1
|
Li D, Pan JH, Huang XF, Liao YQ, Ling YJ, Luo JY. Effect of melatonin on oxidative stress indicators in animal models of fibrosis: A systematic review and meta-analysis. Free Radic Biol Med 2023; 195:158-177. [PMID: 36586451 DOI: 10.1016/j.freeradbiomed.2022.12.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Imbalance of oxidative stress has been detected in a range of fibrotic diseases. Melatonin as an indoleamine hormone plays an important role in regulating the circadian rhythm of human, while in recent years, its antioxidant effect has also attracted increasing attention. This study aimed to perform a systematic review and meta-analysis to comprehensively evaluate the antioxidant effect of melatonin in animal models of fibrosis. METHODS The PubMed, Cochrane Library, EMBASE, Web of Science, China National Knowledge Infrastructure (CNKI), Wanfang database, China Science and Technology Journal Database (VIP), and SinoMed databases were searched from inception to March 1st, 2022 to retrieve eligible studies that evaluated the effect of melatonin supplementation on the levels of malondialdehyde (MDA), lipid peroxidation (LPO), nitric oxide (NO), superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx), and catalase (CAT) in animal models of fibrosis. RESULTS A total of 64 studies were included in this meta-analysis. The results showed that melatonin supplementation significantly reduced the levels of oxidative indicators including MDA (P < 0.00001), LPO (P < 0.00001) and NO (P < 0.0001), and elevated the levels of antioxidant indicators including GSH (P < 0.00001), GPx (P < 0.00001) and SOD (P < 0.00001) in fibrotic diseases. CONCLUSIONS Our research findings showed that melatonin supplementation could significantly reduce the levels of oxidative indicators including MDA, LPO and NO and elevate the levels of antioxidant indicators including GSH, GPx and SOD so as to correct oxidative stress in animal models of fibrosis. However, no significant changes were observed in CAT level. More clinical studies are needed to further confirm the beneficial role of melatonin in fibrotic diseases.
Collapse
Affiliation(s)
- Dan Li
- Department of Dermatology, The Second Affiliated Hospital of Guilin Medical University, 212 Ren-Min Road, Guilin, Guangxi, 541199, China
| | - Jun-Hua Pan
- Department of Dermatology, The Second Affiliated Hospital of Guilin Medical University, 212 Ren-Min Road, Guilin, Guangxi, 541199, China
| | - Xiao-Fang Huang
- Department of Dermatology, The Second Affiliated Hospital of Guilin Medical University, 212 Ren-Min Road, Guilin, Guangxi, 541199, China
| | - Yu-Qing Liao
- Department of Dermatology, The Second Affiliated Hospital of Guilin Medical University, 212 Ren-Min Road, Guilin, Guangxi, 541199, China
| | - Yong-Jin Ling
- Department of Dermatology, The Second Affiliated Hospital of Guilin Medical University, 212 Ren-Min Road, Guilin, Guangxi, 541199, China
| | - Jing-Ying Luo
- Department of Dermatology, The Second Affiliated Hospital of Guilin Medical University, 212 Ren-Min Road, Guilin, Guangxi, 541199, China.
| |
Collapse
|
2
|
Vaghari-Tabari M, Moein S, Alipourian A, Qujeq D, Malakoti F, Alemi F, Yousefi B, Khazaie S. Melatonin and inflammatory bowel disease: From basic mechanisms to clinical application. Biochimie 2022; 209:20-36. [PMID: 36535545 DOI: 10.1016/j.biochi.2022.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/25/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease is a chronic inflammatory disease and has periods of recurrence and remission. Improper immune responses to gut flora bacteria, along with genetic susceptibility, appear to be involved in causing this complex disease. It seems dysbiosis and oxidative stress may also be involved in IBD pathogenesis. A significant number of clinical studies have shown an interesting association between sleep disturbances and IBD. Studies in animal models have also shown that sleep deprivation has a significant effect on the pathogenesis of IBD and can aggravate inflammation. These interesting findings have drawn attention to melatonin, a sleep-related hormone. Melatonin is mainly produced by the pineal gland, but many tissues in the body, including the intestines, can produce it. Melatonin can have an interesting effect on the pathogenesis of IBD. Melatonin can enhance the intestinal mucosal barrier, alter the composition of intestinal bacteria in favor of bacteria with anti-inflammatory properties, regulate the immune response, alleviate inflammation and attenuate oxidative stress. It seems that, melatonin supplementation is effective in relieving inflammation and healing intestinal ulcers in IBD animal models. Some clinical studies have also shown that melatonin supplementation as an adjuvant therapy may be helpful in reducing disease activity in IBD patients. In this review article, in addition to reviewing the effects of sleep disturbances and melatonin on key mechanisms involved in the pathogenesis of IBD, we will review the findings of clinical studies regarding the effects of melatonin supplementation on IBD treatment.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Alipourian
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Faezeh Malakoti
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sepideh Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Rius-Gordillo N, Ferré N, González JD, Ibars Z, Parada-Ricart E, Fraga MG, Chocron S, Samper M, Vicente C, Fuertes J, Escribano J. Dexamethasone to prevent kidney scarring in acute pyelonephritis: a randomized clinical trial. Pediatr Nephrol 2022; 37:2109-2118. [PMID: 35041042 PMCID: PMC9307518 DOI: 10.1007/s00467-021-05398-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 10/25/2022]
Abstract
BACKGROUND Urinary tract infection (UTI) is one of the most common bacterial infections in childhood and is associated with long-term complications. We aimed to assess the effect of adjuvant dexamethasone treatment on reducing kidney scarring after acute pyelonephritis (APN) in children. METHODS Multicenter, prospective, double-blind, placebo-controlled, randomized clinical trial (RCT) where children from 1 month to 14 years of age with proven APN were randomly assigned to receive a 3-day course of either an intravenous corticosteroid (dexamethasone 0.30 mg per kg/day) twice daily or placebo. The late technetium 99 m-dimercaptosuric acid scintigraphy (> 6 months after acute episode) was performed to assess kidney scar persistence. Kidney scarring risk factors (vesicoureteral reflux, kidney congenital anomalies, or urinary tract dilatation) were also assessed. RESULTS Ninety-one participants completed the follow-up and were finally included (dexamethasone n = 49 and placebo n = 42). Both groups had similar baseline characteristics. Twenty participants showed persistent kidney scarring after > 6 months of follow-up without differences in incidence between groups (22% and 21% in the dexamethasone and placebo groups, p = 0.907). Renal damage severity in the early DMSA (β = 0.648, p = 0.023) and procalcitonin values (β = 0.065 p = 0.027) significantly modulated scar development. Vesicoureteral reflux grade showed a trend towards significance (β = 0.545, p = 0.054), but dexamethasone treatment showed no effect. CONCLUSION Dexamethasone showed no effect on reducing the risk of scar formation in children with APN. Hence, there is no evidence for an adjuvant corticosteroid treatment recommendation in children with APN. However, the study was limited by not achieving the predicted sample size and the expected scar formation. TRIAL REGISTRATION Clinicaltrials.gov, NCT02034851. Registered in January 14, 2014. "A higher resolution version of the Graphical abstract is available as Supplementary information."
Collapse
Affiliation(s)
- Neus Rius-Gordillo
- Pediatrics Unit, Hospital Universitari Sant Joan de Reus, Reus, Spain
- Pediatric Nutrition and Human Development Research Unit, Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitaria Pere Virgili, Tarragona, Spain
| | - Natàlia Ferré
- Pediatrics Unit, Hospital Universitari Sant Joan de Reus, Reus, Spain
- Institut d'Investigació Sanitaria Pere Virgili, Tarragona, Spain
| | - Juan David González
- Pediatrics Unit, Hospital General Universitario Santa Lucia, Cartagena, Spain
| | - Zaira Ibars
- Pediatrics Unit, Hospital Universitari Arnau de Vilanova, 25198, Lleida, Spain
| | - Ester Parada-Ricart
- Pediatric Nutrition and Human Development Research Unit, Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitaria Pere Virgili, Tarragona, Spain
- Pediatrics Unit, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | | | - Sara Chocron
- Pediatrics Unit, Hospital Universitari General Catalunya, Sant Cugat, Spain
| | - Manuel Samper
- Pediatrics Unit, Pius Hospital de Valls, Valls, Spain
| | - Carmen Vicente
- Nephrology Department, Pediatrics Service, Hospital Clínico Universitario Virgen de La Arrixaca, Murcia, Spain
| | - Jordi Fuertes
- Nuclear Medicine Service, Hospital Universitari Sant Joan de Reus, Reus, Spain
| | - Joaquín Escribano
- Pediatrics Unit, Hospital Universitari Sant Joan de Reus, Reus, Spain.
