1
|
Gaugel J, Haacke N, Sehgal R, Jähnert M, Jonas W, Hoffmann A, Blüher M, Ghosh A, Noé F, Wolfrum C, Tan J, Schürmann A, Fazakerley DJ, Vogel H. Picalm, a novel regulator of GLUT4-trafficking in adipose tissue. Mol Metab 2024; 88:102014. [PMID: 39182843 PMCID: PMC11402323 DOI: 10.1016/j.molmet.2024.102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE Picalm (phosphatidylinositol-binding clathrin assembly protein), a ubiquitously expressed clathrin-adapter protein, is a well-known susceptibility gene for Alzheimer's disease, but its role in white adipose tissue (WAT) function has not yet been studied. Transcriptome analysis revealed differential expression of Picalm in WAT of diabetes-prone and diabetes-resistant mice, hence we aimed to investigate the potential link between Picalm expression and glucose homeostasis, obesity-related metabolic phenotypes, and its specific role in insulin-regulated GLUT4 trafficking in adipocytes. METHODS Picalm expression and epigenetic regulation by microRNAs (miRNAs) and DNA methylation were analyzed in WAT of diabetes-resistant (DR) and diabetes-prone (DP) female New Zealand Obese (NZO) mice and in male NZO after time-restricted feeding (TRF) and alternate-day fasting (ADF). PICALM expression in human WAT was evaluated in a cross-sectional cohort and assessed before and after weight loss induced by bariatric surgery. siRNA-mediated knockdown of Picalm in 3T3-L1-cells was performed to elucidate functional outcomes on GLUT4-translocation as well as insulin signaling and adipogenesis. RESULTS Picalm expression in WAT was significantly lower in DR compared to DP female mice, as well as in insulin-sensitive vs. resistant NZO males, and was also reduced in NZO males following TRF and ADF. Four miRNAs (let-7c, miR-30c, miR-335, miR-344) were identified as potential mediators of diabetes susceptibility-related differences in Picalm expression, while 11 miRNAs (including miR-23a, miR-29b, and miR-101a) were implicated in TRF and ADF effects. Human PICALM expression in adipose tissue was lower in individuals without obesity vs. with obesity and associated with weight-loss outcomes post-bariatric surgery. siRNA-mediated knockdown of Picalm in mature 3T3-L1-adipocytes resulted in amplified insulin-stimulated translocation of the endogenous glucose transporter GLUT4 to the plasma membrane and increased phosphorylation of Akt and Tbc1d4. Moreover, depleting Picalm before and during 3T3-L1 differentiation significantly suppressed adipogenesis, suggesting that Picalm may have distinct roles in the biology of pre- and mature adipocytes. CONCLUSIONS Picalm is a novel regulator of GLUT4-translocation in WAT, with its expression modulated by both genetic predisposition to diabetes and dietary interventions. These findings suggest a potential role for Picalm in improving glucose homeostasis and highlight its relevance as a therapeutic target for metabolic disorders.
Collapse
Affiliation(s)
- Jasmin Gaugel
- Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany
| | - Neele Haacke
- Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany
| | - Ratika Sehgal
- Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany
| | - Markus Jähnert
- Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany
| | - Wenke Jonas
- Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Matthias Blüher
- German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany; Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany; Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Adhideb Ghosh
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Falko Noé
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Joycelyn Tan
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
| | - Annette Schürmann
- Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany; Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Daniel J Fazakerley
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
| | - Heike Vogel
- Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany.
| |
Collapse
|
2
|
Cao C, Fu G, Xu R, Li N. Coupling of Alzheimer's Disease Genetic Risk Factors with Viral Susceptibility and Inflammation. Aging Dis 2024; 15:2028-2050. [PMID: 37962454 PMCID: PMC11346407 DOI: 10.14336/ad.2023.1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by persistent cognitive decline. Amyloid plaque deposition and neurofibrillary tangles are the main pathological features of AD brain, though mechanisms leading to the formation of lesions remain to be understood. Genetic efforts through genome-wide association studies (GWAS) have identified dozens of risk genes influencing the pathogenesis and progression of AD, some of which have been revealed in close association with increased viral susceptibilities and abnormal inflammatory responses in AD patients. In the present study, we try to present a list of AD candidate genes that have been shown to affect viral infection and inflammatory responses. Understanding of how AD susceptibility genes interact with the viral life cycle and potential inflammatory pathways would provide possible therapeutic targets for both AD and infectious diseases.
