1
|
Chiaberge M, Thottappillil N, Liphardt AM, Furlanetto A, Odell D, Wang C, Hope S, Smee S, Rehfus J, Niehoff A, Shelhamer M, Norman C, Philippon MJ, Huard J, James AW, Fan CM. Plyometric training increases thickness and volume of knee articular cartilage in mice. NPJ Microgravity 2025; 11:5. [PMID: 39948108 PMCID: PMC11825961 DOI: 10.1038/s41526-025-00458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
Degeneration and thinning of articular cartilage lead to osteoarthritis and may result from reduced joint loading during e.g. bed rest or as a result of microgravity during space flight. Anabolic physical exercises for cartilage are not well studied to date. We built an experimental apparatus for plyometric training with mice to test potential benefits of jumping for articular cartilage. The exercise group (JUMP) performed jump training for 9 weeks and was compared with sedentary mice (control, CON) and hindlimb-suspended (HLS) mice (to simulate reduced loading) for the same duration. Knee cartilage was assessed via 3-dimensional reconstruction of micro-CT scans and histology. We observed significant thinning and volume reduction of articular cartilage at the medial tibial-femoral point of contact in the HLS group. Clustering of chondrocytes was present in HLS. By contrast, the JUMP group showed both cartilage thickening and volume increase. We observed a similar trend on trabecular bone thickness and volume. Our results show that plyometric training can stimulate cartilage thickness and volume in mice. This suggests further investigation of this mode of exercise as a countermeasure to prevent cartilage atrophy in disuse scenarios such as long duration spaceflight, and for patients at risk of developing osteoarthritis.
Collapse
Affiliation(s)
- Marco Chiaberge
- The William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD, USA.
- Space Telescope Science Institute for the European Space Agency (ESA), ESA Office, 3700 San Martin Drive, Baltimore, MD, USA.
| | - Neelima Thottappillil
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna-Maria Liphardt
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Anderson Furlanetto
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Dylan Odell
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Christine Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen Hope
- The William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen Smee
- The William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph Rehfus
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany
- Cologne Center for Musculoskeletal Biomechanics, University of Cologne, Faculty of Medicine, Köln, Germany
| | - Mark Shelhamer
- Human Spaceflight Lab, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Colin Norman
- The William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD, USA
- Space Telescope Science Institute for the European Space Agency (ESA), ESA Office, 3700 San Martin Drive, Baltimore, MD, USA
| | - Marc J Philippon
- Steadman Philippon Research Institute, Vail, CO, USA
- The Steadman Clinic, Vail, CO, USA
| | - Johnny Huard
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chen-Ming Fan
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| |
Collapse
|
2
|
Wu H, Wang X, Wang G, Yuan G, Jia W, Tian L, Zheng Y, Ding W, Pei J. Advancing Scaffold-Assisted Modality for In Situ Osteochondral Regeneration: A Shift From Biodegradable to Bioadaptable. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407040. [PMID: 39104283 DOI: 10.1002/adma.202407040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Indexed: 08/07/2024]
Abstract
Over the decades, the management of osteochondral lesions remains a significant yet unmet medical challenge without curative solutions to date. Owing to the complex nature of osteochondral units with multi-tissues and multicellularity, and inherently divergent cellular turnover capacities, current clinical practices often fall short of robust and satisfactory repair efficacy. Alternative strategies, particularly tissue engineering assisted with biomaterial scaffolds, achieve considerable advances, with the emerging pursuit of a more cost-effective approach of in situ osteochondral regeneration, as evolving toward cell-free modalities. By leveraging endogenous cell sources and innate regenerative potential facilitated with instructive scaffolds, promising results are anticipated and being evidenced. Accordingly, a paradigm shift is occurring in scaffold development, from biodegradable and biocompatible to bioadaptable in spatiotemporal control. Hence, this review summarizes the ongoing progress in deploying bioadaptable criteria for scaffold-based engineering in endogenous osteochondral repair, with emphases on precise control over the scaffolding material, degradation, structure and biomechanics, and surface and biointerfacial characteristics, alongside their distinguished impact on the outcomes. Future outlooks of a highlight on advanced, frontier materials, technologies, and tools tailoring precision medicine and smart healthcare are provided, which potentially paves the path toward the ultimate goal of complete osteochondral regeneration with function restoration.
Collapse
Affiliation(s)
- Han Wu
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuejing Wang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guocheng Wang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weitao Jia
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Wenjiang Ding
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Medical Robotics & National Engineering Research Center for Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Wan C, Li Z, Zhou Y. Effect of type 2 diabetes mellitus on the microstructural, compositional and mechanical properties of cartilages. Ann Anat 2024; 254:152259. [PMID: 38492655 DOI: 10.1016/j.aanat.2024.152259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic and complicated degenerative disorder of joints, including several phenotypes. Type 2 diabetes mellitus (T2DM) is one of the major causes of OA. However, few studies on the mechanical behavior of diabetic cartilages have been conducted. METHODS This study evaluated the microstructural, compositional, and mechanical properties of healthy and diabetic rat cartilages using scanning electronic microscopy, X-ray energy spectroscopy, histology staining, and microindentation tests. RESULTS Our results indicated that the diabetic cartilages had a significantly higher elastic modulus and similar permeability (95%CI: 3.72-8.56 MPa and 3.16×10-6-1.83×10-5 mm4/N·s) compared to the healthy cartilages (95%CI: 0.741-3.58 MPa and 3.15×10-6-1.14×10-5 mm4/N·s). Their stress relaxation behaviors were similar regardless of the loading rate except for the stretching parameter under the fast loading. Furthermore, the stress relaxation behaviors of the diabetic cartilages were significantly affected by the loading rate, especially the equilibrium force ratio and time constant. These mechanical outcomes could be attributed to the increase of fibril diameters and calcium aggregation in the cartilage. CONCLUSIONS This study deepens our understanding of how T2DM might facilitate OA in cartilages, which could contribute to the development of more scientific diagnosis and therapies for patients with diabetes.
Collapse
Affiliation(s)
- Chao Wan
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, China; Tangshan Research Institute, Beijing Institute of Technology, China.
| | - Zhongjie Li
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, China
| | - Yizun Zhou
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, China
| |
Collapse
|
4
|
Kondiboyina V, Duerr TJ, Monaghan JR, Shefelbine SJ. Material properties in regenerating axolotl limbs using inverse finite element analysis. J Mech Behav Biomed Mater 2024; 150:106341. [PMID: 38160643 PMCID: PMC11495890 DOI: 10.1016/j.jmbbm.2023.106341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The extracellular mechanical environment plays an important role in the skeletal development process. Characterization of the material properties of regenerating tissues that recapitulate development, provides insights into the mechanical environment experienced by the cells and the maturation of the matrix. In this study, we estimated the viscoelastic material properties of regenerating forelimbs in the axolotl (Ambystoma mexicanum) at three different regeneration stages: 27 days post-amputation (mid-late bud) and 41 days post-amputation (palette stage), and fully-grown time points. A stress-relaxation indentation test followed by two-term Prony series viscoelastic inverse finite element analysis was used to obtain material parameters. Glycosaminoglycan (GAG) content was estimated using a 1,9- dimethyl methylene blue assay. RESULTS The instantaneous and equilibrium shear moduli significantly increased with regeneration while the short-term stress relaxation time significantly decreased with limb regeneration. The long-term stress relaxation time in the fully-grown time point was significantly lower than 27 and 41 DPA groups. The GAG content was not significantly different between 27 and 41 DPA but the GAG content of cartilage in the fully-grown group was significantly greater than in 27 and 41 DPA. CONCLUSIONS The mechanical environment of the proliferating cells changes drastically during limb regeneration. Understanding how the tissue's mechanical properties change during limb regeneration is critical for linking molecular-level matrix production of the cells to tissue-level behavior and mechanical signals.