- Pediatric Nutrition and Human Development Research Unit, Universitat Rovira i Virgili, Reus, Spain.
- Institut d'Investigació Sanitaria Pere Virgili, Tarragona, Spain.
- Institut d'Investigació Sanitaria Pere Virgili, Sant Lloreç 21, 43201, Reus, Spain.
| |
Collapse
|
4
|
Li H, Sun P. Insight of Melatonin: The Potential of Melatonin to Treat Bacteria-Induced Mastitis. Antioxidants (Basel) 2022; 11:antiox11061107. [PMID: 35740004 PMCID: PMC9219804 DOI: 10.3390/antiox11061107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Bovine mastitis is a common inflammatory disease, mainly induced by bacterial pathogens, such as Staphylococcus aureus, Escherichia coli, and Streptococcus agalactiae. Mastitis has negative effects on the production and quality of milk, resulting in huge economic losses. Melatonin, which is synthesized and secreted by the pineal gland and other organs, is ubiquitous throughout nature and has different effects on different tissues. Melatonin is crucial in modulating oxidative stress, immune responses, and cell autophagy and apoptosis, via receptor-mediated or receptor-independent signaling pathways. The potent antioxidative and anti-inflammatory activities of melatonin and its metabolites suggest that melatonin can be used to treat various infections. This article reviews the potential for melatonin to alleviate bovine mastitis through its pleiotropic effect on reducing oxidative stress, inhibiting pro-inflammatory cytokines, and regulating the activation of NF-κB, STATs, and their cascade reactions. Therefore, it is promising that melatonin supplementation may be an alternative to antibiotics for the treatment of bovine mastitis.
Collapse
|
5
|
Sedighi I, Taheri-Moghadam G, Emad-Momtaz H, Vaseghi G, Eshraghi A, Asnaashari F, Mehrpooya M. Protective Effects of Omega-3 Fatty Acids Supplementation Against Renal Parenchymal Scarring in Children with Acute Pyelonephritis: Results of a Pilot Clinical Trial. Curr Pediatr Rev 2022; 18:72-81. [PMID: 34503428 DOI: 10.2174/1573396317666210909153643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/05/2021] [Accepted: 06/30/2021] [Indexed: 11/22/2022]
Abstract
AIM This trial aimed to determine if supplementation with omega-3 fatty acids as an adjunct therapy to antibiotic treatment can have protective effects against renal scar formation after acute pyelonephritis (APN) in pediatric patients. BACKGROUND Current evidence points out that besides antibiotic treatment, early administration of antioxidant and anti-inflammatory compounds may be effective in reducing the occurrence of renal damage following APN in children. OBJECTIVE The main endpoint of the trial was the comparison of the development of renal scarring formation after APN in an omega-3 fatty acids-treated group and in a control-treated group. METHODS This prospective randomized, controlled trial study was conducted from March 2016 to May 2018 on 60 children with a diagnosis APN in a tertiary hospital in Iran. After the diagnosis of APN based on the clinical signs and symptoms, urine analysis, urine culture, and dimercaptosuccinic acid renal scan (DMSA scan), the patients were randomly allocated into either the control group (n=30 patients: received standard antibiotic treatment only) or the intervention group (n=30 patients: received standard antibiotic-treatment in combination with oral omega-3 fatty acids based on the children's weight for three consecutive days). A second DMSA scan was performed for the patients at a minimum of six months after treatment. The development of renal scars was evaluated by comparing the baseline DMSA scan lesions with the follow-up DMSA scan lesions. RESULTS Fifty patients, including 26 and 24 individuals in the control and intervention groups, respectively, completed the entire course of the study. Renal parenchymal involvement based on the baseline DMSA scan was similar in the two groups (p-value =0.85, 0.90, and 0.53 regarding the right, left, and both kidney units together, respectively). Although comparison of the follow-up DMSA scan lesions to the baseline DMSA scan lesions considering the right and left kidneys as separate units between two groups did not reach the significant level, when considering both left and right kidney units together, results showed a statistically significant difference between groups in favor of the intervention group (p-value =0.04). CONCLUSION Although preliminary, the results of this study showed that administration of omega-3 fatty acids, a natural supplement with well-known anti-inflammatory and antioxidant properties, as an adjunct therapy to standard antibiotic treatment might significantly reduce the incidence of the occurrence renal scarring following APN in children. Confirmation of these results requires further studies.
Collapse
Affiliation(s)
- Iraj Sedighi
- Pediatrics Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghazal Taheri-Moghadam
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Emad-Momtaz
- Division of Pediatric Nephrology, Besat Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Golnaz Vaseghi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Eshraghi
- Department of Clinical Pharmacy, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Asnaashari
- Department of Community and Preventive Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Mehrpooya
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Won E, Na KS, Kim YK. Associations between Melatonin, Neuroinflammation, and Brain Alterations in Depression. Int J Mol Sci 2021; 23:ijms23010305. [PMID: 35008730 PMCID: PMC8745430 DOI: 10.3390/ijms23010305] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 12/14/2022] Open
Abstract
Pro-inflammatory systemic conditions that can cause neuroinflammation and subsequent alterations in brain regions involved in emotional regulation have been suggested as an underlying mechanism for the pathophysiology of major depressive disorder (MDD). A prominent feature of MDD is disruption of circadian rhythms, of which melatonin is considered a key moderator, and alterations in the melatonin system have been implicated in MDD. Melatonin is involved in immune system regulation and has been shown to possess anti-inflammatory properties in inflammatory conditions, through both immunological and non-immunological actions. Melatonin has been suggested as a highly cytoprotective and neuroprotective substance and shown to stimulate all stages of neuroplasticity in animal models. The ability of melatonin to suppress inflammatory responses through immunological and non-immunological actions, thus influencing neuroinflammation and neurotoxicity, along with subsequent alterations in brain regions that are implicated in depression, can be demonstrated by the antidepressant-like effects of melatonin. Further studies that investigate the associations between melatonin, immune markers, and alterations in the brain structure and function in patients with depression could identify potential MDD biomarkers.
Collapse
Affiliation(s)
- Eunsoo Won
- Department of Psychiatry, Chaum, Seoul 06062, Korea;
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon 21565, Korea;
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea
- Correspondence:
| |
Collapse
|
7
|
He F, Wu X, Zhang Q, Li Y, Ye Y, Li P, Chen S, Peng Y, Hardeland R, Xia Y. Bacteriostatic Potential of Melatonin: Therapeutic Standing and Mechanistic Insights. Front Immunol 2021; 12:683879. [PMID: 34135911 PMCID: PMC8201398 DOI: 10.3389/fimmu.2021.683879] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Diseases caused by pathogenic bacteria in animals (e.g., bacterial pneumonia, meningitis and sepsis) and plants (e.g., bacterial wilt, angular spot and canker) lead to high prevalence and mortality, and decomposition of plant leaves, respectively. Melatonin, an endogenous molecule, is highly pleiotropic, and accumulating evidence supports the notion that melatonin's actions in bacterial infection deserve particular attention. Here, we summarize the antibacterial effects of melatonin in vitro, in animals as well as plants, and discuss the potential mechanisms. Melatonin exerts antibacterial activities not only on classic gram-negative and -positive bacteria, but also on members of other bacterial groups, such as Mycobacterium tuberculosis. Protective actions against bacterial infections can occur at different levels. Direct actions of melatonin may occur only at very high concentrations, which is at the borderline of practical applicability. However, various indirect functions comprise activation of hosts' defense mechanisms or, in sepsis, attenuation of bacterially induced inflammation. In plants, its antibacterial functions involve the mitogen-activated protein kinase (MAPK) pathway; in animals, protection by melatonin against bacterially induced damage is associated with inhibition or activation of various signaling pathways, including key regulators such as NF-κB, STAT-1, Nrf2, NLRP3 inflammasome, MAPK and TLR-2/4. Moreover, melatonin can reduce formation of reactive oxygen and nitrogen species (ROS, RNS), promote detoxification and protect mitochondrial damage. Altogether, we propose that melatonin could be an effective approach against various pathogenic bacterial infections.