Collapse
Affiliation(s)
| | | | - Ruodan Xu
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Maninger JK, Nowak K, Goberdhan S, O'Donoghue R, Connor-Robson N. Cell type-specific functions of Alzheimer's disease endocytic risk genes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220378. [PMID: 38368934 PMCID: PMC10874703 DOI: 10.1098/rstb.2022.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/12/2023] [Indexed: 02/20/2024] Open
Abstract
Endocytosis is a key cellular pathway required for the internalization of cellular nutrients, lipids and receptor-bound cargoes. It is also critical for the recycling of cellular components, cellular trafficking and membrane dynamics. The endocytic pathway has been consistently implicated in Alzheimer's disease (AD) through repeated genome-wide association studies and the existence of rare coding mutations in endocytic genes. BIN1 and PICALM are two of the most significant late-onset AD risk genes after APOE and are both key to clathrin-mediated endocytic biology. Pathological studies also demonstrate that endocytic dysfunction is an early characteristic of late-onset AD, being seen in the prodromal phase of the disease. Different cell types of the brain have specific requirements of the endocytic pathway. Neurons require efficient recycling of synaptic vesicles and microglia use the specialized form of endocytosis-phagocytosis-for their normal function. Therefore, disease-associated changes in endocytic genes will have varied impacts across different cell types, which remains to be fully explored. Given the genetic and pathological evidence for endocytic dysfunction in AD, understanding how such changes and the related cell type-specific vulnerabilities impact normal cellular function and contribute to disease is vital and could present novel therapeutic opportunities. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
| | - Karolina Nowak
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| | - Srilakshmi Goberdhan
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| | - Rachel O'Donoghue
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| | - Natalie Connor-Robson
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| |
Collapse
|
4
|
Tan Y, Nie DR, Cao Y, Ke C, Pan J, Shi WY, Zhang W. Trends in the application of "omics" to Alzheimer's disease: a bibliometric and visualized study. Neurol Sci 2024; 45:401-416. [PMID: 37749399 DOI: 10.1007/s10072-023-07079-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease with an insidious onset. The widespread application of omics techniques in AD has attracted considerable attention. We aimed to make a comprehensive analysis of published omics articles on AD in order to determine the research profile and application trends of omics techniques in AD. METHODS This study utilizes bibliometric and visual methods including a map collaboration map, co-citations, and keywords to identify knowledge structures, hot topics, and research trends based on 6,828 publications from the Web of Science Core Collection (WoSCC) database. RESULTS The results of this study showed that 5654 institutions from 91 countries published articles in this field. The USA, China, and the UK played a leading role in publishing numerous articles in relevant journals as well as prolific institutions and authors, respectively. This paper collects a large number of literatures on the application of AD omics technology from the WoSCC database and found the omics technology applied to AD is mainly based on genomics technology. The application of transcriptomics technology has shown an increasing trend in recent years, and the application of multi-omics technology will be the general trend in the future. CONCLUSION The development status, frontier hotspots, and general trends of omics application technologies are reviewed. This article will provide intelligence support to researchers and institutions in the field of Alzheimer's omics research and applications from a practical perspective.
Collapse
Affiliation(s)
- Yan Tan
- Department of Acupuncture-Moxibustion and Tuina, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Duo Rui Nie
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Yang Cao
- Department of Acupuncture-Moxibustion and Tuina, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Chao Ke
- Department of Acupuncture-Moxibustion and Tuina, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jiang Pan
- Department of Acupuncture-Moxibustion and Tuina, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wen Ying Shi
- Department of Acupuncture-Moxibustion and Tuina, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wei Zhang
- Department of Acupuncture-Moxibustion and Tuina, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
5
|
Liu YB, Wang XJ, Tan L, Tan CC, Xu W. PICALM Variation Moderates the Relationships of APOE ɛ4 with Alzheimer's Disease Cerebrospinal Biomarkers and Memory Function Among Non-Demented Population. J Alzheimers Dis 2023; 96:1651-1661. [PMID: 38007652 DOI: 10.3233/jad-230516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
BACKGROUND APOE ɛ4 and PICALM are established genes associated with risk of late-onset Alzheimer's disease (AD). Previous study indicated interaction of PICALM with APOE ɛ4 in AD patients. OBJECTIVE To explore whether PICALM variation could moderate the influences of APOE ɛ4 on AD pathology biomarkers and cognition in pre-dementia stage. METHODS A total of 1,034 non-demented participants (mean age 74 years, 56% females, 40% APOE ɛ4 carriers) were genotyped for PICALM rs3851179 and APOE ɛ4 at baseline and were followed for influences on changes of cognition and cerebrospinal fluid (CSF) AD markers in six years. The interaction effects were examined via regression models adjusting for age, gender, education, and cognitive diagnosis. RESULTS The interaction term of rs3851179×APOE ɛ4 accounted for a significant amount of variance in baseline general cognition (p = 0.039) and memory function (p = 0.002). The relationships of APOE ɛ4 with trajectory of CSF Aβ42 (p = 0.007), CSF P-tau181 (p = 0.003), CSF T-tau (p = 0.001), and memory function (p = 0.017) were also moderated by rs3851179 variation. CONCLUSIONS APOE ɛ4 carriers experienced slower clinical and pathological progression when they had more protective A alleles of PICALM rs3851179. These findings firstly revealed the gene-gene interactive effects of PICALM with APOE ɛ4 in pre-dementia stage.
