1
|
Obeidat WM, Lahlouh IK. Chitosan Nanoparticles: Approaches to Preparation, Key Properties, Drug Delivery Systems, and Developments in Therapeutic Efficacy. AAPS PharmSciTech 2025; 26:108. [PMID: 40244367 DOI: 10.1208/s12249-025-03100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
The integration of nanotechnology into drug delivery systems holds great promise for enhancing pharmaceutical effectiveness. This approach enables precise targeting, controlled release, improved patient compliance, reduced side effects, and increased bioavailability. Nanoparticles are vital for transporting biomolecules-such as proteins, enzymes, genes, and vaccines-through various administration routes, including oral, intranasal, vaginal, buccal, and pulmonary. Among biodegradable polymers, chitosan, a linear polysaccharide derived from chitin, stands out due to its biocompatibility, safety, biodegradability, mucoadhesive properties, and ability to enhance permeation. Its cationic nature supports strong molecular interactions and provides antimicrobial, anti-inflammatory, and hemostatic benefits. However, its solubility, influenced by pH and ionic sensitivity, poses challenges requiring effective solutions. This review explores chitosan, its modified derivatives and chitosan nanoparticles mainly, focusing on nanoparticles physicochemical properties, drug release mechanisms, preparation methods, and factors affecting their mean hydrodynamic diameter (particle size). It highlights their application in drug delivery systems and disease treatments across various routes. Key considerations include drug loading capacity, zeta potential, and stability, alongside the impact of molecular weight, degree of deacetylation, and drug solubility on nanoparticle properties. Recent advancements and studies underscore chitosan's potential, emphasizing its modified derivatives'versatility in improving therapeutic outcomes.
Collapse
Affiliation(s)
- Wasfy M Obeidat
- Jordan University of Science and Technology, 3030, Irbid, 22110, Jordan.
| | - Ishraq K Lahlouh
- Jordan University of Science and Technology, 3030, Irbid, 22110, Jordan
| |
Collapse
|
2
|
El-Saadony MT, Saad AM, Alkafaas SS, Dladla M, Ghosh S, Elkafas SS, Hafez W, Ezzat SM, Khedr SA, Hussien AM, Fahmy MA, Elesawi IE, Salem HM, Mohammed DM, Abd El-Mageed TA, Ahmed AE, Mosa WFA, El-Tarabily MK, AbuQamar SF, El-Tarabily KA. Chitosan, derivatives, and its nanoparticles: Preparation, physicochemical properties, biological activities, and biomedical applications - A comprehensive review. Int J Biol Macromol 2025:142832. [PMID: 40187443 DOI: 10.1016/j.ijbiomac.2025.142832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Chitosan, derived from the deacetylation of chitin, is the second most widely used natural polymer, valued for its nontoxic, biocompatible, and biodegradable properties. These attributes have driven extensive research into diverse applications of chitosan and various derivatives. The key characteristics of chitosan muco-adhesion, permeability enhancement, drug release modulation, and antimicrobial activity are primarily due to its amino and hydroxyl groups. However, the limited solubility of raw chitosan in water and most organic solvents has posed challenges for broader application. Numerous chemically modified derivatives have been developed to address these inadequacies with improved physical and chemical properties. Among these derivatives, chitosan nanoparticles have emerged as versatile drug carriers with precise release kinetics and the capacity for targeted delivery, greatly enhancing drug efficacy and safety profiles for therapeutic applications. Due to these unique physicochemical properties, chitosan and chitosan nanoparticles are promising for improved drug delivery, vaccine administration, transplantation, gene therapy, and diagnostics. This review examines the physicochemical properties and bioactivities of chitosan and chitosan nanoparticles, emphasizing their broad-ranging biomedical applications.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mthokozisi Dladla
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg 191002, Russia
| | - Wael Hafez
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo 11511, Egypt
| | - Salma Mohamed Ezzat
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Tanta University, Tanta 44511, Egypt
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta 31733, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ibrahim Eid Elesawi
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Diseases of Birds, Rabbits, Fish & Their Care & Wildlife, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria 21531, Egypt
| | | | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
3
|
Lee J, Ju IG, Lim YJ, Kim JH, Lee S, Choi Y, Oh MS, Kim J, Kim D. Dimethysiloxane polymer for the effective transdermal delivery of donepezil in Alzheimer's disease treatment. Biomater Sci 2025; 13:1189-1198. [PMID: 39576095 DOI: 10.1039/d4bm01368a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Donepezil (DNZ) has been used to treat dementia associated with mild, moderate, or severe Alzheimer's disease (AD). DNZ uptake can alleviate cognitive symptoms in AD patients via acetylcholinesterase (AChE) inhibition. However, oral administration of DNZ has limitations, including first-pass metabolism, difficulties with swallowing, and low patient compliance. In this work, we disclose a novel transdermal DNZ delivery system utilizing T2 polymer, synthesized via the ring-opening polymerization of 2,2,5,5-tetramethyl-2,5-disila-1-oxacyclopentane with trifluoroacetic acid (TFA). In the in vivo studies in an AD animal model, the DNZ-loaded T2 polymer (DNZ@T2) facilitated efficient transdermal DNZ delivery to the bloodstream and improved spatial working memory and long-term memory of the AD mouse model. Both the T2 polymer and DNZ@T2 exhibited low cytotoxicity and non-significant in vivo toxicity. This research highlights a promising transdermal delivery strategy for AD treatment, potentially enhancing therapeutic efficacy and patient compliance.
Collapse
Affiliation(s)
- Jihyun Lee
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - In Gyoung Ju
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Yeon-Jin Lim
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Jin Hee Kim
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Seungmin Lee
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Yujin Choi
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Jaehoon Kim
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dokyoung Kim
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Seenivasan R, Halagali P, Nayak D, Tippavajhala VK. Transethosomes: A Comprehensive Review of Ultra-Deformable Vesicular Systems for Enhanced Transdermal Drug Delivery. AAPS PharmSciTech 2025; 26:41. [PMID: 39825015 DOI: 10.1208/s12249-024-03035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025] Open
Abstract
The transdermal route is one of the effective routes for delivering drugs. It also overcomes many limitations associated with oral delivery. One of the limitations of this route is the drug's poor skin permeability-stratum corneum, the skin's outermost layer that also acts as a barrier for the drug to penetrate. Traditional liposomal formulation is utilized to overcome these limitations. However, these liposomes also have certain difficulty in delivering drugs across the barriers. Ultra-deformable vesicles are novel vesicular structures that are flexible and stable, they can easily bypass the skin barriers more efficiently and thus enhance bioavailability. These vesicles consist of ethosomes, transethosomes, and transferosomes. Transethosomes are more advanced than other vesicular systems because they contain ethanol, phospholipids, and edge activators, making them more deformable and easier to penetrate deeper skin membranes. These vesicular systems can be prepared by various methods, such as cold, hot, and thin film hydration. Characterization of transethosomes includes vesicular size, zeta potential, polydispersity index and encapsulation efficiency, stability, and drug release studies. These vesicular systems can be utilized to deliver a variety of medications transdermally, including analgesics, antibiotics, and arthritis medications. Despite their promising potential, ethanol-based formulations present several problems requiring additional study. This review aims to describe various vesicular structures that have been used to overcome the barrier for the transdermal delivery of drugs and also describe brief composition, method of preparation, characterization, mechanism of penetration of transethosomes, as well as highlighted various applications of transethosomes in medicine, clinical trials and patents.
Collapse
Affiliation(s)
- Raagul Seenivasan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Praveen Halagali
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Devika Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
5
|
Rana MM, Demirkaya C, De la Hoz Siegler H. Beyond Needles: Immunomodulatory Hydrogel-Guided Vaccine Delivery Systems. Gels 2024; 11:7. [PMID: 39851978 PMCID: PMC11764567 DOI: 10.3390/gels11010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Vaccines are critical for combating infectious diseases, saving millions of lives worldwide each year. Effective immunization requires precise vaccine delivery to ensure proper antigen transport and robust immune activation. Traditional vaccine delivery systems, however, face significant challenges, including low immunogenicity and undesirable inflammatory reactions, limiting their efficiency. Encapsulating or binding vaccines within biomaterials has emerged as a promising strategy to overcome these limitations. Among biomaterials, hydrogels have gained considerable attention for their biocompatibility, ability to interact with biological systems, and potential to modulate immune responses. Hydrogels offer a materials science-driven approach for targeted vaccine delivery, addressing the shortcomings of conventional methods while enhancing vaccine efficacy. This review examines the potential of hydrogel-based systems to improve immunogenicity and explores their dual role as immunomodulatory adjuvants. Innovative delivery methods, such as microneedles, patches, and inhalable systems, are discussed as minimally invasive alternatives to traditional administration routes. Additionally, this review addresses critical challenges, including safety, scalability, and regulatory considerations, offering insights into hydrogel-guided strategies for eliciting targeted immune responses and advancing global immunization efforts.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
- Centre for Blood Research (CBR), Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cigdem Demirkaya
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Hector De la Hoz Siegler
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
| |
Collapse
|
6
|
Mehmood Y, Shahid H, Ahmed S, Khursheed A, Jamshaid T, Jamshaid M, Mengistie AA, Dawoud TM, Siddique F. Synthesis of vitamin D3 loaded ethosomes gel to cure chronic immune-mediated inflammatory skin disease: physical characterization, in vitro and ex vivo studies. Sci Rep 2024; 14:23866. [PMID: 39394201 PMCID: PMC11470002 DOI: 10.1038/s41598-024-72951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/12/2024] [Indexed: 10/13/2024] Open
Abstract
The purpose of the current work was to develop and characterize ethosomes of vitamin D3 gel that could more effectively work against psoriasis. Psoriasis is a chronic immune-mediated inflammatory skin disease. Due to vitamin D3 role in proliferation and maturation of keratinocytes, it has become an important local therapeutic option in the treatment of psoriasis. In this research we have initiated worked on ethosomes gels containing vitamin D3 to treat psoriasis. Soya lecithin 1-8% (w/v), propylene glycol and ethanol were used to create the formulations, which were then tested for vesicle size, shape, surface morphology, entrapment effectiveness, and in vitro drug permeation. The drug encapsulation efficiency of ethosomes was 96.25% ± 0.3. The particle sizes of the optimized ethosomes was 148 and 657 nm, and the PDI value was 0.770 ± 0.12 along with negative charge - 14 ± 3. Fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) along with thermogravimetric analysis (TGA) studies confirmed the absence of interactions between vitamin D3 and other ingredients. It was determined that the total amount of medication that penetrated the membrane was 95.34% ± 3. Percentage lysis was very negligible for all strengths which were found less than 15%. Based on our research, ethosomes appear to be safe for use. The vitamin D3 ethosomal gel order, description, pH, and viscosity were all within the specified ranges, according to the findings of a 6-month investigation into the stability profile of the completed system. In this research, we successfully prepared ethosomes loaded with vitamin D3 and then converted it into gel for patients' easy applications.
