1
|
Pfeifer B, King B, Ahmadi M, Kaluhiokalani JP, Shimizu KS, Hunter WN, Deshler C, Nielsen MN, Hancock CR, Nelson WB, Hyldahl RD. Menstrual cycle phase differences in myofiber damage and macrophage infiltration following electrical stimulation-induced muscle injury. Am J Physiol Endocrinol Metab 2024; 327:E616-E625. [PMID: 39259161 DOI: 10.1152/ajpendo.00168.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/12/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
The purpose of this study was to examine the effects of menstrual cycle phase on myofiber injury, regenerative events, and inflammation after electrical stimulation (ES)-induced myofiber damage. Twenty-eight premenopausal women (20.8 ± 2 yr) were randomized into early follicular (EF; n = 14) and late follicular (LF; n = 14) groups. After menstrual cycle tracking and phase confirmation, subjects underwent 200 electrically stimulated eccentric muscle contractions 1 wk after providing a muscle biopsy. Seven days post-ES, subjects provided a final biopsy. Primary outcomes included serum estradiol, indirect markers of muscle damage, direct indicators of myofiber necrosis and regeneration, satellite cell number, and macrophage infiltration. Women in the LF group had higher serum estradiol (122.1 ± 23.4 vs. 81.7 ± 30.8 pg/mL; P < 0.001) than in the EF group on the day of ES. Although the EF group recovered baseline maximal isometric strength by 4 days post-ES, the LF group did not. Only women in the LF group showed significant and consistent evidence of myofiber necrosis and regeneration pre- to post-ES. Despite showing more evidence of myofiber damage, women in the LF group also experienced reduced total and CD206+ macrophage infiltration relative to the EF group. Satellite cell quantity increased significantly post-ES in both groups, with no differences between groups. Collectively, the data suggest that the high-estrogen LF phase may be associated with increased susceptibility to myofiber injury while also limiting the subsequent intramuscular inflammatory response.NEW & NOTEWORTHY The menstrual cycle has widespread physiological effects across many systems, including skeletal muscle. In this study, we show that women in the late follicular phase of the menstrual cycle may be more susceptible to myofiber necrosis following electrical stimulation. We also show reduced evidence of inflammation in the late follicular phase. This is the first study to demonstrate a difference in the response of human skeletal muscle to a necrotic stimulus across a menstrual cycle.
Collapse
Affiliation(s)
- Brandon Pfeifer
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States
| | - Briell King
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States
| | - Mohadeseh Ahmadi
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States
| | - Jamie P Kaluhiokalani
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States
| | - Krista S Shimizu
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States
| | - W Noah Hunter
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States
| | - Collin Deshler
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States
| | - Madeline N Nielsen
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States
| | - Chad R Hancock
- Department of Nutrition, Dietetics and Food Sciences, Brigham Young University, Provo, Utah
| | - W Bradley Nelson
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States
| | - Robert D Hyldahl
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States
| |
Collapse
|
2
|
Wittels SH, Renaghan E, Wishon MJ, Wittels HL, Chong S, Wittels ED, Hendricks S, Hecocks D, Bellamy K, Girardi J, Lee S, McDonald S, Feigenbaum LA. Recovery of the autonomic nervous system following football training among division I collegiate football athletes: The influence of intensity and time. Heliyon 2023; 9:e18125. [PMID: 37539237 PMCID: PMC10395356 DOI: 10.1016/j.heliyon.2023.e18125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023] Open
Abstract
