likewise, salviolone has been shown to impair the viability of melanoma cells without affecting the growth of normal melanocytes. The underlying anticancer activity of salviolone has been investigated and compared to that of cryptotanshinone in A375 cells, showing an increased P21 protein expression in a P53-dependent manner. In that way, salviolone, even more than cryptotanshinone, displays a multitarget effect on cell-cycle-related proteins. Besides, it modulates the phosphorylation level of the signal transducer and activator of transcription (STAT)3. Unexpectedly, salviolone and cryptotanshinone induce sustained activation of the extracellular signal-regulated kinases (ERK)1/2 and the protein kinase B (Akt). However, the blockage of ERK1/2 or Akt activities suggests that kinase activation does not hinder their ability to inhibit A375 cell growth. Finally, salviolone and cryptotanshinone inhibit to a comparable extent some crucial malignancy features of A375 melanoma cells, such as colony formation in soft agar and metalloproteinase-2 activity. In conclusion, it has been shown for the first time that salviolone, harboring a different molecular structure than tanshinone IIA and cryptotanshinone, exhibits a pleiotropic effect against melanoma by hampering cell cycle progression, STAT3 signaling, and malignant phenotype of A375 melanoma cells.
Collapse
|
16
|
Vaseghi G, Pourhadi M, Ghasemi A, Abediny R, Haghjooy Javanmard S. The inhibitory effects of vanillin on the growth of melanoma by reducing nuclear factor-κB activation. Adv Biomed Res 2022; 11:68. [DOI: 10.4103/abr.abr_280_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/04/2022] Open
|
17
|
Patras L, Ionescu AE, Munteanu C, Hajdu R, Kosa A, Porfire A, Licarete E, Rauca VF, Sesarman A, Luput L, Bulzu P, Chiroi P, Tranca RA, Meszaros MS, Negrea G, Barbu-Tudoran L, Potara M, Szedlacsek S, Banciu M. Trojan horse treatment based on PEG-coated extracellular vesicles to deliver doxorubicin to melanoma in vitro and in vivo. Cancer Biol Ther 2021; 23:1-16. [PMID: 34964693 PMCID: PMC8812761 DOI: 10.1080/15384047.2021.2003656] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tailoring extracellular vesicles (EVs) as targeted drug delivery systems to enhance the therapeutic efficacy showed superior advantage over liposomal therapies. Herein, we developed a novel nanotool for targeting B16.F10 murine melanoma, based on EVs stabilized with Polyethylene glycol (PEG) and loaded with doxorubicin (DOX). Small EVs were efficiently enriched from melanoma cells cultured under metabolic stress by ultrafiltration coupled with size exclusion chromatography (UF-SEC) and characterized by size, morphology, and proteome. To reduce their clearance in vivo, EVs were PEGylated and passively loaded with DOX (PEG-EV-DOX). Our data suggested that the low PEG coverage of EVs might still favor EV surface protein interactions with target proteins from intratumor cells, ensuring their use as "Trojan horses" to deliver DOX to the tumor tissue. Moreover, our results showed a superior antitumor activity of PEG-EV-DOX in B16.F10 murine melanoma models in vivo compared to that exerted by clinically applied liposomal DOX in the same tumor model. The PEG-EV-DOX administration in vivo reduced NF-κB activation and increased BAX expression, suggesting better prognosis of EV-based therapy than liposomal DOX treatment. Collectively, our results highlight the promising potential of EVs as optimal tools for systemic delivery of DOX to solid tumors.
Collapse
Affiliation(s)
- Laura Patras
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Aura Elena Ionescu
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Cristian Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Renata Hajdu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Andreea Kosa
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania.,Molecular Biology Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Valentin Florian Rauca
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Alina Sesarman
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Lavinia Luput
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Paul Bulzu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Paul Chiroi
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Rares Andrei Tranca
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Marta-Szilvia Meszaros
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Giorgiana Negrea
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- "C.Craciun" Electron Microscopy Center, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Monica Potara
- Nanobiophotonics Center, Interdisciplinary Research Institute in Bio-Nano-Sciences and Faculty of Physics, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Stefan Szedlacsek
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| |
Collapse
|
18
|
ROS Pleiotropy in Melanoma and Local Therapy with Physical Modalities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6816214. [PMID: 34777692 PMCID: PMC8580636 DOI: 10.1155/2021/6816214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Metabolic energy production naturally generates unwanted products such as reactive oxygen species (ROS), causing oxidative damage. Oxidative damage has been linked to several pathologies, including diabetes, premature aging, neurodegenerative diseases, and cancer. ROS were therefore originally anticipated as an imperative evil, a product of an imperfect system. More recently, however, the role of ROS in signaling and tumor treatment is increasingly acknowledged. This review addresses the main types, sources, and pathways of ROS in melanoma by linking their pleiotropic roles in antioxidant and oxidant regulation, hypoxia, metabolism, and cell death. In addition, the implications of ROS in various physical therapy modalities targeting melanoma, such as radiotherapy, electrochemotherapy, hyperthermia, photodynamic therapy, and medical gas plasma, are also discussed. By including ROS in the main picture of melanoma skin cancer and as an integral part of cancer therapies, a greater understanding of melanoma cell biology is presented, which ultimately may elucidate additional clues on targeting therapy resistance of this most deadly form of skin cancer.
Collapse
|
19
|
El Yaagoubi OM, Oularbi L, Bouyahya A, Samaki H, El Antri S, Aboudkhil S. The role of the ubiquitin-proteasome pathway in skin cancer development: 26S proteasome-activated NF-κB signal transduction. Cancer Biol Ther 2021; 22:479-492. [PMID: 34583610 DOI: 10.1080/15384047.2021.1978785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Ubiquitin-Proteasome System plays a central role in signal transduction associated with stress, in the skin in particular by the control of NF-κB pathways. Under normal conditions, the inhibitory protein IκB is phosphorylated by kinases, then ubiquitinated and ends up at the proteasome to be degraded. The present short review discusses recent progress in the inhibition of NF-κB activation by proteasome inhibitors prevents the degradation of protein IκB, which accumulates in the cytosol, and there by the activation of NF-κB. Moreover, would not only limit the expression of adhesion molecules and cytokines involved in metastatic processes, but also increase the sensitivity of cancer cells to apoptosis. Considering this fact, the activity of NF-κB is regulated by the phosphorylation and proteasome-dependent degradation of its inhibitor Iκb. In this scenario, the use of a proteasome inhibitor might be an effective strategy in the treatment of skin cancer with constitutive activation of NF-κB.
Collapse
Affiliation(s)
- Ouadie Mohamed El Yaagoubi
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| | - Larbi Oularbi
- Laboratory of Materials, Membranes, and Environment, Faculty of Science and Technology-Mohammedia, Hassan II University, Casablanca, Morocco.,Supramolecular Nanomaterials Group (SNG), Mohammed VI Polytechnic University, Benguerir Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.,Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Hamid Samaki
- National Institute of Social Action (INAS), Tangier, Morocco
| | - Said El Antri
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| | - Souad Aboudkhil
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| |
Collapse
|
20
|
Molecular Functions of Hydrogen Sulfide in Cancer. PATHOPHYSIOLOGY 2021; 28:437-456. [PMID: 35366284 PMCID: PMC8830448 DOI: 10.3390/pathophysiology28030028] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter that exerts a multitude of functions in both physiologic and pathophysiologic processes. H2S-synthesizing enzymes are increased in a variety of human malignancies, including colon, prostate, breast, renal, urothelial, ovarian, oral squamous cell, and thyroid cancers. In cancer, H2S promotes tumor growth, cellular and mitochondrial bioenergetics, migration, invasion, angiogenesis, tumor blood flow, metastasis, epithelia–mesenchymal transition, DNA repair, protein sulfhydration, and chemotherapy resistance Additionally, in some malignancies, increased H2S-synthesizing enzyme expression correlates with a worse prognosis and a higher tumor stage. Here we review the role of H2S in cancer, with an emphasis on the molecular mechanisms by which H2S promotes cancer development, progression, dedifferentiation, and metastasis.