Collapse
Affiliation(s)
- Fang He
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoyan Wu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yikun Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yuyi Ye
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Pan Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Shuai Chen
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yuanyi Peng
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Zefferino R, Di Gioia S, Conese M. Molecular links between endocrine, nervous and immune system during chronic stress. Brain Behav 2021; 11:e01960. [PMID: 33295155 PMCID: PMC7882157 DOI: 10.1002/brb3.1960] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/17/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The stress response is different in various individuals, however, the mechanisms that could explain these distinct effects are not well known and the molecular correlates have been considered one at the time. Particular harmful conditions occur if the subject, instead to cope the stressful events, succumb to them, in this case, a cascade reaction happens that through different signaling causes a specific reaction named "sickness behaviour." The aim of this article is to review the complex relations among important molecules belonging to Central nervous system (CNS), immune system (IS), and endocrine system (ES) during the chronic stress response. METHODS After having verified the state of art concerning the function of cortisol, norepinephrine (NE), interleukin (IL)-1β and melatonin, we describe as they work together. RESULTS We propose a speculative hypothesis concerning the complex interplay of these signaling molecules during chronic stress, highlighting the role of IL-1β as main biomarker of this effects, indeed, during chronic stress its increment transforms this inflammatory signal into a nervous signal (NE), in turn, this uses the ES (melatonin and cortisol) to counterbalance again IL-1β. During cortisol resistance, a vicious loop occurs that increments all mediators, unbalancing IS, ES, and CNS networks. This IL-1β increase would occur above all when the individual succumbs to stressful events, showing the Sickness Behaviour Symptoms. IL-1β might, through melatonin and vice versa, determine sleep disorders too. CONCLUSION The molecular links here outlined could explain how stress plays a role in etiopathogenesis of several diseases through this complex interplay.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
9
|
Parlakpinar H, Polat S, Acet HA. Pharmacological agents under investigation in the treatment of coronavirus disease 2019 and the importance of melatonin. Fundam Clin Pharmacol 2021; 35:62-75. [PMID: 32657483 PMCID: PMC7405383 DOI: 10.1111/fcp.12589] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a life-threatening infectious respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 pandemic causing morbidities and even deaths worldwide revealed that there is urgent need to find pharmacological agents or vaccines. Although there are a lot of agents under investigation, there is no approved agent for the prevention or treatment of the COVID-19 yet. Treatment of patients remains mainly supportive as well as compassionate use of the agents under investigation. It is well established that excessive inflammatory and immune response and oxidative injury play a critical role in the pathogenesis of COVID-19. In this review, we aimed to update knowledge about pathogenesis, clinical features, and pharmacological treatment of COVID-19 and review the potential beneficial effects of ancient antioxidant, anti-inflammatory, and immunomodulatory molecule melatonin for prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Hakan Parlakpinar
- Department of Medical PharmacologyFaculty of MedicineInonu UniversityMalatyaTurkey
| | - Seyhan Polat
- Department of Medical PharmacologyFaculty of MedicineInonu UniversityMalatyaTurkey
| | - Haci Ahmet Acet
- Department of Medical PharmacologyFaculty of MedicineInonu UniversityMalatyaTurkey
| |
Collapse
|
10
|
Ruiz-Rosado JDD, Robledo-Avila F, Cortado H, Rangel-Moreno J, Justice SS, Yang C, Spencer JD, Becknell B, Partida-Sanchez S. Neutrophil-Macrophage Imbalance Drives the Development of Renal Scarring during Experimental Pyelonephritis. J Am Soc Nephrol 2021; 32:69-85. [PMID: 33148615 PMCID: PMC7894670 DOI: 10.1681/asn.2020030362] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/13/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND In children, the acute pyelonephritis that can result from urinary tract infections (UTIs), which commonly ascend from the bladder to the kidney, is a growing concern because it poses a risk of renal scarring and irreversible loss of kidney function. To date, the cellular mechanisms underlying acute pyelonephritis-driven renal scarring remain unknown. METHODS We used a preclinical model of uropathogenic Escherichia coli-induced acute pyelonephritis to determine the contribution of neutrophils and monocytes to resolution of the condition and the subsequent development of kidney fibrosis. We used cell-specific monoclonal antibodies to eliminate neutrophils, monocytes, or both. Bacterial ascent and the cell dynamics of phagocytic cells were assessed by biophotonic imaging and flow cytometry, respectively. We used quantitative RT-PCR and histopathologic analyses to evaluate inflammation and renal scarring. RESULTS We found that neutrophils are critical to control bacterial ascent, which is in line with previous studies suggesting a protective role for neutrophils during a UTI, whereas monocyte-derived macrophages orchestrate a strong, but ineffective, inflammatory response against uropathogenic, E. coli-induced, acute pyelonephritis. Experimental neutropenia during acute pyelonephritis resulted in a compensatory increase in the number of monocytes and heightened macrophage-dependent inflammation in the kidney. Exacerbated macrophage-mediated inflammatory responses promoted renal scarring and compromised renal function, as indicated by elevated serum creatinine, BUN, and potassium. CONCLUSIONS These findings reveal a previously unappreciated outcome for neutrophil-macrophage imbalance in promoting host susceptibility to acute pyelonephritis and the development of permanent renal damage. This suggests targeting dysregulated macrophage responses might be a therapeutic tool to prevent renal scarring during acute pyelonephritis.
Collapse
Affiliation(s)
- Juan de Dios Ruiz-Rosado
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Hanna Cortado
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester, Rochester, New York
| | - Sheryl S. Justice
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Ching Yang
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,Department of Veterinary Bioscience, The Ohio State University, Columbus, Ohio
| | - John David Spencer
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,Division of Nephrology, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Brian Becknell
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,Division of Nephrology, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
11
|
Khan AM, Khan AU, Ali H, Islam SU, Seo EK, Khan S. Continentalic acid exhibited nephroprotective activity against the LPS and E. coli-induced kidney injury through inhibition of the oxidative stress and inflammation. Int Immunopharmacol 2020; 80:106209. [PMID: 32004924 DOI: 10.1016/j.intimp.2020.106209] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/25/2022]
Abstract
The present study investigated the effect of the continentalic acid (CNT) isolated from the Aralia Continentalis against the LPS and E. coli-induced nephrotoxicity. The LPS and E. coli administration markedly altered the behavioral parameters including spontaneous pain, tail suspension and survival rate. However, the treatment with CNT dose dependently improved the behavioral parameters. The CNT treatment significantly improved the renal functions test (RFTs) and hematological parameters following LPS and E. coli-induced kidney injury. Furthermore, the LPS and E. coli administration markedly compromised the anti-oxidant enzymes and enhanced the oxidative stress markers. However, the CNT treatment markedly enhanced the anti-oxidants enzymes such as GSH, GST, Catalase and SOD, while attenuated the oxidative stress markers such as MDA and POD. The MPO enzyme is widely used marker for the neutrophilic infiltration, the LPS and E. coli administration markedly increased the MPO activity. However, the CNT treatment markedly attenuated the MPO activity in both LPS and E. coli-induced kidney injury. Furthermore, the CNT treatment markedly attenuated the NO production compared to the LPS and E. coli-induced kidney injury group. Additionally, the CNT treatment improved the histological parameters markedly (H and E, PAS and Masson's trichome staining) and protect the kidney from the inflammatory insult of the LPS and E. coli evidently. The comet assay revealed marked DNA damage, however, the CNT treatment markedly prevented the LPS and E. coli-induced kidney damage. The CNT treatment markedly enhanced the expression of Nrf2, while attenuated the iNOS expression in both models of kidney injury.
Collapse
Affiliation(s)
- Amir Muhammad Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ashraf Ullah Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, South Korea
| | - Eun Kyoung Seo
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, South Korea
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
12
|
Huang YS, Lu KC, Chao TK, Chen JS, Chen A, Guo CY, Hsieh HY, Shih HM, Sytwu HK, Wu CC. Role of melatonin receptor 1A and pituitary homeobox-1 coexpression in protecting tubular epithelial cells in membranous nephropathy. J Pineal Res 2018; 65:e12482. [PMID: 29480949 DOI: 10.1111/jpi.12482] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/14/2018] [Indexed: 12/21/2022]
Abstract
Membranous nephropathy (MN), a type of glomerular nephritis, is one of the most common causes of nephrotic syndrome in adults. Although it is known that melatonin plays a protective role in MN, the role of melatonin receptors in the pathophysiology of MN is unclear. Using an experimental MN model and clinical MN specimens, we studied melatonin receptor expression and found that melatonin receptor 1A (MTNR1A) expression was significantly downregulated in renal tubular epithelial cells. Molecular studies showed that the transcription factor pituitary homeobox-1 (PITX1) promoted MTNR1A expression via direct binding to its promoter. Treatment of a human tubular cell line with albumin to induce injury resulted in the stable reduction in MTNR1A and PITX1 expression. PITX1 levels were significantly downregulated in tubular epithelial cells from mice MN kidneys and MN renal specimens. Knockdown of MTNR1A, PITX1, or cyclic adenosine monophosphate-responsive element-binding protein (CREB) decreased E-cadherin (CDH1) expression, but upregulated Per2 and α-smooth muscle actin (αSMA) expression. Blockade of the MTNR1A receptor with luzindole in MN mice further impaired renal function; this was accompanied by CDH1 downregulation and Per2 and αSMA upregulation. Together, our results suggest that in injured tissue, decreased PITX1 expression at the MTNR1A promoter regions leads to decreased levels of MTNR1A in renal tubular epithelial cells, which increases the future risk of MN.
