1
|
Alketbi EH, Hamdy R, El‐Kabalawy A, Juric V, Pignitter M, A. Mosa K, Almehdi AM, El‐Keblawy AA, Soliman SSM. Lipid-based therapies against SARS-CoV-2 infection. Rev Med Virol 2021; 31:1-13. [PMID: 34546604 PMCID: PMC8013851 DOI: 10.1002/rmv.2214] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
Viruses have evolved to manipulate host lipid metabolism to benefit their replication cycle. Enveloped viruses, including coronaviruses, use host lipids in various stages of the viral life cycle, particularly in the formation of replication compartments and envelopes. Host lipids are utilised by the virus in receptor binding, viral fusion and entry, as well as viral replication. Association of dyslipidaemia with the pathological development of Covid-19 raises the possibility that exploitation of host lipid metabolism might have therapeutic benefit against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, promising host lipid targets are discussed along with potential inhibitors. In addition, specific host lipids are involved in the inflammatory responses due to viral infection, so lipid supplementation represents another potential strategy to counteract the severity of viral infection. Furthermore, switching the lipid metabolism through a ketogenic diet is another potential way of limiting the effects of viral infection. Taken together, restricting the access of host lipids to the virus, either by using lipid inhibitors or supplementation with exogenous lipids, might significantly limit SARS-CoV-2 infection and/or severity.
Collapse
Affiliation(s)
- Eman Humaid Alketbi
- Department of Applied BiologyCollege of SciencesUniversity of SharjahSharjahUnited Arab Emirates
| | - Rania Hamdy
- Research Institute for Medical and Health SciencesUniversity of SharjahSharjahUnited Arab Emirates
- Faculty of PharmacyZagazig UniversityZagazigEgypt
| | | | - Viktorija Juric
- Department of Physiological ChemistryFaculty of ChemistryUniversity of ViennaViennaAustria
| | - Marc Pignitter
- Department of Physiological ChemistryFaculty of ChemistryUniversity of ViennaViennaAustria
| | - Kareem A. Mosa
- Department of Applied BiologyCollege of SciencesUniversity of SharjahSharjahUnited Arab Emirates
- Research Institute of Science and EngineeringUniversity of SharjahSharjahUnited Arab Emirates
- Department of BiotechnologyFaculty of AgricultureAl‐Azhar UniversityCairoEgypt
| | - Ahmed M. Almehdi
- Department of ChemistryCollege of SciencesUniversity of SharjahSharjahUnited Arab Emirates
| | - Ali A. El‐Keblawy
- Department of Applied BiologyCollege of SciencesUniversity of SharjahSharjahUnited Arab Emirates
- Research Institute of Science and EngineeringUniversity of SharjahSharjahUnited Arab Emirates
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health SciencesUniversity of SharjahSharjahUnited Arab Emirates
- Faculty of PharmacyZagazig UniversityZagazigEgypt
- Department of Medicinal ChemistryCollege of PharmacyUniversity of SharjahSharjahUnited Arab Emirates
| |
Collapse
|
2
|
Stylianou-Riga P, Boutsikou T, Kouis P, Kinni P, Krokou M, Ioannou A, Siahanidou T, Iliodromiti Z, Papadouri T, Yiallouros PK, Iacovidou N. Maternal and neonatal risk factors for neonatal respiratory distress syndrome in term neonates in Cyprus: a prospective case-control study. Ital J Pediatr 2021; 47:129. [PMID: 34082803 PMCID: PMC8176707 DOI: 10.1186/s13052-021-01086-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Background Neonatal respiratory distress syndrome (NRDS) is strongly associated with premature birth, but it can also affect term neonates. Unlike the extent of research in preterm neonates, risk factors associated with incidence and severity of NRDS in term neonates are not well studied. In this study, we examined the association of maternal and neonatal risk factors with the incidence and severity of NRDS in term neonates admitted to Neonatal Intensive Care Unit (NICU) in Cyprus. Methods In a prospective, case-control design we recruited term neonates with NRDS and non-NRDS admitted to the NICU of Archbishop Makarios III hospital, the only neonatal tertiary centre in