Collapse
Affiliation(s)
- Yan-Bing Liu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Medical college, Qingdao University, Qingdao, China
| | - Xue-Jie Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Ando K, Nagaraj S, Küçükali F, de Fisenne MA, Kosa AC, Doeraene E, Lopez Gutierrez L, Brion JP, Leroy K. PICALM and Alzheimer's Disease: An Update and Perspectives. Cells 2022; 11:3994. [PMID: 36552756 PMCID: PMC9776874 DOI: 10.3390/cells11243994] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified the PICALM (Phosphatidylinositol binding clathrin-assembly protein) gene as the most significant genetic susceptibility locus after APOE and BIN1. PICALM is a clathrin-adaptor protein that plays a critical role in clathrin-mediated endocytosis and autophagy. Since the effects of genetic variants of PICALM as AD-susceptibility loci have been confirmed by independent genetic studies in several distinct cohorts, there has been a number of in vitro and in vivo studies attempting to elucidate the underlying mechanism by which PICALM modulates AD risk. While differential modulation of APP processing and Aβ transcytosis by PICALM has been reported, significant effects of PICALM modulation of tau pathology progression have also been evidenced in Alzheimer's disease models. In this review, we summarize the current knowledge about PICALM, its physiological functions, genetic variants, post-translational modifications and relevance to AD pathogenesis.
Collapse
Affiliation(s)
- Kunie Ando
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Siranjeevi Nagaraj
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Fahri Küçükali
- Complex Genetics of Alzheimer’s Disease Group, VIB Center for Molecular Neurology, VIB Antwerp, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Marie-Ange de Fisenne
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Andreea-Claudia Kosa
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Emilie Doeraene
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Lidia Lopez Gutierrez
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Karelle Leroy
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| |
Collapse
|
7
|
PICALM rs3851179 Variants Modulate Left Postcentral Cortex Thickness, CSF Amyloid β42, and Phosphorylated Tau in the Elderly. Brain Sci 2022; 12:brainsci12121681. [PMID: 36552141 PMCID: PMC9776362 DOI: 10.3390/brainsci12121681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
PICALM rs3851179, one of the genes most frequently linked to susceptibility of late-onset Alzheimer's disease (LOAD), plays a crucial role in regulating amyloid precursor protein, and amyloid β (Aβ) transcytosis. To explore the effects of PICALM and AD continuum stage on cortex thickness, CSF Aβ, and tau, 188 cognitively normal controls, 261 MCI patients, and 140 early LOAD patients were recruited, and each group was divided into rs3851179 A-carriers and GG-carriers. A full factorial ANCOVA was used to analyze the main effects and interactive effects of AD continuum stage, and PICALM. The interactive effects of AD continuum stage and PICALM on cortex thickness and CSF biomarkers were not significant. The main effect of PICALM was significant on the left postcentral cortex thickness, and the cortex thickness of A-carriers was less than that of GG-carriers. The rs3851179 A-carriers displayed higher Aβ42 levels and Aβ42/40 ratios, and lower P/T-tau ratios, compared with GG-carriers. A higher MMSE score was found in A-carriers among the LOAD patients. In conclusion, the main effects of PICALM were independent of AD continuum stage, and PICLAM rs3851179 genotypes may modulate left postcentral cortex thickness, Aβ42 level, and P/T-tau ratio. The rs3851179 A-allele may protect the cognitive function of LOAD patients.