The autonomic nervous system (ANS) is profoundly affected by high intensity exercise. However, evidence is less clear on ANS recovery and function following prolonged bouts of high intensity exercise, especially in non-endurance athletes. Therefore, this study aimed to investigate the relationships between duration and intensity of acute exercise training sessions and ANS recovery and function in Division I football athletes. Fifty, male football athletes were included in this study. Subjects participated in 135 days of exercise training sessions throughout the 25-week season and wore armband monitors (Warfighter Monitor, Tiger Tech Solutions) equipped with electrocardiography capabilities. Intensity was measured via heart rate (HR) during an 'active state', defined as HR ≥ 85 bpm. Further, data-driven intensity thresholds were used and included HR < 140 bpm, HR < 150 bpm, HR < 160 bpm, HR ≥ 140 bpm, HR ≥ 150 bpm and HR ≥ 160 bpm. Baseline HR and HR recovery were measured and represented ANS recovery and function 24h post-exercise. Linear regression models assessed the relationships between time spent at the identified intensity thresholds and ANS recovery and function 24h post-exercise. Statistical significance set at α < 0.05. Athletes participated in 128 training sessions, totaling 2735 data points analyzed. Subjects were predominantly non-Hispanic black (66.0%), aged 21.2 (±1.5) years and average body mass index of 29.2 (4.7) kg⋅(m2)-1. For baseline HR, statistically significant associations between duration and next-day ANS recovery were observed at HR < 140 bpm (β = -0.08 ± 0.02, R2 = 0.31, p < 0.001), HR above 150 and 160 bpm intensity thresholds (β = 0.25 ± 0.02, R2 = 0.69, p < 0.0000 and β = 0.59 ± 0.06, R2 = 0.71, p < 0.0000). Similar associations were observed for HR recovery: HR < 140 bpm (β = 0.15 ± 0.03, R2 = 0.43, p < 0.0000) and HR above 150 and 160 bpm (β = -0.33 ± 0.03, R2 = 0.73, p < 0.0000 and β = -0.80 ± 0.06, R2 = 0.71, p < 0.0000). The strengths of these associations increased with increasing intensity, HR ≥ 150 and 160 bpm (baseline HR: β range = 0.25 vs 0.59, R2: 0.69 vs 0.71 and HR recovery: β range = -0.33 vs -0.80, R2 = 0.73 vs 0.77). Time spent in lower intensity thresholds, elicited weaker associations with ANS recovery and function 24h post-exercise, with statistical significance observed only at HR < 140 bpm (β = -0.08 ± 0.02, R2 = 0.31, p < 0.001). The findings of this study showed that ANS recovery and function following prolonged high intensity exercise remains impaired for more than 24h. Strength and conditioning coaches should consider shorter bouts of strenuous exercise and extending recovery periods within and between exercise training sessions.
Collapse
Affiliation(s)
- S. Howard Wittels
- Department of Anesthesiology, Mount Sinai Medical Center, USA
- Department of Anesthesiology, Wertheim School of Medicine, Florida International University, USA
- Miami Beach Anesthesiology Associates, USA
- Tiger Tech Solutions, Inc., Miami, FL, USA
| | - Eric Renaghan
- Department of Athletics, Sports Science, University of Miami, USA
| | | | | | | | | | | | | | - Kyle Bellamy
- Department of Athletics, Nutrition, University of Miami, USA
| | - Joe Girardi
- Department of Physical Therapy, Miller School of Medicine, University of Miami, USA
| | | | - Samantha McDonald
- Tiger Tech Solutions, Inc., Miami, FL, USA
- School of Kinesiology and Recreation, Illinois State University, USA
| | - Luis A. Feigenbaum
- Department of Athletics, Sports Science, University of Miami, USA
- Department of Physical Therapy, Miller School of Medicine, University of Miami, USA
| |
Collapse
|
3
|
Acute Effect of the Timing of Resistance Exercise and Nutrient Intake on Muscle Protein Breakdown. Nutrients 2020; 12:nu12041177. [PMID: 32331476 PMCID: PMC7230944 DOI: 10.3390/nu12041177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 11/21/2022] Open
Abstract
Background: Combining resistance exercise (RE) with nutrient intake stimulates muscle protein net balance. However, it is still unclear whether the optimal timing of nutrient intake is before or after RE, especially on muscle protein breakdown (MPB) for an augmented muscle anabolic response. The aim of this study was to investigate the effect of a substantial mixed meal (i.e., nutrient- and protein-dense whole foods) before or after RE, compared with RE without a meal on the acute response of MPB in a crossover-design study. Methods: Eight healthy young men performed three trials: (1) meal intake before RE (Pre), (2) meal intake after RE (Post), and (3) RE without meal intake (No). Plasma insulin and 3-methylhistidine (3-MH), an MPB marker, were measured. Results: Time course change in plasma insulin level after RE was significantly higher in the Post condition than in the Pre and No conditions. The area under the curve of 3-MH concentration was significantly lower in the Post condition than in the Pre and No conditions. Conclusions: These results suggest that a substantial mixed meal immediately after RE may effectively suppress MPB in the morning.