Collapse
Affiliation(s)
- Yasir Mehmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, PO.Box 38000, Faisalabad, Pakistan.
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, PO.Box 38000, Faisalabad, Pakistan.
| | - Hira Shahid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, GC University, PO.Box 38000, Faisalabad, Pakistan
| | - Shabbir Ahmed
- Fatima College of Health Sciences, PO.Box 36330, Toba Teksingh, Punjab, Pakistan
| | - Anjum Khursheed
- Faculty of pharmacy, Grand Asian University, Pasrur road, PO.Box 51410, Sialkot, Punjab, Pakistan
| | - Talha Jamshaid
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, UCP, PO.Box 51410, Lahore, Punjab, Pakistan
| | | | - Turki M Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. BOX 2455, 11451, Riyadh, Saudi Arabia
| | - Farhan Siddique
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
7
|
Firdous SO, Sagor MMH, Arafat MT. Advances in Transdermal Delivery of Antimicrobial Peptides for Wound Management: Biomaterial-Based Approaches and Future Perspectives. ACS APPLIED BIO MATERIALS 2024; 7:4923-4943. [PMID: 37976446 DOI: 10.1021/acsabm.3c00731] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Antimicrobial peptides (AMPs), distinguished by their cationic and amphiphilic nature, represent a critical frontier in the battle against antimicrobial resistance due to their potent antimicrobial activity and a broad spectrum of action. However, the clinical translation of AMPs faces hurdles, including their susceptibility to degradation, limited bioavailability, and the need for targeted delivery. Transdermal delivery has immense potential for optimizing AMP administration for wound management. Leveraging the skin's accessibility and barrier properties, transdermal delivery offers a noninvasive approach that can circumvent systemic side effects and ensure sustained release. Biomaterial-based delivery systems, encompassing nanofibers, hydrogels, nanoparticles, and liposomes, have emerged as key players in enhancing the efficacy of transdermal AMP delivery. These biomaterial carriers not only shield AMPs from enzymatic degradation but also provide controlled release mechanisms, thereby elevating stability and bioavailability. The synergistic interaction between the transdermal approach and biomaterial-facilitated formulations presents a promising strategy to overcome the multifaceted challenges associated with AMP delivery. Integrating advanced technologies and personalized medicine, this convergence allows the reimagining of wound care. This review amalgamates insights to propose a pathway where AMPs, transdermal delivery, and biomaterial innovation harmonize for effective wound management.
Collapse
Affiliation(s)
- Syeda Omara Firdous
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - Md Mehadi Hassan Sagor
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| |
Collapse
|
8
|
Nayak D, Rathnanand M, Tippavajhala VK. Navigating Skin Delivery Horizon: An Innovative Approach in Pioneering Surface Modification of Ultradeformable Vesicles. AAPS PharmSciTech 2024; 25:126. [PMID: 38834910 DOI: 10.1208/s12249-024-02847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
In the dynamic landscape of pharmaceutical advancements, the strategic application of active pharmaceutical ingredients to the skin through topical and transdermal routes has emerged as a compelling avenue for therapeutic interventions. This non-invasive approach has garnered considerable attention in recent decades, with numerous attempts yielding approaches and demonstrating substantial clinical potential. However, the formidable barrier function of the skin, mainly the confinement of drugs on the upper layers of the stratum corneum, poses a substantial hurdle, impeding successful drug delivery via this route. Ultradeformable vesicles/carriers (UDVs), positioned within the expansive realm of nanomedicine, have emerged as a promising tool for developing advanced dermal and transdermal therapies. The current review focuses on improving the passive dermal and transdermal targeting capacity by integrating functionalization groups by strategic surface modification of drug-loaded UDV nanocarriers. The present review discusses the details of case studies of different surface-modified UDVs with their bonding strategies and covers the recent patents and clinical trials. The design of surface modifications holds promise for overcoming existing challenges in drug delivery by marking a significant leap forward in the field of pharmaceutical sciences.
Collapse
Affiliation(s)
- Devika Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
9
|
Balakrishnan P, Gopi S. Revolutionizing transdermal drug delivery: unveiling the potential of cubosomes and ethosomes. J Mater Chem B 2024; 12:4335-4360. [PMID: 38619889 DOI: 10.1039/d3tb02927a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The area of drug delivery systems has witnessed significant advancements in recent years, with a particular focus on improving efficacy, stability, and patient compliance. Transdermal drug delivery offers numerous benefits compared to conventional methods of drug administration through the skin. It helps in avoiding gastric irritation, hepatic first-pass metabolism, and gastric degradation of the drug. It bypasses the gastrointestinal tract, eliminating the risk of first-pass metabolism and allowing drugs to be administered without being affected by pH, enzymes, or intestinal bacteria. Additionally, it allows for sustained release of the drug, is noninvasive, and enhances patient adherence to the treatment regimen. The transdermal drug delivery system (TDDS) can serve as an alternative route for drug administration in individuals who cannot tolerate oral medications, experience nausea, or are unconscious. When compared to intravenous, hypodermic, and other parenteral routes, TDDS stands out due to its ability to eliminate pain, reduce the risk of infection, and prevent disease transmission associated with needle reuse. Consequently, the overall patient compliance is significantly improved with the utilization of TDDS. Among the noteworthy developments are cubosomes and ethosomes, two distinct yet promising carriers that have garnered attention for their unique properties. In conclusion, this review synthesizes the current knowledge on cubosomes and ethosomes, shedding light on their individual strengths and potential synergies. The exploration of their application in various therapeutic areas underscores their versatility and establishes them as key players in the evolving landscape of drug delivery systems.
Collapse
Affiliation(s)
- Preetha Balakrishnan
- Molecules Biolabs Private Limited, First Floor, 3/634, Commercial Building Kinfra Konoor Road, Muringur, Vadakkummuri, Thrissur, Kerala Kinfra Park Koratti Mukundapuram, Thrissur, KL 680309, India.
| | - Sreerag Gopi
- Molecules Biolabs Private Limited, First Floor, 3/634, Commercial Building Kinfra Konoor Road, Muringur, Vadakkummuri, Thrissur, Kerala Kinfra Park Koratti Mukundapuram, Thrissur, KL 680309, India.
| |
Collapse
|
10
|
Mohammed AI, Fedoruk L, Fisher N, Liu AX, Khanna S, Naylor K, Gong Z, Celentano A, Alrashdan MS, Cirillo N. Systemic Anti-Inflammatory Agents in the Prevention of Chemoradiation-Induced Mucositis: A Review of Randomised Controlled Trials. Biomolecules 2024; 14:560. [PMID: 38785967 PMCID: PMC11117894 DOI: 10.3390/biom14050560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Mucositis is a pathological condition characterised by inflammation and ulceration of the mucous membranes lining the alimentary canal, particularly in the mouth (oral mucositis) and the gastrointestinal tract. It is a common side effect of cancer treatments, including chemotherapy and radiotherapy, and it is sometimes responsible for treatment interruptions. Preventing mucositis throughout the alimentary tract is therefore crucial. However, current interventions mainly target either oral or gastrointestinal side effects. This review aimed to investigate the use of systemically administered anti-inflammatory agents to prevent mucositis in cancer patients undergoing cancer treatment. PubMed, Ovid, Scopus, Web of Science, WHO ICTRP and ClinicalTrials.gov were screened to identify eligible randomised controlled trials (RCTs). The published literature on anti-inflammatory agents provides mixed evidence regarding the degree of efficacy in preventing/reducing the severity of mucositis in most anticancer treatments; however, sample size continued to be a significant limitation, alongside others discussed. Our review yielded a list of several anti-inflammatory agents that exhibit potential mucositis-preventive effects in cancer patients undergoing cancer treatment, which can be used to inform clinical practice.
Collapse
Affiliation(s)
- Ali I. Mohammed
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (L.F.); (N.F.); (A.X.L.); (S.K.); (K.N.); (Z.G.); (A.C.)
| | - Lexi Fedoruk
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (L.F.); (N.F.); (A.X.L.); (S.K.); (K.N.); (Z.G.); (A.C.)
| | - Nicholas Fisher
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (L.F.); (N.F.); (A.X.L.); (S.K.); (K.N.); (Z.G.); (A.C.)
| | - Andy Xiaoqian Liu
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (L.F.); (N.F.); (A.X.L.); (S.K.); (K.N.); (Z.G.); (A.C.)
| | - Samar Khanna
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (L.F.); (N.F.); (A.X.L.); (S.K.); (K.N.); (Z.G.); (A.C.)
| | - Kaelan Naylor
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (L.F.); (N.F.); (A.X.L.); (S.K.); (K.N.); (Z.G.); (A.C.)
| | - Ziyi Gong
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (L.F.); (N.F.); (A.X.L.); (S.K.); (K.N.); (Z.G.); (A.C.)
| | - Antonio Celentano
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (L.F.); (N.F.); (A.X.L.); (S.K.); (K.N.); (Z.G.); (A.C.)
| | - Mohammad S. Alrashdan
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Department of Oral Medicine and Oral Surgery, Faculty of Dentistry, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Nicola Cirillo
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Carlton, VIC 3053, Australia; (A.I.M.); (L.F.); (N.F.); (A.X.L.); (S.K.); (K.N.); (Z.G.); (A.C.)