Collapse
|
8
|
Behl T, Kaur D, Sehgal A, Singh S, Makeen HA, Albratty M, Abdellatif AAH, Dachani SR, Bungau S. Exploring the potential role of rab5 protein in endo-lysosomal impairment in Alzheimer's disease. Biomed Pharmacother 2022; 148:112773. [PMID: 35245734 DOI: 10.1016/j.biopha.2022.112773] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 02/27/2022] [Indexed: 11/02/2022] Open
Abstract
Growing evidence suggests that neuronal dysfunction in the endo-lysosomal and autophagic processes contributes to the onset and progression of neurodegenerative diseases such as Alzheimer's disease (AD). Since they are the primary cellular systems involved in the production and clearance of aggregated amyloid plaques, endo-lysosomal or autophagic equilibrium must be maintained throughout life. As a result, variations in the autophagic and endo-lysosomal torrent, as a measure of degenerative function in these sections or pathways, may have a direct impact on disease-related processes, such as Aß clearance from the brain and interneuronal deposition of Aß and tau aggregates, thus disrupting synaptic plasticity. The discovery of several chromosomal factors for Alzheimer's disease that are clinically linked to regulation of the endocytic pathway, including protein aggregation and removal, supports the theory that the endo-lysosomal/autophagic torrent is more susceptible to impairment, especially as people age, thus catalysing the onset of disease. Although the role of endo-lysosomal/autophagic dysfunction in neurodegeneration has progressed in recent years, the field remains underdeveloped. Because of its possible therapeutic implications in Alzheimer's disease, further study is needed to explain the possibilities for effective autophagy regulation.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India.
| | - Dapinder Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy, Department, College of Pharmacy, Jazan University, P.O. Box-114, Jazan 45142, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Sudharshan Reddy Dachani
- Department of Pharmacy Practice & Pharmacology, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| |
Collapse
|
9
|
Ogbodo JO, Agbo CP, Njoku UO, Ogugofor MO, Egba SI, Ihim SA, Echezona AC, Brendan KC, Upaganlawar AB, Upasani CD. Alzheimer's Disease: Pathogenesis and Therapeutic Interventions. Curr Aging Sci 2022; 15:2-25. [PMID: 33653258 DOI: 10.2174/1874609814666210302085232] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Alzheimer's Disease (AD) is the most common cause of dementia. Genetics, excessive exposure to environmental pollutants, as well as unhealthy lifestyle practices are often linked to the development of AD. No therapeutic approach has achieved complete success in treating AD; however, early detection and management with appropriate drugs are key to improving prognosis. INTERVENTIONS The pathogenesis of AD was extensively discussed in order to understand the reasons for the interventions suggested. The interventions reviewed include the use of different therapeutic agents and approaches, gene therapy, adherence to healthy dietary plans (Mediterranean diet, Okinawan diet and MIND diet), as well as the use of medicinal plants. The potential of nanotechnology as a multidisciplinary and interdisciplinary approach in the design of nano-formulations of AD drugs and the use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as theranostic tools for early detection of Alzheimer's disease were also discussed.
Collapse
Affiliation(s)
- John O Ogbodo
- Department of Science Laboratory Technology, University of Nigeria, Nsukka, Nigeria
| | - Chinazom P Agbo
- Department of Pharmaceutics, University of Nigeria, Nsukka, Nigeria
| | - Ugochi O Njoku
- Department of Biochemistry, University of Nigeria, Nsukka, Nigeria
| | | | - Simeon I Egba
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Stella A Ihim
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | | | | | - Aman B Upaganlawar
- Department of Pharmacology, Sureshdada Shriman\'s College of Pharmacy, New Dehli, India
| | | |
Collapse
|
10
|
Influence of PICALM and CLU risk variants on beta EEG activity in Alzheimer's disease patients. Sci Rep 2021; 11:20465. [PMID: 34650147 PMCID: PMC8516883 DOI: 10.1038/s41598-021-99589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/27/2021] [Indexed: 11/09/2022] Open
Abstract
PICALM and CLU genes have been linked to alterations in brain biochemical processes that may have an impact on Alzheimer’s disease (AD) development and neurophysiological dynamics. The aim of this study is to analyze the relationship between the electroencephalographic (EEG) activity and the PICALM and CLU alleles described as conferring risk or protective effects on AD patients and healthy controls. For this purpose, EEG activity was acquired from: 18 AD patients and 12 controls carrying risk alleles of both PICALM and CLU genes, and 35 AD patients and 12 controls carrying both protective alleles. Relative power (RP) in the conventional EEG frequency bands (delta, theta, alpha, beta, and gamma) was computed to quantify the brain activity at source level. In addition, spatial entropy (SE) was calculated in each band to characterize the regional distribution of the RP values throughout the brain. Statistically significant differences in global RP and SE at beta band (p-values < 0.05, Mann–Whitney U-test) were found between genotypes in the AD group. Furthermore, RP showed statistically significant differences in 58 cortical regions out of the 68 analyzed in AD. No statistically significant differences were found in the control group at any frequency band. Our results suggest that PICALM and CLU AD-inducing genotypes are involved in physiological processes related to disruption in beta power, which may be associated with physiological disturbances such as alterations in beta-amyloid and neurotransmitter metabolism.