Collapse
Affiliation(s)
| | | | | | - Sandra J Shefelbine
- Dept. of Bioengineering, Northeastern University, Boston, MA, USA; Dept. Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
5
|
Takahashi I, Matsuzaki T, Kuroki H, Hoso M. Treadmill Exercise Suppresses Histological Progression of Disuse Atrophy in Articular Cartilage in Rat Knee Joints during Hindlimb Suspension. Cartilage 2023; 14:482-491. [PMID: 36802945 PMCID: PMC10807736 DOI: 10.1177/19476035231154510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 02/23/2023] Open
Abstract
OBJECTIVE The purpose of this study was to determine the preventive effects of treadmill exercise or physiological loading on disuse atrophy in the rat knee joint cartilage and bone during hindlimb suspension. DESIGN Twenty male rats were divided into 4 experimental groups, including the control, hindlimb suspension, physiological loading, and treadmill walking groups. Histological changes in the articular cartilage and bone of the tibia were histomorphometrically and immunohistochemically evaluated 4 weeks after the intervention. RESULTS Compared with the control group, the hindlimb suspension group showed thinning of cartilage thickness, decreased matrix staining, and decreased proportion of noncalcified layers. Cartilage thinning, decreased matrix staining, and decreased noncalcified layers were suppressed in the treadmill walking group. The physiological loading group exhibited no significant suppression of cartilage thinning or decreased noncalcified layers, but the decreased matrix staining was significantly suppressed. No significant prevention of bone mass loss or changes in subchondral bone thickness were detected after physiological loading or treadmill walking. CONCLUSION Disuse atrophy of the articular cartilage caused by unloading conditions could be prevented by treadmill walking in rat knee joints.
Collapse
Affiliation(s)
- Ikufumi Takahashi
- Section of Rehabilitation, Kanazawa University Hospital, Ishikawa, Japan
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Taro Matsuzaki
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Hoso
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
6
|
Takahashi I, Matsuzaki T, Kuroki H, Hoso M. Disuse Atrophy of Articular Cartilage Induced by Unloading Condition Accelerates Histological Progression of Osteoarthritis in a Post-traumatic Rat Model. Cartilage 2021; 13:1522S-1529S. [PMID: 33356503 PMCID: PMC8721611 DOI: 10.1177/1947603520982350] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE The study aim was to evaluate the histological relationship between osteoarthritis (OA) and articular cartilage in disuse atrophy induced by hindlimb unloading in a post-traumatic OA rat model. DESIGN Forty male rats were divided into the 4 following experimental groups: control, hindlimb suspension (HS), OA induced by destabilization of the medial meniscus (OA), and OA induction after hindlimb suspension (HS-OA). Histological changes in the articular cartilage of the tibia were evaluated by the Osteoarthritis Research Society International (OARSI) scores and histomorphometrical analyses at 2, 4, and 8 weeks after OA induction. RESULTS We confirmed that disuse atrophy of the articular cartilage was caused by thinning of the articular cartilage and the decrease in matrix staining for the nonloading period of 4 weeks. The OARSI scores and histomorphological analyses revealed that OA progressed significantly wider and deeper in the HS-OA group than in the OA group over time. In the sham group, disuse atrophy of the articular cartilage recovered at 2 weeks after reloading. CONCLUSIONS This study revealed that OA progressed faster in cartilage atrophy than in normal articular cartilage. Further studies are required for investigating the mechanisms of disuse atrophy of cartilage and its association with OA using the biochemical and immunohistochemical analysis.
Collapse
Affiliation(s)
- Ikufumi Takahashi
- Section of Rehabilitation, Kanazawa University Hospital, Ishikawa, Japan
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Taro Matsuzaki
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Hoso
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
7
|
Takahashi I, Matsuzaki T, Kuroki H, Hoso M. Physiological Reloading Recovers Histologically Disuse Atrophy of the Articular Cartilage and Bone by Hindlimb Suspension in Rat Knee Joint. Cartilage 2021; 13:1530S-1539S. [PMID: 34886706 PMCID: PMC8804769 DOI: 10.1177/19476035211063857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/14/2021] [Accepted: 11/03/2021] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE This study aimed to clarify physiological reloading on disuse atrophy of the articular cartilage and bone in the rat knee using the hindlimb suspension model. DESIGN Thirty male rats were divided into 3 experimental groups: control group, hindlimb suspension group, and reloading after hindlimb suspension group. Histological changes in the articular cartilage and bone of the tibia were evaluated by histomorphometrical and immunohistochemical analyses at 2 and 4 weeks after reloading. RESULTS The thinning and loss of matrix staining in the articular cartilage and the decrease in bone volume induced by hindlimb suspension recovered to the same level as the control group after 2 weeks of reloading. The proportion of the noncalcified and calcified layers of the articular cartilage and the thinning of subchondral bone recovered to the same level as the control group after 4 weeks of reloading. CONCLUSIONS Disuse atrophy of the articular cartilage and bone induced by hindlimb suspension in the tibia of rats was improved by physiological reloading.
Collapse
Affiliation(s)
- Ikufumi Takahashi
- Section of Rehabilitation, Kanazawa
University Hospital, Kanazawa, Japan
- Department of Motor Function Analysis,
Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto,
Japan
| | - Taro Matsuzaki
- Division of Health Sciences, Graduate
School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis,
Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto,
Japan
| | - Masahiro Hoso
- Division of Health Sciences, Graduate
School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
8
|
Campos Y, Sola FJ, Fuentes G, Quintanilla L, Almirall A, Cruz LJ, Rodríguez-Cabello JC, Tabata Y. The Effects of Crosslinking on the Rheology and Cellular Behavior of Polymer-Based 3D-Multilayered Scaffolds for Restoring Articular Cartilage. Polymers (Basel) 2021; 13:907. [PMID: 33809430 PMCID: PMC7999668 DOI: 10.3390/polym13060907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/10/2023] Open
Abstract
Polymer-based tri-layered (bone, intermediate and top layers) scaffolds used for the restoration of articular cartilage were prepared and characterized in this study to emulate the concentration gradient of cartilage. The scaffolds were physically or chemically crosslinked. In order to obtain adequate scaffolds for the intended application, the impact of the type of calcium phosphate used in the bone layer, the polymer used in the intermediate layer and the interlayer crosslinking process were analyzed. The correlation among SEM micrographs, physical-chemical characterization, swelling behavior, rheological measurements and cell studies were examined. Storage moduli at 1 Hz were 0.3-1.7 kPa for physically crosslinked scaffolds, and 4-5 kPa (EDC/NHS system) and 15-20 kPa (glutaraldehyde) for chemically crosslinked scaffolds. Intrinsic viscoelasticity and poroelasticity were considered in discussing the physical mechanism dominating in different time/frequency scales. Cell evaluation showed that all samples are available as alternatives to repair and/or substitute cartilage in articular osteoarthritis.