Collapse
|
21
|
Xu J, Ying A, Shi T. Nuciferine Inhibits Skin Cutaneous Melanoma Cell Growth by Suppressing TLR4/NF-κB Signaling. Anticancer Agents Med Chem 2021; 20:2099-2105. [PMID: 32781974 DOI: 10.2174/1871520620666200811114607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/18/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Melanoma causes more than 80% of deaths from all dermatologic cancers. Hence, screening and identifying effective compounds to inhibit the growth of melanoma have crucial importance in basic and clinical treatment. METHODS High throughput screening was performed to screen and identify compounds that have anti-melanoma ability. Melanoma cell and mouse allograft models were used to examine the anti-tumor effects of Nuciferine (NCFR). Western blot, qPCR, and lentivirus overexpression were applied to detect the activation of the TLR4/NF-κB signaling pathway. RESULTS NCFR administration significantly suppressed melanoma cell growth and tumor size by inhibiting the phosphorylation of p65. NCFR treatment also could suppress TNF-α-induced activation of NF-κB signaling. The anti-tumor effect of NCFR might be mediated by targeting Toll-like receptors 4. CONCLUSION NCFR inhibits melanoma cell growth and suppresses tumor size, which provides potential therapeutic strategies for melanoma treatment.
Collapse
Affiliation(s)
- Jingxing Xu
- Department of Dermatology, Qingdao Municipal Hospital, No.1. Jiaozhou Road, Qingdao 266011, Shandong, China
| | - Anxin Ying
- Department of Dermatology, Qingdao Municipal Hospital, No.1. Jiaozhou Road, Qingdao 266011, Shandong, China
| | - Tongxin Shi
- Department of Dermatology, Qingdao Municipal Hospital, No.1. Jiaozhou Road, Qingdao 266011, Shandong, China
| |
Collapse
|
22
|
Jandova J, Hua AB, Fimbres J, Wondrak GT. Deuterium Oxide (D 2O) Induces Early Stress Response Gene Expression and Impairs Growth and Metastasis of Experimental Malignant Melanoma. Cancers (Basel) 2021; 13:605. [PMID: 33546433 PMCID: PMC7913703 DOI: 10.3390/cancers13040605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
There are two stable isotopes of hydrogen, protium (1H) and deuterium (2H; D). Cellular stress response dysregulation in cancer represents both a major pathological driving force and a promising therapeutic target, but the molecular consequences and potential therapeutic impact of deuterium (2H)-stress on cancer cells remain largely unexplored. We have examined the anti-proliferative and apoptogenic effects of deuterium oxide (D2O; 'heavy water') together with stress response gene expression profiling in panels of malignant melanoma (A375V600E, A375NRAS, G361, LOX-IMVI), and pancreatic ductal adenocarcinoma (PANC-1, Capan-2, or MIA PaCa-2) cells with inclusion of human diploid Hs27 skin fibroblasts. Moreover, we have examined the efficacy of D2O-based pharmacological intervention in murine models of human melanoma tumor growth and metastasis. D2O-induction of apoptosis was substantiated by AV-PI flow cytometry, immunodetection of PARP-1, and pro-caspase 3 cleavage, and rescue by pan-caspase inhibition. Differential array analysis revealed early modulation of stress response gene expression in both A375 melanoma and PANC-1 adenocarcinoma cells elicited by D2O (90%; ≤6 h) (upregulated: CDKN1A, DDIT3, EGR1, GADD45A, HMOX1, NFKBIA, or SOD2 (up to 9-fold; p < 0.01)) confirmed by independent RT-qPCR analysis. Immunoblot analysis revealed rapid onset of D2O-induced stress response phospho-protein activation (p-ERK, p-JNK, p-eIF2α, or p-H2AX) or attenuation (p-AKT). Feasibility of D2O-based chemotherapeutic intervention (drinking water (30% w/w)) was demonstrated in a severe combined immunodeficiency (SCID) mouse melanoma metastasis model using luciferase-expressing A375-Luc2 cells. Lung tumor burden (visualized by bioluminescence imaging) was attenuated by D2O, and inhibition of invasiveness was also confirmed in an in vitro Matrigel transwell invasion assay. D2O supplementation also suppressed tumor growth in a murine xenograft model of human melanoma, and median survival was significantly increased without causing adverse effects. These data demonstrate for the first time that systemic D2O administration impairs growth and metastasis of malignant melanoma through the pharmacological induction of deuterium (2H)-stress.
Collapse
Affiliation(s)
| | | | | | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (J.J.); (A.B.H.); (J.F.)
| |
Collapse
|
23
|
Zeaxanthin-Rich Extract from Superfood Lycium barbarum Selectively Modulates the Cellular Adhesion and MAPK Signaling in Melanoma versus Normal Skin Cells In Vitro. Molecules 2021; 26:molecules26020333. [PMID: 33440679 PMCID: PMC7827977 DOI: 10.3390/molecules26020333] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/28/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022] Open
Abstract
The concern for implementing bioactive nutraceuticals in antioxidant-related therapies is of great importance for skin homeostasis in benign or malignant diseases. In order to elucidate some novel insights of Lycium barbarum (Goji berry) activity on skin cells, the present study focused on its active compound zeaxanthin. By targeting the stemness markers CD44 and CD105, with deep implications in skin oxidative stress mechanisms, we revealed, for the first time, selectivity in zeaxanthin activity. When applied in vitro on BJ human fibroblast cell line versus the A375 malignant melanoma cells, despite the moderate cytotoxicity, the zeaxanthin-rich extracts 1 and 2 were able to downregulate significantly the CD44 and CD105 membrane expression and extracellular secretion in A375, and to upregulate them in BJ cells. At mechanistic level, the present study is the first to demonstrate that the zeaxanthin-rich Goji extracts are able to influence selectively the mitogen-activated protein kinases (MAPK): ERK, JNK and p38 in normal BJ versus tumor-derived A375 skin cells. These results point out towards the applications of zeaxanthin from L. barbarum as a cytoprotective agent in normal skin and raises questions about its use as an antitumor prodrug alone or in combination with standard therapy.
Collapse
|
24
|
Bera A, Russ E, Manoharan MS, Eidelman O, Eklund M, Hueman M, Pollard HB, Hu H, Shriver CD, Srivastava M. Proteomic Analysis of Inflammatory Biomarkers Associated With Breast Cancer Recurrence. Mil Med 2020; 185:669-675. [PMID: 32074342 DOI: 10.1093/milmed/usz254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Breast cancer is the most frequent cancer detected for women, and while our ability to treat breast cancer has improved substantially over the years, recurrence remains a major obstacle. Standard screening for new and recurrent breast cancer involves clinical breast imaging. However, there is no clinically approved noninvasive body fluid test for the early detection of recurrent breast cancer. Materials and Method: In this study, we analyzed serum samples from both recurrent and nonrecurrent breast cancer patients by different proteomics methods to identify biomarkers in patients with recurrence of disease. RESULTS Comparative data analysis identified several histone deacetylase (HDAC) proteins, which were found at significantly higher levels in the serum of recurrent breast cancer patients: HDAC9 (C-term) (P = 0.0035), HDAC5 (C-term) (P = 0.013), small ubiquitin-like modifier 1 (N-term) (P = 0.017), embryonic stem cell-expressed Ras (inter) (P = 0.018), and HDAC7 (C-term) (P = 0.020). Chronic inflammation plays a critical role in the development of the breast cancer recurrence, and we identified several proinflammatory cytokines that were present at elevated levels only in recurrent breast cancer patient serum. CONCLUSIONS Our data indicated that the epigenetic regulation of inflammatory processes plays a critical role in breast cancer recurrence. The identified proteins could lay the groundwork for the development of a serum-based breast cancer recurrence assay.
Collapse
Affiliation(s)
- Alakesh Bera
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| | - Eric Russ
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| | - Muthu Saravanan Manoharan
- Department of Medicine/Infectious Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229
| | - Ofer Eidelman
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| | - Michael Eklund
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| | - Matthew Hueman
- Murtha Cancer Center, Uniformed Services University/Walter Reed National Military Medical Center, 4494 North Palmer Road, Bethesda, MD 20889
| | - Harvey B Pollard
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| | - Hai Hu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, 620 7th Street, Windber, PA 15963
| | - Craig D Shriver
- Murtha Cancer Center, Uniformed Services University/Walter Reed National Military Medical Center, 4494 North Palmer Road, Bethesda, MD 20889
| | - Meera Srivastava
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| |
Collapse
|
25
|
Lehman HL, Kidacki M, Stairs DB. Twist2 is NFkB-responsive when p120-catenin is inactivated and EGFR is overexpressed in esophageal keratinocytes. Sci Rep 2020; 10:18829. [PMID: 33139779 PMCID: PMC7608670 DOI: 10.1038/s41598-020-75866-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is among the most aggressive and fatal cancer types. ESCC classically progresses rapidly and frequently causes mortality in four out of five patients within two years of diagnosis. Yet, little is known about the mechanisms that make ESCC so aggressive. In a previous study we demonstrated that p120-catenin (p120ctn) and EGFR, two genes associated with poor prognosis in ESCC, work together to cause invasion. Specifically, inactivation of p120ctn combined with overexpression of EGFR induces a signaling cascade that leads to hyperactivation of NFkB and a resultant aggressive cell type. The purpose of this present study was to identify targets that are responsive to NFkB when p120ctn and EGFR are modified. Using human esophageal keratinocytes, we have identified Twist2 as an NFkB-responsive gene. Interestingly, we found that when NFkB is hyperactivated in cells with EGFR overexpression and p120ctn inactivation, Twist2 is significantly upregulated. Inhibition of NFkB activity results in nearly complete loss of Twist2 expression, suggesting that this potential EMT-inducing gene, is a responsive target of NFkB. There exists a paucity of research on Twist2 in any cancer type; as such, these findings are important in ESCC as well as in other cancer types.