Collapse
|
11
|
Endocytosis-pathway polygenic scores affects the hippocampal network connectivity and individualized identification across the high-risk of Alzheimer's disease. Brain Imaging Behav 2021; 15:1155-1169. [PMID: 32803660 DOI: 10.1007/s11682-020-00316-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The neural mechanisms underlying the polygenic effects of the endocytosis pathway on the brain function of Alzheimer's Disease (AD) remain unclear, especially in the prodromal stages of AD from early mild cognitive impairment (EMCI) to late mild cognitive impairment (LMCI). We used an imaging genetic approach to investigate the polygenic effects of the endocytosis pathway on the hippocampal network across the prodromal stages of AD. The subjects' data were selected from the Alzheimer's Disease Neuroimaging Initiative. Hippocampal volumes were examined in subjects of cognitive normal (CN), EMCI and LMCI groups. Multivariate linear regression analysis was employed to measure the effects of disease and endocytosis-based multilocus genetic risk scores (MGRS) on the hippocampal network which was constructed using the bilateral hippocampal regions. We identified hippocampal volumes in LMCI group were smaller than those in CN and EMCI groups. Endocytosis-based MGRS was widely influenced the neural structures within the hippocampal network, especially in the prefrontal-occipital regions and striatum. Compared to low endocytosis-based MGRS carriers, high MGRS carriers showed the opposite trajectory of hippocampal network functional connectivity (FC) across the prodromal stages of AD. Further, a model composed of selected hippocampal FCs and hippocampal volume yielded strong classification powers of EMCI and LMCI. These findings expand our understanding of the pathophysiology of polygenic effects underlying brain network in the prodromal stages of AD.
Collapse
|
12
|
Poddar MK, Banerjee S, Chakraborty A, Dutta D. Metabolic disorder in Alzheimer's disease. Metab Brain Dis 2021; 36:781-813. [PMID: 33638805 DOI: 10.1007/s11011-021-00673-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/14/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD), a well known aging-induced neurodegenerative disease is related to amyloid proteinopathy. This proteinopathy occurs due to abnormalities in protein folding, structure and thereby its function in cells. The root cause of such kind of proteinopathy and its related neurodegeneration is a disorder in metabolism, rather metabolomics of the major as well as minor nutrients. Metabolomics is the most relevant "omics" platform that offers a great potential for the diagnosis and prognosis of neurodegenerative diseases as an individual's metabolome. In recent years, the research on such kinds of neurodegenerative diseases, especially aging-related disorders is broadened its scope towards metabolic function. Different neurotransmitter metabolisms are also involved with AD and its associated neurodegeneration. The genetic and epigenetic backgrounds are also noteworthy. In this review, the physiological changes of AD in relation to its corresponding biochemical, genetic and epigenetic involvements including its (AD) therapeutic aspects are discussed.
Collapse
Affiliation(s)
- Mrinal K Poddar
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India.
| | - Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
- Departrment of Psychology, Neuroscience Program, Field Neurosciences Institute Research Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Apala Chakraborty
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
| | - Debasmita Dutta
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58102, USA
| |
Collapse
|
13
|
Bhave M, Mino RE, Wang X, Lee J, Grossman HM, Lakoduk AM, Danuser G, Schmid SL, Mettlen M. Functional characterization of 67 endocytic accessory proteins using multiparametric quantitative analysis of CCP dynamics. Proc Natl Acad Sci U S A 2020; 117:31591-31602. [PMID: 33257546 PMCID: PMC7749282 DOI: 10.1073/pnas.2020346117] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) begins with the nucleation of clathrin assembly on the plasma membrane, followed by stabilization and growth/maturation of clathrin-coated pits (CCPs) that eventually pinch off and internalize as clathrin-coated vesicles. This highly regulated process involves a myriad of endocytic accessory proteins (EAPs), many of which are multidomain proteins that encode a wide range of biochemical activities. Although domain-specific activities of EAPs have been extensively studied, their precise stage-specific functions have been identified in only a few cases. Using single-guide RNA (sgRNA)/dCas9 and small interfering RNA (siRNA)-mediated protein knockdown, combined with an image-based analysis pipeline, we have determined the phenotypic signature of 67 EAPs throughout the maturation process of CCPs. Based on these data, we show that EAPs can be partitioned into phenotypic clusters, which differentially affect CCP maturation and dynamics. Importantly, these clusters do not correlate with functional modules based on biochemical activities. Furthermore, we discover a critical role for SNARE proteins and their adaptors during early stages of CCP nucleation and stabilization and highlight the importance of GAK throughout CCP maturation that is consistent with GAK's multifunctional domain architecture. Together, these findings provide systematic, mechanistic insights into the plasticity and robustness of CME.
