1
|
Alewel DI, Kodavanti UP. Neuroendocrine contribution to sex-related variations in adverse air pollution health effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:287-314. [PMID: 39075643 DOI: 10.1080/10937404.2024.2383637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Air pollution exposure is ranked as a leading environmental risk factor for not only cardiopulmonary diseases but also for systemic health ailments including diabetes, reproductive abnormalities, and neuropsychiatric disorders, likely mediated by central neural stress mechanisms. Current experimental evidence links many air pollution health outcomes with activation of neuroendocrine sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal (HPA) stress axes associated with resultant increases in adrenal-derived hormone levels acting as circulating mediators of multi-organ stress reactions. Epidemiological and experimental investigations also demonstrated sex-specific responses to air pollutant inhalation, which may be attributed to hormonal interactions within the stress and reproductive axes. Sex hormones (androgens and estrogens) interact with neuroendocrine functions to influence hypothalamic responses, subsequently augmenting stress-mediated metabolic and immune changes. These neurohormonal interactions may contribute to innate sex-specific responses to inhaled irritants, inducing differing individual susceptibility. The aim of this review was to: (1) examine neuroendocrine co-regulation of the HPA axis by gonadal hormones, (2) provide experimental evidence demonstrating sex-specific respiratory and systemic effects attributed to air pollutant inhalation exposure, and (3) postulate proposed mechanisms of stress and sex hormone interactions during air pollution-related stress.
Collapse
Affiliation(s)
- Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
2
|
Ashton A, Clark J, Fedo J, Sementilli A, Fragoso YD, McCaffery P. Retinoic Acid Signalling in the Pineal Gland Is Conserved across Mammalian Species and Its Transcriptional Activity Is Inhibited by Melatonin. Cells 2023; 12:286. [PMID: 36672220 PMCID: PMC9856906 DOI: 10.3390/cells12020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
The pineal gland is integral to the circadian timing system due to its role in nightly melatonin production. Retinoic acid (RA) is a potent regulator of gene transcription and has previously been found to exhibit diurnal changes in synthesis and signalling in the rat pineal gland. This study investigated the potential for the interaction of these two systems. PCR was used to study gene expression in mouse and human pineal glands, ex-vivo organotypic cultured rat pineal gland and cell lines. The mouse and human pineal glands were both found to express the necessary components required for RA signalling. RA influences the circadian clock in the brain, therefore the short-term effect of RA on clock gene expression was determined in ex vivo rat pineal glands but was not found to rapidly regulate Per1, Per2, Bmal1, or Cry1. The interaction between RA and melatonin was also investigated and, unexpectedly, melatonin was found to suppress the induction of gene transcription by RA. This study demonstrates that pineal expression of the RA signalling system is conserved across mammalian species. There is no short-term regulation of the circadian clock but an inhibitory effect of melatonin on RA transcriptional activity was demonstrated, suggesting that there may be functional cross-talk between these systems.
Collapse
Affiliation(s)
- Anna Ashton
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Jason Clark
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Julia Fedo
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Angelo Sementilli
- Department of Physiopathology, Universidade Metropolitana de Santos and Centro, Universitario Lusíada, Santos 11050-071, SP, Brazil
| | - Yara D. Fragoso
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Department of Post Graduate Studies, Universidade Metropolitana de Santos, Santos 11045-002, SP, Brazil
| | - Peter McCaffery
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
3
|
Cai L, Chen Q, Yao Z, Sun Q, Wu L, Ni Y. Glucocorticoid receptors involved in melatonin inhibiting cell apoptosis and NLRP3 inflammasome activation caused by bacterial toxin pyocyanin in colon. Free Radic Biol Med 2021; 162:478-489. [PMID: 33189867 DOI: 10.1016/j.freeradbiomed.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
The immunoinhibitory effect of glucocorticoid and immunoenhancing attributes of melatonin (MEL) are well known, however, the involvement of glucocorticoid receptor (GR) in melatonin modulation of bacterial toxins caused-inflammation has not been studied in colon. Pyocyanin (PCN), a toxin released by Pseudomonas aeruginosa, can destroy cells through generating superoxide products and inflammatory response. Here we report that PCN treatment elevated the generation of reactive oxygen species (ROS), which further lead to mitochondrial swelling and caspase cascades activation both in vivo and in vitro. However, MEL treatment alleviated the oxidative stress caused by PCN on cells through scavenging ROS and restoring the expression of antioxidant enzyme so that to effectively alleviate the apoptosis. Large amounts of ROS can activate the NLRP3 signaling pathway, so MEL inhibited PCN induced NLRP3 inflammasome activation and inflammatory cytokines (IL-1β, IL-8, and TNF-α) secretion. In order to further investigate the molecular mechanism, goblet cells were exposed to MEL and PCN in the presence of luzindole and RU486, inhibitors of MEL receptors and GR respectively. It was found that PCN significantly inhibited the expression level of GR, and MEL effectively alleviated the inhibition phenomenon. Moreover, we found that MEL mainly upregulated the expression of GR to achieve its anti-inflammatory and anti-apoptotic functions rather than through its own receptor (MT2) in colon goblet cells. Therefore, MEL can reverse the inhibitory effects of PCN on GR/p-GR expression to present its anti-oxidative and anti-apoptotic function.
Collapse
Affiliation(s)
- Liuping Cai
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Qu Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Zhihao Yao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Qinwei Sun
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Lei Wu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
4
|
Kong X, Gao R, Wang Z, Wang X, Fang Y, Gao J, Reiter RJ, Wang J. Melatonin: A Potential Therapeutic Option for Breast Cancer. Trends Endocrinol Metab 2020; 31:859-871. [PMID: 32893084 DOI: 10.1016/j.tem.2020.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/01/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Melatonin has significant inhibitory effects in numerous cancers, especially breast cancer. In estrogen receptor (ER)-positive human breast cancer, the oncostatic actions of melatonin are mainly achieved by suppressing ER mRNA expression and ER transcriptional activity via the MT1 receptor. Melatonin also regulates the transactivation of nuclear receptors, estrogen-metabolizing enzymes, and the expression of related genes. Furthermore, melatonin suppresses tumor aerobic glycolysis, critical cell-signaling pathways relevant to cell proliferation, survival, metastasis, and overcomes drug resistance. Studies in animal and human models indicate that disruption of the circadian nocturnal melatonin signal promotes the growth, metabolism, and signaling of human breast cancer, resulting in resistance to hormone therapy and chemotherapy, which may be reversed by melatonin.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ran Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jidong Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
The role of melatonin on miRNAs modulation in triple-negative breast cancer cells. PLoS One 2020; 15:e0228062. [PMID: 32012171 PMCID: PMC6996834 DOI: 10.1371/journal.pone.0228062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 01/07/2020] [Indexed: 11/19/2022] Open
Abstract
Melatonin, a hormone secreted by pineal gland, exerts antimetastatic effects by reducing tumor cell proliferation, migration and invasion. MicroRNAs (miRNAs) are small, non-coding RNAs that play a crucial role in regulation of gene expression and biological processes of the cells. Herein, we search for a link between the tumor/metastatic-suppressive actions of melatonin and miRNA expression in triple-negative breast cancer cells. We demonstrated that melatonin exerts its anti-tumor actions by reducing proliferation, migration and c-Myc expression of triple negative breast cancer cells. By using Taqman-based assays, we analyzed the expression levels of a set of miRNAs following melatonin treatment of triple negative breast cancer cells and we identified 17 differentially expressed miRNAs, 6 down-regulated and 11 up-regulated. We focused on the anti-metastatic miR-148b and the oncogenic miR-210 both up-regulated by melatonin treatment and studied the effect of their modulation on melatonin-mediated impairment of tumor progression. Surprisingly, when miR-148b or miR-210 were depleted in triple-negative breast cancer cells, using a specific miR-148b sponge or anti-miR-210, melatonin effects on migration inhibition and c-myc downregulation were still visible suggesting that the increase of miR-148b and miR-210 expression observed following melatonin treatment was not required for the efficacy of melatonin action. Nevertheless, ours results suggest that melatonin exhibit a compound for metastatic trait inhibition, especially in MDA-MB-231 breast cancer cells even if a direct link between modulation of expression of certain proteins or miRNAs and melatonin effects has still to be established.