Collapse
Affiliation(s)
- Heather L Lehman
- Department of Biology, Millersville University, Millersville, PA, 17551, USA
| | - Michal Kidacki
- Department of Internal Medicine, Mercy Catholic Medical Center, Darby, PA, 19023, USA
| | - Douglas B Stairs
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Dr., Mail Code H083, Hershey, PA, 17033, USA.
| |
Collapse
|
26
|
De Cicco P, Busà R, Ercolano G, Formisano C, Allegra M, Taglialatela-Scafati O, Ianaro A. Inhibitory effects of cynaropicrin on human melanoma progression by targeting MAPK, NF-κB, and Nrf-2 signaling pathways in vitro. Phytother Res 2020; 35:1432-1442. [PMID: 33058354 DOI: 10.1002/ptr.6906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 01/02/2023]
Abstract
Malignant melanoma is the deadliest skin cancer, due to its propensity to metastasize. MAPKs and NF-κB pathways are constitutively activated in melanoma and promote cell proliferation, cell invasion, metastasis formation, and resistance to therapeutic regimens. Thus, they represent potential targets for melanoma prevention and treatment. Phytochemicals are gaining considerable attention for the management of melanoma because of their several cellular and molecular targets. A screening of a small library of sesquiterpenes lactones selected cynaropicrin, isolated from the aerial parts of Centaurea drabifolia subsp. detonsa, for its potential anticancer effect against melanoma cells. Treatment of human melanoma cells A375 with cynaropicrin resulted in inhibition of cell proliferation and induction of caspase-3-dependent apoptosis. Furthermore, cynaropicrin reduced several cellular malignant features such migration, invasion, and colonies formation through the inhibition of ERK1/2 and NF-κB activity. Cynaropicrin was able to reduce intracellular reactive oxygen species generation, which are involved in all the stages of carcinogenesis. Indeed, cynaropicrin increased the expression of several antioxidant genes, such as glutamate-cysteine ligase and heme oxygenase-1, by promoting the activation of the transcription factor Nrf-2. In conclusion, our results individuate cynaropicrin as a potential adjuvant chemotherapeutic agent for melanoma by targeting several protumorigenic signaling pathways.
Collapse
Affiliation(s)
- Paola De Cicco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Rosalia Busà
- Department of Biological, Chemical and Pharmaceutical Science and Technologies (STEBICEF), University of Palermo, Palermo, Italy.,Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Carmen Formisano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Mario Allegra
- Department of Biological, Chemical and Pharmaceutical Science and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | | | - Angela Ianaro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
27
|
Differential expression of p52 and RelB proteins in the metastatic and non-metastatic groups of uveal melanoma with patient outcome. J Cancer Res Clin Oncol 2019; 145:2969-2982. [PMID: 31612319 DOI: 10.1007/s00432-019-03052-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Non-canonical NFκB (NC-NFκB) pathway plays an influential role in metastasis, which promotes cancer proliferation and progression. The aim of the study was to examine the expression of NC-NFκB proteins and their correlation with clinicopathological factors associated with metastatic cases of uveal melanoma (UM) and with the patient outcome. METHOD Expression of NC-NFκB proteins (p52, RelB, and co-expression of p52/RelB) was evaluated in 75 formalin-fixed cases of uveal melanoma by immunohistochemistry. Validation of nuclear immunoreactivity was done by western blotting. Transcriptional status of NC-NFκB genes was assessed in 60 fresh tumor tissues by quantitative real-time PCR. Co-immunoprecipitation was performed to determine the presence of native p52/RelB heterodimer in UM. Prognostic relevance was determined using Cox proportional hazard and Kaplan-Meier methods. RESULTS Immunohistochemical expression of p52, RelB, and their co-expression was observed in 81%, 68.7%, 56.2% of metastatic cases, respectively, while their expression was seen only in 38%, 33% and 30% of non-metastatic cases. Loss of BAP-1 was correlated with expression of p52 and RelB proteins. Co-immunoprecipitation assay confirmed the putative interaction of p52 with RelB protein in metastatic cases of uveal melanoma. Co-expression of p52/RelB and expression of p52 protein was significantly correlated with decreased metastasis-free survival (MFS) (p = 0.004; p = 0.002) and overall survival (OS) (p = 0.004; p = 0.032), while the RelB expression only correlated with reduced MFS (p = 0.003). CONCLUSION Our data showed that non-canonical NFκB proteins were significantly higher in metastatic cases and associated with poor outcome of the patients. Furthermore, the p52 protein could be used as a potential therapeutic biomarker for metastatic cases in uveal melanoma.
Collapse
|
28
|
An Autocrine Wnt5a Loop Promotes NF-κB Pathway Activation and Cytokine/Chemokine Secretion in Melanoma. Cells 2019; 8:cells8091060. [PMID: 31510045 PMCID: PMC6770184 DOI: 10.3390/cells8091060] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022] Open
Abstract
Wnt5a signaling has been implicated in the progression of cancer by regulating multiple cellular processes, largely migration and invasion, epithelial-mesenchymal transition (EMT), and metastasis. Since Wnt5a signaling has also been involved in inflammatory processes in infectious and inflammatory diseases, we addressed the role of Wnt5a in regulating NF-κB, a pivotal mediator of inflammatory responses, in the context of cancer. The treatment of melanoma cells with Wnt5a induced phosphorylation of the NF-κB subunit p65 as well as IKK phosphorylation and IκB degradation. By using cDNA overexpression, RNA interference, and dominant negative mutants we determined that ROR1, Dvl2, and Akt (from the Wnt5a pathway) and TRAF2 and RIP (from the NF-κB pathway) are required for the Wnt5a/NF-κB crosstalk. Wnt5a also induced p65 nuclear translocation and increased NF-κB activity as evidenced by reporter assays and a NF-κB-specific upregulation of RelB, Bcl-2, and Cyclin D1. Further, stimulation of melanoma cells with Wnt5a increased the secretion of cytokines and chemokines, including IL-6, IL-8, IL-11, and IL-6 soluble receptor, MCP-1, and TNF soluble receptor I. The inhibition of endogenous Wnt5a demonstrated that an autocrine Wnt5a loop is a major regulator of the NF-κB pathway in melanoma. Taken together, these results indicate that Wnt5a activates the NF-κB pathway and has an immunomodulatory effect on melanoma through the secretion of cytokines and chemokines.
Collapse
|
29
|
Souri Z, Wierenga APA, van Weeghel C, van der Velden PA, Kroes WGM, Luyten GPM, van der Burg SH, Jochemsen AG, Jager MJ. Loss of BAP1 Is Associated with Upregulation of the NFkB Pathway and Increased HLA Class I Expression in Uveal Melanoma. Cancers (Basel) 2019; 11:cancers11081102. [PMID: 31382450 PMCID: PMC6721427 DOI: 10.3390/cancers11081102] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022] Open
Abstract
One of the characteristics of prognostically infaust uveal melanoma (UM) is an inflammatory phenotype, which is characterized by high numbers of infiltrating T cells and macrophages, and a high HLA Class I expression. We wondered how this inflammation is regulated, and considered that one of the most important regulators of inflammation, the NFkB pathway, might play a role. We analyzed 64 UM samples for expression of HLA Class I, its regulators, and of members of the NFkB transcription family, using an Illumina HT12V4 array. HLA Class I expression and infiltrating immune cells were also determined by immunohistochemical staining. Information was obtained regarding chromosome status by Affymetrix Nsp array. Our analysis shows that expression of NFkB1, NFkB2 and RELB positively correlates with the level of HLA Class I expression and the number of infiltrating T cells and macrophages, while SPP1 and PPARγ are negatively correlated. Increased levels of NFkB1 and NFkB2 and decreased levels of SPP1 and PPARγ are seen in Monosomy 3/BAP1-negative tumors. This is also the case in non-inflammatory UM, indicating that our observation not only involves infiltrating leukocytes but the tumor cells themselves. We report that the NFkB pathway is associated with inflammation and HLA Class I expression in UM, and is upregulated when BAP1 expression is lost.