Collapse
|
4
|
van der Spoel E, van Vliet NA, van Heemst D. Viewpoint on the role of tissue maintenance in ageing: focus on biomarkers of bone, cartilage, muscle, and brain tissue maintenance. Ageing Res Rev 2019; 56:100964. [PMID: 31561015 DOI: 10.1016/j.arr.2019.100964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/19/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022]
Abstract
Specific hallmarks are thought to underlie the ageing process and age-related functional decline. In this viewpoint, we put forward the hypothesis that disturbances in the process of tissue maintenance are an important common denominator that may lie in between specific hallmarks of ageing (i.e. damage and responses to damage) and their ultimate (patho)physiological consequences (i.e. functional decline and age-related disease). As a first step towards verifying or falsifying this hypothesis, it will be important to measure biomarkers of tissue maintenance in future studies in different study populations. The main aim of the current paper is to discuss potential biomarkers of tissue maintenance that could be used in such future studies. Among the many tissues that could have been chosen to explore our hypothesis, to keep the paper manageable, we chose to focus on a selected number of tissues, namely bone, cartilage, muscle, and the brain, which are important for mobility and cognition and affected in several common age-related diseases, including osteoporosis, osteoarthritis, sarcopenia, and neurodegenerative diseases. Furthermore, we discuss the advantages and limitations of potential biomarkers for use in (pre)clinical studies. The proposed biomarkers should be validated in future research, for example by measuring these in humans with different rates of ageing.
Collapse
|
5
|
Latimer LE, Constantin D, Greening NJ, Calvert L, Menon MK, Steiner MC, Greenhaff PL. Impact of transcutaneous neuromuscular electrical stimulation or resistance exercise on skeletal muscle mRNA expression in COPD. Int J Chron Obstruct Pulmon Dis 2019; 14:1355-1364. [PMID: 31308645 PMCID: PMC6612952 DOI: 10.2147/copd.s189896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Voluntary resistance exercise (RE) training increases muscle mass and strength in patients with chronic obstructive pulmonary disease (COPD). Nonvolitional transcutaneous neuromuscular electrical stimulation (NMES) may be an alternative strategy for reducing ambulatory muscle weakness in patients unable to perform RE training, but little comparative data are available. This study, therefore, investigated changes in muscle mRNA abundance of a number of gene targets in response to a single bout of NMES compared with RE. Methods: Twenty-six patients with stable COPD (15 male; FEV1, 43±18% predicted; age, 64±8 years; fat free mass index, 16.6±1.8 kg/m2) undertook 30 minutes of quadriceps NMES (50 Hz, current at the limit of tolerance) or 5×30 maximal voluntary isokinetic knee extensions. Vastus lateralis muscle biopsies were obtained at rest immediately before and 24 hours after intervention. Expression of 384 targeted mRNA transcripts was assessed by real time TaqMan PCR. Significant change in expression from baseline was determined using the ΔΔCT method with a false discovery rate (FDR) of <5%. Results: NMES and RE altered mRNA abundance of 18 and 68 genes, respectively (FDR <5%), of which 14 genes were common to both interventions and of the same magnitude of fold change. Biological functions of upregulated genes included inflammation, hypertrophy, muscle protein turnover, and muscle growth, whilst downregulated genes included mitochondrial and cell signaling functions. Conclusions: Compared with NMES, RE had a broader impact on mRNA abundance and, therefore, appears to be the superior intervention for maximizing transcriptional responses in the quadriceps of patients with COPD. However, if voluntary RE is not feasible in a clinical setting, NMES by modifying expression of genes known to impact upon muscle mass and strength may have a positive influence on muscle function.