- School of Dentistry, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
11
|
Almutairy BK, Khafagy ES, Aldawsari MF, Alshetaili A, Alotaibi HF, Abu Lila AS. Tailoring of Bilosomal Nanogel for Augmenting the Off-Label Use of Sildenafil Citrate in Pediatric Pulmonary Hypertension. ACS OMEGA 2024; 9:19536-19547. [PMID: 38708263 PMCID: PMC11064047 DOI: 10.1021/acsomega.4c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/09/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Pediatric pulmonary hypertension is a serious syndrome with significant morbidity and mortality. Sildenafil is widely used off-label in pediatric patients with pulmonary arterial hypertension. In this study, bile salt-stabilized nanovesicles (bilosomes) were screened for their efficacy to enhance the transdermal delivery of the phosphodiesterase type 5 inhibitor, sildenafil citrate, in an attempt to augment its therapeutic efficacy in pediatric pulmonary hypertension. A response surface methodology was implemented for fabricating and optimizing a bilosomal formulation of sildenafil (SDF-BS). The optimized SDF-BS formulation was characterized in terms of its entrapment efficiency (EE), zeta potential, vesicle size, and in vitro release profile. The optimized formula was then loaded onto hydroxypropyl methyl cellulose (HPMC) hydrogel and assessed for skin permeation, in vivo pharmacokinetics, and pharmacodynamic studies. The optimized SDF-BS showed the following characteristic features; EE of 88.7 ± 1.1%, vesicle size of 185.0 + 9.2 nm, zeta potential of -20.4 ± 1.1 mV, and efficiently sustained SDF release for 12 h. Skin permeation study revealed a remarkable improvement in SDF penetration from bilosomal gel compared to plain SDF gel. In addition, pharmacokinetic results revealed that encapsulating SDF within bilosomal vesicles significantly enhanced its systemic bioavailability (∼3 folds), compared to SDF oral suspension. In addition, pharmacodynamic investigation revealed that, compared to plain SDF gel or oral drug suspension, SDF-BS gel applied topically triggered a significant elevation (p < 0.05) in cGMP serum levels, underscoring the superior therapeutic efficacy of SDF-BS gel. Conclusively, bilosomes can be viewed as a promising nanocarrier for transdermal delivery of SDF that would grant higher therapeutic efficiency while alleviating the limitations encountered with SDF oral administration.
Collapse
Affiliation(s)
- Bjad K. Almutairy
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - El-Sayed Khafagy
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed F. Aldawsari
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Abdullah Alshetaili
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Hadil Faris Alotaibi
- Department
of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint AbdulRahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amr Selim Abu Lila
- Department
of Pharmaceutics, College of Pharmacy, University
of Hail, Hail 81442, Saudi Arabia
- Medical
and Diagnostic Research Center, University
of Hail, Hail 81442, Saudi Arabia
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
12
|
Kumar R, Rezapourian M, Rahmani R, Maurya HS, Kamboj N, Hussainova I. Bioinspired and Multifunctional Tribological Materials for Sliding, Erosive, Machining, and Energy-Absorbing Conditions: A Review. Biomimetics (Basel) 2024; 9:209. [PMID: 38667221 PMCID: PMC11048303 DOI: 10.3390/biomimetics9040209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Friction, wear, and the consequent energy dissipation pose significant challenges in systems with moving components, spanning various domains, including nanoelectromechanical systems (NEMS/MEMS) and bio-MEMS (microrobots), hip prostheses (biomaterials), offshore wind and hydro turbines, space vehicles, solar mirrors for photovoltaics, triboelectric generators, etc. Nature-inspired bionic surfaces offer valuable examples of effective texturing strategies, encompassing various geometric and topological approaches tailored to mitigate frictional effects and related functionalities in various scenarios. By employing biomimetic surface modifications, for example, roughness tailoring, multifunctionality of the system can be generated to efficiently reduce friction and wear, enhance load-bearing capacity, improve self-adaptiveness in different environments, improve chemical interactions, facilitate biological interactions, etc. However, the full potential of bioinspired texturing remains untapped due to the limited mechanistic understanding of functional aspects in tribological/biotribological settings. The current review extends to surface engineering and provides a comprehensive and critical assessment of bioinspired texturing that exhibits sustainable synergy between tribology and biology. The successful evolving examples from nature for surface/tribological solutions that can efficiently solve complex tribological problems in both dry and lubricated contact situations are comprehensively discussed. The review encompasses four major wear conditions: sliding, solid-particle erosion, machining or cutting, and impact (energy absorbing). Furthermore, it explores how topographies and their design parameters can provide tailored responses (multifunctionality) under specified tribological conditions. Additionally, an interdisciplinary perspective on the future potential of bioinspired materials and structures with enhanced wear resistance is presented.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (M.R.); (H.S.M.); (N.K.); (I.H.)
| | - Mansoureh Rezapourian
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (M.R.); (H.S.M.); (N.K.); (I.H.)
| | - Ramin Rahmani
- CiTin–Centro de Interface Tecnológico Industrial, 4970-786 Arcos de Valdevez, Portugal;
- proMetheus–Instituto Politécnico de Viana do Castelo (IPVC), 4900-347 Viana do Castelo, Portugal
| | - Himanshu S. Maurya
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (M.R.); (H.S.M.); (N.K.); (I.H.)
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
| | - Nikhil Kamboj
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (M.R.); (H.S.M.); (N.K.); (I.H.)
- Department of Mechanical and Materials Engineering, University of Turku, 20500 Turku, Finland
- TCBC–Turku Clinical Biomaterials Centre, Department of Biomaterials Science, Faculty of Medicine, Institute of Dentistry, University of Turku, 20014 Turku, Finland
| | - Irina Hussainova
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (M.R.); (H.S.M.); (N.K.); (I.H.)
| |
Collapse
|
13
|
Mishra KK, Kaur CD, Singh S, Tiwari A, Tiwari V, Sharma A. Assessing the Efficacy of Berberine Hydrochloride-loaded Transethosomal Gel System in Treating Dermatophytosis Caused by Trichophyton rubrum in ex-vivo, in-vitro and in-vivo Models. Curr Drug Res Rev 2024; 16:412-422. [PMID: 37496248 DOI: 10.2174/2589977515666230726151456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Dermatophytosis is the most common dermatological disorder worldwide. Many drugs are available in the market for the treatment of dermatophytosis, but they have had limited success due to the stratum corneum barrier, antifungal resistance, drug permeation, drug retention in skin layers, etc. Thus, there is a constant need for new topical compounds that are effective against dermatophytosis. Berberine-hydrochloride is an attractive candidate to become an antifungal drug, and by using nanotechnology, it achieves deeper penetration in skin layers with enhanced permeability through the stratum corneum. METHODS In this study, we developed an oleic acid-containing berberine-hydrochloride-loaded transethosomal gel for effective treatment of dermatophytosis by Trichophyton rubrum. Berberine- hydrochloride-loaded transethosomal gels were fabricated using the hot homogenization method, followed by the incorporation of transethosomes into the gel-based system using carbopol 934. Transethosomal gel was characterized by physicochemical properties, in vitro drug release, ex-vivo permeation studies, CLSM visualization, antifungal activity, histopathological evaluation, and dermatokinetic study. RESULTS Berberine-hydrochloride-loaded transethosomes seemed to be spherical and found in a range between 200-300 nm. Berberine-hydrochloride-loaded transethosomal gel formulation also exhibited controlled ex-vivo permeation of berberine-hydrochloride over 24 hr through excised rat skin, and CLSM confirmed deeper penetration into skin layers. The in vivo study revealed that transethosomal gel had a healing effect on the skin of Wistar rats infected with Trichophyton rubrum and was better than luliconazole cream. The histopathological evaluation confirmed its safety, and the dermatokinetic study showed transethosomal gel superiority over marketed cream. CONCLUSION Therefore, the incorporation of berberine hydrochloride-loaded transethosomal nanosystems into the gel has the potential to enhance antifungal activity and permeation through transdermal drug delivery.
Collapse
Affiliation(s)
| | - Chanchal Deep Kaur
- Department of Pharmacy, Rungta College of Pharmaceutical Sciences and Research, Near Nandanvan, Raipur, Chhattisgarh, India
| | - Sunil Singh
- Department of Pharmacy, Shri Sai College of Pharmacy, Prayagraj, Uttar Pradesh, India
| | - Abhishek Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad-244102, India
| | - Varsha Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad-244102, India
| | - Ajay Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| |
Collapse
|
14
|
Elsewedy HS, Shehata TM, Alqahtani NK, Khalil HE, Soliman WE. Date Palm Extract ( Phoenix dactylifera) Encapsulated into Palm Oil Nanolipid Carrier for Prospective Antibacterial Influence. PLANTS (BASEL, SWITZERLAND) 2023; 12:3670. [PMID: 37960029 PMCID: PMC10648499 DOI: 10.3390/plants12213670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
It is worthwhile to note that using natural products today has shown to be an effective strategy for attaining the therapeutic goal with the highest impact and the fewest drawbacks. In Saudi Arabia, date palm (Phoenix dactylifera) is considered the principal fruit owing to its abundance and incredible nutritional benefits in fighting various diseases. The main objective of the study is to exploit the natural products as well as the nanotechnology approach to obtain great benefits in managing disorders. The present investigation focused on using the powder form of date palm extract (DPE) of Khalas cultivar and incorporates it into a nanolipid formulation such as a nanostructured lipid carrier (NLC) prepared with palm oil. Using the quality by design (QbD) methodology, the most optimized formula was chosen based on the number of assigned parameters. For more appropriate topical application, the optimized DP-NLC was combined with a pre-formulated hydrogel base forming the DP-NLC-hydrogel. The developed DP-NLC-hydrogel was evaluated for various physical properties including pH, viscosity, spreadability, and extrudability. Additionally, the in vitro release of the formulation as well as its stability upon storage under two different conditions of room temperature and refrigerator were investigated. Eventually, different bacterial strains were utilized to test the antibacterial efficacy of the developed formulation. The optimized DP-NLC showed proper particle size (266.9 nm) and in vitro release 77.9%. The prepared DP-NLC-hydrogel showed acceptable physical properties for topical formulation, mainly, pH 6.05, viscosity 9410 cP, spreadability 57.6 mm, extrudability 84.5 (g/cm2), and in vitro release 42.4%. Following three months storage under two distinct conditions, the formula exhibited good stability. Finally, the antibacterial activity of the developed DP-NLC-hydrogel was evaluated and proved to be efficient against various bacterial strains.