Collapse
Affiliation(s)
- Zahra Souri
- Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Annemijn P A Wierenga
- Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Christiaan van Weeghel
- Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Pieter A van der Velden
- Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Wilma G M Kroes
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gregorius P M Luyten
- Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Department of Clinical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Aart G Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
30
|
Xie M, Zheng H, Madan-Lala R, Dai W, Gimbrone NT, Chen Z, Kinose F, Blackstone SA, Smalley KSM, Cress WD, Haura EB, Rix U, Beg AA. MEK Inhibition Modulates Cytokine Response to Mediate Therapeutic Efficacy in Lung Cancer. Cancer Res 2019; 79:5812-5825. [PMID: 31362929 DOI: 10.1158/0008-5472.can-19-0698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/19/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022]
Abstract
Activating mutations in BRAF, a key mediator of RAS signaling, are present in approximately 50% of melanoma patients. Pharmacologic inhibition of BRAF or the downstream MAP kinase MEK is highly effective in treating BRAF-mutant melanoma. In contrast, RAS pathway inhibitors have been less effective in treating epithelial malignancies, such as lung cancer. Here, we show that treatment of melanoma patients with BRAF and MEK inhibitors (MEKi) activated tumor NF-κB activity. MEKi potentiated the response to TNFα, a potent activator of NF-κB. In both melanoma and lung cancer cells, MEKi increased cell-surface expression of TNFα receptor 1 (TNFR1), which enhanced NF-κB activation and augmented expression of genes regulated by TNFα and IFNγ. Screening of 289 targeted agents for the ability to increase TNFα and IFNγ target gene expression demonstrated that this was a general activity of inhibitors of MEK and ERK kinases. Treatment with MEKi led to acquisition of a novel vulnerability to TNFα and IFNγ-induced apoptosis in lung cancer cells that were refractory to MEKi killing and augmented cell-cycle arrest. Abolishing the expression of TNFR1 on lung cancer cells impaired the antitumor efficacy of MEKi, whereas the administration of TNFα and IFNγ in MEKi-treated mice enhanced the antitumor response. Furthermore, immunotherapeutics known to induce expression of these cytokines synergized with MEKi in eradicating tumors. These findings define a novel cytokine response modulatory function of MEKi that can be therapeutically exploited. SIGNIFICANCE: Lung cancer cells are rendered sensitive to MEK inhibitors by TNFα and IFNγ, providing a strong mechanistic rationale for combining immunotherapeutics, such as checkpoint blockers, with MEK inhibitor therapy for lung cancer.See related commentary by Havel, p. 5699.
Collapse
Affiliation(s)
- Mengyu Xie
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida.,Cancer Biology PhD Program, University of South Florida, Tampa, Florida
| | - Hong Zheng
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
| | | | - Wenjie Dai
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
| | - Nicholas T Gimbrone
- Cancer Biology PhD Program, University of South Florida, Tampa, Florida.,Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Zhihua Chen
- Department of Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Fumi Kinose
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida
| | | | | | - W Douglas Cress
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida.,Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Eric B Haura
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Uwe Rix
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida.,Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida
| | - Amer A Beg
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida. .,Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
31
|
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Potes Y, Shabeeb D, Musa AE. Modulation of apoptosis by melatonin for improving cancer treatment efficiency: An updated review. Life Sci 2019; 228:228-241. [DOI: 10.1016/j.lfs.2019.05.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022]
|
32
|
Tam I, Dzierżęga-Lęcznar A, Stępień K. Differential expression of inflammatory cytokines and chemokines in lipopolysaccharide-stimulated melanocytes from lightly and darkly pigmented skin. Exp Dermatol 2019; 28:551-560. [PMID: 30801846 DOI: 10.1111/exd.13908] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/11/2019] [Indexed: 01/02/2023]
Abstract
Increasing evidence suggests that human epidermal melanocytes play an important role in the skin immune system; however, a role of their pigmentation in immune and inflammatory responses is poorly examined. In the study, the expression of Toll-like receptor 4 (TLR4) and inflammatory cytokines and chemokines by cultured normal melanocytes derived from lightly and darkly pigmented skin was investigated after cell stimulation with lipopolysaccharide (LPS). The basal TLR4 mRNA level in heavily pigmented cells was higher as compared to their lightly pigmented counterparts. Melanocyte exposure to LPS upregulated the expression of TLR4 mRNA and enhanced the DNA-binding activity of NF-κB p50 and p65. We found substantial differences in the LPS-stimulated expression of numerous genes encoding inflammatory cytokines and chemokines between the cells with various melanin contents. In lightly pigmented melanocytes, the most significantly upregulated genes were nicotinamide phosphoribosyltransferase (NAMPT/visfatin), the chemokines CCL2 and CCL20, and IL6, while the genes for CXCL12, IL-16 and the chemokine receptor CCR4 were the most significantly upregulated in heavily pigmented cells. Moreover, the lightly pigmented melanocytes secreted much more NAMPT, CCL2 and IL-6. The results of our study suggest modulatory effect of melanogenesis on the immune properties of normal epidermal melanocytes.
Collapse
Affiliation(s)
- Irena Tam
- Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Anna Dzierżęga-Lęcznar
- Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Krystyna Stępień
- Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia in Katowice, Sosnowiec, Poland
| |
Collapse
|
33
|
Soundararajan P, Kim JS. Anti-Carcinogenic Glucosinolates in Cruciferous Vegetables and Their Antagonistic Effects on Prevention of Cancers. Molecules 2018; 23:E2983. [PMID: 30445746 PMCID: PMC6278308 DOI: 10.3390/molecules23112983] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022] Open
Abstract
Glucosinolates (GSL) are naturally occurring β-d-thioglucosides found across the cruciferous vegetables. Core structure formation and side-chain modifications lead to the synthesis of more than 200 types of GSLs in Brassicaceae. Isothiocyanates (ITCs) are chemoprotectives produced as the hydrolyzed product of GSLs by enzyme myrosinase. Benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC) and sulforaphane ([1-isothioyanato-4-(methyl-sulfinyl) butane], SFN) are potential ITCs with efficient therapeutic properties. Beneficial role of BITC, PEITC and SFN was widely studied against various cancers such as breast, brain, blood, bone, colon, gastric, liver, lung, oral, pancreatic, prostate and so forth. Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key transcription factor limits the tumor progression. Induction of ARE (antioxidant responsive element) and ROS (reactive oxygen species) mediated pathway by Nrf2 controls the activity of nuclear factor-kappaB (NF-κB). NF-κB has a double edged role in the immune system. NF-κB induced during inflammatory is essential for an acute immune process. Meanwhile, hyper activation of NF-κB transcription factors was witnessed in the tumor cells. Antagonistic activity of BITC, PEITC and SFN against cancer was related with the direct/indirect interaction with Nrf2 and NF-κB protein. All three ITCs able to disrupts Nrf2-Keap1 complex and translocate Nrf2 into the nucleus. BITC have the affinity to inhibit the NF-κB than SFN due to the presence of additional benzyl structure. This review will give the overview on chemo preventive of ITCs against several types of cancer cell lines. We have also discussed the molecular interaction(s) of the antagonistic effect of BITC, PEITC and SFN with Nrf2 and NF-κB to prevent cancer.
Collapse
Affiliation(s)
- Prabhakaran Soundararajan
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
| | - Jung Sun Kim
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
| |
Collapse
|
34
|
Colombo F, Zambrano S, Agresti A. NF-κB, the Importance of Being Dynamic: Role and Insights in Cancer. Biomedicines 2018; 6:biomedicines6020045. [PMID: 29673148 PMCID: PMC6027537 DOI: 10.3390/biomedicines6020045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
In this review, we aim at describing the results obtained in the past years on dynamics features defining NF-κB regulatory functions, as we believe that these developments might have a transformative effect on the way in which NF-κB involvement in cancer is studied. We will also describe technical aspects of the studies performed in this context, including the use of different cellular models, culture conditions, microscopy approaches and quantification of the imaging data, balancing their strengths and limitations and pointing out to common features and to some open questions. Our emphasis in the methodology will allow a critical overview of literature and will show how these cutting-edge approaches can contribute to shed light on the involvement of NF-κB deregulation in tumour onset and progression. We hypothesize that this “dynamic point of view” can be fruitfully applied to untangle the complex relationship between NF-κB and cancer and to find new targets to restrain cancer growth.
Collapse
Affiliation(s)
- Federica Colombo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy.
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy.
| | - Samuel Zambrano
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy.