Collapse
Affiliation(s)
- Lorna E Latimer
- Department of Respiratory Sciences, University of Leicester, Leicester, UK.,Institute for Lung Health, National Institute for Health Research (NIHR) Leicester Biomedical Research Centre - Respiratory, Glenfield Hospital, Leicester, UK
| | - Despina Constantin
- Medical Research Council/Arthritis Research UK (MRC/ARUK) Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,Centre for Sport, Exercise and Osteoarthritis Research, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Neil J Greening
- Department of Respiratory Sciences, University of Leicester, Leicester, UK.,Institute for Lung Health, National Institute for Health Research (NIHR) Leicester Biomedical Research Centre - Respiratory, Glenfield Hospital, Leicester, UK
| | - Lori Calvert
- Peterborough and Stamford Hospitals NHS Foundation Trust, Peterborough City Hospital, Bretton, UK
| | - Manoj K Menon
- Barking, Havering and Redbridge University Hospitals NHS Trust, Chest Clinic, King George Hospital, Ilford, UK
| | - Michael C Steiner
- Department of Respiratory Sciences, University of Leicester, Leicester, UK.,Institute for Lung Health, National Institute for Health Research (NIHR) Leicester Biomedical Research Centre - Respiratory, Glenfield Hospital, Leicester, UK
| | - Paul L Greenhaff
- Medical Research Council/Arthritis Research UK (MRC/ARUK) Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,Centre for Sport, Exercise and Osteoarthritis Research, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
6
|
Abstract
Muscle protein breakdown (MPB) is an important metabolic component of muscle remodeling, adaptation to training, and increasing muscle mass. Degradation of muscle proteins occurs via the integration of three main systems—autophagy and the calpain and ubiquitin-proteasome systems. These systems do not operate independently, and the regulation is complex. Complete degradation of a protein requires some combination of the systems. Determination of MPB in humans is technically challenging, leading to a relative dearth of information. Available information on the dynamic response of MPB primarily comes from stable isotopic methods with expression and activity measures providing complementary information. It seems clear that resistance exercise increases MPB, but not as much as the increase in muscle protein synthesis. Both hyperaminoacidemia and hyperinsulinemia inhibit the post-exercise response of MPB. Available data do not allow a comprehensive examination of the mechanisms behind these responses. Practical nutrition recommendations for interventions to suppress MPB following exercise are often made. However, it is likely that some degree of increased MPB following exercise is an important component for optimal remodeling. At this time, it is not possible to determine the impact of nutrition on any individual muscle protein. Thus, until we can develop and employ better methods to elucidate the role of MPB following exercise and the response to nutrition, recommendations to optimize post exercise nutrition should focus on the response of muscle protein synthesis. The aim of this review is to provide a comprehensive examination of the state of knowledge, including methodological considerations, of the response of MPB to exercise and nutrition in humans.
Collapse
|
7
|
Loumaye A, Thissen JP. Biomarkers of cancer cachexia. Clin Biochem 2017; 50:1281-1288. [PMID: 28739222 DOI: 10.1016/j.clinbiochem.2017.07.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
Abstract
Cachexia is a complex multifactorial syndrome, characterized by loss of skeletal muscle and fat mass, which affects the majority of advanced cancer patients and is associated with poor prognosis. Interestingly, reversing muscle loss in animal models of cancer cachexia leads to prolong survival. Therefore, detecting cachexia and maintaining muscle mass represent a major goal in the care of cancer patients. However, early diagnosis of cancer cachexia is currently limited for several reasons. Indeed, cachexia development is variable according to tumor and host characteristics. In addition, safe, accessible and non-invasive tools to detect skeletal muscle atrophy are desperately lacking in clinical practice. Finally, the precise molecular mechanisms and the key players involved in cancer cachexia remain poorly characterized. The need for an early diagnosis of cancer cachexia supports therefore the quest for a biomarker that might reflect skeletal muscle atrophy process. Current research offers different promising ways to identify such a biomarker. Initially, the quest for a biomarker of cancer cachexia has mostly focused on mediators of muscle atrophy, produced by both tumor and host, in an attempt to define new therapeutic approaches. In another hand, molecules released by the muscle into the circulation during the atrophy process have been also considered as potential biomarkers. More recently, several "omics" studies are emerging to identify new muscular or circulating markers of cancer cachexia. Some genetic markers could also contribute to identify patients more susceptible to develop cachexia. This article reviews our current knowledge regarding potential biomarkers of cancer cachexia.