Cyprus, between April 2017–October 2018. Clinical data were obtained from patients’ files. We used univariate and multivariate logistic and linear regression models to analyse binary and continuous outcomes respectively. Results During the 18-month study period, 134 term neonates admitted to NICU were recruited, 55 (41%) with NRDS diagnosis and 79 with non-NRDS as controls. In multivariate adjusted analysis, male gender (OR: 4.35, 95% CI: 1.03–18.39, p = 0.045) and elective caesarean section (OR: 11.92, 95% CI: 1.80–78.95, p = 0.01) were identified as independent predictors of NRDS. Among neonates with NRDS, early-onset infection tended to be associated with increased administration of surfactant (β:0.75, 95% CI: − 0.02-1.52, p = 0.055). Incidence of pulmonary hypertension or systemic hypotension were associated with longer duration of parenteral nutrition (pulmonary hypertension: 11Vs 5 days, p < 0.001, systemic hypotension: 7 Vs 4 days, p = 0.01) and higher rate of blood transfusion (pulmonary hypertension: 100% Vs 67%, p = 0.045, systemic hypotension: 85% Vs 55%, p = 0.013). Conclusions This study highlights the role of elective caesarean section and male gender as independent risk factors for NRDS in term neonates. Certain therapeutic interventions are associated with complications during the course of disease. These findings can inform the development of evidence-based recommendations for improved perinatal care. Supplementary Information The online version contains supplementary material available at 10.1186/s13052-021-01086-5.
Collapse
Affiliation(s)
- Paraskevi Stylianou-Riga
- Neonatal Intensive Care Unit, "Archbishop Makarios III" Hospital, Nicosia, Cyprus. .,Respiratory Physiology Laboratory, Medical School, University of Cyprus, 2029 Aglantzia, Nicosia, Cyprus. .,Neonatal Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Theodora Boutsikou
- Neonatal Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panayiotis Kouis
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, 2029 Aglantzia, Nicosia, Cyprus
| | - Paraskevi Kinni
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, 2029 Aglantzia, Nicosia, Cyprus
| | - Marina Krokou
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, 2029 Aglantzia, Nicosia, Cyprus
| | - Andriani Ioannou
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, 2029 Aglantzia, Nicosia, Cyprus
| | - Tania Siahanidou
- Neonatal Unit, First Department of Pediatrics, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - Zoi Iliodromiti
- Neonatal Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Thalia Papadouri
- Neonatal Intensive Care Unit, "Archbishop Makarios III" Hospital, Nicosia, Cyprus
| | - Panayiotis K Yiallouros
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, 2029 Aglantzia, Nicosia, Cyprus
| | - Nicoletta Iacovidou
- Neonatal Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Liu J, Wang X, Shi W, Qian Z, Wang Y. Sensitization of avian pathogenic Escherichia coli to amoxicillin in vitro and in vivo in the presence of surfactin. PLoS One 2019; 14:e0222413. [PMID: 31513649 PMCID: PMC6742356 DOI: 10.1371/journal.pone.0222413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/29/2019] [Indexed: 01/18/2023] Open
Abstract
The purpose of this study is to assess the antibiotics adjuvant effect of surfactin for boosting the treatment effect of amoxicillin. Surfactin is used as a surfactant to mediate flux of mono-and divalent cations, such as calcium, across lipid bilayer membranes. In this study, we demonstrated that surfactin can increase the activity of amoxicillin against avian pathogenic Escherichia coli (APEC) in vitro with antimicrobial assays such as minimum inhibitory concentrations (MIC) and fractional inhibitory concentration (FIC). Additionally in the model of chick infection, surfactin exerted adjuvant effects with amoxicillin against APEC by lowering the numerical value of mortality and liver bacterial loads, and regulating the expression of inflammatory cytokines et al. We concluded that surfactin can act as a novel antimicrobial adjuvant with amoxicillin against AEPC infection in chicken.