- Vita-Salute San Raffaele University, 20132 Milan, Italy.
| | - Alessandra Agresti
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
35
|
Slominski AT, Brożyna AA, Skobowiat C, Zmijewski MA, Kim TK, Janjetovic Z, Oak AS, Jozwicki W, Jetten AM, Mason RS, Elmets C, Li W, Hoffman RM, Tuckey RC. On the role of classical and novel forms of vitamin D in melanoma progression and management. J Steroid Biochem Mol Biol 2018; 177:159-170. [PMID: 28676457 PMCID: PMC5748362 DOI: 10.1016/j.jsbmb.2017.06.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 12/31/2022]
Abstract
Melanoma represents a significant clinical problem affecting a large segment of the population with a relatively high incidence and mortality rate. Ultraviolet radiation (UVR) is an important etiological factor in malignant transformation of melanocytes and melanoma development. UVB, while being a full carcinogen in melanomagenesis, is also necessary for the cutaneous production of vitamin D3 (D3). Calcitriol (1,25(OH)2D3) and novel CYP11A1-derived hydroxyderivatives of D3 show anti-melanoma activities and protective properties against damage induced by UVB. The former activities include inhibitory effects on proliferation, plating efficiency and anchorage-independent growth of cultured human and rodent melanomas in vitro, as well as the in vivo inhibition of tumor growth by 20(OH)D3 after injection of human melanoma cells into immunodeficient mice. The literature indicates that low levels of 25(OH)D3 are associated with more advanced melanomas and reduced patient survivals, while single nucleotide polymorphisms of the vitamin D receptor or the D3 binding protein gene affect development or progression of melanoma, or disease outcome. An inverse correlation of VDR and CYP27B1 expression with melanoma progression has been found, with low or undetectable levels of these proteins being associated with poor disease outcomes. Unexpectedly, increased expression of CYP24A1 was associated with better melanoma prognosis. In addition, decreased expression of retinoic acid orphan receptors α and γ, which can also bind vitamin D3 hydroxyderivatives, showed positive association with melanoma progression and shorter disease-free and overall survival. Thus, inadequate levels of biologically active forms of D3 and disturbances in expression of the target receptors, or D3 activating or inactivating enzymes, can affect melanomagenesis and disease progression. We therefore propose that inclusion of vitamin D into melanoma management should be beneficial for patients, at least as an adjuvant approach. The presence of multiple hydroxyderivatives of D3 in skin that show anti-melanoma activity in experimental models and which may act on alternative receptors, will be a future consideration when planning which forms of vitamin D to use for melanoma therapy.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, Birmingham, AL, 35294, USA; Comprehensive Cancer Center, Cancer Chemoprevention Program, Birmingham, AL, 35294, USA; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; VA Medical Center, Birmingham, AL, 35294, USA; Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland.
| | - Anna A Brożyna
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland; Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | | | | | - Tae-Kang Kim
- Department of Dermatology, Birmingham, AL, 35294, USA
| | | | - Allen S Oak
- Department of Dermatology, Birmingham, AL, 35294, USA
| | - Wojciech Jozwicki
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland; Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Anton M Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health,Research Triangle Park, NC 27709, United States
| | - Rebecca S Mason
- Bosch Institute & School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Craig Elmets
- Department of Dermatology, Birmingham, AL, 35294, USA
| | - We Li
- Department of Pharmaceutical Sciences, University of Tennessee HSC, Memphis, TN 38163, USA
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
36
|
Zhang J, Lei Z, Huang Z, Zhang X, Zhou Y, Luo Z, Zeng W, Su J, Peng C, Chen X. Epigallocatechin-3-gallate(EGCG) suppresses melanoma cell growth and metastasis by targeting TRAF6 activity. Oncotarget 2018; 7:79557-79571. [PMID: 27791197 PMCID: PMC5346735 DOI: 10.18632/oncotarget.12836] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/07/2016] [Indexed: 11/30/2022] Open
Abstract
TRAF6 (TNF Receptor-Associated Factor 6) is an E3 ubiquitin ligase that contains a Ring domain, induces K63-linked polyubiquitination, and plays a critical role in signaling transduction. Our previous results demonstrated that TRAF6 is overexpressed in melanoma and that TRAF6 knockdown dramatically attenuates tumor cell growth and metastasis. In this study, we found that EGCG can directly bind to TRAF6, and a computational model of the interaction between EGCG and TRAF6 revealed that EGCG probably interacts with TRAF6 at the residues of Gln54, Gly55, Asp57 ILe72, Cys73 and Lys96. Among these amino acids, mutation of Gln54, Asp57, ILe72 in TRAF6 could destroy EGCG bound to TRAF6, furthermore, our results demonstrated that EGCG significantly attenuates interaction between TRAF6 and UBC13(E2) and suppresses TRAF6 E3 ubiquitin ligase activity in vivo and in vitro. Additionally, the phosphorylation of IκBα, p-TAK1 expression are decreased and the nuclear translocation of p65 and p50 is blocked by treatment with EGCG, leading to inactivation of the NF-κB pathway. Moreover, EGCG significantly inhibits cell growth as well as the migration and invasion of melanoma cells. Taken together, these findings show that EGCG is a novel E3 ubiquitin ligase inhibitor that could be used to target TRAF6 for chemotherapy or the prevention of melanoma.
Collapse
Affiliation(s)
- Jianglin Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhou Lei
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zunnan Huang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China
| | - Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Youyou Zhou
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhongling Luo
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiqi Zeng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Su
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
37
|
NFkB hyperactivation causes invasion of esophageal squamous cell carcinoma with EGFR overexpression and p120-catenin down-regulation. Oncotarget 2018. [PMID: 29541406 PMCID: PMC5834278 DOI: 10.18632/oncotarget.24358] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Four out of five patients diagnosed with esophageal squamous cell carcinoma (ESCC) will die within five years. This is primarily a result of the aggressive invasive potential of the disease. Our research is focused on the interplay between tumor suppressors and oncogenes in the invasive process. Specifically, EGFR and p120-catenin (p120ctn) are commonly dysregulated genes that are indicative of poor prognosis in ESCC. In a previous study we demonstrated that in our 3D organotypic culture model, only when EGFR overexpression is combined with p120ctn inactivation do the cells transform and invade – as opposed to either event alone. The purpose of this present study was to identify the components of the molecular pathways downstream of p120ctn and EGFR that lead to invasion. Using both human esophageal keratinocytes and human ESCC cells, we have identified NFkB as a central regulator of the invasive process downstream of p120ctn down-regulation and EGFR overexpression. Interestingly, we found that NFkB is hyperactivated in cells with EGFR overexpression and p120ctn inactivation than with either EGFR or p120ctn alone. Inhibition of this NFkB hyperactivation results in complete loss of invasion, suggesting that NFkB signaling is necessary for invasion in this aggressive cell type. Furthermore, we have identified RhoA and Rho-kinase as upstream regulators of NFkB in this process. We believe the cooperation of p120ctn down-regulation and EGFR overexpression is not only important in the aggressive mechanisms of ESCC but could be broadly applicable to many other cancer types in which p120ctn and EGFR are involved.
Collapse
|
38
|
Brown RAM, Richardson KL, Kalinowski FC, Epis MR, Horsham JL, Kabir TD, De Pinho MH, Beveridge DJ, Stuart LM, Wintle LC, Leedman PJ. Evaluation of MicroRNA Delivery In Vivo. Methods Mol Biol 2018; 1699:155-178. [PMID: 29086376 DOI: 10.1007/978-1-4939-7435-1_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are a family of short noncoding RNA molecules that fine-tune expression of mRNAs. Often their altered expression is associated with a number of diseases, including cancer. Given that miRNAs target multiple genes and "difficult to drug" oncogenes, they present attractive candidates to manipulate as an anti-cancer strategy. MicroRNA-7 (miR-7) is a tumor suppressor miRNA that has been shown to target oncogenes overexpressed in cancers, such as the epidermal growth factor receptor (EGFR) and the nuclear factor-κ B subunit, RelA. Here, we describe methods for evaluating systemic delivery of miR-7 using a lipid nanoparticle formulation in an animal model. The microRNA is delivered three times, over 1 week and tissues collected 24 h after the last injection. RNA and protein are extracted from snap frozen tissues and processed to detect miRNA distribution and subsequent assessment of downstream targets and signaling mediators, respectively. Importantly, variability in efficiency of miRNA delivery will be observed between organs of the same animal and also between animals. Additionally, delivering the microRNA to organs other than the liver, particularly the brain, remains challenging. Furthermore, large variation in miRNA targets is seen both within tissues and across tissues depending on the lysis buffer used for protein extraction. Therefore, analyzing protein expression is dependent upon the method used for isolation and requires optimization for each individual application. Together, these methods will provide a foundation for those planning on assessing the efficacy of delivery of a miRNA in vivo.