Collapse
|
6
|
Ma Z, Liu J. Retinoid X receptor modulates olfactory attraction through Gα signaling in the migratory locusts. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103265. [PMID: 31704156 DOI: 10.1016/j.ibmb.2019.103265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/17/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Animals communicate with each other in aggregating for survival and adaptation. Solitary locusts show an olfactory transition from repulsion to attraction in aggregation. However, the molecular mechanism underlying this transition is less well known. In this study, we explored differentially expressed transcripts (DETs) during locust aggregation and identified that a functional class of general metabolism encompassed the largest number of DETs among all analyzed gene classes. Within this functional class of general metabolism, oxidoreductase mediates synthesis of retinoic acid (RA) from vitamin A and other metabolites derived from carbohydrates. The expression levels of retinaldehyde hydroxylase 1 (raldh1) and retinoid X receptor (rxr), which are two crucial genes for RA synthesis and signaling, were upregulated during 4 h of crowding. Knockdown of raldh1 and rxr by RNA interference (RNAi) in the brains resulted in the loss of olfactory attraction. Moreover, inhibition of RXR by RNAi resulted in downregulated expression of Gna14, a member of the Gα subfamily that transduces signals in G protein-coupled receptor (GPCR) pathways. Abrogating RXR signaling and Gna14 by RNAi knockdown inhibited the function of dopamine receptor 1 (DopR1) and octopamine receptor α1 (OctαR1) in modulating olfactory attraction. RXR signaling is essential for DopR1 and OctαR1 to mediate olfactory attraction. This study showed that RXR signaling mediates attraction by Gα signaling and confirmed a novel link between nuclear receptor RXR and the membrane receptor GPCRs in modulating olfactory attraction.
Collapse
Affiliation(s)
- Zongyuan Ma
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jipeng Liu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
7
|
Zappia CD, Monczor F. Therapeutic utility of glucocorticoids and antihistamines cotreatment. Rationale and perspectives. Pharmacol Res Perspect 2019; 7:e00530. [PMID: 31859461 PMCID: PMC6923805 DOI: 10.1002/prp2.530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Antihistamines and glucocorticoids (GCs) are often used together in the clinic, in several inflammatory-related situations. Even though there is no clear rationale for this drug association, the clinical practice is based on the assumption that due to their concomitant antiinflammatory effects, there should be an intrinsic benefit in their coadministration. Our group has studied the molecular interaction between the histamine H1 receptor and the glucocorticoid receptor (GR) signaling pathways, showing an enhancing effect on GC-induced GR transcriptional activity induced by antihistamines. We hypothesize that the existence of this synergistic effect could contribute in reducing the GCs clinical doses, ineffective by itself but effective in combination with an antihistamine. This could result in a therapeutic advantage as the GC-desired effects may be reinforced by the addition of an antihistamine and, as a consequence of the dose reduction, GC-related adverse effects could be reduced or at least mitigated. Here we discuss the potential therapeutic applications of this cotreatment seeking to evaluate its usefulness, especially in inflammatory-related conditions.
Collapse
Affiliation(s)
- Carlos D. Zappia
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET ‐ Universidad de Buenos AiresBuenos AiresArgentina
| | - Federico Monczor
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET ‐ Universidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
8
|
Monczor F, Fernandez N. Current Knowledge and Perspectives on Histamine H1 and H2 Receptor Pharmacology: Functional Selectivity, Receptor Crosstalk, and Repositioning of Classic Histaminergic Ligands. Mol Pharmacol 2016; 90:640-648. [PMID: 27625037 DOI: 10.1124/mol.116.105981] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022] Open
Abstract
H1 and H2 histamine receptor antagonists, although developed many decades ago, are still effective for the treatment of allergic and gastric acid-related conditions. This article focuses on novel aspects of the pharmacology and molecular mechanisms of histamine receptors that should be contemplated for optimizing current therapies, repositioning histaminergic ligands for new therapeutic uses, or even including agonists of the histaminergic system in the treatment of different pathologies such as leukemia or neurodegenerative disorders. In recent years, new signaling phenomena related to H1 and H2 receptors have been described that make them suitable for novel therapeutic approaches. Crosstalk between histamine receptors and other membrane or nuclear receptors can be envisaged as a way to modulate other signaling pathways and to potentiate the efficacy of drugs acting on different receptors. Likewise, biased signaling at histamine receptors seems to be a pharmacological feature that can be exploited to investigate nontraditional therapeutic uses for H1 and H2 biased agonists in malignancies such as acute myeloid leukemia and to avoid undesired side effects when used in standard treatments. It is hoped that the molecular mechanisms discussed in this review contribute to a better understanding of the different aspects involved in histamine receptor pharmacology, which in turn will contribute to increased drug efficacy, avoidance of adverse effects, or repositioning of histaminergic ligands.
Collapse
Affiliation(s)
- Federico Monczor
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Fernandez
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
Effects of histamine H1 receptor signaling on glucocorticoid receptor activity. Role of canonical and non-canonical pathways. Sci Rep 2015; 5:17476. [PMID: 26635083 PMCID: PMC4669453 DOI: 10.1038/srep17476] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/29/2015] [Indexed: 12/20/2022] Open
Abstract
Histamine H1 receptor (H1R) antagonists and glucocorticoid receptor (GR) agonists are used to treat inflammatory conditions such as allergic rhinitis, atopic dermatitis and asthma. Consistent with the high morbidity levels of such inflammatory conditions, these receptors are the targets of a vast number of approved drugs, and in many situations their ligands are co-administered. However, this drug association has no clear rationale and has arisen from clinical practice. We hypothesized that H1R signaling could affect GR-mediated activity, impacting on its transcriptional outcome. Indeed, our results show a dual regulation of GR activity by the H1R: a potentiation mediated by G-protein βγ subunits and a parallel inhibitory effect mediated by Gαq-PLC pathway. Activation of the H1R by its full agonists resulted in a composite potentiating effect. Intriguingly, inactivation of the Gαq-PLC pathway by H1R inverse agonists resulted also in a potentiation of GR activity. Moreover, histamine and clinically relevant antihistamines synergized with the GR agonist dexamethasone to induce gene transactivation and transrepression in a gene-specific manner. Our work provides a delineation of molecular mechanisms underlying the widespread clinical association of antihistamines and GR agonists, which may contribute to future dosage optimization and reduction of well-described side effects associated with glucocorticoid administration.
Collapse
|
10
|
Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. ENVIRONMENT INTERNATIONAL 2015; 83:11-40. [PMID: 26073844 DOI: 10.1016/j.envint.2015.05.012] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
A comprehensive summary of more than 450 estrogenic chemicals including estrogenic endocrine disruptors is provided here to understand the complex and profound impact of estrogen action. First, estrogenic chemicals are categorized by structure as well as their applications, usage and effects. Second, estrogenic signaling is examined by the molecular mechanism based on the receptors, signaling pathways, crosstalk/bypassing and autocrine/paracrine/homeostatic networks involved in the signaling. Third, evaluation of estrogen action is discussed by focusing on the technologies and protocols of the assays for assessing estrogenicity. Understanding the molecular mechanisms of estrogen action is important to assess the action of endocrine disruptors and will be used for risk management based on pathway-based toxicity testing.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
11
|
Hill SM, Belancio VP, Dauchy RT, Xiang S, Brimer S, Mao L, Hauch A, Lundberg PW, Summers W, Yuan L, Frasch T, Blask DE. Melatonin: an inhibitor of breast cancer. Endocr Relat Cancer 2015; 22:R183-204. [PMID: 25876649 PMCID: PMC4457700 DOI: 10.1530/erc-15-0030] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2015] [Indexed: 12/19/2022]
Abstract
The present review discusses recent work on melatonin-mediated circadian regulation, the metabolic and molecular signaling mechanisms that are involved in human breast cancer growth, and the associated consequences of circadian disruption by exposure to light at night (LEN). The anti-cancer actions of the circadian melatonin signal in human breast cancer cell lines and xenografts heavily involve MT1 receptor-mediated mechanisms. In estrogen receptor alpha (ERα)-positive human breast cancer, melatonin suppresses ERα mRNA expression and ERα transcriptional activity via the MT1 receptor. Melatonin also regulates the transactivation of other members of the nuclear receptor superfamily, estrogen-metabolizing enzymes, and the expression of core clock and clock-related genes. Furthermore, melatonin also suppresses tumor aerobic metabolism (the Warburg effect) and, subsequently, cell-signaling pathways critical to cell proliferation, cell survival, metastasis, and drug resistance. Melatonin demonstrates both cytostatic and cytotoxic activity in breast cancer cells that appears to be cell type-specific. Melatonin also possesses anti-invasive/anti-metastatic actions that involve multiple pathways, including inhibition of p38 MAPK and repression of epithelial-mesenchymal transition (EMT). Studies have demonstrated that melatonin promotes genomic stability by inhibiting the expression of LINE-1 retrotransposons. Finally, research in animal and human models has indicated that LEN-induced disruption of the circadian nocturnal melatonin signal promotes the growth, metabolism, and signaling of human breast cancer and drives breast tumors to endocrine and chemotherapeutic resistance. These data provide the strongest understanding and support of the mechanisms that underpin the epidemiologic demonstration of elevated breast cancer risk in night-shift workers and other individuals who are increasingly exposed to LEN.