Collapse
Affiliation(s)
- Yen-Sung Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Tai-Kuang Chao
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jin-Shuen Chen
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ann Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Yi Guo
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Yi Hsieh
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsiu-Ming Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Huey-Kang Sytwu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
13
|
Therapeutic effects of 5,2'-dibromo-2,4',5'-trihydroxydiphenylmethanone (LM49) in an experimental rat model of acute pyelonephritis by immunomodulation and anti-inflammation. Int Immunopharmacol 2018; 62:155-164. [PMID: 30007245 DOI: 10.1016/j.intimp.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 01/05/2023]
Abstract
Antibiotics are still the primary therapy for acute pyelonephritis (APN); rarely, natural polyphenols are also used. LM49 is a novel marine bromophenol derivative displaying strong anti-inflammatory effects. We investigated the therapeutic efficacy of LM49 in an experimental rat model of APN. The model was established by injecting 0.5 mL Escherichia coli (ATCC 25922, 108 CFU/mL) into the urinary bladders of Sprague Dawley rats. This model showed increased kidney viscera indices and renal bacterial growth scores, as well as pathological changes in kidneys. We also performed a broth microdilution antimicrobial susceptibility test of the E. coli strain. Both norfloxacin and LM49 treatment reduced kidney viscera indices and decreased microbial counts in urine cultures and kidney homogenates in APN rats. However, in vitro experiments showed that LM49 did not directly inhibit bacteria. Rather, LM49 treatment inhibited inflammatory cell infiltration or abscess and improved tissue lesions in the renal medullary junction, renal pelvis, and calyx, and high-dose LM49 treatment inhibited the production of inflammatory interleukin-1β (IL-1β) and interleukin-6 (IL-6) in serum. CD4+ T cells were higher in the LM49 groups treated with high, medium, and low doses than in the model group, whereas only high-dose LM49 treatment increased the number of CD8+ T cells, as compared with that in the model group. However, LM49 treatment did not influence hematological parameters. Our results show that LM49 therapeutic effects in an APN animal model may be achieved by regulating immune responses and inhibiting inflammatory mediators, suggesting it as a candidate APN treatment.
Collapse
|
14
|
Skowron B, Baranowska A, Kaszuba-Zwoińska J, Więcek G, Malska-Woźniak A, Heczko P, Strus M. Experimental model for acute kidney injury caused by uropathogenic Escherichia coli. POSTEP HIG MED DOSW 2017; 71:520-529. [PMID: 28665281 DOI: 10.5604/01.3001.0010.3833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) is the rapid deterioration of renal function, diagnosed on the basis of an increase in serum creatinine and abnormal urinary parameters. AKI is associated with increased risk of mortality or chronic kidney disease (CKD). The aim of the study was to develop an experimental model for AKI resulting from Escherichia coli-induced pyelonephritis. E. coli was isolated from a patient with clinical symptoms of urinary tract infection (UTI). MATERIAL/METHODS The study included three groups of female Wistar rats (groups 1, 2 and 3), in which pyelonephritis was induced by transurethral inoculation with highly virulent E. coli (105, 107 and 109 cfu/ml, respectively). Urine and blood samples for analysis were obtained prior to the inoculation (day 0), as well as 7, 14 and 21 days thereafter. RESULTS Aside from a microbiological examination of urine samples, daily urine output, serum creatinine (CreaS), creatinine clearance (CrCl), interleukin 6 (IL-6), fractional excretion of sodium (FENa) and fractional excretion of urea (FEUrea) were determined. A histopathological examination of kidney and urinary bladder specimens was conducted as well. While UTI-related pyelonephritis developed irrespective of E. coli inoculum size, AKI was observed only following transurethral administration of E. coli at the intermediate and high dose, i.e. 107 and 109 cfu/ml, respectively (group 2 and 3). DISCUSSION An increase in CreaS and abnormal diuresis were accompanied by changes in parameters specific for various forms of AKI, i.e. FENa and FEUrea. Based on these changes, administration of E. coli at 107 cfu/ml was demonstrated to induce renal AKI, whereas inoculation with 109 cfu/ml seemed to cause not only ascending pyelonephritis, but perhaps also bacteremia and urosepsis (prerenal component of AKI).
Collapse
Affiliation(s)
- Beata Skowron
- Department of Pathophysiology, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Baranowska
- Department of Pathophysiology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Grażyna Więcek
- Department of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Malska-Woźniak
- Department of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Heczko
- Department of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Strus
- Department of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
15
|
Petrovic S, Bogavac-Stanojevic N, Kotur-Stevuljevic J, Peco-Antic A, Ivanisevic I, Ivanisevic J, Paripovic D, Jelic-Ivanovic Z. Oxidative status parameters in children with urinary tract infection. Biochem Med (Zagreb) 2014; 24:266-72. [PMID: 24969920 PMCID: PMC4083578 DOI: 10.11613/bm.2014.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/12/2014] [Indexed: 01/29/2023] Open
Abstract
Introduction: Urinary tract infection (UTI) is one of the most common bacterial infectious diseases in children. The aim of this study was to determine the total prooxidant and antioxidant capacity of children with UTI, as well as changes of oxidative status parameters according to acute inflammation persistence and acute kidney injury (AKI) development. Materials and methods: The patients enrolled in the study comprised 50 Caucasian children (median age was 6 months) with UTI. Total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), inflammation marker C-reactive protein (CRP) and renal function parameters urea and creatinine were analyzed in patient’s serums. Results: According to duration of inflammation during UTI, TAS values were significantly higher (0.99 vs. 0.58 mmol/L, P = 0.017) and OSI values were significantly lower (0.032 vs. 0.041 AU, P = 0.037) in the subjects with longer duration of inflammation than in the subjects with shorter duration of inflammation. We did not find significant difference in basal values of oxidative status parameters according to AKI development. Conclusions: OSI values could detect the simultaneous change of TAS and TOS due to change in the oxidative-antioxidant balance during the recovery of children with UTI. TAS and OSI as markers of oxidative stress during UTI are sensitive to accompanying inflammatory condition. Further investigations are needed to evaluate whether TAS, TOS and OSI could be used to monitor disease severity in children with UTI.
Collapse
Affiliation(s)
- Stanislava Petrovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Al-Ghoul WM, Kim MS, Fazal N, Azim AC, Ali A. Evidence for simvastatin anti-inflammatory actions based on quantitative analyses of NETosis and other inflammation/oxidation markers. RESULTS IN IMMUNOLOGY 2014; 4:14-22. [PMID: 24809006 PMCID: PMC4009405 DOI: 10.1016/j.rinim.2014.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 12/25/2022]
Abstract
Simvastatin (SMV) has been shown to exhibit promising anti-inflammatory properties alongside its classic cholesterol lowering action. We tested these emerging effects in a major thermal injury mouse model (3rd degree scald, ~20% TBSA) with previously documented, inflammation-mediated intestinal defects. Neutrophil extracellular traps (NETs) inflammation measurement methods were used alongside classic gut mucosa inflammation and leakiness measurements with exogenous melatonin treatment as a positive control. Our hypothesis is that simvastatin has protective therapeutic effects against early postburn gut mucosa inflammation and leakiness. To test this hypothesis, we compared untreated thermal injury (TI) adult male mice with TI littermates treated with simvastatin (0.2 mg/kg i.p., TI + SMV) immediately following burn injury and two hours before being sacrificed the day after; melatonin-treated (Mel) (1.86 mg/kg i.p., TI + Mel) mice were compared as a positive control. Mice were assessed for the following: (1) tissue oxidation and neutrophil infiltration in terminal ileum mucosa using classic carbonyl, Gr-1, and myeloperoxidase immunohistochemical or biochemical assays, (2) NETosis in terminal ileum and colon mucosa homogenates and peritoneal and fluid blood samples utilizing flow cytometric analyses of the surrogate NETosis biomarkers, picogreen and Gr-1, and (3) transepithelial gut leakiness as measured in terminal ileum and colon with FITC-dextran and transepithelial electrical resistance (TEER). Our results reveal that simvastatin and melatonin exhibit consistently comparable therapeutic protective effects against the following: (1) gut mucosa oxidative stress as revealed in the terminal ileum by markers of protein carbonylation as well as myeloperoxidase (MPO) and Gr-1 infiltration, (2) NETosis as revealed in the gut milieu, peritoneal lavage and plasma utilizing picogreen and Gr-1 flow cytometry and microscopy, and (3) transepithelial gut leakiness as assessed in the ileum and colon by FITC-dextran leakiness and TEER. Thus, simvastatin exhibits strong acute anti-inflammatory actions associated with marked decreases in gut tissue and systemic NETosis and decreased gut mucosa leakiness.