Collapse
Affiliation(s)
- Rikki A M Brown
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, 6009, Australia
| | - Kirsty L Richardson
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, 6009, Australia
| | - Felicity C Kalinowski
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, 6009, Australia
| | - Michael R Epis
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, 6009, Australia
| | - Jessica L Horsham
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, 6009, Australia
| | - Tasnuva D Kabir
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, 6009, Australia
| | - Marisa H De Pinho
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, 6009, Australia
| | - Dianne J Beveridge
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, 6009, Australia
| | - Lisa M Stuart
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, 6009, Australia
| | - Larissa C Wintle
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, 6009, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, 6009, Australia. .,School of Medicine and Pharmacology, The University of Western Australia, Nedlands, WA, 6009, Australia.
| |
Collapse
|
39
|
Giles KM, Brown RAM, Ganda C, Podgorny MJ, Candy PA, Wintle LC, Richardson KL, Kalinowski FC, Stuart LM, Epis MR, Haass NK, Herlyn M, Leedman PJ. microRNA-7-5p inhibits melanoma cell proliferation and metastasis by suppressing RelA/NF-κB. Oncotarget 2017; 7:31663-80. [PMID: 27203220 PMCID: PMC5077967 DOI: 10.18632/oncotarget.9421] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022] Open
Abstract
microRNA-7-5p (miR-7-5p) is a tumor suppressor in multiple cancer types and inhibits growth and invasion by suppressing expression and activity of the epidermal growth factor receptor (EGFR) signaling pathway. While melanoma is not typically EGFR-driven, expression of miR-7-5p is reduced in metastatic tumors compared to primary melanoma. Here, we investigated the biological and clinical significance of miR-7-5p in melanoma. We found that augmenting miR-7-5p expression in vitro markedly reduced tumor cell viability, colony formation and induced cell cycle arrest. Furthermore, ectopic expression of miR-7-5p reduced migration and invasion of melanoma cells in vitro and reduced metastasis in vivo. We used cDNA microarray analysis to identify a subset of putative miR-7-5p target genes associated with melanoma and metastasis. Of these, we confirmed nuclear factor kappa B (NF-κB) subunit RelA, as a novel direct target of miR-7-5p in melanoma cells, such that miR-7-5p suppresses NF-κB activity to decrease expression of canonical NF-κB target genes, including IL-1β, IL-6 and IL-8. Importantly, the effects of miR-7-5p on melanoma cell growth, cell cycle, migration and invasion were recapitulated by RelA knockdown. Finally, analysis of gene array datasets from multiple melanoma patient cohorts revealed an association between elevated RelA expression and poor survival, further emphasizing the clinical significance of RelA and its downstream signaling effectors. Taken together, our data show that miR-7-5p is a potent inhibitor of melanoma growth and metastasis, in part through its inactivation of RelA/NF-κB signaling. Furthermore, miR-7-5p replacement therapy could have a role in the treatment of this disease.
Collapse
Affiliation(s)
- Keith M Giles
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Nedlands, WA, Australia.,Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, United States of America
| | - Rikki A M Brown
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Nedlands, WA, Australia
| | - Clarissa Ganda
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Nedlands, WA, Australia
| | - Melissa J Podgorny
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Nedlands, WA, Australia
| | - Patrick A Candy
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Nedlands, WA, Australia
| | - Larissa C Wintle
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Nedlands, WA, Australia
| | - Kirsty L Richardson
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Nedlands, WA, Australia
| | - Felicity C Kalinowski
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Nedlands, WA, Australia
| | - Lisa M Stuart
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Nedlands, WA, Australia
| | - Michael R Epis
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Nedlands, WA, Australia
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, United States of America
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Nedlands, WA, Australia.,School of Medicine and Pharmacology, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
40
|
Georgescu SR, Sârbu MI, Matei C, Ilie MA, Caruntu C, Constantin C, Neagu M, Tampa M. Capsaicin: Friend or Foe in Skin Cancer and Other Related Malignancies? Nutrients 2017; 9:E1365. [PMID: 29258175 PMCID: PMC5748815 DOI: 10.3390/nu9121365] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023] Open
Abstract
Capsaicin is the main pungent in chili peppers, one of the most commonly used spices in the world; its analgesic and anti-inflammatory properties have been proven in various cultures for centuries. It is a lipophilic substance belonging to the class of vanilloids and an agonist of the transient receptor potential vanilloid 1 receptor. Taking into consideration the complex neuro-immune impact of capsaicin and the potential link between inflammation and carcinogenesis, the effect of capsaicin on muco-cutaneous cancer has aroused a growing interest. The aim of this review is to look over the most recent data regarding the connection between capsaicin and muco-cutaneous cancers, with emphasis on melanoma and muco-cutaneous squamous cell carcinoma.
Collapse
Affiliation(s)
- Simona-Roxana Georgescu
- Department of Dermatology, Carol DavilaUniversity of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Maria-Isabela Sârbu
- Department of Dermatology, Carol DavilaUniversity of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Clara Matei
- Department of Dermatology, Carol DavilaUniversity of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Mihaela Adriana Ilie
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania.
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania.
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania.
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania.
- Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania.
| | - Mircea Tampa
- Department of Dermatology, Carol DavilaUniversity of Medicine and Pharmacy, 020021 Bucharest, Romania.
| |
Collapse
|
41
|
Janostiak R, Rauniyar N, Lam TT, Ou J, Zhu LJ, Green MR, Wajapeyee N. MELK Promotes Melanoma Growth by Stimulating the NF-κB Pathway. Cell Rep 2017; 21:2829-2841. [PMID: 29212029 PMCID: PMC5726781 DOI: 10.1016/j.celrep.2017.11.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/25/2017] [Accepted: 11/09/2017] [Indexed: 01/22/2023] Open
Abstract
Melanoma accounts for more than 80% of skin cancer-related deaths, and current therapies provide only short-term benefit to patients. Here, we show in melanoma cells that maternal embryonic leucine zipper kinase (MELK) is transcriptionally upregulated by the MAPK pathway via transcription factor E2F1. MELK knockdown or pharmacological inhibition blocked melanoma growth and enhanced the effectiveness of BRAFV600E inhibitor against melanoma cells. To identify mediators of MELK function, we performed stable isotope labeling with amino acids in cell culture (SILAC) and identified 469 proteins that had downregulated phosphorylation after MELK inhibition. Of these proteins, 139 were previously reported as substrates of BRAF or MEK, demonstrating that MELK is an important downstream mediator of the MAPK pathway. Furthermore, we show that MELK promotes melanoma growth by activating NF-κB pathway activity via Sequestosome 1 (SQSTM1/p62). Altogether, these results underpin an important role for MELK in melanoma growth downstream of the MAPK pathway.
Collapse
Affiliation(s)
- Radoslav Janostiak
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Navin Rauniyar
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06510, USA; MS and Proteomics Resource, W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT 06510, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06510, USA; MS and Proteomics Resource, W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lihua J Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA
| | - Narendra Wajapeyee
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
42
|
Wang Y, Zhang G, Jin J, Degan S, Tameze Y, Zhang JY. MALT1 promotes melanoma progression through JNK/c-Jun signaling. Oncogenesis 2017; 6:e365. [PMID: 28759024 PMCID: PMC5541718 DOI: 10.1038/oncsis.2017.68] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/18/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
Mucosa-associated lymphoma antigen 1 (MALT1) is a lymphoma oncogene that regulates signal transduction as a paracaspase and an adaptor protein. Yet, the role of MALT1 in other solid cancers such as melanoma is not well-understood. Here, we demonstrate that MALT1 is overexpressed in malignant melanoma cells, and predicts a poor disease-free survival. MALT1 inhibition via shRNA-mediated gene silencing or pharmacologically with MI-2 compound markedly reduced cell growth and migration of A2058 and A375 melanoma cell lines in vitro. Subcutaneous tumor growth analysis revealed that MALT1 gene silencing significantly reduced tumor growth and metastasis to the lung. Consistently, the subcutaneous tumors with MALT1 loss had increased cell apoptosis and decreased proliferation. In addition, these tumors showed signs of mesenchymal–epithelial transition as indicated by the upregulation of E-cadherin and downregulation of N-cadherin and β1-intergrin. Further molecular analysis revealed that MALT1 is required for c-Jun and nuclear factor-κB (NF-κB) activation by tumor necrosis factor-α. Forced expression of the c-Jun upstream activator MKK7 reversed the cell growth and migration defects caused by MALT1 loss. In contrast, NF-κB activation via expression of p65ER, a fusion protein containing NF-κB p65 and the tamoxifen-responsive mutant estrogen receptor, induced minimal effects on cell proliferation, but diminished cell death induced by MALT1 loss and TRAIL treatment. Together, these findings demonstrate that MALT1 promotes melanoma cell proliferation and motility through JNK/c-Jun, and enhances melanoma cell survival through NF-κB, underscoring MALT1 as a potential therapeutic target and biomarker for malignant melanoma.