Collapse
Affiliation(s)
- Steven M Hill
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Victoria P Belancio
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Robert T Dauchy
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Shulin Xiang
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Samantha Brimer
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Lulu Mao
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Adam Hauch
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Peter W Lundberg
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Whitney Summers
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Lin Yuan
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Tripp Frasch
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - David E Blask
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| |
Collapse
|
12
|
Ekthuwapranee K, Sotthibundhu A, Tocharus C, Govitrapong P. Melatonin ameliorates dexamethasone-induced inhibitory effects on the proliferation of cultured progenitor cells obtained from adult rat hippocampus. J Steroid Biochem Mol Biol 2015; 145:38-48. [PMID: 25305353 DOI: 10.1016/j.jsbmb.2014.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/22/2014] [Accepted: 10/05/2014] [Indexed: 01/15/2023]
Abstract
Glucocorticoids, hormones that are released in response to stress, induce neuronal cell damage. The hippocampus is a primary target of glucocorticoids in the brain, the effects of which include the suppression of cell proliferation and diminished neurogenesis in the dentate gyrus. Our previous study found that melatonin, synthesized primarily in the pineal, pretreatment prevented the negative effects of dexamethasone, the glucocorticoid receptor agonist, on behavior and neurogenesis in rat hippocampus. In the present study, we attempted to investigate the interrelationship between melatonin and dexamethasone on the underlying mechanism of neural stem cell proliferation. Addition of dexamethasone to hippocampal progenitor cells from eight-week old rats resulted in a decrease in the number of neurospheres; pretreatment with melatonin precluded these effects. The immunocytochemical analyses indicated a reduction of Ki67 and nestin-positive cells in the dexamethasone-treated group, which was minimized by melatonin pretreatment. A reduction of the extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation and G1-S phase cell cycle regulators cyclin E and CDK2 in dexamethasone-treated progenitor cells were prevented by pretreatment of melatonin. Moreover, luzindole, a melatonin receptor antagonist blocked the positive effect of melatonin whereas RU48, the glucocorticoid receptor antagonist blocked the negative effect of dexamethasone on the number of neurospheres. Moreover, we also found that dexamethasone increased the glucocorticoid receptor protein but decreased the level of MT1 melatonin receptor, whereas melatonin increased the level of MT1 melatonin receptor but decreased the glucocorticoid receptor protein. These suggest the crosstalk and cross regulation between the melatonin receptor and the glucocorticoid receptor on hippocampal progenitor cell proliferation.
Collapse
Affiliation(s)
- Kasima Ekthuwapranee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand
| | | | | | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand; Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Thailand.
| |
Collapse
|
13
|
Ruksee N, Tongjaroenbuangam W, Mahanam T, Govitrapong P. Melatonin pretreatment prevented the effect of dexamethasone negative alterations on behavior and hippocampal neurogenesis in the mouse brain. J Steroid Biochem Mol Biol 2014; 143:72-80. [PMID: 24589478 DOI: 10.1016/j.jsbmb.2014.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/27/2014] [Accepted: 02/19/2014] [Indexed: 12/18/2022]
Abstract
Glucocorticoids play various physiological functions via the glucocorticoid receptor (GR). Glucocorticoid is associated with the pathophysiology of depression. Dexamethasone (DEX), a synthetic GR agonist, has a greater affinity for GR than the mineralocorticoid receptor (MR) in the hippocampus of pigs and may mimic the effects of GR possession. DEX decreases neurogenesis and induces damage to hippocampal neurons that is associated with depressive-like behavior. Melatonin, a hormone mainly synthesized in the pineal gland, is a potent free radical scavenger and antioxidant. Melatonin alters noradrenergic transmission in depressed patients. It may be interesting to further explore the mechanism of melatonin that is associated with the role of stress as a key factor to precipitate depression and as a factor altering neurogenesis. In this study, we assessed the capability of melatonin to protect the hippocampus of mouse brains to counteract the effects of chronic DEX treatment for 21 days on depressive-like behavior and neurogenesis. Our results revealed that chronic administration of DEX induced depressive-like behavior and that this could be reversed by pretreatment with melatonin. Moreover, the number of 5-bromo-2-deoxyuridine (BrdU)-immunopositive cells and doublecortin (DCX; the neuronal-specific marker) protein levels were significantly reduced in the DEX-treated mice. Pretreatment with melatonin was found to renew BrdU and DCX expression in the dentate gyrus. Furthermore, pretreatment with melatonin prevented DEX-induced reductions in GR and an extracellular-signal-regulated kinase (ERK1/2) in the hippocampal area. Melatonin may protect hippocampal neurons from damage and reverse neurogenesis after chronic DEX by activating brain-derived neurotrophic (BDNF) and ERK1/2 cascades. These results revealed that melatonin pretreatment prevented the reduction of cell proliferation, immature neuron precursor cells, and GR and ERK1/2 expression. This finding indicates that melatonin attenuates the DEX-induced depressive-like behavior, supporting the notion that melatonin possesses anti-stress and neurogenic actions.
Collapse
Affiliation(s)
- Nootchanart Ruksee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand; National Institute for Child and Family Development, Mahidol University, Thailand
| | - Walaiporn Tongjaroenbuangam
- Faculty of Medicine, Mahasarakham University, Thailand; Department of Biology, Faculty of Science, Mahasarakham University, Thailand
| | | | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand; Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Thailand.
| |
Collapse
|
14
|
Yılmaz T, Gedikli Ö, Yildirim M. Evaluation of spatial memory and locomotor activity during hypercortisolism induced by the administration of dexamethasone in adult male rats. Brain Res 2014; 1595:43-50. [PMID: 24796878 DOI: 10.1016/j.brainres.2014.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 01/29/2023]
Abstract
In neurosurgery practice glucocorticoids are commonly used. Steroids may have central nervous system side effects affecting whole body, including steroid-induced mental agitation and psychosis. In experimental and clinical studies conducted by using dexamethasone (DEX), it has been reported that DEX adversely affects learning and memory skills. Unfortunately, there are yet no clinically accepted clinical approaches to prevent DEX-induced cognitive dysfunction. In this experimental study it was aimed to investigate the effect of chronic DEX administration on learning-memory and locomotor behaviors in adult male Sprague Dawley rats. In addition, it was also aimed to explore the potential favorable contribution of melatonin (MEL) and vitamin C (Vit C) having antioxidant and neuroprotective properties to the effects of DEX on learning-memory and locomotor behaviors. For this purpose, rats were injected 10mg/kg DEX intraperitoneally, both alone and in combination with MEL (40 mg/kg) and Vit C (100mg/kg), for 9 days, and the animals were tested using the radial arm maze and open field apparatus. The test results revealed that DEX caused a significant decrease in spatial memory and locomotor activities and MEL and Vit C failed to reverse losses in these activities. Furthermore, DEX led to a gradual weight loss that reached 30% of the initial weight at 9th day of the injection. DEX administration causes a generalized loss of behavioral activity of rats. Experimental studies devised to investigate effects of DEX should take into account this DEX-induced generalized behavioral loss when assessing the effects of DEX on learning and memory skills. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Tevfik Yılmaz
- Department of Neurosurgery, Faculty of Medicine, Dicle University, Yenişehir 21280, Diyarbakir, Turkey.
| | - Öznur Gedikli
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mehmet Yildirim
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
15
|
Mao L, Yuan L, Xiang S, Zeringue SB, Dauchy RT, Blask DE, Hauch A, Hill SM. Molecular deficiency (ies) in MT₁ melatonin signaling pathway underlies the melatonin-unresponsive phenotype in MDA-MB-231 human breast cancer cells. J Pineal Res 2014; 56:246-53. [PMID: 24372669 PMCID: PMC4868402 DOI: 10.1111/jpi.12117] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 12/20/2013] [Indexed: 12/15/2022]
Abstract
Melatonin has been shown repeatedly to inhibit the growth of human breast tumor cells in vitro and in vivo. Its antiproliferative effects have been well studied in MCF-7 human breast cancer cells and several other estrogen receptor α (ERα)-positive human breast cancer cell lines. However, the MDA-MB-231 breast cancer cell line, an ERα-negative cell line widely used in breast cancer research, has been shown to be unresponsive to melatonin's growth-suppressive effect in vitro. Here, we examined the effect of melatonin on the cell proliferation of several ERα-negative breast cancer cell lines including MDA-MB-231, BT-20, and SK-BR-3 cells. Although the MT1 G-protein-coupled receptor is expressed in all three cell lines, melatonin significantly suppressed the proliferation of SK-BR-3 cells without having any significant effect on the growth of MDA-MB-231 and BT-20 cells. We confirmed that the MT1-associated Gα proteins are expressed in MDA-MB-231 cells. Further studies demonstrated that the melatonin unresponsiveness in MDA-MB-231 cells may be caused by aberrant signaling downstream of the Gαi proteins, resulting in differential regulation of ERK1/2 activity.