Collapse
Affiliation(s)
- Walid M. Al-Ghoul
- Department of Biological Sciences, Chicago State University, Chicago, IL, USA
| | - Margarita S. Kim
- Department of Biological Sciences, Chicago State University, Chicago, IL, USA
| | - Nadeem Fazal
- Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University, Chicago, IL, USA
| | - Anser C. Azim
- Department of Biological Sciences, Chicago State University, Chicago, IL, USA
| | - Ashraf Ali
- Department of Biological Sciences, Chicago State University, Chicago, IL, USA
| |
Collapse
|
17
|
Akakin D, Kiran D, Ozkan N, Erşahin M, Ozdemir-Kumral ZN, Yeğen B, Şener G. Protective effects of melatonin against spinal cord injury induced oxidative damage in rat kidney: A morphological and biochemical study. Acta Histochem 2013; 115:827-34. [PMID: 23725902 DOI: 10.1016/j.acthis.2013.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/08/2013] [Accepted: 04/04/2013] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) induced oxidative stress affects multiple organ systems including the kidney. We studied the possible protective effects of melatonin on SCI-induced oxidative damage in renal tissues of rats. Wistar albino rats (n = 24) were exposed to SCI and divided into vehicle- or melatonin-treated SCI groups. Melatonin was administred intraperitoneally at a dose of 10 mg/kg for seven days. Renal tissues were investigated by light and electron microscopy. Furthermore, tissue malondialdehyde (MDA) and glutathione (GSH) levels and myeloperoxidase (MPO) and superoxide dismutase (SOD) activities were also determined. In the vehicle-treated SCI group, the renal histology was disturbed compared to controls, whereas the melatonin-treated SCI group showed significantly reduced degeneration of renal tissue as seen by both light and electron microscopy. MDA levels, MPO and SOD activities were increased and GSH levels were decreased in the vehicle-treated SCI group compared to controls. On the other hand, decreased MDA levels and MPO activities and increased GSH levels were observed in the melatonin-treated SCI group compared to vehicle-treated SCI group. These results showed that experimentally induced SCI caused oxidative stress in the rat kidney, whereas melatonin treatment reduced oxidative stress, suggesting that it may be used as a complementary therapy of renal problems occurring following SCI.
Collapse
|
18
|
Calvo JR, González-Yanes C, Maldonado MD. The role of melatonin in the cells of the innate immunity: a review. J Pineal Res 2013; 55:103-20. [PMID: 23889107 DOI: 10.1111/jpi.12075] [Citation(s) in RCA: 301] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/03/2013] [Indexed: 02/06/2023]
Abstract
Melatonin is the major secretory product synthesized and secreted by the pineal gland and shows both a wide distribution within phylogenetically distant organisms from bacteria to humans and a great functional versatility. In recent years, a considerable amount of experimental evidence has accumulated showing a relationship between the nervous, endocrine, and immune systems. The molecular basis of the communication between these systems is the use of a common chemical language. In this framework, currently melatonin is considered one of the members of the neuroendocrine-immunological network. A number of in vivo and in vitro studies have documented that melatonin plays a fundamental role in neuroimmunomodulation. Based on the information published, it is clear that the majority of the present data in the literature relate to lymphocytes; thus, they have been rather thoroughly investigated, and several reviews have been published related to the mechanisms of action and the effects of melatonin on lymphocytes. However, few studies concerning the effects of melatonin on cells belonging to the innate immunity have been reported. Innate immunity provides the early line of defense against microbes and consists of both cellular and biochemical mechanisms. In this review, we have focused on the role of melatonin in the innate immunity. More specifically, we summarize the effects and action mechanisms of melatonin in the different cells that belong to or participate in the innate immunity, such as monocytes-macrophages, dendritic cells, neutrophils, eosinophils, basophils, mast cells, and natural killer cells.
Collapse
Affiliation(s)
- Juan R Calvo
- Department Medical Biochemistry, Molecular Biology and Immunology, University of Seville Medical School, Seville, Spain.
| | | | | |
Collapse
|
19
|
Melatonin: buffering the immune system. Int J Mol Sci 2013; 14:8638-83. [PMID: 23609496 PMCID: PMC3645767 DOI: 10.3390/ijms14048638] [Citation(s) in RCA: 443] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/06/2013] [Accepted: 04/07/2013] [Indexed: 12/29/2022] Open
Abstract
Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed.
Collapse
|
20
|
Baronetti JL, Villegas NA, Aiassa V, Paraje MG, Albesa I. Hemolysin from Escherichia coli induces oxidative stress in blood. Toxicon 2013; 70:15-20. [PMID: 23567037 DOI: 10.1016/j.toxicon.2013.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 03/11/2013] [Accepted: 03/18/2013] [Indexed: 02/05/2023]
Abstract
Hemolysin (HlyA) produced by some stains of Escherichia coli is considered to be an important virulence factor of those bacteria. On the other hand, reactive oxygen species (ROS) have been reported to be involved in the pathogenesis of different diseases via oxidative stress generation. The purpose of this study was to analyze the capacity of HlyA to induce oxidative stress in whole blood cultures (WBCs). To this end, ROS production, the damage induced in lipids and proteins, and the antioxidant defense system was evaluated in blood cultures exposed to low concentrations of HlyA. We found that HlyA increased the level of free radicals detected by chemiluminescence assay. Moreover, lipid peroxidation and protein damage was significantly increased in cultures treated with HlyA in comparation with those found in control cultures. On the other hand, a decrease in total antioxidant capacity of plasma and in the activity of superoxide dismutase (SOD) was observed in plasma from blood treated with HlyA. Collectively, our data demonstrate that low concentrations of E. coli hemolysin induced oxidative stress in WBCs with the induction of different oxidative damage biomarkers.
Collapse
Affiliation(s)
- José Luis Baronetti
- Department of Pharmacy, IMBIV-CONICET, Faculty of Chemical Sciences, National University of Córdoba, Haya de la Torre y Medina Allende, University Campus, 5000 Córdoba, Argentina
| | | | | | | | | |
Collapse
|
21
|
Bertl K, Schoiber A, Haririan H, Laky M, Steiner I, Rausch WD, Andrukhov O, Rausch-Fan X. Non-surgical periodontal therapy influences salivary melatonin levels. Clin Oral Investig 2012; 17:1219-25. [PMID: 22847856 DOI: 10.1007/s00784-012-0801-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/19/2012] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Melatonin is a hormone, which is involved in the control of the circadian rhythm, but also acts as an antioxidant and immune modulator. Previous studies reported decreased salivary and serum melatonin levels in periodontitis. This prospective cohort trial assessed the effect of non-surgical periodontal therapy on melatonin levels. METHODS Salivary and serum samples of 60 participants (30 patients suffering from a severe generalized form of periodontitis, 30 healthy controls) were collected at baseline and 19 samples of periodontitis patients after treatment. Salivary and serum melatonin levels were determined by a commercially available ELISA kit and serum C-reactive protein (CRP) by a routine laboratory test. RESULTS At baseline, periodontitis patients showed significantly increased serum CRP values and significantly decreased salivary melatonin levels compared to the control group. Clinical periodontal parameters significantly correlated with salivary melatonin levels and serum CRP. Periodontal therapy resulted in a recovery of the decreased salivary melatonin levels and a negative correlation was detected for the changes of salivary melatonin and the inflammatory parameter bleeding on probing. Serum melatonin levels showed no significant differences. CONCLUSIONS Salivary melatonin levels recovered after periodontal therapy and correlated with a decrease of local periodontal inflammation. This may imply the local involvement of melatonin in the pathogenesis of periodontitis due to its antioxidant abilities. However, the exact role of melatonin in periodontal disease remains to be investigated in future trials. CLINICAL RELEVANCE The present results suggest salivary melatonin as a risk indicator for the severity of periodontal disease.