Collapse
Affiliation(s)
- Audrey Loumaye
- Endocrinology, Diabetology and Nutrition Department, IREC, Université Catholique de Louvain, Cliniques Universitaires St-Luc, Brussels, Belgium.
| | - Jean-Paul Thissen
- Endocrinology, Diabetology and Nutrition Department, IREC, Université Catholique de Louvain, Cliniques Universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
8
|
Anderson LJ, Baker LL, Schroeder ET. Blunted Myoglobin and Quadriceps Soreness After Electrical Stimulation During the Luteal Phase or Oral Contraception. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2017; 88:193-202. [PMID: 28388333 DOI: 10.1080/02701367.2017.1300229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
PURPOSE Acute muscle damage after exercise triggers subsequent regeneration, leading to hypertrophy and increased strength after repeated exercise. It has been debated whether acute exercise-induced muscle damage is altered under various premenopausal estrogen conditions. Acute contraction-induced muscle damage was compared during exogenous (oral contraceptive, OC), endogenous (luteal phase, HI), or low (menses, LO) estrogen in healthy young women aged 21 to 30 years old. METHODS Women (OC, n = 9; HI, n = 9; LO, n = 8; total N = 26) performed 1 neuromuscular electrical stimulation (NMES) bout. Soreness, measured via visual analog scale and the Likert Scale of Muscle Soreness for Lower Limb (LSMSLL), quadriceps strength, and plasma myoglobin (Mb), interleukin (IL)-6, IL-8, and granulocyte-colony stimulating factor were measured before and after NMES. RESULTS NMES performance was similar across groups. Meaningful within-group increases in Mb (effect size [ES] = 1.12) and IL-8 (ES = 0.38) occurred in LO; ES for HI and OC were trivial. ES of the between-group difference in change was moderate for Mb (LO vs. HI = 1.15) and IL-8 (LO vs. HI = 0.86; LO vs. OC = 0.73). 17-β estradiol correlated moderately and negatively with Mb relative change (r = -.52, p < .05). LO had ~5% greater strength loss than OC and HI. The mean change score for the LSMSLL 2 days post-NMES was clinically greater in LO than OC or HI. CONCLUSIONS Acute NMES-induced indicators of muscle fiber damage and qualitative muscle soreness may be attenuated during the luteal phase or active OC pill consumption compared with the menstrual phase.
Collapse
|
9
|
Skurvydas A, Mamkus G, Kamandulis S, Dudoniene V, Valanciene D, Westerblad H. Mechanisms of force depression caused by different types of physical exercise studied by direct electrical stimulation of human quadriceps muscle. Eur J Appl Physiol 2016; 116:2215-2224. [PMID: 27637589 PMCID: PMC5118408 DOI: 10.1007/s00421-016-3473-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/07/2016] [Indexed: 12/03/2022]
Abstract
Purpose Force production frequently remains depressed for several hours or even days after various types of strenuous physical exercise. We hypothesized that the pattern of force changes during the first hour after exercise can be used to reveal muscular mechanisms likely to underlie the decline in muscle performance during exercise as well as factors involved in the triggering the prolonged force depression after exercise. Methods Nine groups of recreationally active male volunteers performed one of the following types of exercise: single prolonged or repeated short maximum voluntary contractions (MVCs); single or repeated all-out cycling bouts; repeated drop jumps. The isometric force of the right quadriceps muscle was measured during stimulation with brief 20 and 100 Hz trains of electrical pulses given before and at regular intervals for 60 min after exercise. Results All exercises resulted in a prolonged force depression, which was more marked at 20 Hz than at 100 Hz. Short-lasting (≤2 min) MVC and all-out cycling exercises showed an initial force recovery (peak after ~ 5 min) followed by a secondary force depression. The repeated drop jumps, which involve eccentric contractions, resulted in a stable force depression with the 20 Hz force being markedly more decreased after 100 than 10 jumps. Conclusions In accordance with our hypothesis, the results propose at least three different mechanisms that influence force production after exercise: (1) a transiently recovering process followed by (2) a prolonged force depression after metabolically demanding exercise, and (3) a stable force depression after mechanically demanding contractions.