Collapse
Affiliation(s)
- Lulu Mao
- Department of Structural and Cellular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Tulane Cancer Center and Louisiana Cancer Research Consortium, New Orleans, LA, USA
| | - Lin Yuan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Tulane Cancer Center and Louisiana Cancer Research Consortium, New Orleans, LA, USA
| | - Shulin Xiang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Tulane Cancer Center and Louisiana Cancer Research Consortium, New Orleans, LA, USA
| | - Samantha B. Zeringue
- Department of Surgery, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Robert T. Dauchy
- Department of Structural and Cellular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Tulane Cancer Center and Louisiana Cancer Research Consortium, New Orleans, LA, USA
| | - David E. Blask
- Department of Structural and Cellular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Tulane Cancer Center and Louisiana Cancer Research Consortium, New Orleans, LA, USA
| | - Adam Hauch
- Department of Surgery, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Steven M. Hill
- Department of Structural and Cellular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Tulane Cancer Center and Louisiana Cancer Research Consortium, New Orleans, LA, USA
| |
Collapse
|
16
|
Melatonin attenuates dexamethasone-induced spatial memory impairment and dexamethasone-induced reduction of synaptic protein expressions in the mouse brain. Neurochem Int 2013; 63:482-91. [DOI: 10.1016/j.neuint.2013.08.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/31/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022]
|
17
|
Abstract
AbstractMelatonin is a hormone produced by the pineal gland. In addition to its hormonal effect, it has strong antioxidant properties. Melatonin is probably best known for its ability to control circadian rhythm; it is sold in many countries as a supplement or drug for improving of sleep quality. However, melatonin’s effect is not limited to control of circadian rhythm:. it is involved in other effects, including cell cycle control and regulation of several important enzymes, including inhibition of inducible nitric oxide synthase. Melatonin affects immunity as well. It can modulate the immune response on disparate levels with a significant effect on inflammation. The role of melatonin in body regulatory process is not well understood; only limited conclusions can be drawn from known data. The current review attempts to summarize both basic facts about melatonin’s effects and propose research on the lesser known issues in the future.
Collapse
|
18
|
Proietti S, Cucina A, Reiter RJ, Bizzarri M. Molecular mechanisms of melatonin's inhibitory actions on breast cancers. Cell Mol Life Sci 2013; 70:2139-57. [PMID: 23007844 PMCID: PMC11113894 DOI: 10.1007/s00018-012-1161-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 02/07/2023]
Abstract
Melatonin is involved in many physiological functions and it plays an important role in many pathological processes as well. Melatonin has been shown to reduce the incidence of experimentally induced cancers and can significantly inhibit the growth of some human tumors, namely hormone-dependent cancers. The anticancer effects of melatonin have been observed in breast cancer, both in in vivo with models of chemically induced rat mammary tumors, and in vitro studies on human breast cancer cell lines. Melatonin acts at different physiological levels and its antitumoral properties are supported by a set of complex, different mechanisms of action, involving apoptosis activation, inhibition of proliferation, and cell differentiation.
Collapse
Affiliation(s)
- Sara Proietti
- Department of Clinical and Molecular Medicine, University “La Sapienza”, Rome, Italy
- Department of Surgery “P.Valdoni”, University “La Sapienza”, Rome, Italy
| | - Alessandra Cucina
- Department of Surgery “P.Valdoni”, University “La Sapienza”, Rome, Italy
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Mariano Bizzarri
- Systems Biology Group Laboratory, Department of Experimental Medicine, University “La Sapienza”, 14-16, Via Antonio Scarpa, Rome, 00161 Italy
| |
Collapse
|
19
|
Xiang S, Mao L, Yuan L, Duplessis T, Jones F, Hoyle GW, Frasch T, Dauchy R, Blask DE, Chakravarty G, Hill SM. Impaired mouse mammary gland growth and development is mediated by melatonin and its MT1G protein-coupled receptor via repression of ERα, Akt1, and Stat5. J Pineal Res 2012; 53:307-18. [PMID: 22582905 PMCID: PMC3422609 DOI: 10.1111/j.1600-079x.2012.01000.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To determine whether melatonin, via its MT(1) G protein-coupled receptor, impacts mouse mammary gland development, we generated a mouse mammary tumor virus (MMTV)-MT1-Flag-mammary gland over-expressing (MT1-mOE) transgenic mouse. Increased expression of the MT(1) -Flag transgene was observed in the mammary glands of pubescent MT1-mOE transgenic female mice, with further significant increases during pregnancy and lactation. Mammary gland whole mounts from MT1-mOE mice showed significant reductions in ductal growth, ductal branching, and terminal end bud formation. Elevated MT(1) receptor expression in pregnant and lactating female MT1-mOE mice was associated with reduced lobulo-alveolar development, inhibition of mammary epithelial cell proliferation, and significant reductions in body weights of suckling pups. Elevated MT(1) expression in pregnant and lactating MT1-mOE mice correlated with reduced mammary gland expression of Akt1, phospho-Stat5, Wnt4, estrogen receptor alpha, progesterone receptors A and B, and milk proteins β-casein and whey acidic protein. Estrogen- and progesterone-stimulated mammary gland development was repressed by elevated MT(1) receptor expression and exogenous melatonin administration. These studies demonstrate that the MT(1) melatonin receptor and its ligand melatonin play an important regulatory role in mammary gland development and lactation in mice through both growth suppression and alteration of developmental paradigms.
Collapse
Affiliation(s)
- Shulin Xiang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Lulu Mao
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Lin Yuan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Tamika Duplessis
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Frank Jones
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana
- Department of Cellular and Molecular Biology, Tulane University, New Orleans, Louisiana
| | - Gary W. Hoyle
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky
| | - Tripp Frasch
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Robert Dauchy
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David E. Blask
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana
| | | | - Steven M. Hill
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
20
|
Knower KC, To SQ, Takagi K, Miki Y, Sasano H, Simpson ER, Clyne CD. Melatonin suppresses aromatase expression and activity in breast cancer associated fibroblasts. Breast Cancer Res Treat 2012; 132:765-71. [PMID: 22237979 DOI: 10.1007/s10549-012-1953-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
Abstract
The main biological active substance secreted by the pineal gland, melatonin (MLT), counteracts the effects of estrogens in breast cancer via exerting a number of its own oncostatic properties. Recent studies of postmenopausal women have identified that the major metabolite of MLT is statistically significantly associated with a lower risk of developing breast cancer. While MLT production decreases with age, breast cancer risk, however, increases with age and obesity. We hypothesize that MLT inhibits estrogen production in breast adipose fibroblasts (BAFs), the main local source of estrogen in breast tumors of postmenopausal women, by inhibiting transcription of the CYP19A1 gene that encodes the key enzyme aromatase. Normal BAFs were cultured from women undergoing breast reduction surgery, while breast cancer-associated fibroblasts (CAFs) were isolated from three women with estrogen receptor (ER) positive invasive ductal carcinomas. MTNR1A and MTNR1B receptor expression and CYP19A1 mRNA expression following MLT treatments were determined by qRT-PCR. BAFs express the G-protein coupled MLT receptors MTNR1A and MTNR1B with elevated levels of MTNR1A found in CAFs. Treatment of BAFs and CAFs with MLT resulted in significant suppression of CYP19A1 transcription and aromatase activity at pharmacological, physiological and sub-physiological concentrations. MLT suppression occurred through promoter-specific PI.4-, PI.3- and PII-derived CYP19A1 mRNA. Stimulation of CYP19A1 PII-mRNA and aromatase activity by prostaglandin E(2) (PGE(2)) were significantly attenuated by physiological doses of MLT. Lower levels of MLT in aging women may increase the risk of progressing ER-positive breast cancer through a decreased ability to suppress CYP19A1 expression and subsequent local estrogen production in BAFs/CAFs.