Collapse
Affiliation(s)
- Kristina Bertl
- Division of Oral Surgery, Bernhard Gottlieb School of Dentistry, Medical University of Vienna, Austria, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Induction of oxidative stress in kidney. Int J Nephrol 2012; 2012:465897. [PMID: 22577546 PMCID: PMC3345218 DOI: 10.1155/2012/465897] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/27/2012] [Accepted: 02/06/2012] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress has a critical role in the pathophysiology of several kidney diseases, and many complications of these diseases are mediated by oxidative stress, oxidative stress-related mediators, and inflammation. Several systemic diseases such as hypertension, diabetes mellitus, and hypercholesterolemia; infection; antibiotics, chemotherapeutics, and radiocontrast agents; and environmental toxins, occupational chemicals, radiation, smoking, as well as alcohol consumption induce oxidative stress in kidney. We searched the literature using PubMed, MEDLINE, and Google scholar with “oxidative stress, reactive oxygen species, oxygen free radicals, kidney, renal injury, nephropathy, nephrotoxicity, and induction”. The literature search included only articles written in English language. Letters or case reports were excluded. Scientific relevance, for clinical studies target populations, and study design, for basic science studies full coverage of main topics, are eligibility criteria for articles used in this paper.
Collapse
|
23
|
Reactive oxygen species-triggered trophoblast apoptosis is initiated by endoplasmic reticulum stress via activation of caspase-12, CHOP, and the JNK pathway in Toxoplasma gondii infection in mice. Infect Immun 2012; 80:2121-32. [PMID: 22473610 DOI: 10.1128/iai.06295-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Toxoplasma gondii infection in pregnant women may result in abortion or in fetal teratogenesis; however, the underlying mechanisms are still unclear. In this paper, based on a murine model, we showed that maternal infection with RH strain T. gondii tachyzoites induced elevated production of reactive oxygen species (ROS), local oxidative stress, and subsequent apoptosis of placental trophoblasts. PCR array analysis of 84 oxidative stress-related genes demonstrated that 27 genes were upregulated at least 2-fold and that 9 genes were downregulated at least 2-fold in the T. gondii infection group compared with levels in the control group. The expression of NADPH oxidase 1 (Nox1) and glutathione peroxidase 6 (Gpx6) increased significantly, about 25-fold. The levels of malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG) increased significantly with T. gondii infection, and levels of glutathione (GSH) decreased rapidly. T. gondii infection increased the early expression of endoplasmic reticulum stress (ERS) markers, followed by cleavage of caspase-12, activation of ASK1/JNK, and increased apoptosis of trophoblasts, both in vivo and in vitro. The apoptosis of trophoblasts, the activation of caspase-12 and the ASK1/JNK pathway, and the production of peroxides were dramatically inhibited by pretreatment with N-acetylcysteine (NAC). The upregulation of Nox1 was contact dependent and preceded the increase in levels of ERS markers and the activation of the proapoptosis cascade. Thus, we concluded that apoptosis in placental trophoblasts was initiated predominantly by ROS-mediated ERS via activation of caspase-12, CHOP, and the JNK pathway in acute T. gondii infection. Elevated ROS production is the central event in T. gondii-induced apoptosis of placental trophoblasts.
Collapse
|
24
|
Sönmez MF, Narin F, Akkuş D, Türkmen AB. Melatonin and vitamin C ameliorate alcohol-induced oxidative stress and eNOS expression in rat kidney. Ren Fail 2012; 34:480-6. [PMID: 22260528 DOI: 10.3109/0886022x.2011.649678] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the preventive effects of melatonin and vitamin C as antioxidants on renal injury in chronic alcohol consumption. MATERIALS AND METHODS A total of 24 adult male Wistar rats weighing 200-250 g were used in the study. Rats were divided into four equal groups. Group I (control): rats were not fed on alcohol; Group II: rats were fed on alcohol; Group III: rats were fed on alcohol and 40 mg/kg vitamin C; and Group IV: rats were fed on alcohol and 4 mg/kg melatonin. RESULTS Light microscopic examination revealed atrophic renal corpuscles, dilatation and congestion of the peritubular vessels, and renal corpuscles with obscure Bowman's space and a few foamy-appearing tubules due to alcohol consumption were observed. Expression of endothelial nitric oxide synthase (eNOS) was localized to glomerulus, distal, and collector tubules. eNOS staining decreased in alcohol treatment group and melatonin and vitamin C encore increased expression pattern of eNOS. Alcohol consumption increased malondialdehyde (MDA) level and superoxide dismutase (SOD) and catalase (CAT) activities significantly in the alcohol consumption groups compared with that in the control group, while in melatonin give group just MDA level was decreased statistically significant and SOD and CAT activities were also decreased numerically compared with the alcohol consumption groups. CONCLUSIONS These results indicated that chronic alcohol consumption caused renal damage by increased lipid peroxidation and melatonin and vitamin C administration produced in some degree protection against alcohol-induced damage.
Collapse
Affiliation(s)
- Mehmet Fatih Sönmez
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | | | | | | |
Collapse
|
25
|
Huang YY, Chen MJ, Chiu NT, Chou HH, Lin KY, Chiou YY. Adjunctive oral methylprednisolone in pediatric acute pyelonephritis alleviates renal scarring. Pediatrics 2011; 128:e496-504. [PMID: 21844061 DOI: 10.1542/peds.2010-0297] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To determine if glucocorticoids can prevent renal scar formation after acute pyelonephritis in pediatric patients. METHODS Patients younger than 16 years diagnosed with their first episode of acute pyelonephritis with a high risk of renal scar formation (ie, inflammatory volume ≥ 4.6 mL on technetium-99m-labeled dimercaptosuccinic acid scan [DMSA] or abnormal renal ultrasonography results) were randomly assigned to receive either antibiotics plus methylprednisolone sodium phosphate (1.6 mg/kg per day for 3 days [MPD group]) or antibiotics plus placebo (placebo group) every 6 hours for 3 days. Patients were reassessed by using DMSA 6 months after treatment. The primary outcome was the development of renal scars. RESULTS A total of 84 patients were enrolled: 19 in the MPD group and 65 in the placebo group. Patient characteristics were similar between the 2 groups, including the acute inflammatory parameters and the initial DMSA result. Renal scarring was found in 33.3% of children treated with MPD and in 60.0% of those who received placebo (P < .05). The median cortical defect volumes on follow-up DMSA were 0.0 mL (range: 0-4.5 mL) and 1.5 mL (range: 0-14.8 mL) for the MPD and placebo groups, respectively (P < .01). Patients in the MPD group experienced faster defervescence after treatment than the placebo group. CONCLUSIONS Adjunctive oral MPD therapy reduced the occurrence and/or severity of renal scarring after acute pyelonephritis in these hospitalized children who had a high risk of renal scar formation.
Collapse
Affiliation(s)
- Ya-Yun Huang
- Department of Pediatrics, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
26
|
Zhao YL, Zhou GD, Yang HB, Wang JB, Shan LM, Li RS, Xiao XH. Rhein protects against acetaminophen-induced hepatic and renal toxicity. Food Chem Toxicol 2011; 49:1705-10. [PMID: 21515333 DOI: 10.1016/j.fct.2011.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/09/2011] [Accepted: 04/11/2011] [Indexed: 02/05/2023]
Abstract
This study investigated the possible protective effects and mechanism of rhein on Acetaminophen (APAP)-induced hepatotoxicity and nephrotoxicity in rats. Treatment of rats with APAP resulted in severe liver and kidney injuries, as demonstrated by drastic elevation of serum glutamate-pyruvate transaminase (GPT), glutamate-oxaloacetic transaminase (GOT), total bilirubin (TBIL), creatinine (CREA), urea nitrogen (UREA) levels and typical histopathological changes including necrosis, phlogocyte infiltration and fatty degeneration in liver, tubules epithelium swelling and severe vacuolar degeneration in kidney. APAP caused oxidative stress, as evidenced by increased reactive oxygen species (ROS) production, nitric oxide (NO) and malondiadehyde (MDA) levels, together with depleted glutathione (GSH) concentration in the liver and kidney of rats. However, rhein can attenuate APAP-induced hepatotoxicity and nephrotoxicity in a dose-dependent manner. Our results showed that GPT, GOT, UREA and CREA levels and ROS production were reduced dramatically, NO, MDA, GSH contents were restored remarkedly by rhein administration, as compared to the APAP alone treated rats. Moreover, the histopathological damage of liver and kidney were also significantly ameliorated by rhein treatment. These findings suggested that the protective effects of rhein against APAP-induced liver and kidney injuries might result from the amelioration of APAP-induced oxidative stress.