Collapse
Affiliation(s)
- Jiaxu Liu
- Haid Central Research Institute, Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd, Guangzhou, China
| | - Xu Wang
- Haid Central Research Institute, Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd, Guangzhou, China
| | - Weiqi Shi
- Haid Central Research Institute, Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd, Guangzhou, China
| | - Zhuoyu Qian
- Guangzhou Foreign Languages School, Guangzhou, China
| | - Yongqiang Wang
- Haid Central Research Institute, Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd, Guangzhou, China
| |
Collapse
|
4
|
Fessler MB, Summer RS. Surfactant Lipids at the Host-Environment Interface. Metabolic Sensors, Suppressors, and Effectors of Inflammatory Lung Disease. Am J Respir Cell Mol Biol 2017; 54:624-35. [PMID: 26859434 DOI: 10.1165/rcmb.2016-0011ps] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The lipid composition of pulmonary surfactant is unlike that of any other body fluid. This extracellular lipid reservoir is also uniquely susceptible by virtue of its direct and continuous exposure to environmental oxidants, inflammatory agents, and pathogens. Historically, the greatest attention has been focused on those biophysical features of surfactant that serve to reduce surface tension at the air-liquid interface. More recently, surfactant lipids have also been recognized as bioactive molecules that maintain immune quiescence in the lung but can also be remodeled by the inhaled environment into neolipids that mediate key roles in inflammation, immunity, and fibrosis. This review focuses on the roles in inflammatory and infectious lung disease of two classes of native surfactant lipids, glycerophospholipids and sterols, and their corresponding oxidized species, oxidized glycerophospholipids and oxysterols. We highlight evidence that surfactant composition is sensitive to circulating lipoproteins and that the lipid milieu of the alveolus should thus be recognized as susceptible to diet and common systemic metabolic disorders. We also discuss intriguing evidence suggesting that oxidized surfactant lipids may represent an evolutionary link between immunity and tissue homeostasis that arose in the primordial lung. Taken together, the emerging picture is one in which the unique environmental susceptibility of the lung, together with its unique extracellular lipid requirements, may have made this organ both an evolutionary hub and an engine for lipid-immune cross-talk.
Collapse
Affiliation(s)
- Michael B Fessler
- 1 Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and
| | - Ross S Summer
- 2 Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Brandsma J, Postle AD. Analysis of the regulation of surfactant phosphatidylcholine metabolism using stable isotopes. Ann Anat 2017; 211:176-183. [PMID: 28351529 DOI: 10.1016/j.aanat.2017.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 01/22/2023]
Abstract
The pathways and mechanisms that regulate pulmonary surfactant synthesis, processing, secretion and catabolism have been extensively characterised using classical biochemical and analytical approaches. These have constructed a model, largely in experimental animals, for surfactant phospholipid metabolism in the alveolar epithelial cell whereby phospholipid synthesised on the endoplasmic reticulum is selectively transported to lamellar body storage vesicles, where it is subsequently processed before secretion into the alveolus. Surfactant phospholipid is a complex mixture of individual molecular species defined by the combination of esterified fatty acid groups and a comprehensive description of surfactant phospholipid metabolism requires consideration of the interactions between such molecular species. However, until recently, lipid analytical techniques have not kept pace with the considerable advances in understanding of the enzymology and molecular biology of surfactant metabolism. Refinements in electrospray ionisation mass spectrometry (ESI-MS) can now provide very sensitive platforms for the rapid characterisation of surfactant phospholipid composition in molecular detail. The combination of ESI-MS and administration of phospholipid substrates labelled with stable isotopes extends this analytical approach to the quantification of synthesis and turnover of individual molecular species of surfactant phospholipid. As this methodology does not involve radioactivity, it is ideally suited to application in clinical studies. This review will provide an overview of the metabolic processes that regulate the molecular specificity of surfactant phosphatidylcholine together with examples of how the application of stable isotope technologies in vivo has, for the first time, begun to explore regulation of the molecular specificity of surfactant synthesis in human subjects.