Collapse
Affiliation(s)
- Yaima Campos
- Centro de Biomateriales, Universidad de La Habana, ave Universidad e/G y Ronda, Vedado, Plaza, La Habana CP 10400, Cuba; (Y.C.); (F.J.S.); (A.A.)
- TNI Group, Department of Radiology, LUMC, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - Francisco J. Sola
- Centro de Biomateriales, Universidad de La Habana, ave Universidad e/G y Ronda, Vedado, Plaza, La Habana CP 10400, Cuba; (Y.C.); (F.J.S.); (A.A.)
| | - Gastón Fuentes
- Centro de Biomateriales, Universidad de La Habana, ave Universidad e/G y Ronda, Vedado, Plaza, La Habana CP 10400, Cuba; (Y.C.); (F.J.S.); (A.A.)
- TNI Group, Department of Radiology, LUMC, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
- Bioforge Group, Campus Miguel Delibes, CIBER-BBN, Universidad de Valladolid, Edificio LUCIA, Paseo Belén 19, 47011 Valladolid, Spain; (L.Q.); (J.C.R.-C.)
| | - Luis Quintanilla
- Bioforge Group, Campus Miguel Delibes, CIBER-BBN, Universidad de Valladolid, Edificio LUCIA, Paseo Belén 19, 47011 Valladolid, Spain; (L.Q.); (J.C.R.-C.)
| | - Amisel Almirall
- Centro de Biomateriales, Universidad de La Habana, ave Universidad e/G y Ronda, Vedado, Plaza, La Habana CP 10400, Cuba; (Y.C.); (F.J.S.); (A.A.)
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
| | - Luis J. Cruz
- TNI Group, Department of Radiology, LUMC, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - José C. Rodríguez-Cabello
- Bioforge Group, Campus Miguel Delibes, CIBER-BBN, Universidad de Valladolid, Edificio LUCIA, Paseo Belén 19, 47011 Valladolid, Spain; (L.Q.); (J.C.R.-C.)
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
| |
Collapse
|
9
|
Acrylamide-Induced Prenatal Programming of Bone Structure in Mammal Model. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Acrylamide (AA) is a chemical substance with a potentially carcinogenic effect. Its presence in food or animal food arises from its thermal processing. The experiment was conducted to evaluate the effect of AA exposure (3.0 mg/kg. b.w./day) of pregnant dams during the second half of the pregnancy on bone development in offspring. As an model animal, guinea pig was used. While term body weight of newborns was not influenced by maternal AA treatment, shorter bones with reduced bone diaphysis cross-sectional area were observed in experimental group. Numerous negative, offspring sex-dependent effects of maternal AA exposure were observed in femoral epiphysis and metaphysis as well as the articular and growth plate cartilages. These effects resulted from the AA-induced alterations in bone metabolism, as indicated by the changes in the expression of numerous proteins involved in bone development: receptor activator of nuclear factor kappa-Β ligand (RANKL), tissue inhibitor of metalloproteinases 2 (TIMP-2), bone morphogenetic protein 2 (BMP-2), vascular endothelial growth factor (VEGF), and cartilage oligomeric matrix protein (COMP), all of whose expression was measured as well as distribution of immature collagen fibres was determined. Based on the results, it can be concluded that the exposure of pregnant dams to AA negatively affected the structure of compact bone in bone diaphysis, microarchitecture of trabecular bone in metaphysis and epiphysis as well as the structure of the articular and growth plate cartilages in their offspring. The AA-induced bone impairment increased osteoclast differentiation, as observed through the change in the RANKL/OPG ratio, which in turn inhibited osteoblast function by decreasing the expression of other proteins. The data of the present study suggests that maternal AA exposure can result in insufficient bone gain and even bone loss after the birth.
Collapse
|
10
|
Miller RH, Krupenevich RL. Medial knee cartilage is unlikely to withstand a lifetime of running without positive adaptation: a theoretical biomechanical model of failure phenomena. PeerJ 2020; 8:e9676. [PMID: 32844066 PMCID: PMC7414768 DOI: 10.7717/peerj.9676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/16/2020] [Indexed: 01/24/2023] Open
Abstract
Runners on average do not have a high risk of developing knee osteoarthritis, even though running places very high loads on the knee joint. Here we used gait analysis, musculoskeletal modeling, and a discrete-element model of knee contact mechanics to estimate strains of the medial knee cartilage in walking and running in 22 young adults (age 23 ± 3 years). A phenomenological model of cartilage damage, repair, and adaptation in response to these strains then estimated the failure probability of the medial knee cartilage over an adult lifespan (age 23-83 years) for 6 km/day of walking vs. walking and running 3 km/day each. With no running, by age 55 the cumulative probability of medial knee cartilage failure averaged 36% without repair and 13% with repair, similar to reports on incidence of knee osteoarthritis in non-obese adults with no knee injuries, but the probability for running was very high without repair or adaptation (98%) and remained high after including repair (95%). Adaptation of the cartilage compressive modulus, cartilage thickness, and the tibiofemoral bone congruence in response to running (+1.15 standard deviations of their baseline values) was necessary for the failure probability of walking and running 3 km/day each to equal the failure probability of walking 6 km/day. The model results suggest two conclusions for further testing: (i) unlike previous findings on the load per unit distance, damage per unit distance on the medial knee cartilage is greater in running vs. walking, refuting the "cumulative load" hypothesis for long-term joint health; (ii) medial knee cartilage is unlikely to withstand a lifetime of mechanical loading from running without a natural adaptation process, supporting the "cartilage conditioning" hypothesis for long-term joint health.
Collapse
Affiliation(s)
- Ross H Miller
- Department of Kinesiology, University of Maryland, College Park, MD, United States of America.,Neuroscience & Cognitive Science Program, University of Maryland, College Park, MD, United States of America
| | - Rebecca L Krupenevich
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
11
|
Murao M, Imano T, Akiyama J, Kawakami T, Nakajima M. Effect of single bout downhill running on the serum irisin concentrations in rats. Growth Factors 2019; 37:257-262. [PMID: 32200682 DOI: 10.1080/08977194.2020.1742118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study aimed to characterize the effect of different running modes on serum irisin concentrations in rats. A total of 18, 10-week-old rats were divided into three groups; control group, 16° uphill running group (concentric exercise; CON) and, -16° downhill running group (eccentric exercise; ECC). The running group's rats ran on the inclined treadmill at 16 m/min, for a total of 90 min. Blood was drawn from the rats, 48 h after running, after which the rats were anesthetized. The serum concentrations of irisin were measured using enzyme-linked immunosorbent assays. Vastus intermedius was collected for immunohistochemical analysis. After multiple comparisons, the ECC showed a significantly high serum irisin concentration (ECC: 28.42 ± 6.31 ng/ml, CON: 21.27 ± 3.03 ng/ml) and a larger irisin antibody reactive cross-sectional area in vastus intermedius compared to the CON (p < 0.05). This is the first study to reveal that single bout downhill running increases serum irisin concentrations in rats.