Collapse
Affiliation(s)
- Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | - Tamer M. Shehata
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Nashi K. Alqahtani
- Department of Food Science and Technology, College of Agriculture, King Faisal University, Alhofuf 31982, Al-Ahsa, Saudi Arabia
- Date Palm Research Center of Excellence, King Faisal University, Alhofuf 31982, Al-Ahsa, Saudi Arabia
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt
| |
Collapse
|
15
|
He C, He X, Zhang Y, Han X, Yang Y, Shen Y, Wang T, Wu Q, Yang Y, Xu W, Bai J, Wang Z. Development of a Microfluidic Formatted Ultrasound-Controlled Monodisperse Lipid Vesicles' Hydrogel Dressing Combined with Ultrasound for Transdermal Drug Delivery System. Macromol Biosci 2023; 23:e2300049. [PMID: 37178331 DOI: 10.1002/mabi.202300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Transdermal drug delivery system (TDDS) has attracted much attention in the pharmaceutical technology area. However, the current methods are difficult to ensure penetration efficiency, controllability, and safety in the dermis, so its widespread clinical use has been limited. This work proposes an ultrasound-controlled monodisperse lipid vesicles (U-CMLVs) hydrogel dressing, which combines with ultrasound to form TDDS. Using microfluidic technology, prepare size controllable U-CMLVs with high drug encapsulation efficiency and quantitative encapsulation of ultrasonic response materials, and even uniform mix them with hydrogel to prepare the required thickness of dressings. The high encapsulation efficiency can ensure sufficient dosage of the drugs and further realize the control of ultrasonic response through quantitative encapsulation of ultrasound-responsive materials. Using high frequency (5 MHz, 0.4 W cm-2 ) and low frequency (60 kHz, 1 W cm-2 ) ultrasound to control the movement and rupture of U-CMLVs, the contents not only penetrate the stratum corneum into the epidermis but also break through the bottleneck of penetration efficiency, and deep into the dermis. These findings provide the groundwork for deep, controllable, efficient, and safe drug delivery through TDDS and lay a foundation for further expanding its application.
Collapse
Affiliation(s)
- Chengdian He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Xiong He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yi Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaofeng Han
- Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China
| | - Yujun Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center Chongqing Medical University, Chongqing, 400016, China
| | - Yong Shen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Teng Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Qing Wu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yukun Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Xu
- Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China
| | - Jin Bai
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Zhenyu Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
16
|
Akan M, Skorodumov I, Meinhardt MW, Canbeyli R, Unal G. A shea butter-based ketamine ointment: The antidepressant effects of transdermal ketamine in rats. Behav Brain Res 2023; 452:114594. [PMID: 37487837 DOI: 10.1016/j.bbr.2023.114594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
The delayed onset of monoaminergic antidepressants and disadvantages of traditional administration routes created the need for alternative non-invasive delivery methods with rapid onset therapeutic effect. Ketamine attracted attention as a fast-acting glutamatergic antidepressant with ideal physiochemical properties for alternative routes of administration. However, there is no sufficient data for its transdermal use in depression. In this proof-of-concept study, we investigated the antidepressant effects of transdermal ketamine delivered via a novel ointment with skin protective, emulsifying and permeation enhancing properties. A shea butter-based 5% (w/w) ketamine ointment or a drug-free vehicle ointment were applied to the shaved dorsal skin of male Wistar rats for 2 days, twice a day. Behavioral despair, locomotor activity and anxiety-like behavior were respectively assessed in the forced swim test (FST), open field test (OFT), and elevated plus maze (EPM). The pharmacokinetic profile of the ointment was analyzed with high-performance liquid chromatography. Transdermal ketamine ameliorated behavioral despair without altering general locomotor activity and anxiety-like behavior, showing that skin-friendly drug carriers like shea butter may constitute promising alternatives to current routes of delivery for ketamine. Tested transdermal method aims to provide more sustainable drug delivery for long-term treatment schedules. Future studies can investigate its long-term use, side effects and abuse liability.
Collapse
Affiliation(s)
- Merve Akan
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Ivan Skorodumov
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Marcus W Meinhardt
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Resit Canbeyli
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey.
| |
Collapse
|
17
|
Ait-Touchente Z, Zine N, Jaffrezic-Renault N, Errachid A, Lebaz N, Fessi H, Elaissari A. Exploring the Versatility of Microemulsions in Cutaneous Drug Delivery: Opportunities and Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101688. [PMID: 37242104 DOI: 10.3390/nano13101688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Microemulsions are novel drug delivery systems that have garnered significant attention in the pharmaceutical research field. These systems possess several desirable characteristics, such as transparency and thermodynamic stability, which make them suitable for delivering both hydrophilic and hydrophobic drugs. In this comprehensive review, we aim to explore different aspects related to the formulation, characterization, and applications of microemulsions, with a particular emphasis on their potential for cutaneous drug delivery. Microemulsions have shown great promise in overcoming bioavailability concerns and enabling sustained drug delivery. Thus, it is crucial to have a thorough understanding of their formulation and characterization in order to optimize their effectiveness and safety. This review will delve into the different types of microemulsions, their composition, and the factors that affect their stability. Furthermore, the potential of microemulsions as drug delivery systems for skin applications will be discussed. Overall, this review will provide valuable insights into the advantages of microemulsions as drug delivery systems and their potential for improving cutaneous drug delivery.
Collapse
Affiliation(s)
- Zouhair Ait-Touchente
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| | - Nadia Zine
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| | | | - Abdelhamid Errachid
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| | - Noureddine Lebaz
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEPP UMR 5007, 69100 Villeurbanne, France
| | - Hatem Fessi
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEPP UMR 5007, 69100 Villeurbanne, France
| | - Abdelhamid Elaissari
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| |
Collapse
|
18
|
Khan MS, Mohapatra S, Gupta V, Ali A, Naseef PP, Kurunian MS, Alshadidi AAF, Alam MS, Mirza MA, Iqbal Z. Potential of Lipid-Based Nanocarriers against Two Major Barriers to Drug Delivery-Skin and Blood-Brain Barrier. MEMBRANES 2023; 13:343. [PMID: 36984730 PMCID: PMC10058721 DOI: 10.3390/membranes13030343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Over the past few years, pharmaceutical and biomedical areas have made the most astounding accomplishments in the field of medicine, diagnostics and drug delivery. Nanotechnology-based tools have played a major role in this. The implementation of this multifaceted nanotechnology concept encourages the advancement of innovative strategies and materials for improving patient compliance. The plausible usage of nanotechnology in drug delivery prompts an extension of lipid-based nanocarriers with a special reference to barriers such as the skin and blood-brain barrier (BBB) that have been discussed in the given manuscript. The limited permeability of these two intriguing biological barriers restricts the penetration of active moieties through the skin and brain, resulting in futile outcomes in several related ailments. Lipid-based nanocarriers provide a possible solution to this problem by facilitating the penetration of drugs across these obstacles, which leads to improvements in their effectiveness. A special emphasis in this review is placed on the composition, mechanism of penetration and recent applications of these carriers. It also includes recent research and the latest findings in the form of patents and clinical trials in this field. The presented data demonstrate the capability of these carriers as potential drug delivery systems across the skin (referred to as topical, dermal and transdermal delivery) as well as to the brain, which can be exploited further for the development of safe and efficacious products.
Collapse
Affiliation(s)
- Mohammad Sameer Khan
- School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Sradhanjali Mohapatra
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Vaibhav Gupta
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Ahsan Ali
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | | | - Mohamed Saheer Kurunian
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Abdulkhaliq Ali F. Alshadidi
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Md Shamsher Alam
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan P.O. Box 114, Saudi Arabia
| | - Mohd. Aamir Mirza
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Zeenat Iqbal
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
19
|
Iachina I, Eriksson AH, Bertelsen M, Petersson K, Jansson J, Kemp P, Engell KM, Brewer JR, Nielsen KT. Dissolvable microneedles for transdermal drug delivery showing skin pentation and modified drug release. Eur J Pharm Sci 2023; 182:106371. [PMID: 36621615 DOI: 10.1016/j.ejps.2023.106371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/12/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Topical therapies for chronic skin diseases suffer from a low patient compliance due to the inconvenient treatment regimens of available products. Dissolvable microneedles (MN) with modified release offer an interesting possibility to increase the compliance by acting as a depot in the skin and thereby decreasing the dosing frequency. Furthermore, the bioavailability can be increased significantly by bypassing the barrier of the skin by the direct penetration of the MN into the skin. In this study the depot effect and skin penetration of an innovative dissolvable MN patch was assessed by insertion in ex vivo human skin and in vivo using minipigs. The MN patches are based on biodegradable polymers and the active pharmaceutical ingredients calcipotriol (Calci) and betamethasone-17-21-dipropionate (BDP) used to treat psoriasis. Using computed tomography (CT) and Coherent anti-Stokes Raman scattering (CARS) microscopy it was possible to visualize the skin penetration and follow the morphology of the MN as function of time in the skin. The depot effect was assessed by studying the modified in vitro release in an aqueous buffer and by comparing the drug release of a single application of a patch both ex vivo and in vivo to daily application of a marketed oleogel containing the same active pharmaceutical ingredients. The CT and CARS images showed efficient penetration of the MN patches into the upper dermis and a slow swelling process of the drug containing tip over a period of 8 days. Furthermore, CARS demonstrated that it can be used as a noninvasive technique with potential applicability in clinical settings. The in vitro release studies show a release of 54% over a time period of 30 days. The pharmacological relevance of MNs was confirmed in human skin explants and in vivo after single application and showed a similar response on calcipotriol and BDP mediated signaling events compared to daily application of the active oleogel. Altogether it was demonstrated that the MN can penetrate the skin and have the potential to provide a depot effect.