Collapse
Affiliation(s)
- Joost Brandsma
- Academic Unit of Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom
| | - Anthony D Postle
- Academic Unit of Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom.
| |
Collapse
|
6
|
Abstract
Pulmonary surfactant is essential for life as it lines the alveoli to lower surface tension, thereby preventing atelectasis during breathing. Surfactant is enriched with a relatively unique phospholipid, termed dipalmitoylphosphatidylcholine, and four surfactant-associated proteins, SP-A, SP-B, SP-C, and SP-D. The hydrophobic proteins, SP-B and SP-C, together with dipalmitoylphosphatidylcholine, confer surface tension-lowering properties to the material. The more hydrophilic surfactant components, SP-A and SP-D, participate in pulmonary host defense and modify immune responses. Specifically, SP-A and SP-D bind and partake in the clearance of a variety of bacterial, fungal, and viral pathogens and can dampen antigen-induced immune function of effector cells. Emerging data also show immunosuppressive actions of some surfactant-associated lipids, such as phosphatidylglycerol. Conversely, microbial pathogens in preclinical models impair surfactant synthesis and secretion, and microbial proteinases degrade surfactant-associated proteins. Deficiencies of surfactant components are classically observed in the neonatal respiratory distress syndrome, where surfactant replacement therapies have been the mainstay of treatment. However, functional or compositional deficiencies of surfactant are also observed in a variety of acute and chronic lung disorders. Increased surfactant is seen in pulmonary alveolar proteinosis, a disorder characterized by a functional deficiency of the granulocyte-macrophage colony-stimulating factor receptor or development of granulocyte-macrophage colony-stimulating factor antibodies. Genetic polymorphisms of some surfactant proteins such as SP-C are linked to interstitial pulmonary fibrosis. Here, we briefly review the composition, antimicrobial properties, and relevance of pulmonary surfactant to lung disorders and present its therapeutic implications.
Collapse
|
7
|
Li W, Wang D, Chi Y, Wang R, Zhang F, Ma G, Chen Z, Li J, Liu Z, Matsuura E, Liu Q. 7-Ketocholesteryl-9-carboxynonanoate enhances the expression of ATP-binding cassette transporter A1 via CD36. Atherosclerosis 2012. [PMID: 23200840 DOI: 10.1016/j.atherosclerosis.2012.10.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND CD36 signal transductions have been reported by a variety of lipid moiety of oxidized low-density lipoprotein (oxLDL), however, CD36 signal induced by 7-ketocholesteryl-9-carboxynonanoate (oxLig-1), a lipid moiety of oxLDL has not been elucidated. METHODS AND RESULTS OxLig-1 leads to activation and recruitment of Src kinase Fyn, Lyn and caveolin-1 to CD36 in J774A.1 cells, but not in CD36 knockdown cells. The mitogen-activated protein (MAP) kinases c-Jun N-terminal kinase 2 (JNK2) and extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) are specifically phosphorylated in J774A.1 cells after treatment with oxLig-1 and inhibited by pretreatment of Src inhibitor, AG1879. The expression of ABCA1 is up-regulated by treatment with oxLig-1in J774A.1 cells, and the increased expression of ABCA1 is dramatically down-regulated by pretreatment with pharmacological inhibitors of ERK (PD98059) and JNK (SP600125). CONCLUSIONS The specific CD36 signal induced by oxLig-1 initiated the activation of Fyn, Lyn, caveolin-1, JNK2 and ERK1/2, and resulted in the up-regulation of ABCA1.