Collapse
Affiliation(s)
- Kevin C Knower
- Cancer Drug Discovery Laboratory, Prince Henry's Institute of Medical Research, PO Box 5152, Clayton, VIC 3168, Australia.
| | | | | | | | | | | | | |
Collapse
|
21
|
Blask DE, Hill SM, Dauchy RT, Xiang S, Yuan L, Duplessis T, Mao L, Dauchy E, Sauer LA. Circadian regulation of molecular, dietary, and metabolic signaling mechanisms of human breast cancer growth by the nocturnal melatonin signal and the consequences of its disruption by light at night. J Pineal Res 2011; 51:259-69. [PMID: 21605163 PMCID: PMC3162043 DOI: 10.1111/j.1600-079x.2011.00888.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This review article discusses recent work on the melatonin-mediated circadian regulation and integration of molecular, dietary, and metabolic signaling mechanisms involved in human breast cancer growth and the consequences of circadian disruption by exposure to light at night (LAN). The antiproliferative effects of the circadian melatonin signal are mediated through a major mechanism involving the activation of MT(1) melatonin receptors expressed in human breast cancer cell lines and xenografts. In estrogen receptor (ERα+) human breast cancer cells, melatonin suppresses both ERα mRNA expression and estrogen-induced transcriptional activity of the ERα via MT(1) -induced activation of G(αi2) signaling and reduction of 3',5'-cyclic adenosine monophosphate (cAMP) levels. Melatonin also regulates the transactivation of additional members of the steroid hormone/nuclear receptor super-family, enzymes involved in estrogen metabolism, expression/activation of telomerase, and the expression of core clock and clock-related genes. The anti-invasive/anti-metastatic actions of melatonin involve the blockade of p38 phosphorylation and the expression of matrix metalloproteinases. Melatonin also inhibits the growth of human breast cancer xenografts via another critical pathway involving MT(1) -mediated suppression of cAMP leading to blockade of linoleic acid uptake and its metabolism to the mitogenic signaling molecule 13-hydroxyoctadecadienoic acid (13-HODE). Down-regulation of 13-HODE reduces the activation of growth factor pathways supporting cell proliferation and survival. Experimental evidence in rats and humans indicating that LAN-induced circadian disruption of the nocturnal melatonin signal activates human breast cancer growth, metabolism, and signaling provides the strongest mechanistic support, thus far, for population and ecological studies demonstrating elevated breast cancer risk in night shift workers and other individuals increasingly exposed to LAN.
Collapse
Affiliation(s)
- David E Blask
- Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, LA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hill SM, Blask DE, Xiang S, Yuan L, Mao L, Dauchy RT, Dauchy EM, Frasch T, Duplesis T. Melatonin and associated signaling pathways that control normal breast epithelium and breast cancer. J Mammary Gland Biol Neoplasia 2011; 16:235-45. [PMID: 21773809 DOI: 10.1007/s10911-011-9222-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/23/2011] [Indexed: 11/26/2022] Open
Abstract
This review article discusses recent work on the melatonin-mediated circadian regulation and integration of molecular and metabolic signaling mechanisms involved in human breast cancer growth and the associated consequences of circadian disruption by exposure to light-at-night (LAN). The anti-proliferative effects of the circadian melatonin signal are, in general, mediated through mechanisms involving the activation of MT(1) melatonin receptors expressed in human breast cancer cell lines and xenografts. In estrogen receptor-positive (ERα+) human breast cancer cells, melatonin suppresses both ERα mRNA expression and estrogen-induced transcriptional activity of the ERα via MT(1)-induced activation of G(αi2) signaling and reduction of cAMP levels. Melatonin also regulates the transcriptional activity of additional members of the nuclear receptor super-family, enzymes involved in estrogen metabolism, and the expression of core clock and clock-related genes. The anti-invasive/anti-metastatic actions of melatonin involve the blockade of p38 phosphorylation and matrix metalloproteinase expression. Melatonin also inhibits the growth of human breast cancer xenografts via MT(1)-mediated suppression of cAMP leading to a blockade of linoleic acid (LA) uptake and its metabolism to the mitogenic signaling molecule 13-hydroxyoctadecadienoic acid (13-HODE). Down-regulation of 13-HODE reduces the activation of growth factor pathways supporting cell proliferation and survival. Finally, studies in both rats and humans indicate that light-at-night (LAN) induced circadian disruption of the nocturnal melatonin signal activates human breast cancer growth, metabolism, and signaling, providing the strongest mechanistic support, thus far, for epidemiological studies demonstrating the elevated breast cancer risk in night shift workers and other individuals increasingly exposed to LAN.
Collapse
Affiliation(s)
- Steven M Hill
- Department of Structural and Cellular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mao L, Cheng Q, Guardiola-Lemaître B, Schuster-Klein C, Dong C, Lai L, Hill SM. In vitro and in vivo antitumor activity of melatonin receptor agonists. J Pineal Res 2010; 49:210-21. [PMID: 20609073 DOI: 10.1111/j.1600-079x.2010.00781.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Melatonin has been shown to inhibit the proliferation of estrogen receptor α (ERα)-positive human breast cancer cells in vitro and suppress the growth of carcinogen-induced mammary tumors in rats. Melatonin's antiproliferative effect is mediated, at least in part, through the MT1 melatonin receptor and mechanisms involving modulation of the estrogen-signaling pathway. To develop melatonin analogs with greater therapeutic effects, we have examined the in vitro and in vivo antimitotic activity of two MT1/MT2 melatonin receptor agonists, S23219-1 and S23478-1. In our studies, both agonists are quite effective at suppressing the growth of MCF-7 human breast cancer cells. At a concentration of 10⁻⁶ m, S23219-1 and S23478-1 inhibited the growth of MCF-7 cells by 60% and 73%, respectively. However, S23478-1 is more effective than melatonin and S23219-1 at repressing the expression and transactivation of the ERα, and modulating the expression of pancreatic spasmolytic polypeptide (pS2), an estrogen-regulated gene. The melatonin agonist S23478-1 exhibited enhanced antitumor potency in the subsequent studies in our animal model. At a dosage of 25 mg/kg/day, S23478-1 is more efficacious than melatonin at inducing regression of the established N-nitroso-N-methyl-urea-induced rat mammary tumors. This dose of S23478-1 (25 mg/kg/day) generated a significant (P < 0.05) overall regression response of 52%. Furthermore, at this dosage, S23478-1 is more effective than melatonin at suppressing the estrogen-signaling pathway and promoting tumor cell apoptosis, significantly increasing the expression of the pro-apoptotic protein Bax, while decreasing the expression of ERα and the anti-apoptotic protein Bcl-2.
Collapse
Affiliation(s)
- Lulu Mao
- Department of Structural & Cellular Biology, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Development of a rapid screening and surveillance for estrogenic chemicals in environment based on recombinant yEGFP yeast cell. Toxicol In Vitro 2010; 24:1285-91. [DOI: 10.1016/j.tiv.2010.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 02/04/2010] [Accepted: 03/15/2010] [Indexed: 11/18/2022]
|
25
|
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) has revealed itself as an ubiquitously distributed and functionally diverse molecule. The mechanisms that control its synthesis within the pineal gland have been well characterized and the retinal and biological clock processes that modulate the circadian production of melatonin in the pineal gland are rapidly being unravelled. A feature that characterizes melatonin is the variety of mechanisms it employs to modulate the physiology and molecular biology of cells. While many of these actions are mediated by well-characterized, G-protein coupled melatonin receptors in cellular membranes, other actions of the indole seem to involve its interaction with orphan nuclear receptors and with molecules, for example calmodulin, in the cytosol. Additionally, by virtue of its ability to detoxify free radicals and related oxygen derivatives, melatonin influences the molecular physiology of cells via receptor-independent means. These uncommonly complex processes often make it difficult to determine specifically how melatonin functions to exert its obvious actions. What is apparent, however, is that the actions of melatonin contribute to improved cellular and organismal physiology. In view of this and its virtual absence of toxicity, melatonin may well find applications in both human and veterinary medicine.