Collapse
Affiliation(s)
- Irina Iachina
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - André H Eriksson
- In Vivo Biology & Biomarkers, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Malene Bertelsen
- In Vivo Biology & Biomarkers, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Karsten Petersson
- Explorative Formulation & Technologies, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Jörgen Jansson
- Explorative Formulation & Technologies, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Pernille Kemp
- Explorative Formulation & Technologies, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Karen M Engell
- Small Molecule Early Pharmaceutical Development, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Jonathan R Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Kim T Nielsen
- Advanced Analytical and Structural Chemistry, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark.
| |
Collapse
|
20
|
Kittaneh M, Qurt M, Malkieh N, Naseef H, Muqedi R. Preparation and Evaluation of Vitamin D3 Supplementation as Transdermal Film-Forming Solution. Pharmaceutics 2022; 15:39. [PMID: 36678668 PMCID: PMC9863400 DOI: 10.3390/pharmaceutics15010039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Vitamin D3 is available in oral and injectable dosage forms. Interest in the transdermal route as an alternative to the oral and parenteral routes has grown recently. In this study, several film-forming solutions for the transdermal delivery of vitamin D3 were prepared. They contained 6000 IU/mL of vitamin D3 that formed a dry and acceptable film in less than 5 min after application. The formulations consisted of ethanol and acetone 80:20, and one or more of the following ingredients: Eudragit L100-55, PVP, PG, limonene, oleic acid, camphor, and menthol. Vitamin D3 release was studied from both the film-forming solution and pre-dried films using a Franz diffusion cell. The film-forming solution released a significant amount of vitamin D3 compared to the dry film, which is attributed mostly to the saturation driving force due to the evaporation of volatile solvents. In vitro permeation studies through artificial skin Strat M® membrane revealed that the cumulative amount of vitamin D3 permeated after 24 h under the experimental conditions was around 800 IU across 3.14 cm2. The cumulative permeation curve showed faster permeation in earlier stages. Young's modulus, viscosity, and pH of the formulations were determined. Most of the formulations were stable for 3 weeks.
Collapse
Affiliation(s)
- Majd Kittaneh
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah P.O. Box 3570, Palestine
| | - Moammal Qurt
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah P.O. Box 3570, Palestine
| | - Numan Malkieh
- Jerusalem Pharmaceuticals, Ramallah P.O. Box 71939, Palestine
| | - Hani Naseef
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah P.O. Box 3570, Palestine
| | - Ramzi Muqedi
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah P.O. Box 3570, Palestine
| |
Collapse
|
21
|
Borghi SM, Zaninelli TH, Carra JB, Heintz OK, Baracat MM, Georgetti SR, Vicentini FTMC, Verri WA, Casagrande R. Therapeutic Potential of Controlled Delivery Systems in Asthma: Preclinical Development of Flavonoid-Based Treatments. Pharmaceutics 2022; 15:pharmaceutics15010001. [PMID: 36678631 PMCID: PMC9865502 DOI: 10.3390/pharmaceutics15010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Asthma is a chronic disease with increasing prevalence and incidence, manifested by allergic inflammatory reactions, and is life-threatening for patients with severe disease. Repetitive challenges with the allergens and limitation of treatment efficacy greatly dampens successful management of asthma. The adverse events related to several drugs currently used, such as corticosteroids and β-agonists, and the low rigorous adherence to preconized protocols likely compromises a more assertive therapy. Flavonoids represent a class of natural compounds with extraordinary antioxidant and anti-inflammatory properties, with their potential benefits already demonstrated for several diseases, including asthma. Advanced technology has been used in the pharmaceutical field to improve the efficacy and safety of drugs. Notably, there is also an increasing interest for the application of these techniques using natural products as active molecules. Flavones, flavonols, flavanones, and chalcones are examples of flavonoid compounds that were tested in controlled delivery systems for asthma treatment, and which achieved better treatment results in comparison to their free forms. This review aims to provide a comprehensive understanding of the development of novel controlled delivery systems to enhance the therapeutic potential of flavonoids as active molecules for asthma treatment.
Collapse
Affiliation(s)
- Sergio M. Borghi
- Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Center for Research in Health Sciences, University of Northern Paraná, Londrina 86041-120, PR, Brazil
| | - Tiago H. Zaninelli
- Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Jéssica B. Carra
- Department of Chemistry, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Olivia K. Heintz
- Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Marcela M. Baracat
- Department of Chemistry, State University of Londrina, Londrina 86057-970, PR, Brazil
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Sandra R. Georgetti
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Fabiana T. M. C. Vicentini
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto 14040-900, SP, Brazil
| | - Waldiceu A. Verri
- Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Correspondence: or (W.A.V.); or (R.C.); Tel.: +55-43-3371-4979 (W.A.V.); +55-43-3371-2476 (R.C.); Fax: +55-43-3371-4387 (W.A.V.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
- Correspondence: or (W.A.V.); or (R.C.); Tel.: +55-43-3371-4979 (W.A.V.); +55-43-3371-2476 (R.C.); Fax: +55-43-3371-4387 (W.A.V.)
| |
Collapse
|
22
|
Validation and testing of a new artificial biomimetic barrier for estimation of transdermal drug absorption. Int J Pharm 2022; 628:122266. [DOI: 10.1016/j.ijpharm.2022.122266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/22/2022]
|
23
|
László S, Bátai IZ, Berkó S, Csányi E, Dombi Á, Pozsgai G, Bölcskei K, Botz L, Wagner Ö, Pintér E. Development of Capsaicin-Containing Analgesic Silicone-Based Transdermal Patches. Pharmaceuticals (Basel) 2022; 15:1279. [PMID: 36297391 PMCID: PMC9611826 DOI: 10.3390/ph15101279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 12/03/2022] Open
Abstract
Transdermal therapeutic systems (TTSs) enable convenient dosing in drug therapy. Modified silicone-polymer-based patches are well-controlled and cost-effective matrix diffusion systems. In the present study, we investigated the substance release properties, skin penetration, and analgesic effect of this type of TTS loaded with low-dose capsaicin. Release properties were measured in Franz diffusion cell and continuous flow-through cell approaches. Capsaicin was detected with HPLC-UV and UV spectrophotometry. Raman spectroscopy was conducted on human skin samples exposed to the TTS. A surgical incision or carrageenan injection was performed on one hind paw of male Wistar rats. TTSs were applied to the epilated dorsal skin. Patches were kept on the animals for 6 h. The thermal hyperalgesia and mechanical pain threshold of the hind paws were detected. Patches exhibited controlled, zero-order kinetic capsaicin release. According to the Raman mapping, capsaicin penetrated into the epidermis and dermis of human skin, where the target receptors are expressed. The thermal pain threshold drop of the operated rat paws was reversed by capsaicin treatment compared to that of animals treated with control patches. It was concluded that our modified silicone-polymer-based capsaicin-containing TTS is suitable for the relief of traumatic and inflammatory pain.
Collapse
Affiliation(s)
- Szabolcs László
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary
| | - István Z. Bátai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary
- Molecular Pharmacology Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság ú. 20, H-7624 Pécs, Hungary
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary
| | - Erzsébet Csányi
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary
| | - Ágnes Dombi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary
- Molecular Pharmacology Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság ú. 20, H-7624 Pécs, Hungary
| | - Gábor Pozsgai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary
- Molecular Pharmacology Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság ú. 20, H-7624 Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary
- Molecular Pharmacology Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság ú. 20, H-7624 Pécs, Hungary
| | - Lajos Botz
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, Honvéd u. 3., H-7624 Pécs, Hungary
| | - Ödön Wagner
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary
- Molecular Pharmacology Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság ú. 20, H-7624 Pécs, Hungary
| |
Collapse
|
24
|
László S, Hajna Z, Egyed A, Pintér E, Wagner Ö. Development of a Silicone-Based Polymer Matrix as a Suitable Transdermal Therapeutic System for Diallyl Disulfide. Pharmaceuticals (Basel) 2022; 15:ph15101182. [PMID: 36297294 PMCID: PMC9612217 DOI: 10.3390/ph15101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
There is an unmet need for novel therapeutic tools relieving chronic pain. Hydrogen sulfide (H2S) is highly involved in pain processes; however, the development of ideal matrices for sulfide donor compounds remains a great pharmaceutical challenge. We aimed to establish a suitable transdermal therapeutic system (TTS) using the H2S donor diallyl disulfide (DADS) as a model compound. After the preparation of DADS, its solubility was investigated in different liquid excipients (propylene glycol, polyethylene glycol, silicone oil) and its membrane diffusivity was assessed in silicone matrices of different compositions. Drug-releasing properties of DADS-containing patches with different silicone oil contents were determined with Franz and flow-through cells. We found a correlation between the liquid excipient content of the patch and the diffusion rate of DADS. DADS showed the best solubility in dimethyl silicone oil, and the diffusion constant was proportional to the amount of oil above the 3 m/m% threshold value. The 8-day-old patch showed a significantly lower, but better-regulated, drug release over time than the 4-day-old one. In conclusion, the silicone-based polymer matrix developed in this study is suitable for stable storage and optimal release of DADS, providing a good basis for a TTS applied in chronic pain.
Collapse
Affiliation(s)
- Szabolcs László
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12., H-7624 Pécs, Hungary
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Zsófia Hajna
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12., H-7624 Pécs, Hungary
- Molecular Pharmacology Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság ú. 20., H-7624 Pécs, Hungary
- Correspondence: ; Tel.: +36-72-538-212
| | - Attila Egyed
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2., H-1117 Budapest, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12., H-7624 Pécs, Hungary
- Molecular Pharmacology Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság ú. 20., H-7624 Pécs, Hungary
| | - Ödön Wagner
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| |
Collapse
|
25
|
Effect of Polymers and Permeation Enhancers in the Release of Quetiapine Fumarate Transdermal Patch through the Dialysis Membrane. Polymers (Basel) 2022; 14:polym14101984. [PMID: 35631867 PMCID: PMC9143260 DOI: 10.3390/polym14101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Quetiapine Fumarate is potent, and the daily therapeutic dose can be delivered easily across the skin with the help of permeation enhancers. Quetiapine Fumarate-loaded transdermal patches were prepared by solvent evaporation technique. Various formulation parameters, excipients, and their combinations were optimized to get thin, translucent, smooth, stable, and high permeable character patches. A total number of 10 formulations were prepared. All formulations were subjected to various physicochemical evaluations. Three different formulations were prepared and F1, F2, and F3. Various physicochemical studies were carried out and found no significant difference between the three batches. The in vitro release study showed 74.29%, 82.73%, and 77.27%, respectively, up to 24 h. From the results, F2 has been selected as an optimized formulation and evaluated for skin irritation test. The results revealed that there is no irritation produced. The stability study results showed that there is no significant change from its initial nature till the period of three months in both temperatures. Quetiapine Fumarate Transdermal Patch F2 has achieved the goal of extended-release, cost-effectiveness, lowering the dose and frequency of drug administration, and thus may improve patient compliance.