Collapse
Affiliation(s)
- Masanobu Murao
- Graduate School of Health Science, Kibi International University, Takahashi, Japan
| | - Tetsuo Imano
- Graduate School of Health Science, Kibi International University, Takahashi, Japan
- Department of Physical Therapy, Fukuyama Medical College, Fukuyama, Japan
| | - Junichi Akiyama
- Graduate School of Health Science, Kibi International University, Takahashi, Japan
| | - Teruhiko Kawakami
- Graduate School of Health Science, Kibi International University, Takahashi, Japan
| | - Masaaki Nakajima
- Graduate School of Health Science, Kibi International University, Takahashi, Japan
| |
Collapse
|
12
|
Gessel T, Harrast MA. Running Dose and Risk of Developing Lower-Extremity Osteoarthritis. Curr Sports Med Rep 2019; 18:201-209. [PMID: 31385835 DOI: 10.1249/jsr.0000000000000602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Whether or not running leads to the development of knee and hip osteoarthritis has been a much-debated topic and is often a question patients pose to their physicians. Recent literature adds to a growing body of evidence suggesting that lower-dose running may be protective against the development of osteoarthritis, whereas higher-dose running may increase one's risk of developing lower-extremity osteoarthritis. However, running dose remains challenging to define, leading to difficulty in providing firm recommendations to patients regarding the degree of running which may be safe. Furthermore, when counseling patients regarding their risk of developing lower-extremity osteoarthritis secondary to running, clinicians must consider many additional factors, such as the numerous health benefits from running and individual risk factors for developing osteoarthritis.
Collapse
Affiliation(s)
- Trevor Gessel
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA
| | | |
Collapse
|
13
|
Li Y, Feng Y, Cao P, Ke J, Fang W, Cai H, Deng M, Long X. Role of synovium-derived fibrous cartilage in temporomandibular joint synovial chondromatosis. J Oral Pathol Med 2018; 48:79-86. [PMID: 30290017 DOI: 10.1111/jop.12788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/31/2018] [Accepted: 10/02/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Synovial chondromatosis (SC) of temporomandibular joint (TMJ) occupies 3% SC cases. In other joints like hip and knee which were composed hyaline cartilage (HC), loose bodies (LBs) were reported to be a HC feature. However, condyle surface and disc in TMJ are fibrous cartilage (FC). Therefore, we proposed a different pathogenesis of TMJSC. METHODS LBs and synovium were collected from seven TMJSC patients, and histological and immunohistological examinations were performed. RESULTS Three ways of HC formation were discovered: regular-shaped cartilaginous nodules (CNs) in sublining layer (SL) of vascularized synovium, regional chondrification of SL, and finger-like tissue with a tail attaching to synovium. Detached LBs could fuse and were only positively stained by aggrecan. Without synovium attachment to LBs, fused LBs remained a hyaline extracellular matrix (ECM). However, after synovium attachment, transformation from HC to FC occurred. Two types of FC were observed. First type FC was featured by vertical-distributed type I collagen fibers imbedding few chondrocytes, suggesting mature phase with superior mechanical features. Second type FC was featured by medium-density chondrocytes with type I collagen and aggrecan-positive ECM, suggesting primary phase. The transformation process started in appearance of 2nd type FC deriving from synovium covering LB, and gradually replaced HC from periphery to center. CONCLUSIONS Three ways of HC formation were closely related. Different with SC in other joints, hyaline ECM in LBs of TMJSC could be replaced by FC deriving from synovium, during which 2nd type FC first replaced HC and then transformed to 1st type FC.
Collapse
Affiliation(s)
- Yingjie Li
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaping Feng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Pinyin Cao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jin Ke
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Fang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hengxing Cai
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mohong Deng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xing Long
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Vincent TL, Wann AKT. Mechanoadaptation: articular cartilage through thick and thin. J Physiol 2018; 597:1271-1281. [PMID: 29917242 DOI: 10.1113/jp275451] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/01/2018] [Indexed: 12/18/2022] Open
Abstract
The articular cartilage is exquisitely sensitive to mechanical load. Its structure is largely defined by the mechanical environment and destruction in osteoarthritis is the pathophysiological consequence of abnormal mechanics. It is often overlooked that disuse of joints causes profound loss of volume in the articular cartilage, a clinical observation first described in polio patients and stroke victims. Through the 1980s, the results of studies exploiting experimental joint immobilisation supported this. Importantly, this substantial body of work was also the first to describe metabolic changes that resulted in decreased synthesis of matrix molecules, especially sulfated proteoglycans. The molecular mechanisms that underlie disuse atrophy are poorly understood despite the identification of multiple mechanosensing mechanisms in cartilage. Moreover, there has been a tendency to equate cartilage loss with osteoarthritic degeneration. Here, we review the historic literature and clarify the structural, metabolic and clinical features that clearly distinguish cartilage loss due to disuse atrophy and those due to osteoarthritis. We speculate on the molecular sensing pathways in cartilage that may be responsible for cartilage mechanoadaptation.
Collapse
Affiliation(s)
- Tonia L Vincent
- Arthritis Research UK Centre for OA Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Angus K T Wann
- Arthritis Research UK Centre for OA Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Firner S, Willwacher S, de Marées M, Bleuel J, Zaucke F, Brüggemann GP, Niehoff A. Effect of increased mechanical knee joint loading during running on the serum concentration of cartilage oligomeric matrix protein (COMP). J Orthop Res 2018; 36:1937-1946. [PMID: 29369406 DOI: 10.1002/jor.23859] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/15/2018] [Indexed: 02/04/2023]
Abstract
The purpose of the study was to investigate the effect of an increase in mechanical knee joint loading during running on the serum COMP level. On two different test days, 20 healthy men ran with knee orthoses for 30 min on a treadmill (v = 2.2 m/s). On day 1, the orthoses were passive, whereas on day 2 they were pneumatically driven (active) and thus increased the external knee flexion moments (+30.9 Nm) during stance phase. Lower-limb mechanics and serum COMP levels (baseline; 0, 0.5, 1, 2 h post running) were analyzed. COMP levels increased immediately after running with passive (+35%; pre: 7.5 U/l, 95%CI: 6.4, 8.7, post: 9.8 U/l, 95%CI: 8.8, 10.8, p < 0.001) and active orthoses (+45%; pre: 7.6 U/l; 95%CI: 6.4, 8.8, post: 10.3 U/l, 95%CI: 9.2, 11.5, p < 0.001), but they did not differ between interventions. While running with active orthoses, greater ankle dorsiflexion angles, knee flexion angles, and moments occurred (p < 0.05). Comparing both interventions, the Δ COMP pre-post, meaning the difference (Δ) between running with active and passive orthoses in pre to post COMP level change (=level after (post) running minus level before (pre) running), correlated negatively with Δ COMP baseline (difference between the baseline COMP level before running with active and passive orthoses, r = -0.616; p = 0.004), and with a positive tendence with the Δ maximum knee flexion (r = 0.388; p = 0.091). Therefore, changes in COMP concentration after physical activity seem to be highly influenced by the COMP baseline level. In addition, correlation analysis indicates that modifications in knee joint kinematics have a greater effect on cartilage metabolism than an increase in joint moments. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1937-1946, 2018.