Collapse
Affiliation(s)
- Yan-Ling Zhao
- Institute of Traditional Chinese Material Medica, People's Liberation Army, Beijing 100039, PR China
| | | | | | | | | | | | | |
Collapse
|
27
|
Shimauti ELT, Silva DGH, de Almeida EA, Zamaro PJA, Belini Junior E, Bonini-Domingos CR. Serum melatonin level and oxidative stress in sickle cell anemia. Blood Cells Mol Dis 2010; 45:297-301. [DOI: 10.1016/j.bcmd.2010.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 08/23/2010] [Accepted: 08/26/2010] [Indexed: 01/21/2023]
|
28
|
Abraham P, Kolli VK, Rabi S. Melatonin attenuates methotrexate-induced oxidative stress and renal damage in rats. Cell Biochem Funct 2010; 28:426-33. [PMID: 20589739 DOI: 10.1002/cbf.1676] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nephrotoxicity is an adverse side effect of methotrexate (MTX) chemotherapy. The present study verifies whether melatonin, an endogenous antioxidant prevents MTX-induced renal damage. Adult rats were administered 7 mg/kg body weight MTX intraperitoneally for 3 days. In the melatonin pretreated rats, 40 mg/ kg body weight melatonin was administered daily intraperitoneally 1 h before the administration of MTX. The rats were killed 12 h after the final dose of MTX/vehicle. The kidneys were used for light microscopic and biochemical studies. The markers of oxidative stress were measured along with the activities of the antioxidant enzymes and myeloperoxidase activity in the kidney homogenates. Pretreatment with melatonin reduced MTX induced renal damage both histologically and biochemically as revealed by normal plasma creatinine levels. Melatonin pretreatment reduced MTX induced oxidative stress, alteration in the activity of antioxidant enzymes as well as elevation in myeloperoxidase activity. The results suggest that melatonin has the potential to reduce MTX induced oxidative stress, neutrophil infiltration as well as renal damage. As melatonin is an endogenous antioxidant and is non-toxic even in high doses it is suggested that melatonin may be beneficial in minimizing MTX induced renal damage in humans.
Collapse
Affiliation(s)
- Premila Abraham
- Department of Biochemistry, Christian Medical College, Bagayam, Vellore 632002, Tamil Nadu, India.
| | | | | |
Collapse
|
29
|
Baeza I, Fdez-Tresguerres J, Ariznavarreta C, De la Fuente M. Effects of growth hormone, melatonin, oestrogens and phytoestrogens on the oxidized glutathione (GSSG)/reduced glutathione (GSH) ratio and lipid peroxidation in aged ovariectomized rats. Biogerontology 2010; 11:687-701. [PMID: 20563847 DOI: 10.1007/s10522-010-9282-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 05/04/2010] [Indexed: 11/30/2022]
Abstract
Ovariectomy constitutes a commonly used model in rats and mice for human menopause. After ovariectomy, an imbalance between oxidant production and antioxidant levels appears in favour of the former, with increased oxidative stress and consequently an acceleration of ageing. In the present work, the levels of reduced glutathione (GSH), a relevant antioxidant, and oxidized glutathione (GSSG), an oxidant compound, as well as lipid peroxidation (through malondialdehyde (MDA) levels), were studied in liver, heart, kidney and spleen homogenates of old (24 months of age) unovariectomized and ovariectomized female Wistar rats. The results showed a significant increase of the GSSG/GSH ratio, a marker of oxidative stress, and higher MDA production in all the studied organs of ovariectomized rats as compared with unovariectomized animals. These data confirm the idea that ovariectomy accelerates the ageing process. Administration of growth hormone (GH), melatonin (MEL) and oestrogens (OE), as well as soybean phytoestrogens (PE) for 10 weeks, between 22 and 24 months of age, was able to decrease oxidative stress in the investigated organs of ovariectomized old rats, therefore slowing down the ageing process in those animals.
Collapse
Affiliation(s)
- Isabel Baeza
- Department of Physiology, Complutense University of Madrid, Spain
| | | | | | | |
Collapse
|
30
|
Gurocak S, Ure I, Cumaoglu A, Gonul II, Sen I, Tan O, Aricioglu A, Bozkirli I. Renal tissue damage after experimental pyelonephritis: role of antioxidants and selective cyclooxygenase-2 inhibitors. Urology 2010; 76:508.e1-5. [PMID: 20510442 DOI: 10.1016/j.urology.2010.03.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 02/16/2010] [Accepted: 03/16/2010] [Indexed: 01/12/2023]
Abstract
OBJECTIVES To investigate the involvement of oxidative stress in the pathogenesis of acute pyelonephritis, and to evaluate the impact of meloxicam and/or L-carnitine in addition to conventional antibiotic treatment. METHODS A total of 48 Wistar rats were divided into 4 groups according to their treatment, which was started 1 day after inoculation of all rats with Escherichia coli (ATCC 25 922, 10(10) cfu/mL). Group 1 received only antibiotic treatment with ceftriaxone (50 mg/kg, IM). Groups 2 and 3 received L-carnitine (500 mg/kg, IM) and meloxicam (3 mg/kg, IM) in addition to conventional treatment, respectively. Group 4 received combination therapy (L-carnitine and meloxicam) in addition to the first group. Rats were killed 3 and 7 days after E. coli inoculation and underwent nephrectomy. Histologic determination of tubular atrophy, acute and chronic inflammation, interstitial fibrosis and biochemical determination of superoxide dismutase and catalase activity, total thiol content, total antioxidant capacity, and malondialdehyde and protein hydroperoxide levels were measured. RESULTS Interstitial fibrosis (P = .06), chronic inflammation (P = .536), and tubular atrophy (P = 0.094) decreased in group 4 compared with the other groups, but there was a statistically significant decrease only in acute inflammation (P = .015). In addition, if the day of nephrectomy is considered, there was again a significant decrease in acute inflammation on day 7 compared with day 3 in groups 2, 3, and 4 (P = .002). Catalase significantly increased in group 2 (P = .029), group 3 (P = .02), and group 4 (P = .014), and decreased in group 1 (P = .012) in day 7. CONCLUSIONS L-carnitine and meloxicam alleviated oxidative stress, probably by decreasing lipid peroxidation and enforcing antioxidant defense system. Acute renal inflammatory injury can be prevented much more effectively by combination therapy rather than by conventional therapy alone.
Collapse
Affiliation(s)
- Serhat Gurocak
- Department of Urology, Gazi University, Faculty of Medicine, Ankara, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Huang SH, Cao XJ, Liu W, Shi XY, Wei W. Inhibitory effect of melatonin on lung oxidative stress induced by respiratory syncytial virus infection in mice. J Pineal Res 2010; 48:109-16. [PMID: 20070490 DOI: 10.1111/j.1600-079x.2009.00733.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous research has shown that antioxidant (butylated hydroxyanisole) treatment ameliorates respiratory syncytial virus (RSV)-induced disease and lung inflammation. Melatonin has been reported to exhibit a wide varieties of biological effects, including antioxidant and anti-inflammation, and has no evident toxicity and side effect. But it is not known whether melatonin would modify RSV-induced lung disease and oxidative stress. The present study was to establish the involvement of oxidative stress in the pathogenesis of RSV-induced lung inflammation, and to investigate the protective effect of administration of melatonin in mice with RSV-induced oxidative pulmonary injury for 4 days. Malondialdehyde (MDA), an end product of lipid peroxidation, and glutathione (GSH) and superoxide dismutase (SOD) and nitric oxide (NO) levels were evaluated in lung tissue homogenates by spectrophotometry. Hydroxyl radical (.-OH), one of the indicators of free radical formation, was also detected in lung homogenates by Fenton reaction. Tumor necrosis factor-a (TNF-a) concentrations in mouse serum were measured with ELISA assay. The results demonstrated that the mice intranasally inoculated with RSV resulted in oxidative stress changes by increasing NO, MDA and .-OH levels, and decreasing GSH and SOD activities, whereas administration of melatonin significantly reversed all these effects. Furthermore, melatonin inhibited production of proinflammatory cytokines such as TNF-a in serum of RSV-infected mice. These results suggest that melatonin ameliorates RSV-induced lung inflammatory injury in mice via inhibition of oxidative stress and proinflammatory cytokine production and may be as a novel therapeutic agent in virus-induced pulmonary infection.