Collapse
Affiliation(s)
- Albertas Skurvydas
- Institute of Sports Science and Innovation, Lithuanian Sports University, Lithuania, Sporto 6, 44221, Kaunas, Lithuania
| | - Gediminas Mamkus
- Institute of Sports Science and Innovation, Lithuanian Sports University, Lithuania, Sporto 6, 44221, Kaunas, Lithuania
| | - Sigitas Kamandulis
- Institute of Sports Science and Innovation, Lithuanian Sports University, Lithuania, Sporto 6, 44221, Kaunas, Lithuania
| | - Vilma Dudoniene
- Institute of Sports Science and Innovation, Lithuanian Sports University, Lithuania, Sporto 6, 44221, Kaunas, Lithuania
| | - Dovile Valanciene
- Institute of Sports Science and Innovation, Lithuanian Sports University, Lithuania, Sporto 6, 44221, Kaunas, Lithuania
| | - Håkan Westerblad
- Institute of Sports Science and Innovation, Lithuanian Sports University, Lithuania, Sporto 6, 44221, Kaunas, Lithuania.
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
10
|
Nedergaard A, Karsdal MA, Sun S, Henriksen K. Serological muscle loss biomarkers: an overview of current concepts and future possibilities. J Cachexia Sarcopenia Muscle 2013; 4:1-17. [PMID: 22996343 PMCID: PMC3581612 DOI: 10.1007/s13539-012-0086-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/21/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The skeletal muscle mass is the largest organ in the healthy body, comprising 30-40 % of the body weight of an adult man. It confers protection from trauma, locomotion, ventilation, and it represents a "sink" in glucose metabolism and a reservoir of amino acids to other tissues such as the brain and blood cells. Naturally, loss of muscle has dire consequences for health as well as functionality. Muscle loss is a natural consequence of especially aging, inactivity, and their associated metabolic dysfunction, but it is strongly accelerated in critical illness such as organ failure, sepsis, or cancer. Whether this muscle loss is considered a primary or secondary condition, it is known that muscle loss is a symptom that predicts morbidity and mortality and one that is known to impact quality of life and independence. Therefore, monitoring of muscle mass is relevant in a number of pathologies as well as in clinical trials as measures of efficacy as well as safety. METHODS AND RESULTS Existing biomarkers of muscle mass or muscle loss have shown to be either too unreliable or too impractical in relation to the perceived clinical benefit to reach regular clinical research or use. We suggest serological neoepitope biomarkers as a possible technology to address some of these problems. Blood biomarkers of this kind have previously been shown to respond with high sensitivity and shorter time to minimum significant change than available biomarkers of muscle mass. We provide brief reviews of existing muscle mass or function biomarker technologies, muscle protein biology, and existing neoepitope biomarkers and proceed to present tentative recommendations on how to select and detect neoepitope biomarkers. CONCLUSION We suggest that serological peptide biomarkers whose tissue and pathology specificity are derived from post-translational modification of proteins in tissues of interest, presenting so-called neoepitopes, represents an exciting candidate technology to fill out an empty niche in biomarker technology.
Collapse
|
11
|
Song Y, Forsgren S, Yu J, Lorentzon R, Stål PS. Effects on contralateral muscles after unilateral electrical muscle stimulation and exercise. PLoS One 2012; 7:e52230. [PMID: 23284946 PMCID: PMC3527434 DOI: 10.1371/journal.pone.0052230] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 11/13/2012] [Indexed: 02/06/2023] Open
Abstract
It is well established that unilateral exercise can produce contralateral effects. However, it is unclear whether unilateral exercise that leads to muscle injury and inflammation also affects the homologous contralateral muscles. To test the hypothesis that unilateral muscle injury causes contralateral muscle changes, an experimental rabbit model with unilateral muscle overuse caused by a combination of electrical muscle stimulation and exercise (EMS/E) was used. The soleus and gastrocnemius muscles of both exercised and non-exercised legs were analyzed with enzyme- and immunohistochemical methods after 1, 3 and 6 weeks of repeated EMS/E. After 1 w of unilateral EMS/E there were structural muscle changes such as increased variability in fiber size, fiber splitting, internal myonuclei, necrotic fibers, expression of developmental MyHCs, fibrosis and inflammation in the exercised soleus muscle. Only limited changes were found in the exercised gastrocnemius muscle and in both non-exercised contralateral muscles. After 3 w of EMS/E, muscle fiber changes, presence of developmental MyHCs, inflammation, fibrosis and affections of nerve axons and AChE production were observed bilaterally in both the soleus and gastrocnemius muscles. At 6 w of EMS/E, the severity of these changes significantly increased in the soleus muscles and infiltration of fat was observed bilaterally in both the soleus and the gastrocnemius muscles. The affections of the muscles were in all three experimental groups restricted to focal regions of the muscle samples. We conclude that repetitive unilateral muscle overuse caused by EMS/E overtime leads to both degenerative and regenerative tissue changes and myositis not only in the exercised muscles, but also in the homologous non-exercised muscles of the contralateral leg. Although the mechanism behind the contralateral changes is unclear, we suggest that the nervous system is involved in the cross-transfer effects.