Collapse
Affiliation(s)
- Sara Firner
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Steffen Willwacher
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Markus de Marées
- Faculty of Sport Science, Department of Sports Medicine and Sports Nutrition, Ruhr-University Bochum, Bochum, Germany
| | - Judith Bleuel
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Medical Faculty, University of Cologne, Cologne, Germany
| | - Gert-Peter Brüggemann
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Medical Faculty, University of Cologne, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Liphardt AM, Mündermann A, Andriacchi TP, Achtzehn S, Heer M, Mester J. Sensitivity of serum concentration of cartilage biomarkers to 21-days of bed rest. J Orthop Res 2018; 36:1465-1471. [PMID: 29077223 DOI: 10.1002/jor.23786] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/13/2017] [Indexed: 02/04/2023]
Abstract
UNLABELLED The objective of the study was to test the hypothesis that serum levels of cartilage oligomeric matrix protein (COMP) would decrease and serum levels of tumor-necrosis factor alpha (TNF-α) and selected matrix metalloproteinases (MMPs) would increase in response to bed rest (BR) and that these changes are unaffected by the intake of potassium bicarbonate or whey protein. Seven and nine healthy male subjects participated in two 21-day 6° head down tilt crossover BR-studies with nutrition interventions. Serum samples were taken before, during, and after BR and biomarker concentrations were measured using commercial enzyme-linked immunosorbent assays. MMP-3 during BR was significantly lower than at baseline (reduction greater 20%; p < 0.001). MMP-3 increased significantly from 14 to 21 days of BR (+7%; p = 0.049). COMP during BR was significantly lower than at baseline (reduction greater 20%; p < 0.001). MMP-3 and COMP returned to baseline within 1 day after BR. MMP-9 on day 3 of BR was significantly lower than at baseline (-31%; p < 0.033) and on days 3, 5, and 14 of BR significantly lower than at the end of and after BR (reduction greater 35%; p < 0.030). The nutritional countermeasures did not affect these results. The observed changes in cartilage biomarkers may be caused by altered cartilage metabolism in response to the lack of mechanical stimulus during BR and inflammatory biomarkers may play a role in changes in biomarker levels. CLINICAL RELEVANCE Immobilization independently from injury can cause altered cartilage biomarker concentration. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1465-1471, 2018.
Collapse
Affiliation(s)
- Anna-Maria Liphardt
- German Sport University Cologne (DSHS Köln), Training Science and Sport Informatics, Köln, Germany.,German Sport University Cologne (DSHS Köln), Biomechanics and Orthopaedics, Köln, Germany.,Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg (FAU) and Universitätsklinikum, Ulmenweg 18, Erlangen, 91054, Germany
| | - Annegret Mündermann
- Clinic for Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Thomas P Andriacchi
- Department of Mechanical Engineering, Stanford University,, Stanford, California
| | - Silvia Achtzehn
- German Sport University Cologne (DSHS Köln), Training Science and Sport Informatics, Köln, Germany
| | - Martina Heer
- Department of Nutrition and Food Science, Nutrition Physiology, University of Bonn, Bonn, Germany
| | - Joachim Mester
- German Sport University Cologne (DSHS Köln), Training Science and Sport Informatics, Köln, Germany
| |
Collapse
|
17
|
Zhou Y, Chyu J, Zumwalt M. Recent Progress of Fabrication of Cell Scaffold by Electrospinning Technique for Articular Cartilage Tissue Engineering. Int J Biomater 2018; 2018:1953636. [PMID: 29765405 PMCID: PMC5889894 DOI: 10.1155/2018/1953636] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/05/2018] [Accepted: 02/19/2018] [Indexed: 01/08/2023] Open
Abstract
As a versatile nanofiber manufacturing technique, electrospinning has been widely employed for the fabrication of tissue engineering scaffolds. Since the structure of natural extracellular matrices varies substantially in different tissues, there has been growing awareness of the fact that the hierarchical 3D structure of scaffolds may affect intercellular interactions, material transportation, fluid flow, environmental stimulation, and so forth. Physical blending of the synthetic and natural polymers to form composite materials better mimics the composition and mechanical properties of natural tissues. Scaffolds with element gradient, such as growth factor gradient, have demonstrated good potentials to promote heterogeneous cell growth and differentiation. Compared to 2D scaffolds with limited thicknesses, 3D scaffolds have superior cell differentiation and development rate. The objective of this review paper is to review and discuss the recent trends of electrospinning strategies for cartilage tissue engineering, particularly the biomimetic, gradient, and 3D scaffolds, along with future prospects of potential clinical applications.