Collapse
Affiliation(s)
- Y Wang
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA.,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - G Zhang
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA.,Department of Dermatology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - J Jin
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - S Degan
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA.,Center for Molecular and Biomolecular Imaging, Duke University, Durham, NC, USA
| | - Y Tameze
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - J Y Zhang
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
43
|
Ma J, Guo W, Li C. Ubiquitination in melanoma pathogenesis and treatment. Cancer Med 2017; 6:1362-1377. [PMID: 28544818 PMCID: PMC5463089 DOI: 10.1002/cam4.1069] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/13/2022] Open
Abstract
Melanoma is one of the most aggressive skin cancers with fiercely increasing incidence and mortality. Since the progressive understanding of the mutational landscape and immunologic pathogenic factors in melanoma, the targeted therapy and immunotherapy have been recently established and gained unprecedented improvements for melanoma treatment. However, the prognosis of melanoma patients remains unoptimistic mainly due to the resistance and nonresponse to current available drugs. Ubiquitination is a posttranslational modification which plays crucial roles in diverse cellular biological activities and participates in the pathogenesis of various cancers, including melanoma. Through the regulation of multiple tumor promoters and suppressors, ubiquitination is emerging as the key contributor and therefore a potential therapeutic target for melanoma. Herein, we summarize the current understanding of ubiquitination in melanoma, from mechanistic insights to clinical progress, and discuss the prospect of ubiquitination modification in melanoma treatment.
Collapse
Affiliation(s)
- Jinyuan Ma
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weinan Guo
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
44
|
D'Ignazio L, Batie M, Rocha S. Hypoxia and Inflammation in Cancer, Focus on HIF and NF-κB. Biomedicines 2017; 5:E21. [PMID: 28536364 PMCID: PMC5489807 DOI: 10.3390/biomedicines5020021] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer is often characterised by the presence of hypoxia and inflammation. Paramount to the mechanisms controlling cellular responses under such stress stimuli, are the transcription factor families of Hypoxia Inducible Factor (HIF) and Nuclear Factor of κ-light-chain-enhancer of activated B cells (NF-κB). Although, a detailed understating of how these transcription factors respond to their cognate stimulus is well established, it is now appreciated that HIF and NF-κB undergo extensive crosstalk, in particular in pathological situations such as cancer. Here, we focus on the current knowledge on how HIF is activated by inflammation and how NF-κB is modulated by hypoxia. We summarise the evidence for the possible mechanism behind this activation and how HIF and NF-κB function impacts cancer, focusing on colorectal, breast and lung cancer. We discuss possible new points of therapeutic intervention aiming to harness the current understanding of the HIF-NF-κB crosstalk.
Collapse
Affiliation(s)
- Laura D'Ignazio
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD15EH, UK.
| | - Michael Batie
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD15EH, UK.
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD15EH, UK.
| |
Collapse
|
45
|
Momtaz S, Niaz K, Maqbool F, Abdollahi M, Rastrelli L, Nabavi SM. STAT3 targeting by polyphenols: Novel therapeutic strategy for melanoma. Biofactors 2017; 43:347-370. [PMID: 27896891 DOI: 10.1002/biof.1345] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/17/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
Melanoma or malignant melanocytes appear with the low incidence rate, but very high mortality rate worldwide. Epidemiological studies suggest that polyphenolic compounds contribute for prevention or treatment of several cancers particularly melanoma. Such findings motivate to dig out novel therapeutic strategies against melanoma, including research toward the development of new chemotherapeutic and biologic agents that can target the tumor cells by different mechanisms. Recently, it has been found that signal transducer and activator of transcription 3 (STAT3) is activated in many cancer cases surprisingly. Different evidences supply the aspect that STAT3 activation plays a vital role in the metastasis, including proliferation of cells, survival, invasion, migration, and angiogenesis. This significant feature plays a vital role in various cellular processes, such as cell proliferation and survival. Here, we reviewed the mechanisms of the STAT3 pathway regulation and their role in promoting melanoma. Also, we have evaluated the emerging data on polyphenols (PPs) specifically their contribution in melanoma therapies with an emphasis on their regulatory/inhibitory actions in relation to STAT3 pathway and current progress in the development of phytochemical therapeutic techniques. An understanding of targeting STAT3 by PPs brings an opportunity to melanoma therapy. © 2016 BioFactors, 43(3):347-370, 2017.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Kamal Niaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Faheem Maqbool
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, Fisciano, SA, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Lojk J, Prpar Mihevc S, Bregar VB, Pavlin M, Rogelj B. The Effect of Different Types of Nanoparticles on FUS and TDP-43 Solubility and Subcellular Localization. Neurotox Res 2017; 32:325-339. [PMID: 28444573 DOI: 10.1007/s12640-017-9734-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 11/25/2022]
Abstract
Increased environmental pollution has been suggested as one of the possible causes for increased incidence of neurodegenerative and developmental disorders. Through the environmental pollution, everyday consumer products and nanomedical applications, we are also exposed to various nanoparticles (NPs). Specific types of NPs have been shown to be able to cause neural damage in vivo through processes such as disruption of the blood-brain barrier, induction of neuroinflammation, increase in oxidative stress and protein aggregation. In this study, we analysed the influence of PEI-coated magnetic NPs designed for biotechnological applications and industrial SiO2, TiO2 N and TiO2 P25 NPs on intracellular localization and solubility of fused in farcoma (FUS) and TAR-DNA binding protein 43 (TDP-43) that are important pathological hallmarks of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). SH-SY5Y neuroblastoma cells and B16 mouse melanoma cells were exposed to NPs for 24 h and analysed using confocal microscopy and Western blot. Exposure to 50 μg/ml TiO2 N and 4 μg/ml PEI NPs in SH-SY5Y cells caused cell toxicity-induced changes in expression in different biochemical/cellular fractions for both FUS and TDP-43 proteins. TiO2 N induced a drop in nuclear levels of TDP-43 and increase in cytoplasmic levels of FUS, while PEI NPs increased nuclear levels of FUS. Furthermore, TiO2 N and PEI induced a reduction of FUS and TDP-43 quantity in the less soluble urea fraction. No formation of stress granules was observed. These results demonstrate that TiO2 N and PEI NPs can affect the behaviour of FUS and TDP-43 proteins; however, the changes were relatively minor compared to pathological changes even for the high NP concentrations (50 μg/ml) used in this study.
Collapse
Affiliation(s)
- Jasna Lojk
- Biomedical Research Institute (BRIS), Puhova 10, 1000, Ljubljana, Slovenia.,Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia
| | - Sonja Prpar Mihevc
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Vladimir Boštjan Bregar
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia
| | - Mojca Pavlin
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia. .,Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| | - Boris Rogelj
- Biomedical Research Institute (BRIS), Puhova 10, 1000, Ljubljana, Slovenia. .,Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia. .,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia.
| |
Collapse
|
47
|
Iida Y, Ciechanover A, Marzese DM, Hata K, Bustos M, Ono S, Wang J, Salomon MP, Tran K, Lam S, Hsu S, Nelson N, Kravtsova-Ivantsiv Y, Mills GB, Davies MA, Hoon DSB. Epigenetic Regulation of KPC1 Ubiquitin Ligase Affects the NF-κB Pathway in Melanoma. Clin Cancer Res 2017; 23:4831-4842. [PMID: 28389511 DOI: 10.1158/1078-0432.ccr-17-0146] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/10/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
Abstract
Purpose: Abnormal activation of the NF-κB pathway induces a more aggressive phenotype of cutaneous melanoma. Understanding the mechanisms involved in melanoma NF-κB activation may identify novel targets for this pathway. KPC1, an E3 ubiquitin ligase, is a regulator of the NF-κB pathway. The objective of this study was to investigate the mechanisms regulating KPC1 expression and its clinical impact in melanoma.Experimental Design: The clinical impact of KPC1 expression and its epigenetic regulation were assessed in large cohorts of clinically well-annotated melanoma tissues (tissue microarrays; n = 137, JWCI cohort; n = 40) and The Cancer Genome Atlas database (TCGA cohort, n = 370). Using melanoma cell lines, we investigated the functional interactions between KPC1 and NF-κB, and the epigenetic regulations of KPC1, including DNA methylation and miRNA expression.Results: We verified that KPC1 suppresses melanoma proliferation by processing NF-κB1 p105 into p50, thereby modulating NF-κB target gene expression. Concordantly, KPC1 expression was downregulated in American Joint Committee on Cancer stage IV melanoma compared with early stages (stage I/II P = 0.013, stage III P = 0.004), and low KPC1 expression was significantly associated with poor overall survival in stage IV melanoma (n = 137; HR 1.810; P = 0.006). Furthermore, our data showed that high miR-155-5p expression, which is controlled by DNA methylation at its promoter region (TCGA; Pearson's r -0.455; P < 0.001), is significantly associated with KPC1 downregulation (JWCI; P = 0.028, TCGA; P = 0.003).Conclusions: This study revealed novel epigenetic regulation of KPC1 associated with NF-κB pathway activation, promoting metastatic melanoma progression. These findings suggest the potential utility of KPC1 and its epigenetic regulation as theranostic targets. Clin Cancer Res; 23(16); 4831-42. ©2017 AACR.