Collapse
Affiliation(s)
- Yafeng Song
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Sweden
| | - Sture Forsgren
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Sweden
| | - Jiguo Yu
- Department of Surgical and Perioperative Sciences, Sports Medicine Unit, Umeå University, Umeå, Sweden
| | - Ronny Lorentzon
- Department of Surgical and Perioperative Sciences, Sports Medicine Unit, Umeå University, Umeå, Sweden
| | - Per S. Stål
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Sweden
- * E-mail:
| |
Collapse
|
12
|
Trappe TA, Standley RA, Jemiolo B, Carroll CC, Trappe SW. Prostaglandin and myokine involvement in the cyclooxygenase-inhibiting drug enhancement of skeletal muscle adaptations to resistance exercise in older adults. Am J Physiol Regul Integr Comp Physiol 2012; 304:R198-205. [PMID: 23220477 DOI: 10.1152/ajpregu.00245.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Twelve weeks of resistance training (3 days/wk) combined with daily consumption of the cyclooxygenase-inhibiting drugs acetaminophen (4.0 g/day; n = 11, 64 ± 1 yr) or ibuprofen (1.2 g/day; n = 13, 64 ± 1 yr) unexpectedly promoted muscle mass and strength gains 25-50% above placebo (n = 12, 67 ± 2 yr). To investigate the mechanism of this adaptation, muscle biopsies obtained before and ∼72 h after the last training bout were analyzed for mRNA levels of prostaglandin (PG)/cyclooxygenase pathway enzymes and receptors [arachidonic acid synthesis: cytosolic phospholipase A(2) (cPLA(2)) and secreted phospholipase A(2) (sPLA(2)); PGF(2α) synthesis: PGF(2α) synthase and PGE(2) to PGF(2α) reductase; PGE(2) synthesis: PGE(2) synthase-1, -2, and -3; PGF(2α) receptor and PGE(2) receptor-4], cytokines and myokines involved in skeletal muscle adaptation (TNF-α, IL-1β, IL-6, IL-8, IL-10), and regulators of muscle growth [myogenin, myogenic regulatory factor-4 (MRF4), myostatin] and atrophy [Forkhead box O3A (FOXO3A), atrogin-1, muscle RING finger protein 1 (MuRF-1), inhibitory κB kinase β (IKKβ)]. Training increased (P < 0.05) cPLA(2), PGF(2α) synthase, PGE(2) to PGF(2α) reductase, PGE(2) receptor-4, TNF-α, IL-1β, IL-8, and IKKβ. However, the PGF(2α) receptor was upregulated (P < 0.05) only in the drug groups, and the placebo group upregulation (P < 0.05) of IL-6, IL-10, and MuRF-1 was eliminated in both drug groups. These results highlight prostaglandin and myokine involvement in the adaptive response to exercise in older individuals and suggest two mechanisms underlying the enhanced muscle mass gains in the drug groups: 1) The drug-induced PGF(2α) receptor upregulation helped offset the drug suppression of PGF(2α)-stimulated protein synthesis after each exercise bout and enhanced skeletal muscle sensitivity to this stimulation. 2) The drug-induced suppression of intramuscular PGE(2) production increased net muscle protein balance after each exercise bout through a reduction in PGE(2)-induced IL-6 and MuRF-1, both promoters of muscle loss.