Collapse
Affiliation(s)
- Yingge Zhou
- Department of Industrial, Manufacturing, and System Engineering, Texas Tech University, Lubbock, TX, USA
| | - Joanna Chyu
- Department of Orthopedic Surgery and Rehabilitation, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mimi Zumwalt
- Department of Orthopedic Surgery and Rehabilitation, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
18
|
Moshtagh PR, Korthagen NM, Plomp SG, Pouran B, Castelein RM, Zadpoor AA, Weinans H. Early Signs of Bone and Cartilage Changes Induced by Treadmill Exercise in Rats. JBMR Plus 2018; 2:134-142. [PMID: 30283898 DOI: 10.1002/jbm4.10029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/02/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
This study aims to investigate the earliest alterations of bone and cartilage tissues as a result of different exercise protocols in the knee joint of Wistar rats. We hypothesize that pretraining to a continuous intense running protocol would protect the animals from cartilage degeneration. Three groups of animals were used: (i) an adaptive (pretraining) running group that ran for 8 weeks with gradually increasing velocity and time of running followed by a constant running program (6 weeks of 1.12 km/hour running per day); (ii) a non-adaptive running (constant running) group that initially rested for 8 weeks followed by 6 weeks of constant running; and (iii) a non-running (control) group. At weeks 8, 14, and 20 bone and cartilage were analyzed. Both running groups developed mild symptoms of cartilage irregularities, such as chondrocyte hypertrophy and cell clustering in different cartilage zones, in particular after the adaptive running protocol. As a result of physical training in the adaptive running exercise a dynamic response of bone was detected at week 8, where bone growth was enhanced. Conversely, the thickness of epiphyseal trabecular and subchondral bone (at week 14) was reduced due to the constant running in the period between 8 and 14 weeks. Finally, the intermediate differences between the two running groups disappeared after both groups had a resting period (from 14 to 20 weeks). The adaptive running group showed an increase in aggrecan gene expression and reduction of MMP2 expression after the initial 8 weeks running. Thus, the running exercise models in this study showed mild bone and cartilage/chondrocyte alterations that can be considered as early-stage osteoarthritis. The pretraining adaptive protocol before constant intense running did not protect from mild cartilage degeneration. © 2017 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Parisa R Moshtagh
- Department of Orthopaedics University Medical Center Utrecht Utrecht The Netherlands.,Faculty of Mechanical, Maritime, and Materials Engineering Delft University of Technology (TU Delft), Delft The Netherlands
| | - Nicoline M Korthagen
- Department of Orthopaedics University Medical Center Utrecht Utrecht The Netherlands.,Department of Equine Sciences Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| | - Saskia G Plomp
- Department of Equine Sciences Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| | - Behdad Pouran
- Department of Orthopaedics University Medical Center Utrecht Utrecht The Netherlands.,Faculty of Mechanical, Maritime, and Materials Engineering Delft University of Technology (TU Delft), Delft The Netherlands
| | - Rene M Castelein
- Department of Orthopaedics University Medical Center Utrecht Utrecht The Netherlands
| | - Amir A Zadpoor
- Faculty of Mechanical, Maritime, and Materials Engineering Delft University of Technology (TU Delft), Delft The Netherlands
| | - Harrie Weinans
- Department of Orthopaedics University Medical Center Utrecht Utrecht The Netherlands.,Faculty of Mechanical, Maritime, and Materials Engineering Delft University of Technology (TU Delft), Delft The Netherlands.,Department of Rheumatology University Medical Center Utrecht Utrecht The Netherlands
| |
Collapse
|
19
|
Impact of a daily exercise dose on knee joint cartilage - a systematic review and meta-analysis of randomized controlled trials in healthy animals. Osteoarthritis Cartilage 2017; 25:1223-1237. [PMID: 28323138 DOI: 10.1016/j.joca.2017.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/04/2017] [Accepted: 03/09/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the impact of a daily exercise dose on cartilage composition and thickness, by conducting a systematic review of randomized controlled trials (RCTs) involving healthy animals. METHODS A narrative synthesis of the effect of a daily exercise dose on knee cartilage aggrecan, collagen and thickness was performed. A subset of studies reporting sufficient data was combined in meta-analysis using a random-effects model. Meta-regression analyses were performed to investigate the impact of covariates. RESULTS Twenty-nine RCTs, involving 64 comparisons, were included. In the low dose exercise group, 21/25 comparisons reported decreased or no effect on cartilage aggrecan, collagen and thickness. In the moderate dose exercise group, all 12 comparisons reported either no or increased effect. In the high dose exercise group, 19/27 comparisons reported decreased effect. A meta-analysis of 14 studies investigating cartilage thickness showed no effect in the low dose exercise group (SMD -0.02; 95% CI -0.42 to 0.38; I2 = 0.0%), large but non-significant cartilage thickening in the moderate dose exercise group (SMD 0.95; 95% CI -0.33 to 2.23; I2 = 72.1%) and non-significant cartilage thinning in the high dose exercise group (SMD -0.19; 95% CI -0.49 to 0.12; I2 = 0.0%). Results were independent of analyzed covariates. The overall quality of the studies was poor because of inadequate reporting of data and high risk of bias. CONCLUSIONS Our results suggest that the relationship between daily exercise dose and cartilage composition, but not necessarily cartilage thickness, may be non-linear. While we found inconclusive evidence for a low daily dose of exercise, a high daily dose of exercise may have negative effects and a moderate daily dose of exercise may have positive effects on cartilage matrix composition in healthy animals.
Collapse
|
20
|
Abstract
Studies investigating the effect of running on risk for developing osteoarthritis at weight-bearing joints have reported with conflicting results. Generally, moderate-level running is not likely detrimental to joint health. However, many factors may be associated with the increased risk of developing osteoarthritis in runners. Factors often implicated in the development of osteoarthritis comprise those that increase joint vulnerability and those which increase joint loading. It is therefore suggested that running has different effects on different people. Efforts should be made to identify those with joint vulnerability and joint loading, and measures should be taken to have those factors and/or their running programs modified to run safely. Further investigations are needed to examine the effect of running on joint health under different conditions to confirm the association between exposure to risk factors and development of osteoarthritis, as well as to validate the effectiveness of measures for preventing running-related osteoarthritis.
Collapse
Affiliation(s)
- Guo-Xin Ni
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, China
| |
Collapse
|
21
|
Greiwe L, Vinck M, Suhr F. The muscle contraction mode determines lymphangiogenesis differentially in rat skeletal and cardiac muscles by modifying local lymphatic extracellular matrix microenvironments. Acta Physiol (Oxf) 2016; 217:61-79. [PMID: 26601802 DOI: 10.1111/apha.12633] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/14/2015] [Accepted: 11/16/2015] [Indexed: 12/13/2022]
Abstract
AIM Lymphatic vessels are of special importance for tissue homeostasis, and increases of their density may foster tissue regeneration. Exercise could be a relevant tool to increase lymphatic vessel density (LVD); however, a significant lack of knowledge remains to understand lymphangiogenesis in skeletal muscles upon training. Interestingly, training-induced lymphangiogenesis has never been studied in the heart. We studied lymphangiogenesis and LVD upon chronic concentric and chronic eccentric muscle contractions in both rat skeletal (Mm. Edl and Sol) and cardiac muscles. METHODS/RESULTS We found that LVD decreased in both skeletal muscles specifically upon eccentric training, while this contraction increased LVD in cardiac tissue. These observations were supported by opposing local remodelling of lymphatic vessel-specific extracellular matrix components in skeletal and cardiac muscles and protein levels of lymphatic markers (Lyve-1, Pdpn, Vegf-C/D). Confocal microscopy further revealed transformations of lymphatic vessels into vessels expressing both blood (Cav-1) and lymphatic (Vegfr-3) markers upon eccentric training specifically in skeletal muscles. In addition and phenotype supportive, we found increased inflammation (NF-κB/p65, Il-1β, Ifn-γ, Tnf-α and MPO(+) cells) in eccentrically stressed skeletal, but decreased levels in cardiac muscles. CONCLUSION Our data provide novel mechanistic insights into lymphangiogenic processes in skeletal and cardiac muscles upon chronic muscle contraction modes and demonstrate that both tissues adapt in opposing manners specifically to eccentric training. These data are highly relevant for clinical applications, because eccentric training serves as a sufficient strategy to increase LVD and to decrease inflammation in cardiac tissue, for example in order to reduce tissue abortion in transplantation settings.