Collapse
|
26
|
Hill SM, Frasch T, Shulin Xiang, Lin Yuan, Duplessis T, Lulu Mao. Molecular Mechanisms of Melatonin Anticancer Effects. Integr Cancer Ther 2009; 8:337-46. [DOI: 10.1177/1534735409353332] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The authors have shown that, via activation of its MT1 receptor, melatonin modulates the transcriptional activity of various nuclear receptors and the proliferation of both ERα+ and ERα- human breast cancer cells. Employing dominant-negative (DN) and dominant-positive (DP) G proteins, it was demonstrated that Gα i2 proteins mediate the suppression of estrogen-induced ERα transcriptional activity by melatonin, whereas the Gαq proteins mediate the enhancement of retinoid-induced RARα transcriptional activity by melatonin. In primary human breast tumors, the authors’ studies demonstrate an inverse correlation between ERα and MT1 receptor expression, and confocal microscopic studies demonstrate that the MT1I receptor is localized to the caveoli and that its expression can be repressed by estrogen and melatonin. Melatonin, via activation of its MT1 receptor, suppresses the development and growth of breast cancer by regulation of growth factors, regulation of gene expression, regulation of clock genes, inhibition of tumor cell invasion and metastasis, and even regulation of mammary gland development. The authors have previously reported that the clock gene, Period 2 ( Per2), is not expressed in human breast cancer cells but that its reexpression in breast cancer cells results in increased expression of p53 and induction of apoptosis. The authors demonstrate that melatonin, via repression of RORα transcriptional activity, blocks the expression of the clock gene BMAL1 . Melatonin’s blockade of BMAL1 expression is associated with the decreased expression of SIRT1, a member of the Silencing Information Regulator family and a histone and protein deacetylase that inhibits the expression of DNA repair enzymes (p53, BRCA1 & 2, and Ku70) and the expression of apoptosis-associated genes. Finally, the authors developed an MMTV-MT1-flag mammary knock-in transgenic mouse that displays reduced ductal branching, ductal epithelium proliferation, and reduced terminal end bud formation during puberty and pregnancy. Lactating female MT1 transgenic mice show a dramatic reduction in the expression of β-casein and whey acidic milk proteins. Further analyses showed significantly reduced ERα expression in mammary glands of MT1 transgenic mice. These results demonstrate that the MT1 receptor is a major transducer of melatonin’s actions in the breast, suppressing mammary gland development and mediating the anticancer actions of melatonin through multiple pathways.
Collapse
Affiliation(s)
| | | | | | - Lin Yuan
- Tulane University, New Orleans, LA, USA
| | | | - Lulu Mao
- Tulane University, New Orleans, LA, USA
| |
Collapse
|
27
|
|
28
|
Yoo YM, Jeung EB. Melatonin-induced estrogen receptor alpha-mediated calbindin-D9k expression plays a role in H2O2-mediated cell death in rat pituitary GH3 cells. J Pineal Res 2009; 47:301-7. [PMID: 19796047 DOI: 10.1111/j.1600-079x.2009.00714.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Calbindin-D9k (CaBP-9k) is a 9-kDa polypeptide possessing two calcium-binding sites that is expressed in the mammalian intestine, uterus, and pituitary gland. The factors regulating the expression of the estrogen receptor (ER) and CaBP-9k in the pituitary gland are currently unknown. In this study, we investigated whether the ER and CaBP-9k expression are regulated by melatonin during H(2)O(2)-induced cell death in rat pituitary GH3 cells. Cell survival increased by approximately 27-36% in H(2)O(2) plus melatonin compared to H(2)O(2) alone, and CaBP-9k expression was augmented by treatment with H(2)O(2) plus melatonin. These results suggest that the increase in cell survival and the melatonin-induced CaBP-9k expression may play a role in protecting cells against H(2)O(2)-mediated cell death. This result is also consistent with the increase in CaBP-9k expression leading to rises in p-ERK and p-Bad (S112). Over-expression of CaBP-9k caused an increase in p-ERK. ERalpha expression was higher in H(2)O(2) plus melatonin-treated cells compared to those treated with H(2)O(2) alone, while ERbeta expression was not. Also, ERalpha in the nuclear fraction increased in the presence of melatonin and decreased in the presence of ICI 182 780 or ICI 182 780 plus melatonin. The relative binding affinity of ERalpha for melatonin was higher than that of ERbeta, suggesting that melatonin has the potential to preferentially bind ERalpha. In conclusion, these results indicate that melatonin may increase CaBP-9k expression through ERalpha.
Collapse
Affiliation(s)
- Yeong-Min Yoo
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Chungbuk, Korea
| | | |
Collapse
|
29
|
Martínez-Campa C, González A, Mediavilla MD, Alonso-González C, Alvarez-García V, Sánchez-Barceló EJ, Cos S. Melatonin inhibits aromatase promoter expression by regulating cyclooxygenases expression and activity in breast cancer cells. Br J Cancer 2009; 101:1613-9. [PMID: 19773750 PMCID: PMC2778514 DOI: 10.1038/sj.bjc.6605336] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background: Melatonin reduces the development of breast cancer interfering with oestrogen-signalling pathways, and also inhibits aromatase activity and expression. Our objective was to study the promoters through which melatonin modifies aromatase expression, evaluate the ability of melatonin to regulate cyclooxygenases and assess whether the effects of melatonin are related to its effects on intracellular cAMP, in MCF-7 cells. Methods: Total aromatase mRNA, aromatase mRNA promoter regions and cyclooxygenases mRNA expression were determined by real-time RT–PCR. PGE2 and cAMP were measured by kits. Results: Melatonin downregulated the gene expression of the two major specific aromatase promoter regions, pII and pI.3, and also that of the aromatase promoter region pI.4. Melatonin 1 nM was able to counteract the stimulatory effect of tetradecanoyl phorbol acetate on PGE2 production and inhibit COX-2 and COX-1 mRNA expression. Melatonin 1 nM elicited a parallel time-dependent decrease in both cyclic AMP formation and aromatase mRNA expression. Conclusions: This study shows that melatonin inhibits aromatase activity and expression by regulating the gene expression of specific aromatase promoter regions. A possible mechanism for these effects would be the regulation by melatonin of intracellular cAMP levels, mediated by an inhibition of cyclooxygenase activity and expression.
Collapse
Affiliation(s)
- C Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, 39011 Santander, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Girgert R, Hanf V, Emons G, Gründker C. Membrane-bound melatonin receptor MT1 down-regulates estrogen responsive genes in breast cancer cells. J Pineal Res 2009; 47:23-31. [PMID: 19522736 DOI: 10.1111/j.1600-079x.2009.00684.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Melatonin possesses anti-estrogenic effects on estrogen receptor expressing (ER+) breast cancer cells in culture by reducing cell cycle progression and cell proliferation. There is increasing agreement that on a cellular level the effects of melatonin are primarily induced by the membrane-bound receptor MT1. The participation of a second, nuclear receptor of the group of ligand-dependent transcription factors, called RZRalpha, is under debate. In this study we used a number of breast cancer cell lines differing in their expression of the estrogen receptor and the two known melatonin receptors. In MCF-7 breast cancer cells transfected with a vector carrying the MT1 gene (MCF-7Mel1a) binding of CREB-protein to the cAMP-responsive element of the breast cancer suppressing gene BRCA-1 was more strongly reduced by treatment with melatonin than in the parental cells. Expression of estrogen responsive genes was determined in serum-starved cells, cells stimulated for 16 hr with estradiol and cells subsequently treated with melatonin. Expression of BRCA-1, p53, p21(WAF) and c-myc were up-regulated by estradiol. Treatment of the stimulated cells with melatonin counteracted the increase induced by estradiol almost completely. The more MT1 a cell line expressed, the stronger was the reduction of the expression of the estradiol-induced genes. There was no correlation between the expression of the nuclear receptor RZRalpha and the effects of melatonin on these genes.