Collapse
Affiliation(s)
- Sheng-Hai Huang
- Department of Microbiology, Key Laboratory of Anti-inflammatory and Immunopharmacology in Anhui Province, Anhui Medical University, Hefei, China.
| | | | | | | | | |
Collapse
|
32
|
Oxidative Stress in Relation to Surgery: Is There a Role for the Antioxidant Melatonin? J Surg Res 2009; 152:338-47. [DOI: 10.1016/j.jss.2007.12.753] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 09/25/2007] [Accepted: 12/06/2007] [Indexed: 01/12/2023]
|
33
|
Sharifian M, Anvaripour N, Karimi A, Fahimzad A, Mohkam M, Dalirani R, Gholikhani F, Rafiee MA. The role of dexamethasone on decreasing urinary cytokines in children with acute pyelonephritis. Pediatr Nephrol 2008; 23:1511-6. [PMID: 18551321 DOI: 10.1007/s00467-008-0864-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 04/05/2008] [Accepted: 04/09/2008] [Indexed: 11/26/2022]
Abstract
Cytokines play a major role in renal scar formation following febrile urinary tract infection (UTI). We investigated the role of dexamethasone combined with antibiotics in diminishing urinary interleukin-6 (UIL-6) and UIL-8 concentrations during the acute phase of pyelonephritis compared with standard antibiotic therapy. UIL-6 and UIL-8 concentrations were determined by enzyme immunoassay in 34 children with pyelonephritis who were treated with ceftriaxone plus dexamethasone (case group) and in 20 patients with the same diagnosis treated with ceftriaxone alone (control group). Urine samples were obtained at the time of presentation prior to drug administration and at follow-up 72 h after initiation of medication. Creatinine concentrations were also determined, and cytokine/creatinine ratios were calculated to standardize samples. Differences between cytokine/creatinine ratios in initial and follow-up urine samples were significant in the case group (P < 0.001) but not for controls. In addition, combined antibiotic and dexamethasone significantly decreased UIL-6 and UIL-8 concentrations compared with antibiotic alone (P < 0.05). We conclude that dexamethasone combined with antibiotics significantly decreases UIL-6 and UIL-8 levels in patients with acute pyelonephritis. This suggests that the clinical use of corticosteroids may prevent scar formation following febrile UTI.
Collapse
Affiliation(s)
- Mostafa Sharifian
- Department of Nephrology, Mofid Children's Hospital, Shariati Ave, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Fadillioglu E, Kurcer Z, Parlakpinar H, Iraz M, Gursul C. Melatonin treatment against remote organ injury induced by renal ischemia reperfusion injury in diabetes mellitus. Arch Pharm Res 2008; 31:705-12. [DOI: 10.1007/s12272-001-1216-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 08/10/2007] [Accepted: 03/15/2008] [Indexed: 11/30/2022]
|
35
|
Gomez-Pinilla PJ, Camello PJ, Pozo MJ. Protective effect of melatonin on Ca2+ homeostasis and contractility in acute cholecystitis. J Pineal Res 2008; 44:250-60. [PMID: 18339120 DOI: 10.1111/j.1600-079x.2007.00520.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Impaired Ca2+ homeostasis and smooth muscle contractility co-exist in acute cholecystitis (AC) leading to gallbladder dysfunction. There is no pharmacological treatment for this pathological condition. Our aim was to evaluate the effects of melatonin treatment on Ca2+ signaling pathways and contractility altered by cholecystitis. [Ca2+]i was determined by epifluorescence microscopy in fura-2 loaded isolated gallbladder smooth muscle cells, and isometric tension was recorded from gallbladder muscle strips. Malondialdehyde (MDA) and reduced glutathione (GSH) contents were determined by spectrophotometry and cycloxygenase-2 (COX-2) expression was quantified by western blot. Melatonin was tested in two experimental groups, one of which underwent common bile duct ligation for 2 days and another that was later de-ligated for 2 days. Inflammation-induced impairment of Ca2+ responses to cholecystokinin and caffeine were recovered by melatonin treatment (30 mg/kg). This treatment also ameliorated the detrimental effects of AC on Ca2+ influx through both L-type and capacitative Ca2+ channels, and it was effective in preserving the pharmacological phenotype of these channels. Despite its effects on Ca2+ homeostasis, melatonin did not improve contractility. After de-ligation, Ca2+ influx and contractility were still impaired, but both were recovered by melatonin. These effects of melatonin were associated to a reduction of MDA levels, an increase in GSH content and a decrease in COX-2 expression. These findings indicate that melatonin restores Ca2+ homeostasis during AC and resolves inflammation. In addition, this indoleamine helps in the subsequent recovery of functionality.
Collapse
|
36
|
Dominguez-Rodriguez A, Abreu-Gonzalez P, Garcia-Gonzalez MJ, Samimi-Fard S, Kaski JC, Reiter RJ. Light/dark patterns of soluble vascular cell adhesion molecule-1 in relation to melatonin in patients with ST-segment elevation myocardial infarction. J Pineal Res 2008; 44:65-9. [PMID: 18078450 DOI: 10.1111/j.1600-079x.2007.00529.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Elevated levels of soluble cellular adhesion molecules have been reported in patients with acute coronary syndromes. Likewise, a relation between decreased nocturnal melatonin levels and coronary artery disease has been suggested. The aim of the present study was to investigate the day-night variations in the concentration of soluble vascular cell adhesion molecule-1 (sVCAM-1) in patients with ST-segment elevation myocardial infarction (STEMI) in relation to the light/dark melatonin pattern. Ninety consecutive patients with STEMI who were admitted to the Coronary Care Unit of our institution were studied. We also recruited 70 age- and gender-matched healthy normal subjects. Blood samples were drawn at 09:00 and 02:00 hr, while patients were at rest, for the assessment of sVCAM-1 and melatonin, which were measured using commercially available ELISA. In STEMI patients, melatonin concentrations maintained a diurnal variation, but the difference between nocturnal and diurnal levels was less than that in healthy subjects (P < 0.0001). In contrast to findings with melatonin, sVCAM-1 levels showed no diurnal variations in control subjects. In the STEMI group, however, sVCAM-1 concentration at 02:00 hr was significantly higher than that during the light phase (09:00 hr; 1391 +/- 38 versus 1200 +/- 43 ng/mL, P < 0.05). The results suggest that diurnal variations in endogenous sVCAM-1 production in STEMI patients might be related to an attenuated circadian secretion of melatonin.
Collapse
|
37
|
Güney M, Oral B, Karahan N, Mungan T. Regression of endometrial explants in a rat model of endometriosis treated with melatonin. Fertil Steril 2007; 89:934-42. [PMID: 17582405 DOI: 10.1016/j.fertnstert.2007.04.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 04/19/2007] [Accepted: 04/19/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To determine the antioxidant, antiinflammatory, and immunomodulatory effects of melatonin on endometrial explants, the distribution of cyclooxygenase-2 (COX-2), the activity of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and levels of malondialdehyde (MDA) in the rat endometriosis model. DESIGN Prospective, placebo-controlled experimental study. SETTING Experimental surgery laboratory in a university department. ANIMAL(S) Twenty-five rats with experimentally induced endometriosis. INTERVENTION(S) Endometriosis was surgically induced in 25 rats by transplanting an autologous fragment of endometrial tissue onto the inner surface of the abdominal wall. Four weeks later, three rats were killed and the remaining 22 rats given second-look laparotomies to identify and measure ectopic uterine tissue in three dimensions. After the second laparotomy, 4 weeks of vehicle and melatonin treatment were administered, then all of the rats were given a third laparotomy and killed. MAIN OUTCOME MEASURE(S) The volume and weight of the implants were measured. The remaining rats were randomly divided into two groups. In control group (group 1; n = 11) no medication was given. To the rats in melatonin-treated group (group 2; n = 11), 10 mg/kg a day of melatonin was administered intraperitoneally. Four weeks later, after the second laparotomy, the endometrial explants were reevaluated morphologically, and COX-2 expression was evaluated immunohistochemically and histologically. In addition, endometrial explants were analyzed for the antioxidant enzymes SOD, CAT, and MDA, a marker of lipid peroxidation. A scoring system was used to evaluate expression of COX-2 and preservation of epithelia. RESULT(S) The pretreatment and posttreatment volumes within the control group were 135.9 +/- 31.5 and 129.4 +/- 28.7, respectively. The mean explant volume was 141.4 +/- 34.4 within the melatonin group before the treatment and 42.9 +/- 14.0 after 4 weeks of treatment. There was a statistically significant difference in spherical volumes (129.4 +/- 28.7 versus 42.9 +/- 14.0 mm(3)) of explant weights (155.8 +/- 27.1 versus 49.6 +/- 19.5 mg) and COX-2 positivity (91% versus 18.1%) between groups after the third laparotomy. In the melatonin-treated group, the endometrial explant levels of MDA statistically significantly decreased and activities of SOD and CAT significantly increased when compared with the control group. The epithelia showed statistically significantly better preservation in the control group when compared with the melatonin-treated group (2.54 +/- 0.52 versus 0.63 +/- 0.50). CONCLUSION(S) Melatonin causes regression and atrophy of the endometriotic lesions in rats.
Collapse
Affiliation(s)
- Mehmet Güney
- Department of Obstetrics and Gynecology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey.
| | | | | | | |
Collapse
|