Collapse
Affiliation(s)
- L. Greiwe
- Department of Molecular and Cellular Sport Medicine; Institute of Cardiovascular Research and Sport Medicine; German Sport University Cologne; Cologne Germany
| | - M. Vinck
- Department of Molecular and Cellular Sport Medicine; Institute of Cardiovascular Research and Sport Medicine; German Sport University Cologne; Cologne Germany
| | - F. Suhr
- Department of Molecular and Cellular Sport Medicine; Institute of Cardiovascular Research and Sport Medicine; German Sport University Cologne; Cologne Germany
| |
Collapse
|
22
|
Vernon LL, Vance DD, Wang L, Rampersaud E, Vance JM, Pericak-Vance M, Huang CYC, Kaplan LD. Regional Differential Genetic Response of Human Articular Cartilage to Impact Injury. Cartilage 2016; 7:163-73. [PMID: 27047639 PMCID: PMC4797239 DOI: 10.1177/1947603515618483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Normal physiological movement creates different weightbearing zones within a human knee: the medial condyle bearing the highest and the trochlea bearing the lowest weight. Adaptation to different physiological loading conditions results in different tissue and cellular properties within a knee. The objective of this study was to use microarray analysis to examine gene expression differences among three anatomical regions of human knee articular cartilage at baseline and following induction of an acute impact injury. DESIGN Cartilage explants were harvested from 7 cadaveric knees (12 plugs per knee). A drop tower was utilized to introduce injury. Plugs were examined 24 hours after impact for gene expression using microarray. The primary analysis is the comparison of baseline versus impacted samples within each region separately. In addition, pairwise comparisons among the three regions were performed at baseline and after impact. False discovery rate (FDR) was used to evaluate significance of differential gene expression. RESULTS In the comparison of before and after injury, the trochlear had 130 differentially expressed genes (FDR ≤ 0.05) while the condyles had none. In the comparison among regions, smaller sets of differentially expressed genes (n ≤ 21) were found, with trochlea being more different than the condyles. Most of more frequently expressed genes in trochlea are developmental genes. CONCLUSIONS Within the experimental setup of this study, only the trochlea was displaying an acute genetic response on injury. Our data demonstrated the regional-specific response to injury in human articular cartilage.
Collapse
Affiliation(s)
- Lauren L. Vernon
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA,Division of Sports Medicine, UHealth Sports Performance and Wellness Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Danica D. Vance
- Division of Sports Medicine, UHealth Sports Performance and Wellness Institute, University of Miami Miller School of Medicine, Miami, FL, USA,John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Liyong Wang
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Evadnie Rampersaud
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffery M. Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Margaret Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - C.-Y. Charles Huang
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Lee D. Kaplan
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA,Division of Sports Medicine, UHealth Sports Performance and Wellness Institute, University of Miami Miller School of Medicine, Miami, FL, USA,Lee D. Kaplan, Division of Sports Medicine, UHealth Sports Performance and Wellness Institute, University of Miami, 1400 NW 12th Avenue, First Floor Sports Medicine Clinic, Miami, FL 33136, USA.
| |
Collapse
|
23
|
Corsetti R, Perego S, Sansoni V, Xu J, Barassi A, Banfi G, Lombardi G. Osteocartilaginous metabolic markers change over a 3-week stage race in pro-cyclists. Scand J Clin Lab Invest 2015; 75:523-30. [PMID: 26174975 DOI: 10.3109/00365513.2015.1057762] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Evidence suggests that endurance and even recreational cycling may stimulate bone resorption; however, little is known about cartilage response to endurance cycling exercise. We investigated effort-dependent changes in bone turnover and cartilage biomarkers in blood and urine samples from elite cyclists during a 3-week stage race. Whole blood and urine samples were collected the day before the start of the race, at mid and end-race for serum and urinary CTx-I, NTx-I, PINP, COMP (only in serum), and CTx-II analysis by enzyme-linked immunosorbent assay. The values were corrected for plasma volume or creatinine excretion, respectively, and correlated with power output (corrected for body weight) and net energy expenditure. Bone marker concentrations in both serum and urine were slightly but significantly decreased. Among the cartilage degradation markers, only CTx-II was decreased, while COMP remained unchanged. The changes in bone and cartilage turnover indexes were correlated with the indexes of physical effort and energy consumption. Strenuous physical effort, in the absence of mechanical loading, slows bone metabolism and only minimally affects cartilage turnover. Since changes in plasma and urine volume, which normally occur in exercising athletes, can mask these effects, biomarker concentrations need to be corrected for shifts in plasma volume and urinary creatinine for correct interpretation of the data.
Collapse
Affiliation(s)
- Roberto Corsetti
- Liquigas Medical Board, Liquigas pro-cycling team , Sesto al Reghena , Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Roi GS, Monticone M, Salvoni M, Sassi R, Alberti G. Self-Reported Knee Symptoms Assessed by KOOS Questionnaire in Downhill Runners (Skyrunners). PLoS One 2015; 10:e0126382. [PMID: 25902316 PMCID: PMC4406558 DOI: 10.1371/journal.pone.0126382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 04/01/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The knee is the weight-bearing joint most commonly associated with sports injuries, and therefore is most at risk of developing degenerative changes, including osteoarthritis. Skyrunners can be considered to be at risk of developing symptoms of post-traumatic osteoarthritis due to downhill running. AIM The aim of this study was to analyze the health of the knee joints of a large group of these athletes via a specific self-report questionnaire. METHODS This study was carried out by asking the participants of seven official Skyraces (22.4±3.1 km length; 1596±393 m elevation) to fill out a questionnaire. Information regarding age, sex, downhill elevation (m) during training and competitions over the last month, and history of previous knee injury was also collected before the participants filled out the Knee injury and Osteoarthritis Outcome Score (KOOS), which is a reliable and validated instrument designed to assess patients' opinions about their knees and associated problems that can result in post-traumatic osteoarthritis. Athletes were divided into six age groups (from 17 to 70 years) and 12 groups based on the downhill gradient they had covered over the last month (from 1,000 to 40,000 m). RESULTS Six hundred twenty-one questionnaires were collected from 45% of the participants in the seven races. Multivariate analysis revealed that self-reported KOOS scores were unrelated to age, sex and monthly downhill gradient. Only 74 (12%) of the participants reported previous knee injuries. Significant differences in the five subscales of the KOOS were found between skyrunners with and without previous knee injuries (P<0.01). CONCLUSIONS In the studied population, regular training for downhill running and participation in Skyraces could not be considered risk factors for subjective knee symptoms. Skyrunners with self-reported histories of knee injuries scored worse on all five subscales of the KOOS.