Collapse
MESH Headings
- BRCA1 Protein/biosynthesis
- BRCA1 Protein/genetics
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Cycle/drug effects
- Cell Cycle/genetics
- Cell Growth Processes/drug effects
- Cell Growth Processes/genetics
- Cell Line, Tumor
- Cyclin-Dependent Kinase Inhibitor p21/biosynthesis
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Down-Regulation
- Estradiol/pharmacology
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Melatonin/metabolism
- Melatonin/pharmacology
- Proto-Oncogene Proteins c-myc/biosynthesis
- Proto-Oncogene Proteins c-myc/genetics
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Estrogen/biosynthesis
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Suppressor Protein p53/biosynthesis
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Rainer Girgert
- Department of Obstetrics and Gynecology, University of Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
31
|
Rögelsperger O, Ekmekcioglu C, Jäger W, Klimpfinger M, Königsberg R, Krenbek D, Sellner F, Thalhammer T. Coexpression of the melatonin receptor 1 and nestin in human breast cancer specimens. J Pineal Res 2009; 46:422-32. [PMID: 19552766 DOI: 10.1111/j.1600-079x.2009.00679.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation of the G-protein-coupled receptor (GPCR) for melatonin (MT1) suppresses breast cancer cell growth in experimental models. To elucidate whether MT1 might play a role in cancer cells positive for the stem cell marker nestin, we assessed paired carcinomatous (Ca) and adjacent noncancerous (NCa) samples from 42 patients with primary breast cancer for MT1 and nestin by double immunofluorescence staining and quantitative image analysis with Tissue-Quest software. MT1 was located in luminal and myoepithelial cells in milk ducts and in tumor cells in 40/42 and 39/42 of NCa and Ca specimens, respectively, independent of hormone receptor and HER-2 status. Nestin was located together with MT1 in myoepithelial cells in 38 NCa specimens (total n = 42) and in 18 Ca specimens with intact milk ducts. Quantitative evaluation of selected 16 NCa and Ca samples revealed that MT1 levels were higher in invasive Ca sections than in NCa specimens in eight and lower in six cases. Specimens from higher tumor stages (TII/III) with a higher risk of relapse were associated with MT1/nestin co-staining in more than 10% of tumor cells, whereas a lack of co-staining correlated with lower tumor stages. Abundant expression of MT1 and, particularly, coexpression of MT1 with nestin in invading tumor cells in more advanced tumors suggest an important role for this GPCR in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- O Rögelsperger
- Department of Pathophysiology, Center for Physiology, Parthophysiology and Immunology, Medical university of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lai L, Yuan L, Chen Q, Dong C, Mao L, Rowan B, Frasch T, Hill SM. The Galphai and Galphaq proteins mediate the effects of melatonin on steroid/thyroid hormone receptor transcriptional activity and breast cancer cell proliferation. J Pineal Res 2008; 45:476-88. [PMID: 18705646 PMCID: PMC4879591 DOI: 10.1111/j.1600-079x.2008.00620.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melatonin, via its MT1 receptor, but not the MT2 receptor, can modulate the transcriptional activity of various nuclear receptors - estrogen receptor alpha (ERalpha) and retinoic acid receptor alpha (RARalpha), but not ERbeta- in MCF-7, T47D, and ZR-75-1 human breast cancer cell lines. The anti-proliferative and nuclear receptor modulatory actions of melatonin are mediated via the MT1 G protein-coupled receptor expressed in human breast cancer cells. However, the specific G proteins and associated pathways involved in the nuclear receptor transcriptional regulation by melatonin are not yet clear. Upon activation, the MT1 receptor specifically couples to the G(alphai2), G(alphai3), G(alphaq), and G(alphall) proteins, and via activation of G(alphai2) proteins, melatonin suppresses forskolin-induced 3',5'-cyclic adenosine monophosphate production, while melatonin activation of G(alphaq), is able to inhibit phospholipid hydrolysis and ATP's induction of inositol triphosphate production in MCF-7 breast cancer cells. Employing dominant-negative and dominant-positive) forms of these G proteins, we demonstrate that G(alphai2) proteins mediate the suppression of estrogen-induced ERalpha transcriptional activity by melatonin, while the G(q) protein mediates the enhancement of retinoid-induced RARalpha transcriptional activity by melatonin. However, the growth-inhibitory actions of melatonin are mediated via both G(alphai2) and G(alphaq) proteins.
Collapse
MESH Headings
- Blotting, Western
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation
- Colforsin/pharmacology
- Cyclic AMP/analysis
- Cyclic GMP/analysis
- Estrogens/physiology
- Female
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/physiology
- Gene Expression Regulation
- Humans
- Immunoprecipitation
- Luciferases
- Melatonin/physiology
- Phosphorus Radioisotopes
- Radioimmunoassay
- Receptor, Melatonin, MT1/physiology
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Thyroid Hormone/genetics
- Retinoic Acid Receptor alpha
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Ling Lai
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Lin Yuan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Qi Chen
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chunmin Dong
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Lulu Mao
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Brian Rowan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tripp Frasch
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Steven M. Hill
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
33
|
|
34
|
Korkmaz A, Sanchez-Barcelo EJ, Tan DX, Reiter RJ. Role of melatonin in the epigenetic regulation of breast cancer. Breast Cancer Res Treat 2008; 115:13-27. [PMID: 18592373 DOI: 10.1007/s10549-008-0103-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 06/12/2008] [Indexed: 11/24/2022]
Abstract
The oncostatic properties of melatonin as they directly or indirectly involve epigenetic mechanisms of cancer are reviewed with a special focus on breast cancer. Five lines of evidence suggest that melatonin works via epigenetic processes: (1) melatonin influences transcriptional activity of nuclear receptors (ERalpha, GR and RAR) involved in the regulation of breast cancer cell growth; (2) melatonin down-regulates the expression of genes responsible for the local synthesis or activation of estrogens including aromatase, an effect which may be mediated by methylation of the CYP19 gene or deacetylation of CYP19 histones; (3) melatonin inhibits telomerase activity and expression induced by either natural estrogens or xenoestrogens; (4) melatonin modulates the cell cycle through the inhibition of cyclin D1 expression; (5) melatonin influences circadian rhythm disturbances dependent on alterations of the light/dark cycle (i.e., light at night) with the subsequent deregulation of PER2 which acts as a tumor suppressor gene.
Collapse
Affiliation(s)
- Ahmet Korkmaz
- Department of Physiology, School of Medicine, Gulhane Military Medical Academy, Ankara, Turkey.
| | | | | | | |
Collapse
|
35
|
Quiros I, Mayo JC, Garcia-Suarez O, Hevia D, Martin V, Rodríguez C, Sainz RM. Melatonin prevents glucocorticoid inhibition of cell proliferation and toxicity in hippocampal cells by reducing glucocorticoid receptor nuclear translocation. J Steroid Biochem Mol Biol 2008; 110:116-24. [PMID: 18395440 DOI: 10.1016/j.jsbmb.2008.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 12/17/2007] [Accepted: 02/22/2008] [Indexed: 11/19/2022]
Abstract
Glucocorticoids are the main product of the adrenal cortex and participate in multiple cell functions as immunosupressors and modulators of neural function. Within the brain, glucocorticoid activity is mediated by high-affinity mineralocorticoid and low-affinity glucocorticoid receptors. Among brain cells, hippocampal cells are rich in glucocorticoid receptors where they regulate excitability and morphology. Also, elevated glucocorticoid levels suppress hippocampal neurogenesis in adults. The pineal neuroindole, melatonin, reduces the affinity of glucocorticoid receptors in rat brain and prevents glucocorticoid-induced apoptosis. Here, the ability of melatonin to prevent glucocorticoid-induced cell death in hippocampal HT22 cells was investigated in the presence of neurotoxins. Results showed that glucocorticoids reduce cellular growth and also enhance sensitivity to neurotoxins. We found a G(1) cell cycle arrest mediated by an increase of cyclin/cyclin-dependent kinase inhibitor p21(WAF1/CIP1) protein after dexamethasone treatment and incremental change in amyloid beta protein and glutamate toxicity. Melatonin prevents glucocorticoids inhibition of cell proliferation and reduces the toxicity caused by glucocorticoids when cells were treated with dexamethasone in combination with neurotoxins. Although, melatonin does not reduce glucocorticoid receptor mRNA or protein levels, it decreases receptor translocation to nuclei in these cells.
Collapse
Affiliation(s)
- Isabel Quiros
- Departamento de Morfología y Biología Celular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Facultad de Medicina, Julian Claveria 6, 330006 Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Melatonin, the chief secretory product of the pineal gland, has long been known to modulate hair growth, pigmentation and/or molting in many species, presumably as a key neuroendocrine regulator that couples coat phenotype and function to photoperiod-dependent environmental and reproductive changes. However, the detailed effects and mechanisms of this surprisingly pleiotropic indole on the hair follicle (HF) regarding growth control and pigmentation have not yet been completely understood. While unspecific melatonin binding sites have long been identified (e.g., in goat and mouse HFs), specific melatonin membrane MT2 receptor transcripts and both protein and mRNA expression for a specific nuclear melatonin binding site [retinoid-related orphan receptor alpha (RORalpha)] have only recently been identified in murine HFs. MT1, known to be expressed in human skin cells, is not transcribed in mouse skin. After initial enzymologic data from hamster skin related to potential intracutaneous melatonin synthesis, it has recently been demonstrated that murine and human skin, namely human scalp HFs in anagen, are important sites of extrapineal melatonin synthesis. Moreover, HF melatonin production is enhanced by catecholamines (as it classically occurs in the pineal gland). Melatonin may also functionally play a role in hair-cycle control, as it down-regulates both apoptosis and estrogen receptor-alpha expression, and modulates MT2 and RORalpha expression in murine skin in a hair-cycle-dependent manner. Because of melatonin's additional potency as a free radical scavenger and DNA repair inducer, the metabolically and proliferatively highly active anagen hair bulb may also exploit melatonin synthesis in loco as a self-cytoprotective strategy.