Collapse
|
26
|
Chakraborty S, Gupta NV, Sastri KT, M S, Chand P, Kumar H, M. Osmani RA, Gowda DV, Jaind V. Current progressions in transdermal drug delivery systems for management of rheumatoid and osteoarthritis: A comprehensive review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Shahid M, Hussain A, Khan AA, Alanazi AM, Alaofi AL, Alam M, Ramzan M. Antifungal Cationic Nanoemulsion Ferrying Miconazole Nitrate with Synergism to Control Fungal Infections: In Vitro, Ex Vivo, and In Vivo Evaluations. ACS OMEGA 2022; 7:13343-13353. [PMID: 35474838 PMCID: PMC9026025 DOI: 10.1021/acsomega.2c01075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to deliver a cationic nanoemulsion carrying miconazole nitrate (MCN) to control fungal infections using excipients for synergism. Peceol (oil) and labrasol (surfactant) were selected based on maximum solubility and zone of inhibition values against Candida albicans and Aspergillus niger. Optimized MCNE11 was evaluated [size, zeta potential, % entrapment efficiency (%EE), % transmittance, viscosity, refractive index, extrudability, polydispersity (PDI), morphology, and pH]. An in vitro drug release study was conducted for comparison between DS (drug suspension) and MNE11. In vitro hemolysis was studied at two different concentrations (0.625 and 2.5 μg/mL). Permeation profiles were generated using rat skin. A Draize test was conducted using rabbit to negate irritability issues. Finally, a stability test of MCNE11 was conducted for 12 months. The results showed that MCNE11 (cationic) was the most optimized in term of size, %EE, and PDI. The drug release from MCNE11 was higher compared to DS but comparable to MNE11 (anionic), suggesting no impact of the imposed cationic charge on the release behavior. Moreover, permeation parameters of MCNE11 were significantly (p < 0.05) greater than MNE11, which may be attributed to the combined impact of size (low), surfactant (for reversible changes), and electrostatic interaction (nanoglobules-skin surface). Thus, stable MCN11 possessing high %EE (89.8%), low size (145 nm), maximum flux (5.7 ± 0.1 μg/cm2/h), high drug deposition (932.7 ± 41.6 μg/cm2), optimal viscosity (44.17 ± 0.8 cP), low PDI (0.21), optimal zeta potential (+28.1 mV), and low hemolysis can be promising alternatives to conventional cream to control resistant and recurring types of fungal infections.
Collapse
Affiliation(s)
- Mudassar Shahid
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Afzal Hussain
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Azmat Ali Khan
- Pharmaceutical
Biotechnology Laboratory, Department of Pharmaceutical Chemistry,
College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Amer M. Alanazi
- Pharmaceutical
Biotechnology Laboratory, Department of Pharmaceutical Chemistry,
College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmed L. Alaofi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mahboob Alam
- Division
of Chemistry and biotechnology, Dongguk
University, 123 Dongdae-Ro, Gyeongju, 38066, The Republic of Korea
| | - Mohhammad Ramzan
- Department
of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Jalandhar, Punjab 144411, India
| |
Collapse
|
28
|
K Y, Kollipara S, Ahmed T, Chachad S. Applications of PBPK/PBBM modeling in generic product development: An industry perspective. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Ceschan NE, Scioli-Montoto S, Sbaraglini ML, Ruiz ME, Smyth HD, Bucalá V, Ramírez-Rigo MV. Nebulization of a polyelectrolyte-drug system for systemic hypertension treatment. Eur J Pharm Sci 2022; 170:106108. [DOI: 10.1016/j.ejps.2021.106108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Accepted: 12/23/2021] [Indexed: 11/03/2022]
|
30
|
Mahmoudinoodezh H, Telukutla SR, Bhangu SK, Bachari A, Cavalieri F, Mantri N. The Transdermal Delivery of Therapeutic Cannabinoids. Pharmaceutics 2022; 14:pharmaceutics14020438. [PMID: 35214170 PMCID: PMC8876728 DOI: 10.3390/pharmaceutics14020438] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Recently, several studies have indicated an increased interest in the scientific community regarding the application of Cannabis sativa plants, and their extracts, for medicinal purposes. This plant of enormous medicinal potential has been legalised in an increasing number of countries globally. Due to the recent changes in therapeutic and recreational legislation, cannabis and cannabinoids are now frequently permitted for use in clinical settings. However, with their highly lipophilic features and very low aqueous solubility, cannabinoids are prone to degradation, specifically in solution, as they are light-, temperature-, and auto-oxidation-sensitive. Thus, plant-derived cannabinoids have been developed for oral, nasal-inhalation, intranasal, mucosal (sublingual and buccal), transcutaneous (transdermal), local (topical), and parenteral deliveries. Among these administrations routes, topical and transdermal products usually have a higher bioavailability rate with a prolonged steady-state plasma concentration. Additionally, these administrations have the potential to eliminate the psychotropic impacts of the drug by its diffusion into a nonreactive, dead stratum corneum. This modality avoids oral administration and, thus, the first-pass metabolism, leading to constant cannabinoid plasma levels. This review article investigates the practicality of delivering therapeutic cannabinoids via skin in accordance with existing literature.
Collapse
Affiliation(s)
- Haleh Mahmoudinoodezh
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (H.M.); (S.R.T.); (A.B.)
| | - Srinivasa Reddy Telukutla
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (H.M.); (S.R.T.); (A.B.)
| | | | - Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (H.M.); (S.R.T.); (A.B.)
| | - Francesca Cavalieri
- Applied Chemistry and Environmental Science, RMIT University, Melbourne, VIC 3000, Australia;
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (H.M.); (S.R.T.); (A.B.)
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- Correspondence:
| |
Collapse
|
31
|
Singh V, Garg A, Dewangan HK. Recent Advances in Drug Design and Delivery Across Biological Barriers using Computational Models. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819999220204110306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The systemic delivery of pharmacological substances generally exhibits several significant limitations associated with the bio-distribution of active drugs in the body. As per consequence, human body’s defense mechanisms become impediments to drug delivery. Various technologies to overcome these limitations have been evolved including computational approaches and advanced drug delivery. As the body of human has evolved to defend itself from hostile biological as well as chemical invaders, along with that these biological barriers such as ocular barriers, blood-brain barriers, intestinal and skin barriers also limit the passage of drugs across desired sites. Therefore, efficient delivery remains an utmost challenge for researchers and scientists. The present review focuses on the techniques to deliver the drugs with efficient therapeutic efficacy at the targeted sites. This review article considered the insights into main biological barriers along with the application of computational or numerical methods dealing with different barriers by determining the drug flow, temperature and various other parameters. It also summarizes the advanced implantable drug delivery system to circumvent the inherent resistance showed by these biological barriers and in turn to improve the drug delivery.
Collapse
Affiliation(s)
- Vanshita Singh
- Institute of Pharmaceutical Research, GLA University Mathura, NH-2 Delhi Mathura Road, PO-Chaumuhan, Mathura, UttarPradesh, India 281406
| | - Akash Garg
- Institute of Pharmaceutical Research, GLA University Mathura, NH-2 Delhi Mathura Road, PO-Chaumuhan, Mathura, UttarPradesh, India 281406
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences (UIPS), Chandigarh University NH-95, Chandigarh Ludhiyana Highway, Mohali Punjab, India
| |
Collapse
|
32
|
Kis N, Kovács A, Budai-Szűcs M, Erős G, Csányi E, Berkó S. The effect of non-invasive dermal electroporation on skin barrier function and skin permeation in combination with different dermal formulations. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Shao S, Wang S, Ren L, Wang J, Chen X, Pi H, Sun Y, Dong C, Weng L, Gao Y, Wang L. Layer-by-Layer Assembly of Lipid Nanobubbles on Microneedles for Ultrasound-Assisted Transdermal Drug Delivery. ACS APPLIED BIO MATERIALS 2022; 5:562-569. [PMID: 35021618 DOI: 10.1021/acsabm.1c01049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Microneedles as a typical device for transdermal drug delivery provide an alternative route for drug administration with minimal digestion by organs and better patient compliance. However, diffusion of passively released drug molecules within the skin tissue mainly depends on the interstitial fluid, which may be affected by different physiological conditions of individuals. Herein, we propose a nanobubble-modified microneedle patch for ultrasound-assisted drug delivery, which provides additional driving force for penetration and diffusion of the drug molecules. Layer-by-layer self-assembled drug-containing nanobubbles on the surfaces of microneedles trigger active drug release upon application of ultrasound. The concomitant microstreaming caused by cavitation effects facilitates the penetration and diffusion of drug molecules in the gelatin gel model and the ex vivo porcine skin model. The proposed drug delivery strategy holds great promise for rapid transdermal drug delivery with enhanced penetration and diffusion of the released drugs.
Collapse
Affiliation(s)
- Shengpei Shao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Siyu Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lili Ren
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jiahui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xinmeng Chen
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Hequn Pi
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yongjing Sun
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Chen Dong
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lixing Weng
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yu Gao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
34
|
Mishra KK, Kaur CD, Gupta A. Development of itraconazole loaded ultra-deformable transethosomes containing oleic-acid for effective treatment of dermatophytosis: Box-Behnken design, ex-vivo and in-vivo studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Kim J, Wu Y, Luan H, Yang DS, Cho D, Kwak SS, Liu S, Ryu H, Ghaffari R, Rogers JA. A Skin-Interfaced, Miniaturized Microfluidic Analysis and Delivery System for Colorimetric Measurements of Nutrients in Sweat and Supply of Vitamins Through the Skin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103331. [PMID: 34747140 PMCID: PMC8805554 DOI: 10.1002/advs.202103331] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/27/2021] [Indexed: 06/01/2023]
Abstract
Nutrients play critical roles in maintaining core physiological functions and in preventing diseases. Technologies for delivering these nutrients and for monitoring their concentrations can help to ensure proper nutritional balance. Eccrine sweat is a potentially attractive class of biofluid for monitoring purposes due to the ability to capture sweat easily and noninvasively from nearly any region of the body using skin-integrated microfluidic technologies. Here, a miniaturized system of this type is presented that allows simple, rapid colorimetric assessments of the concentrations of multiple essential nutrients in sweat, simultaneously and without any supporting electronics - vitamin C, calcium, zinc, and iron. A transdermal patch integrated directly with the microfluidics supports passive, sustained delivery of these species to the body throughout a period of wear. Comparisons of measurement results to those from traditional lab analysis methods demonstrate the accuracy and reliability of this platform. On-body tests with human subjects reveal correlations between the time dynamics of concentrations of these nutrients in sweat and those of the corresponding concentrations in blood. Studies conducted before and after consuming certain foods and beverages highlight practical capabilities in monitoring nutritional balance, with strong potential to serve as a basis for guiding personalized dietary choices.