Collapse
Affiliation(s)
- Todd A Trappe
- Human Performance Laboratory, Ball State Univ., Muncie, IN. USA.
| | | | | | | | | |
Collapse
|
13
|
Muscle damage induced by electrical stimulation. Eur J Appl Physiol 2011; 111:2427-37. [DOI: 10.1007/s00421-011-2086-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 07/11/2011] [Indexed: 11/26/2022]
|
14
|
Hansen M, Langberg H, Holm L, Miller BF, Petersen SG, Doessing S, Skovgaard D, Trappe T, Kjaer M. Effect of administration of oral contraceptives on the synthesis and breakdown of myofibrillar proteins in young women. Scand J Med Sci Sports 2011; 21:62-72. [PMID: 19883384 DOI: 10.1111/j.1600-0838.2009.01002.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oral contraceptive (OC) treatment has an inhibiting effect on protein synthesis in tendon and muscle connective tissue. We aimed to investigate whether OC influence myofibrillar protein turnover in young women. OC-users (24±2 years; Lindynette® n=7, Cilest® n=4) and non-OC-users (controls, 24±4 years n=12) performed one-legged kicking exercise. The next day, the myofibrillar protein fractional synthesis rate (FSR) was measured using stable isotopic tracers ((13)C-proline) while the subjects were fed standardized nutrient drinks. Simultaneously, a marker for myofibrillar protein breakdown, 3-methyl-histidine (3-MH), was measured in the interstitial fluid of the vastus lateralis. Measurements were performed in both legs. In general, myofibrillar protein FSR was lower in OC-users (two-way analysis of variance, P<0.05), although the difference seemed to depend on the OC type. Interstitial 3-MH in the skeletal muscle was not different between groups and did not vary by OC type. Exercise did not change myofibrillar protein FSR or 3-MH concentrations. Serum androstenedione and bioavailability of testosterone were lower in OC-users. In conclusion, the results indicate that the use of OC has an inhibiting effect on myofibrillar protein synthesis and the magnitude of the effect may depend on the type of OC. In contrast, there was no effect of OC on myofibrillar protein breakdown in the fed state.
Collapse
Affiliation(s)
- M Hansen
- Institute of Sports Medicine, Bispebjerg Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Less indication of muscle damage in the second than initial electrical muscle stimulation bout consisting of isometric contractions of the knee extensors. Eur J Appl Physiol 2009; 108:709-17. [DOI: 10.1007/s00421-009-1278-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
|
16
|
Rennie MJ, Phillips S, Smith K. Reliability of results and interpretation of measures of 3-methylhistidine in muscle interstitium as marker of muscle proteolysis. J Appl Physiol (1985) 2008; 105:1380-1; author reply 1382-3. [DOI: 10.1152/japplphysiol.90782.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Tesch PA, von Walden F, Gustafsson T, Linnehan RM, Trappe TA. Skeletal muscle proteolysis in response to short-term unloading in humans. J Appl Physiol (1985) 2008; 105:902-6. [PMID: 18535133 DOI: 10.1152/japplphysiol.90558.2008] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle atrophy is evident after muscle disuse, unloading, or spaceflight and results from decreased protein content as a consequence of decreased protein synthesis, increased protein breakdown or both. At this time, there are essentially no human data describing proteolysis in skeletal muscle undergoing atrophy on Earth or in space, primarily due to lack of valid and accurate methodology. This particular study aimed at assessing the effects of short-term unloading on the muscle contractile proteolysis rate. Eight men were subjected to 72-h unilateral lower limb suspension (ULLS) and intramuscular interstitial levels of the naturally occurring proteolytic tracer 3-methylhistidine (3MH) were measured by means of microdialysis before and on completion of this intervention. The 3MH concentration following 72-h ULLS (2.01 +/- 0.22 nmol/ml) was 44% higher (P < 0.05) than before ULLS (1.56 +/- 0.20 nmol/ml). The present experimental model and the employed method determining 3MH in microdialysates present a promising tool for monitoring skeletal muscle proteolysis or metabolism of specific muscles during conditions resulting in atrophy caused by, e.g., disuse and real or simulated microgravity. This study provides evidence that the atrophic processes are evoked rapidly and within 72 h of unloading and suggests that countermeasures should be employed in the early stages of space missions to offset or prevent muscle loss during the period when the rate of muscle atrophy is the highest.
Collapse
Affiliation(s)
- Per A Tesch
- Department of Physiology and Pharmacology, Mid Sweden Univ., SE- 831 25 Ostersund, Sweden.
| | | | | | | | | |
Collapse
|