Collapse
Affiliation(s)
- Tobias W Fischer
- Department of Dermatology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | | | | | | |
Collapse
|
37
|
Trainor BC, Finy MS, Nelson RJ. Rapid effects of estradiol on male aggression depend on photoperiod in reproductively non-responsive mice. Horm Behav 2008; 53:192-9. [PMID: 17976598 PMCID: PMC2190085 DOI: 10.1016/j.yhbeh.2007.09.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/12/2007] [Accepted: 09/21/2007] [Indexed: 10/22/2022]
Abstract
In three genuses and four species of rodents, housing in winter-like short days (8L:16D) increases male aggressive behavior. In all of these species, males undergo short-day induced regression of the reproductive system. Some studies, however, suggest that the effect of photoperiod on aggression may be independent of reproductive responses. We examined the effects of photoperiod on aggressive behavior in California mice (Peromyscus californicus), which do not display reproductive responsiveness to short days. As expected, short days had no effect on plasma testosterone. Estrogen receptor alpha and estrogen receptor beta immunostaining did not differ in the lateral septum, medial preoptic area, bed nucleus of the stria terminalis, or medial amygdala. However, males housed in short days were significantly more aggressive than males housed in long days. Similar to previous work in beach mice (Peromyscus polionotus), estradiol rapidly increased aggression when male California mice were housed in short days but not when housed in long days. These data suggest that the effects of photoperiod on aggression and estrogen signaling are independent of reproductive responses. The rapid action of estradiol on aggression in short-day mice also suggests that nongenomic mechanisms mediate the effects of estrogens in short days.
Collapse
Affiliation(s)
- Brian C Trainor
- Department of Psychology, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
38
|
Abstract
Glucocorticoids (GCs) are provided as co-medication with chemotherapy in breast cancer, albeit
several lines of evidence indicate that their use may have diverse effects and in fact may inhibit
chemosensitivity. The molecular basis of GC-induced resistance to chemotherapy in breast cancer
remains poorly defined. Recent researchers, in an attempt to clarify some aspects of the underlying
pathways, provide convincing evidence that GCs induce effects that are dependent upon the
glucocorticoid-receptor (GR)-mediated transcriptional regulation of specific genes known to play key
roles in cellular/tissue functions, including growth, apoptosis, differentiation, metastasis and
cell survival. In this review, we focus on how GC-induced chemoresistance in breast cancer is
mediated by the GR, unravelling the molecular interplay of GR signalling with other signalling
cascades prevalent in breast cancer. We also include a detailed description of GR structure and
function, summarizing data gained during recent years into the mechanism(s) of the cross-talk
between the GR and other signalling cascades and secondary messengers, via which
GCs exert their pleiotropic effects.
Collapse
Affiliation(s)
- Paraskevi Moutsatsou
- Department of Biological Chemistry, Medical School, University of Athens, Athens, Greece.
| | | |
Collapse
|
39
|
Wu PW, Cheng YM, Hsieh WT, Wang YH, Wei CY, Chou PT. 7-Azamelatonin: Efficient Synthetic Routes, Excited-State Double Proton Transfer Properties and Biomedical Implications. ChemMedChem 2007; 2:1071-5. [PMID: 17477342 DOI: 10.1002/cmdc.200700043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
On the basis of a seven-step synthetic route, the total synthesis of 7-azamelatonin, an analogue of melatonin, has been achieved with an overall yield of approximately 9.2%. In aqueous solution, 7-azamelatonin exhibits a unique excited-state double proton transfer (ESDPT) property, resulting in dual emission bands (405 and 560 nm). The ESDPT property makes 7-azamelatonin superb as a potential molecular probe for future bioapplication and for pharmacological research.
Collapse
Affiliation(s)
- Pei-Wen Wu
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
The aim of the present study was to determine the existence of melatonin membrane receptors and to examine the mRNA expression of nuclear orphan receptors in human pancreatic tissue, in an effort to explain differences between type 2 diabetic and metabolically healthy patients. Molecular and immunocytochemical investigations established the presence of the melatonin membrane receptors MT1 and MT2 in human pancreatic tissue and, notably, also in the islets of Langerhans. Results of a calculation model to determine mRNA expression ratios, as well as subjective analysis of immunoreactions, showed elevated MT1 receptor expression in comparison with MT2 expression. mRNA transcript levels of melatonin receptors appeared to be significantly higher in type 2 diabetic patients than in a control group. An upregulation of receptor expression in type 2 diabetic patients was also observed in immunocytochemical investigations. In addition, transcripts of the nuclear orphan receptors RORalpha, RZRbeta, RORgamma and RevErbalpha were detected in human pancreatic tissue and islets. In correlation with membrane melatonin receptors, data indicate increased mRNA expression levels of RORalpha, RZRbeta, and RORgamma in type 2 diabetic patients. Thus, our data demonstrate the existence of the melatonin membrane receptors MT1 and MT2 as well as mRNA expression of nuclear orphan receptors in human pancreatic tissue, with upregulated expression levels in type 2 diabetic patients.
Collapse
MESH Headings
- Adult
- Aged
- Base Sequence
- Case-Control Studies
- DNA Primers/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Female
- Humans
- Immunohistochemistry
- Male
- Melatonin/metabolism
- Middle Aged
- Nuclear Receptor Subfamily 1, Group D, Member 1
- Nuclear Receptor Subfamily 1, Group F, Member 1
- Nuclear Receptor Subfamily 1, Group F, Member 2
- Nuclear Receptor Subfamily 1, Group F, Member 3
- Pancreas/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Trans-Activators/genetics
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- Elmar Peschke
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Yang QH, Xu JN, Xu RK, Pang SF. Antiproliferative effects of melatonin on the growth of rat pituitary prolactin-secreting tumor cells in vitro. J Pineal Res 2007; 42:172-9. [PMID: 17286750 DOI: 10.1111/j.1600-079x.2006.00403.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Earlier studies showed that melatonin reduced the growth of 17-beta-estradiol (E(2))-induced rat pituitary prolactin-secreting tumor (prolactinoma) in vivo. The mechanisms of melatonin's inhibitory action on the prolactin-secreting tumor were further explored by investigating the in vitro effects of melatonin on the growth of pituitary prolactin-secreting tumor cells. Primary cultured prolactinoma cells from E(2)-induced rat pituitary prolactin-secreting tumor were treated with 10(-5), 10(-4) or 10(-3) m melatonin for 5 days. Apoptosis was evaluated using flow cytometry and the TdT-mediated dUTP nick-end labeling (TUNEL) method. In addition, cell viability was analyzed by (3,4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. It was found that incubation of prolactinoma cells with 10(-5), 10(-4) or 10(-3) m melatonin for 5 days inhibited cell growth and increased cell apoptosis. Furthermore, melatonin increased caspase-3 activity, Bax mRNA expression, and cytochrome c protein expression. Conversely, Bcl-2 mRNA expression and mitochondrial membrane potential were inhibited by melatonin treatment. Our results further suggest that melatonin inhibits tumor growth by inducing apoptosis of rat pituitary prolactin-secreting tumor directly via the damage of mitochondria.
Collapse
Affiliation(s)
- Quan-Hui Yang
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | | | | | | |
Collapse
|
42
|
New DC, Wong YH. Molecular mechanisms mediating the G protein-coupled receptor regulation of cell cycle progression. J Mol Signal 2007; 2:2. [PMID: 17319972 PMCID: PMC1808056 DOI: 10.1186/1750-2187-2-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 02/26/2007] [Indexed: 12/27/2022] Open
Abstract
G protein-coupled receptors are key regulators of cellular communication, mediating the efficient coordination of a cell's responses to extracellular stimuli. When stimulated these receptors modulate the activity of a wide range of intracellular signalling pathways that facilitate the ordered development, growth and reproduction of the organism. There is now a growing body of evidence examining the mechanisms by which G protein-coupled receptors are able to regulate the expression, activity, localization and stability of cell cycle regulatory proteins that either promote or inhibit the initiation of DNA synthesis. In this review, we will detail the intracellular pathways that mediate the G protein-coupled receptor regulation of cellular proliferation, specifically the progression from the G1 phase to the S phase of the cell cycle.
Collapse
Affiliation(s)
- David C New
- Department of Biochemistry, the Molecular Neuroscience Center, and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clearwater Bay, Hong Kong, China
| | - Yung H Wong
- Department of Biochemistry, the Molecular Neuroscience Center, and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clearwater Bay, Hong Kong, China
| |
Collapse
|