Collapse
Affiliation(s)
- Joohee Kim
- Center for Bio‐Integrated ElectronicsNorthwestern UniversityEvanstonIL60208USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
| | - Yixin Wu
- Center for Bio‐Integrated ElectronicsNorthwestern UniversityEvanstonIL60208USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Haiwen Luan
- Center for Bio‐Integrated ElectronicsNorthwestern UniversityEvanstonIL60208USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
| | - Da Som Yang
- Center for Bio‐Integrated ElectronicsNorthwestern UniversityEvanstonIL60208USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
| | - Donghwi Cho
- Center for Bio‐Integrated ElectronicsNorthwestern UniversityEvanstonIL60208USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
| | - Sung Soo Kwak
- Center for Bio‐Integrated ElectronicsNorthwestern UniversityEvanstonIL60208USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
- Center for Bionics of Biomedical Research InstituteKorea Institute of Science and TechnologySeoul02792Korea
| | - Shanliangzi Liu
- Center for Bio‐Integrated ElectronicsNorthwestern UniversityEvanstonIL60208USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
| | - Hanjun Ryu
- Center for Bio‐Integrated ElectronicsNorthwestern UniversityEvanstonIL60208USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
| | - Roozbeh Ghaffari
- Center for Bio‐Integrated ElectronicsNorthwestern UniversityEvanstonIL60208USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - John A. Rogers
- Center for Bio‐Integrated ElectronicsNorthwestern UniversityEvanstonIL60208USA
- Querrey Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60208USA
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of Mechanical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of Neurological SurgeryFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| |
Collapse
|
36
|
Development and evaluation of plumbagin loaded chitin hydrogel for the treatment of skin cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Takahashi Y, Sonoo T, Nakano H, Naraba H, Hashimoto H, Nakamura K. The influence of edema on the bisoprolol blood concentration after bisoprolol dermal patch application: A case-control study. Medicine (Baltimore) 2021; 100:e27354. [PMID: 34559159 PMCID: PMC8462653 DOI: 10.1097/md.0000000000027354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/09/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Beta-blocking is important for critically ill patients. Although some patients are required to continue taking beta-blockers after they no longer need critical care, some of these patients have impaired swallowing abilities. Bisoprolol dermal patches have recently been introduced and appear to be a good alternative to oral bisoprolol tablets. However, it is still unclear whether the pharmacodynamics of such patches are affected by edema in patients who have experienced critical care. This study aimed to clarify the effects of systemic edema on beta-blocker absorption from dermal patches in critically ill patients. METHOD Patients who exhibited tachycardia and impaired swallowing function after critical care were included in this study. They were assigned to either the edema group (n = 6) or no edema group (n = 6) depending on the presence/absence of edema in the lower extremities. A bisoprolol dermal patch was pasted onto each subject, and the blood bisoprolol concentration was checked at 8 timepoints over the next 24 hours. The area under the serum concentration time curve, maximum concentration observed (Cmax), and time of maximum concentration observed were also examined. RESULT The mean blood bisoprolol concentrations of the 2 groups were not significantly different at 2, 4, 6, 8, 10, 12, 16, or 24 hours after the patch application. The area under the serum concentration time curve and maximum concentration observed were not different between the groups. The mean heart rates of the 2 groups were not significantly different at 6, 12, or 24 hours after the patch application (Student t test, P = .0588, P = .1080, and P = .2322, respectively). CONCLUSION In this study, the blood concentration of bisoprolol and its heart rate-reducing effects after bisoprolol dermal patch application might not be affected by systemic edema in the lower extremities.
Collapse
|
38
|
Tharmatt A, Malhotra D, Sharma H, Bedi N. Pharmaceutical Perspective in Wearable Drug Delivery Systems. Assay Drug Dev Technol 2021; 19:386-401. [PMID: 34339259 DOI: 10.1089/adt.2021.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Humans have been dealing with health problems for millions of years. Normal health services need well-trained personnel and high-cost diagnostic tests, which forces patients to go to hospitals if medical treatment is required. To address this, prototype testing has been carried out into the wearable drug delivery health care perspectives. Researchers have devised a wide variety of formulations for the treatment of various diseases at home by performing real-time monitoring of different routes of drug administration such as ocular, transdermal, intraoral, intracochlear, and several more. A comprehensive review of the different types of wearable drug delivery systems with respect to their manufacturing, mechanism of action and specifications has been done. In the pharmaceutical context, these devices are technologically well-equipped interfaces for diverse physicochemical signals. Above mentioned information with a broader perspective has also been discussed in this article. Several wearable drug delivery systems have been introduced in the market in recent years. But a lot of testing needs to be conducted to address the numerous obstacles before the wearable devices are successfully launched in the market.
Collapse
Affiliation(s)
- Abhay Tharmatt
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Danish Malhotra
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Hamayal Sharma
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
39
|
Liu T, Chen M, Fu J, Sun Y, Lu C, Quan G, Pan X, Wu C. Recent advances in microneedles-mediated transdermal delivery of protein and peptide drugs. Acta Pharm Sin B 2021; 11:2326-2343. [PMID: 34522590 PMCID: PMC8424228 DOI: 10.1016/j.apsb.2021.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/12/2020] [Accepted: 12/08/2020] [Indexed: 01/14/2023] Open
Abstract
Proteins and peptides have become a significant therapeutic modality for various diseases because of their high potency and specificity. However, the inherent properties of these drugs, such as large molecular weight, poor stability, and conformational flexibility, make them difficult to be formulated and delivered. Injection is the primary route for clinical administration of protein and peptide drugs, which usually leads to poor patient's compliance. As a portable, minimally invasive device, microneedles (MNs) can overcome the skin barrier and generate reversible microchannels for effective macromolecule permeation. In this review, we highlighted the recent advances in MNs-mediated transdermal delivery of protein and peptide drugs. Emphasis was given to the latest development in representative MNs design and fabrication. We also summarize the current application status of MNs-mediated transdermal protein and peptide delivery, especially in the field of infectious disease, diabetes, cancer, and other disease therapy. Finally, the current status of clinical translation and a perspective on future development are also provided.
Collapse
Affiliation(s)
- Ting Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Minglong Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jintao Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
40
|
|
41
|
Nadia Ahmad NF, Nik Ghazali NN, Wong YH. Wearable patch delivery system for artificial pancreas health diagnostic-therapeutic application: A review. Biosens Bioelectron 2021; 189:113384. [PMID: 34090154 DOI: 10.1016/j.bios.2021.113384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
The advanced stimuli-responsive approaches for on-demand drug delivery systems have received tremendous attention as they have great potential to be integrated with sensing and multi-functional electronics on a flexible and stretchable single platform (all-in-one concept) in order to develop skin-integration with close-loop sensation for personalized diagnostic and therapeutic application. The wearable patch pumps have evolved from reservoir-based to matrix patch and drug-in-adhesive (single-layer or multi-layer) type. In this review, we presented the basic requirements of an artificial pancreas, surveyed the design and technologies used in commercial patch pumps available on the market and provided general information about the latest wearable patch pump. We summarized the various advanced delivery strategies with their mechanisms that have been developed to date and representative examples. Mechanical, electrical, light, thermal, acoustic and glucose-responsive approaches on patch form have been successfully utilized in the controllable transdermal drug delivery manner. We highlighted key challenges associated with wearable transdermal delivery systems, their research direction and future development trends.
Collapse
Affiliation(s)
- Nur Farrahain Nadia Ahmad
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Nik Nazri Nik Ghazali
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yew Hoong Wong
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
42
|
Robinson E, Giffen P, Hassall D, Ball D, Reid H, Coe D, Teague S, Terry R, Earl M, Marchand J, Farrer B, Havelund R, Gilmore IS, Marshall PS. Multimodal imaging of drug and excipients in rat lungs following an inhaled administration of controlled-release drug laden PLGA microparticles. Analyst 2021; 146:3378-3390. [PMID: 33876155 DOI: 10.1039/d0an02333g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Controlled-release formulations, in the form of micro- or nanoparticles, are increasingly attractive to the pharmaceutical industry for drug delivery. For respiratory illnesses, controlled-release microparticle formulations provide an opportunity to deliver a higher percentage of an inhaled medicament dose to the lung, thus potentially reducing the therapeutic dose, frequency of dosing, and minimising side-effects. We describe the use of a multimodal approach consisting of MALDI MS imaging, 3D depth profiling TOF-SIMS analysis, and histopathology to monitor the distribution of drug and excipients in sections taken from excised rat lungs following an inhaled administration of drug-laden microparticles. Following a single dose, the administered drug was detected in the lung via both MALDI MS and TOF-SIMS over a range of time points. Both imaging techniques enabled the characterisation of the distribution and retention of drug particles and identified differences in the capabilities of both imaging modalities. Histochemical staining of consecutive sections was used to provide biological context to the findings and will also be discussed in this presentation. We demonstrate how this multimodal approach could be used to help increase our understanding of the use of controlled release microparticles.