Collapse
Affiliation(s)
- Wenzhe Li
- College of Life Science and Technology, Key Laboratory of Carbohydrate and Lipid Metabolism Research, Dalian University, 10-Xuefu Avenue, Dalian Economical and Technological Development Zone, Liaoning 116622, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Agassandian M, Mallampalli RK. Surfactant phospholipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:612-25. [PMID: 23026158 DOI: 10.1016/j.bbalip.2012.09.010] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/07/2012] [Accepted: 09/16/2012] [Indexed: 12/16/2022]
Abstract
Pulmonary surfactant is essential for life and is composed of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Marianna Agassandian
- Department of Medicine, Acute Lung Injury Center of Excellence, the University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
9
|
Glasser JR, Mallampalli RK. Surfactant and its role in the pathobiology of pulmonary infection. Microbes Infect 2011; 14:17-25. [PMID: 21945366 DOI: 10.1016/j.micinf.2011.08.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/06/2011] [Accepted: 08/09/2011] [Indexed: 12/19/2022]
Abstract
Pulmonary surfactant is a complex surface-active substance comprised of key phospholipids and proteins that has many essential functions. Surfactant's unique composition is integrally related to its surface-active properties, its critical role in host defense, and emerging immunomodulatory activities ascribed to surfactant lipids. Together these effector functions provide for lung stability and protection from a barrage of potentially virulent infectious pathogens.
Collapse
Affiliation(s)
- Jennifer R Glasser
- Department of Medicine, Acute Lung Injury Center of Excellence, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
10
|
Calmodulin antagonizes a calcium-activated SCF ubiquitin E3 ligase subunit, FBXL2, to regulate surfactant homeostasis. Mol Cell Biol 2011; 31:1905-20. [PMID: 21343341 DOI: 10.1128/mcb.00723-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Calmodulin is a universal calcium-sensing protein that has pleiotropic effects. Here we show that calmodulin inhibits a new SCF (Skp1-Cullin-F-box) E3 ligase component, FBXL2. During Pseudomonas aeruginosa infection, SCF (FBXL2) targets the key enzyme, CCTα, for its monoubiquitination and degradation, thereby reducing synthesis of the indispensable membrane and surfactant component, phosphatidylcholine. P. aeruginosa triggers calcium influx and calcium-dependent activation of FBXL2 within the Golgi complex, where it engages CCTα. FBXL2 through its C terminus binds to the CCTα IQ motif. FBXL2 knockdown increases CCTα levels and phospholipid synthesis. The molecular interaction of FBXL2 with CCTα is opposed by calmodulin, which traffics to the Golgi complex, binds FBXL2 (residues 80 to 90) via its C terminus, and vies with the ligase for occupancy within the IQ motif. These observations were recapitulated in murine models of P. aeruginosa-induced surfactant deficiency, where calmodulin gene transfer reduced FBXL2 actions by stabilizing CCTα and lessening the severity of inflammatory lung injury. The results provide a unique model of calcium-regulated intermolecular competition between an E3 ligase subunit and an antagonist that is critically relevant to pneumonia and lipid homeostasis.
Collapse
|
11
|
Rendic S, Guengerich FP. Update information on drug metabolism systems--2009, part II: summary of information on the effects of diseases and environmental factors on human cytochrome P450 (CYP) enzymes and transporters. Curr Drug Metab 2010; 11:4-84. [PMID: 20302566 PMCID: PMC4167379 DOI: 10.2174/138920010791110917] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/22/2010] [Indexed: 12/14/2022]
Abstract
The present paper is an update of the data on the effects of diseases and environmental factors on the expression and/or activity of human cytochrome P450 (CYP) enzymes and transporters. The data are presented in tabular form (Tables 1 and 2) and are a continuation of previously published summaries on the effects of drugs and other chemicals on CYP enzymes (Rendic, S.; Di Carlo, F. Drug Metab. Rev., 1997, 29(1-2), 413-580., Rendic, S. Drug Metab. Rev., 2002, 34(1-2), 83-448.). The collected information presented here is as stated by the cited author(s), and in cases when several references are cited the latest published information is included. Inconsistent results and conclusions obtained by different authors are highlighted, followed by discussion of the major findings. The searchable database is available as an Excel file, for information about file availability contact the corresponding author.
Collapse
Affiliation(s)
- S Rendic
- University of Zagreb, Zagreb, Croatia.
| | | |
Collapse
|