Collapse
Affiliation(s)
- Yuuki Iida
- Division of Molecular Oncology, Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Aaron Ciechanover
- The David and Janet Polak Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Bat-Galim, Haifa, Israel
| | - Diego M Marzese
- Division of Molecular Oncology, Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Keisuke Hata
- Division of Molecular Oncology, Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Matias Bustos
- Division of Molecular Oncology, Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Shigeshi Ono
- Division of Molecular Oncology, Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Jinhua Wang
- Division of Molecular Oncology, Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Matthew P Salomon
- Division of Molecular Oncology, Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Kevin Tran
- Division of Molecular Oncology, Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Stella Lam
- Division of Molecular Oncology, Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Sandy Hsu
- John Wayne Cancer Institute Genome Sequencing Center, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Nellie Nelson
- John Wayne Cancer Institute Genome Sequencing Center, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Yelena Kravtsova-Ivantsiv
- The David and Janet Polak Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Bat-Galim, Haifa, Israel
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A Davies
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dave S B Hoon
- Division of Molecular Oncology, Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California. .,John Wayne Cancer Institute Genome Sequencing Center, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| |
Collapse
|
48
|
Lojk J, Strojan K, Miš K, Bregar BV, Hafner Bratkovič I, Bizjak M, Pirkmajer S, Pavlin M. Cell stress response to two different types of polymer coated cobalt ferrite nanoparticles. Toxicol Lett 2017; 270:108-118. [DOI: 10.1016/j.toxlet.2017.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/09/2017] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
|
49
|
De Cicco P, Panza E, Armogida C, Ercolano G, Taglialatela-Scafati O, Shokoohinia Y, Camerlingo R, Pirozzi G, Calderone V, Cirino G, Ianaro A. The Hydrogen Sulfide Releasing Molecule Acetyl Deacylasadisulfide Inhibits Metastatic Melanoma. Front Pharmacol 2017; 8:65. [PMID: 28289382 PMCID: PMC5326790 DOI: 10.3389/fphar.2017.00065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/31/2017] [Indexed: 12/22/2022] Open
Abstract
Melanoma is the most common form of skin cancer. Given its high mortality, the interest in the search of preventive measures, such as dietary factors, is growing significantly. In this study we tested, in vitro and in vivo, the potential anti-cancer effect of the acetyl deacylasadisulfide (ADA), a vinyl disulfide compound, isolated and purified from asafoetida a foul-smelling oleo gum-resin of dietary and medicinal relevance. ADA markedly suppressed proliferation of human melanoma cell lines by inducing apoptosis. Moreover, treatment of melanoma cells with ADA reduced nuclear translocation and activation of NF-κB, decreased the expression of the anti-apoptotic proteins c-FLIP, XIAP, and Bcl-2 and inhibited the phosphorylation and activation of both AKT and ERK proteins, two of the most frequently deregulated pathways in melanoma. Finally, the results obtained in vitro were substantiated by the findings that ADA significantly and dose-dependently reduced lung metastatic foci formation in C57BL/6 mice. In conclusion, our findings suggest that ADA significantly inhibits melanoma progression in vivo and could represent an important lead compound for the development of new anti-metastatic agents.
Collapse
Affiliation(s)
- Paola De Cicco
- Department of Pharmacy, University of Naples Federico II Naples, Italy
| | - Elisabetta Panza
- Department of Pharmacy, University of Naples Federico II Naples, Italy
| | - Chiara Armogida
- Department of Pharmacy, University of Naples Federico II Naples, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, University of Naples Federico II Naples, Italy
| | | | - Yalda Shokoohinia
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Kermanshah University of Medical Sciences Kermanshah, Iran
| | - Rosa Camerlingo
- Department of Experimental Oncology, National Cancer Institute -IRCCS "G.Pascale" Foundation Naples, Italy
| | - Giuseppe Pirozzi
- Department of Experimental Oncology, National Cancer Institute -IRCCS "G.Pascale" Foundation Naples, Italy
| | | | - Giuseppe Cirino
- Department of Pharmacy, University of Naples Federico II Naples, Italy
| | - Angela Ianaro
- Department of Pharmacy, University of Naples Federico II Naples, Italy
| |
Collapse
|
50
|
Hao J, Li Z, Zhang C, Yu W, Tang Z, Li Y, Feng X, Gao Y, Liu Q, Huang W, Guo W, Deng W. Targeting NF-κB/AP-2β signaling to enhance antitumor activity of cisplatin by melatonin in hepatocellular carcinoma cells. Am J Cancer Res 2017; 7:13-27. [PMID: 28123844 PMCID: PMC5250677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/12/2016] [Indexed: 06/06/2023] Open
Abstract
Cisplatin is a common chemotherapeutic drug for cancer treatment, but its effect is limited because of its cytotoxicity and chemoresistance. The combinational use of cisplatin with some natural compounds has provided a potential option to improve its effect and lower its side effects in cancer treatment. Here, we investigated the role of melatonin in the regulation of cisplatin-mediated antitumor activity in hepatocellular carcinoma cells. The combined treatment of cisplatin with melatonin significantly inhibited cell proliferation and resulted in a corresponding decrease of the IC50 values of cisplatin in four hepatocellular carcinoma cell lines. Cotreatment with melatonin also increased the cisplatin-induced apoptosis in hepatocellular carcinoma cells compared with cisplatin treatment alone. Further mechanism studies showed that the combined treatment of melatonin and cisplatin enhanced the cleavage of caspase-3, caspase-9 and poly-(ADP-ribose) polymerase (PARP), decreased the expression of Bcl-2 and p-IKKα/β, suppressed the nuclear translocation of NF-κB p50/p65 proteins, and abrogated the binding of p65 to COX-2 promoter, thereby inhibiting COX-2 expression. Furthermore, melatonin was found to synergistically enhance cisplatin-mediated inhibition of AP-2β and hTERT expression. Overexpression of AP-2β reversely rescued this inhibition mediated by the combined treatment of these two drugs. Collectively, our results demonstrated that melatonin sensitizes the cisplatin-mediated growth suppression of cells via the inactivation of NF-κB/COX-2 and AP-2β/hTERT signaling in hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Jiaojiao Hao
- Institute of Cancer Stem Cell, Dalian Medical UniversityDalian, China
| | - Zhenglin Li
- Institute of Cancer Stem Cell, Dalian Medical UniversityDalian, China
| | - Changlin Zhang
- Sun Yat-sen University Cancer Centre; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer MedicineGuangzhou, China
| | - Wendan Yu
- Institute of Cancer Stem Cell, Dalian Medical UniversityDalian, China
| | - Zhipeng Tang
- Institute of Cancer Stem Cell, Dalian Medical UniversityDalian, China
| | - Yixin Li
- Sun Yat-sen University Cancer Centre; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer MedicineGuangzhou, China
| | - Xu Feng
- Institute of Cancer Stem Cell, Dalian Medical UniversityDalian, China
| | - Yue Gao
- Institute of Cancer Stem Cell, Dalian Medical UniversityDalian, China
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical UniversityDalian, China
- Sun Yat-sen University Cancer Centre; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer MedicineGuangzhou, China
| | - Wenlin Huang
- Sun Yat-sen University Cancer Centre; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer MedicineGuangzhou, China
- State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc.Guangzhou, China
| | - Wei Guo
- Institute of Cancer Stem Cell, Dalian Medical UniversityDalian, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Centre; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer MedicineGuangzhou, China
- State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc.Guangzhou, China
| |
Collapse
|