Collapse
Affiliation(s)
- Giulio Sergio Roi
- Isokinetic Medical Group, Education and Research Department, Bologna, Italy
- International Skyrunning Federation, Biella, Italy
| | - Marco Monticone
- Physical Medicine and Rehabilitation Unit, Scientific Institute of Lissone (Milan), Institute of Care and Research (IRCCS), Salvatore Maugeri Foundation IRCCS, Lissone, Italy
| | - Marco Salvoni
- Isokinetic Medical Group, Education and Research Department, Bologna, Italy
- International Skyrunning Federation, Biella, Italy
| | - Roberto Sassi
- Department of Computer Science, University of Milan, Milan, Italy
| | - Giampietro Alberti
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
25
|
Bleuel J, Zaucke F, Brüggemann GP, Heilig J, Wolter ML, Hamann N, Firner S, Niehoff A. Moderate cyclic tensile strain alters the assembly of cartilage extracellular matrix proteins in vitro. J Biomech Eng 2015; 137:061009. [PMID: 25782164 DOI: 10.1115/1.4030053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 12/16/2022]
Abstract
Mechanical loading influences the structural and mechanical properties of articular cartilage. The cartilage matrix protein collagen II essentially determines the tensile properties of the tissue and is adapted in response to loading. The collagen II network is stabilized by the collagen II-binding cartilage oligomeric matrix protein (COMP), collagen IX, and matrilin-3. However, the effect of mechanical loading on these extracellular matrix proteins is not yet understood. Therefore, the aim of this study was to investigate if and how chondrocytes assemble the extracellular matrix proteins collagen II, COMP, collagen IX, and matrilin-3 in response to mechanical loading. Primary murine chondrocytes were applied to cyclic tensile strain (6%, 0.5 Hz, 30 min per day at three consecutive days). The localization of collagen II, COMP, collagen IX, and matrilin-3 in loaded and unloaded cells was determined by immunofluorescence staining. The messenger ribo nucleic acid (mRNA) expression levels and synthesis of the proteins were analyzed using reverse transcription-polymerase chain reaction (RT-PCR) and western blots. Immunofluorescence staining demonstrated that the pattern of collagen II distribution was altered by loading. In loaded chondrocytes, collagen II containing fibrils appeared thicker and strongly co-stained for COMP and collagen IX, whereas the collagen network from unloaded cells was more diffuse and showed minor costaining. Further, the applied load led to a higher amount of COMP in the matrix, determined by western blot analysis. Our results show that moderate cyclic tensile strain altered the assembly of the extracellular collagen network. However, changes in protein amount were only observed for COMP, but not for collagen II, collagen IX, or matrilin-3. The data suggest that the adaptation to mechanical loading is not always the result of changes in RNA and/or protein expression but might also be the result of changes in matrix assembly and structure.
Collapse
|
26
|
Müller AE, Kreiner M, Kötter S, Lassak P, Bloch W, Suhr F, Krüger M. Acute exercise modifies titin phosphorylation and increases cardiac myofilament stiffness. Front Physiol 2014; 5:449. [PMID: 25477822 PMCID: PMC4238368 DOI: 10.3389/fphys.2014.00449] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/03/2014] [Indexed: 01/09/2023] Open
Abstract
Titin-based myofilament stiffness is largely modulated by phosphorylation of its elastic I-band regions N2-Bus (decreases passive stiffness, PT) and PEVK (increases PT). Here, we tested the hypothesis that acute exercise changes titin phosphorylation and modifies myofilament stiffness. Adult rats were exercised on a treadmill for 15 min, untrained animals served as controls. Titin phosphorylation was determined by Western blot analysis using phosphospecific antibodies to Ser4099 and Ser4010 in the N2-Bus region (PKG and PKA-dependent. respectively), and to Ser11878 and Ser 12022 in the PEVK region (PKCα and CaMKIIδ-dependent, respectively). Passive tension was determined by step-wise stretching of isolated skinned cardiomyocytes to sarcomere length (SL) ranging from 1.9 to 2.4 μm and showed a significantly increased PT from exercised samples, compared to controls. In cardiac samples titin N2-Bus phosphorylation was significantly decreased by 40% at Ser4099, however, no significant changes were observed at Ser4010. PEVK phosphorylation at Ser11878 was significantly increased, which is probably mediated by the observed exercise-induced increase in PKCα activity. Interestingly, relative phosphorylation of Ser12022 was substantially decreased in the exercised samples. Surprisingly, in skeletal samples from acutely exercised animals we detected a significant decrease in PEVK phosphorylation at Ser11878 and an increase in Ser12022 phosphorylation; however, PKCα activity remained unchanged. In summary, our data show that a single exercise bout of 15 min affects titin domain phosphorylation and titin-based myocyte stiffness with obviously divergent effects in cardiac and skeletal muscle tissues. The observed changes in titin stiffness could play an important role in adapting the passive and active properties of the myocardium and the skeletal muscle to increased physical activity.
Collapse
Affiliation(s)
- Anna E Müller
- Department of Cardiovascular Physiology, Heinrich Heine University Düsseldorf Düsseldorf, Germany
| | - Matthias Kreiner
- Department of Cardiovascular Physiology, Heinrich Heine University Düsseldorf Düsseldorf, Germany
| | - Sebastian Kötter
- Department of Cardiovascular Physiology, Heinrich Heine University Düsseldorf Düsseldorf, Germany
| | - Philipp Lassak
- Department of Cardiovascular Physiology, Heinrich Heine University Düsseldorf Düsseldorf, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne Cologne, Germany
| | - Frank Suhr
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne Cologne, Germany
| | - Martina Krüger
- Department of Cardiovascular Physiology, Heinrich Heine University Düsseldorf Düsseldorf, Germany
| |
Collapse
|
27
|
Topographical variations in articular cartilage and subchondral bone of the normal rat knee are age-related. Ann Anat 2014; 196:278-85. [DOI: 10.1016/j.aanat.2014.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 11/19/2022]
|
28
|
Hamann N, Zaucke F, Dayakli M, Brüggemann GP, Niehoff A. Growth-related structural, biochemical, and mechanical properties of the functional bone-cartilage unit. J Anat 2012; 222:248-59. [PMID: 23083449 DOI: 10.1111/joa.12003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2012] [Indexed: 12/26/2022] Open
Abstract
Articular cartilage and subchondral bone act together, forming a unit as a weight-bearing loading-transmitting surface. A close interaction between both structures has been implicated during joint cartilage degeneration, but their coupling during normal growth and development is insufficiently understood. The purpose of the present study was to examine growth-related changes of cartilage mechanical properties and to relate these changes to alterations in cartilage biochemical composition and subchondral bone structure. Tibiae and femora of both hindlimbs from 7- and 13-week-old (each n = 12) female Sprague-Dawley rats were harvested. Samples were processed for structural, biochemical and mechanical analyses. Immunohistochemical staining and protein expression analyses of collagen II, collagen IX, COMP and matrilin-3, histomorphometry of cartilage thickness and COMP staining height were performed. Furthermore, mechanical testing of articular cartilage and micro-CT analysis of subchondral bone was conducted. Growth decreased cartilage thickness, paralleled by a functional condensation of the underlying subchondral bone due to enchondral ossification. Cartilage mechanical properties seem to be rather influenced by growth-related changes in the assembly of major ECM proteins such as collagen II, collagen IX and matrilin-3 than by growth-related alterations in its underlying subchondral bone structure. Importantly, the present study provides a first insight into the growth-related structural, biochemical and mechanical interaction of articular cartilage and subchondral bone. Finally, these data contribute to the general knowledge about the cooperation between the articular cartilage and subchondral bone.
Collapse
Affiliation(s)
- Nina Hamann
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Germany
| | | | | | | | | |
Collapse
|