Collapse
Affiliation(s)
- Eve Robinson
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bilal M, Mehmood S, Raza A, Hayat U, Rasheed T, Iqbal HM. Microneedles in Smart Drug Delivery. Adv Wound Care (New Rochelle) 2021; 10:204-219. [PMID: 32320365 PMCID: PMC7906867 DOI: 10.1089/wound.2019.1122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/29/2020] [Indexed: 02/05/2023] Open
Abstract
Significance: In biomedical setup, at large, and drug delivery, in particular, transdermal patches, hypodermal needles, and/or dermatological creams with the topical appliance are among the most widely practiced routes for transdermal drug delivery. Owing to the stratum corneum layer of the skin, traditional drug delivery methods are inefficient, and the effect of the administered therapeutic cues is limited. Recent Advances: The current advancement at the microlevel and nanolevel has revolutionized the drug delivery sector. Particularly, various types of microneedles (MNs) are becoming popular for drug delivery applications because of safety, patient compliance, and smart action. Critical Issues: Herein, we reviewed state-of-the-art MNs as a smart and sophisticated drug delivery approach. Following a brief introduction, the drug delivery mechanism of MNs is discussed. Different types of MNs, that is, solid, hollow, coated, dissolving, and hydrogel forming, are discussed with suitable examples. The latter half of the work is focused on the applied perspective and clinical translation of MNs. Furthermore, a detailed overview of clinical applications and future perspectives is also included in this review. Future Directions: Regardless of ongoing technological and clinical advancement, the focus should be diverted to enhance the efficacy and strength of MNs. Besides, the possible immune response or interference should also be avoided for successful clinical translation of MNs as an efficient drug delivery system.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Shahid Mehmood
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Uzma Hayat
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tahir Rasheed
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
44
|
Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. NATURE REVIEWS. MATERIALS 2021; 6:351-370. [PMID: 34950512 PMCID: PMC8691416 DOI: 10.1038/s41578-020-00269-6] [Citation(s) in RCA: 461] [Impact Index Per Article: 115.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 05/05/2023]
Abstract
Progress in the field of precision medicine has changed the landscape of cancer therapy. Precision medicine is propelled by technologies that enable molecular profiling, genomic analysis, and optimized drug design to tailor treatments for individual patients. Although precision medicines have resulted in some clinical successes, the use of many potential therapeutics has been hindered by pharmacological issues, including toxicities and drug resistance. Drug delivery materials and approaches have now advanced to a point where they can enable the modulation of a drug's pharmacological parameters without compromising the desired effect on molecular targets. Specifically, they can modulate a drug's pharmacokinetics, stability, absorption, and exposure to tumours and healthy tissues, and facilitate the administration of synergistic drug combinations. This Review highlights recent progress in precision therapeutics and drug delivery, and identifies opportunities for strategies to improve the therapeutic index of cancer drugs, and consequently, clinical outcomes.
Collapse
Affiliation(s)
- Mandana T. Manzari
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- These authors have contributed equally to this work
| | - Yosi Shamay
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- These authors have contributed equally to this work
| | - Hiroto Kiguchi
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- These authors have contributed equally to this work
| | - Neal Rosen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel A. Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
45
|
Sivanesan I, Muthu M, Gopal J, Hasan N, Kashif Ali S, Shin J, Oh JW. Nanochitosan: Commemorating the Metamorphosis of an ExoSkeletal Waste to a Versatile Nutraceutical. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:821. [PMID: 33806968 PMCID: PMC8005131 DOI: 10.3390/nano11030821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022]
Abstract
Chitin (poly-N-acetyl-D-glucosamine) is the second (after cellulose) most abundant organic polymer. In its deacetylated form-chitosan-becomes a very interesting material for medical use. The chitosan nano-structures whose preparation is described in this article shows unique biomedical value. The preparation of nanochitosan, as well as the most vital biomedical applications (antitumor, drug delivery and other medical uses), have been discussed in this review. The challenges confronting the progress of nanochitosan from benchtop to bedside clinical settings have been evaluated. The need for inclusion of nano aspects into chitosan research, with improvisation from nanotechnological inputs has been prescribed for breaking down the limitations. Future perspectives of nanochitosan and the challenges facing nanochitosan applications and the areas needing research focus have been highlighted.
Collapse
Affiliation(s)
- Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea;
| | - Manikandan Muthu
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India; (M.M.); (J.G.)
| | - Judy Gopal
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India; (M.M.); (J.G.)
| | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, Jazan P.O. Box 114, Saudi Arabia; (N.H.); (S.K.A.)
| | - Syed Kashif Ali
- Department of Chemistry, Faculty of Science, Jazan University, Jazan P.O. Box 114, Saudi Arabia; (N.H.); (S.K.A.)
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|
46
|
Zhang W, Zhao X, Yu G, Suo M. Optimization of propofol loaded niosomal gel for transdermal delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:858-873. [PMID: 33538243 DOI: 10.1080/09205063.2021.1877064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Propofol is an oily liquid widely used for rapid onset of anaesthesia via intravenous route, which shows major limitations of hypersensitivity, anaphylactic reactions and pain. The aim of the present work was to bypass the above issues by formulating tailored niosomal gel to deliver propofol via non-invasive transdermal route. The niosomes were prepared by film hydration method and sonication using cholesterol and Span 80. The Box Behnken design (BBD) was applied to optimize the size (93.5 nm) and the entrapment efficacy (81.5%) of the niosomes by selecting cholesterol at 139 mg, Span 80 at 0.525% and sonication time at 5.13 min. The scanning electron microscopy image showed spherical shape niosomes with smooth surface without aggregation. The ex vivo release data showed significant improvement in the propofol release (92.2% after 10 h) using niosomes in comparison to the control propofol gel (with 30% methanol) without niosomes (25.3% after 10 h). The in vivo pharmacokinetic parameters in the rat model confirmed the improvement in the relative bioavailability with optimized niosomal gel (relative bioavailability = 12.12) in comparison to the control propofol gel. In conclusion, the niosomal gel offered a potential alternative non-invasive route to deliver propofol for procedural sedation especially in pediatric population.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Anesthesiology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xu Zhao
- Department of Anesthesiology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guanling Yu
- IVF laboratory, Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
| | - Meng Suo
- Department of Anesthesiology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
47
|
Bustos-Salgado P, Andrade-Carrera B, Domínguez-Villegas V, Rodríguez-Lagunas MJ, Boix-Montañes A, Calpena-Campmany A, Garduño-Ramírez ML. Biopharmaceutic study and in vivo efficacy of natural and derivatives flavanones formulations. Nanomedicine (Lond) 2021; 16:205-220. [PMID: 33480290 DOI: 10.2217/nnm-2020-0368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: The development and characterization of nanostructured flavanone formulations (FF) of 1 extracted from Eysenhardtia platycarpa and 1a, 1b, 1c and 1d derivatives by structural modification of 1 as anti-inflammatory candidates for topical treatment of local inflammation. Materials & methods: The FF were physicochemical characterized and the behavior release, skin permeation and, in vivo anti-inflammatory efficacy in the rat model were studied. Results: The FF revealed sustained drug release and showed slow drug penetration in human skin. The FF reduced inflammation in comparison with the standard formulation. Conclusion: The FF could be effective systems for the delivery and controlled release of flavanones on the skin, and the chemical modification of lead molecule 1 improved the efficacy.
Collapse
Affiliation(s)
- Paola Bustos-Salgado
- Department of Pharmacy & Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Science, University of Barcelona, Av. Joan XXIII 29-31, Barcelona 08028, Spain
| | - Berenice Andrade-Carrera
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos; Av. Universidad 1001, Cuernavaca, Morelos, México
| | - Valeri Domínguez-Villegas
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos; Av. Universidad 1001, Cuernavaca, Morelos, México
| | - María José Rodríguez-Lagunas
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona 08028, Spain
| | - Antonio Boix-Montañes
- Department of Pharmacy & Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Science, University of Barcelona, Av. Joan XXIII 29-31, Barcelona 08028, Spain
| | - Ana Calpena-Campmany
- Department of Pharmacy & Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Science, University of Barcelona, Av. Joan XXIII 29-31, Barcelona 08028, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - María Luisa Garduño-Ramírez
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos; Av. Universidad 1001, Cuernavaca, Morelos, México
| |
Collapse
|
48
|
Pandey A, Nikam AN, Mutalik SP, Fernandes G, Shreya AB, Padya BS, Raychaudhuri R, Kulkarni S, Prassl R, Subramanian S, Korde A, Mutalik S. Architectured Therapeutic and Diagnostic Nanoplatforms for Combating SARS-CoV-2: Role of Inorganic, Organic, and Radioactive Materials. ACS Biomater Sci Eng 2021; 7:31-54. [PMID: 33371667 PMCID: PMC7783900 DOI: 10.1021/acsbiomaterials.0c01243] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022]
Abstract
Although extensive research is being done to combat SARS-CoV-2, we are yet far away from a robust conclusion or strategy. With an increased amount of vaccine research, nanotechnology has found its way into vaccine technology. Researchers have explored the use of various nanostructures for delivering the vaccines for enhanced efficacy. Apart from acting as delivery platforms, multiple studies have shown the application of inorganic nanoparticles in suppressing the growth as well as transmission of the virus. The present review gives a detailed description of various inorganic nanomaterials which are being explored for combating SARS-CoV-2 along with their role in suppressing the transmission of the virus either through air or by contact with inanimate surfaces. The review further discusses the use of nanoparticles for development of an antiviral coating that may decrease adhesion of SARS-CoV-2. A separate section has been included describing the role of nanostructures in biosensing and diagnosis of SARS-CoV-2. The role of nanotechnology in providing an alternative therapeutic platform along with the role of radionuclides in SARS-CoV-2 has been described briefly. Based on ongoing research and commercialization of this nanoplatform for a viral disease, the nanomaterials show the potential in therapy, biosensing, and diagnosis of SARS-CoV-2.
Collapse
Affiliation(s)
- Abhijeet Pandey
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Ajinkya N. Nikam
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Sadhana P. Mutalik
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Gasper Fernandes
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Ajjappla Basavaraj Shreya
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Bharath Singh Padya
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Ruchira Raychaudhuri
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Sanjay Kulkarni
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Ruth Prassl
- Gottfried
Schatz Research Centre for Cell Signalling, Metabolism and Aging, Medical University of Graz, 8036 Graz, Austria
| | - Suresh Subramanian
- Radiopharmaceuticals
Division, Bhabha Atomic Research Centre, Mumbai-400094, Maharashtra, India
| | - Aruna Korde
- Radioisotope
Products and Radiation Technology Section, International Atomic Energy Agency, 1400 Vienna, Austria
| | - Srinivas Mutalik
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| |
Collapse
|
49
|
Characterization of microneedles and microchannels for enhanced transdermal drug delivery. Ther Deliv 2021; 12:77-103. [DOI: 10.4155/tde-2020-0096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microneedle (MN)-based technologies are currently one of the most innovative approaches that are being extensively investigated for transdermal delivery of low molecular weight drugs, biotherapeutic agents and vaccines. Extensive research reports, describing the fabrication and applications of different types of MNs, can be readily found in the literature. Effective characterization tools to evaluate the quality and performance of the MNs as well as for determination of the dimensional and kinetic properties of the microchannels created in the skin, are an essential and critical part of MN-based research. This review paper provides a comprehensive account of all such tools and techniques.
Collapse
|
50
|
Kassem AA, Abd El-Alim SH. Vesicular Nanocarriers: A Potential Platform for Dermal and Transdermal Drug Delivery. NANOPHARMACEUTICALS: PRINCIPLES AND APPLICATIONS VOL. 2 2021. [DOI: 10.1007/978-3-030-44921-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|