Collapse
Affiliation(s)
- Madhura Bhave
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rosa E Mino
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xinxin Wang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Heather M Grossman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ashley M Lakoduk
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Gaudenz Danuser
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sandra L Schmid
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
| |
Collapse
|
14
|
Pensalfini A, Kim S, Subbanna S, Bleiwas C, Goulbourne CN, Stavrides PH, Jiang Y, Lee JH, Darji S, Pawlik M, Huo C, Peddy J, Berg MJ, Smiley JF, Basavarajappa BS, Nixon RA. Endosomal Dysfunction Induced by Directly Overactivating Rab5 Recapitulates Prodromal and Neurodegenerative Features of Alzheimer's Disease. Cell Rep 2020; 33:108420. [PMID: 33238112 DOI: 10.1016/j.celrep.2020.108420] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/05/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Neuronal endosomal dysfunction, the earliest known pathobiology specific to Alzheimer's disease (AD), is mediated by the aberrant activation of Rab5 triggered by APP-β secretase cleaved C-terminal fragment (APP-βCTF). To distinguish pathophysiological consequences specific to overactivated Rab5 itself, we activate Rab5 independently from APP-βCTF in the PA-Rab5 mouse model. We report that Rab5 overactivation alone recapitulates diverse prodromal and degenerative features of AD. Modest neuron-specific transgenic Rab5 expression inducing hyperactivation of Rab5 comparable to that in AD brain reproduces AD-related Rab5-endosomal enlargement and mistrafficking, hippocampal synaptic plasticity deficits via accelerated AMPAR endocytosis and dendritic spine loss, and tau hyperphosphorylation via activated glycogen synthase kinase-3β. Importantly, Rab5-mediated endosomal dysfunction induces progressive cholinergic neurodegeneration and impairs hippocampal-dependent memory. Aberrant neuronal Rab5-endosome signaling, therefore, drives a pathogenic cascade distinct from β-amyloid-related neurotoxicity, which includes prodromal and neurodegenerative features of AD, and suggests Rab5 overactivation as a potential therapeutic target.
Collapse
Affiliation(s)
- Anna Pensalfini
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA
| | - Seonil Kim
- Colorado State University, Department of Biomedical Sciences, Fort Collins, CO 80523, USA; Cellular and Molecular Biology Training Program, New York University Langone Health, New York, NY 10003, USA
| | - Shivakumar Subbanna
- Department of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Cynthia Bleiwas
- Department of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Philip H Stavrides
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Ying Jiang
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA
| | - Ju-Hyun Lee
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA
| | - Sandipkumar Darji
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Monika Pawlik
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Chunfeng Huo
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - James Peddy
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Martin J Berg
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - John F Smiley
- Department of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Balapal S Basavarajappa
- Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; Department of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; Department of Cell Biology, New York University Langone Health, New York, NY 10003, USA; NYU Neuroscience Institute, New York, NY 10003, USA.
| |
Collapse
|
15
|
Periñán MT, Macías-García D, Labrador-Espinosa MÁ, Jesús S, Buiza-Rueda D, Adarmes-Gómez AD, Muñoz-Delgado L, Gómez-Garre P, Mir P. Association of PICALM with Cognitive Impairment in Parkinson's Disease. Mov Disord 2020; 36:118-123. [PMID: 32914893 DOI: 10.1002/mds.28283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/07/2020] [Accepted: 08/17/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Cognitive impairment is one of the most disabling nonmotor symptoms in Parkinson's disease (PD). Recently, a genome-wide association study in Alzheimer's disease has identified the PICALM rs3851179 polymorphism as one of the most significant susceptibility genes for Alzheimer's disease after APOE. The aim of this study was to determine the potential role of PICALM and its genetic interaction with APOE in the development of cognitive decline in PD. METHODS A discovery cohort of 712 patients with PD were genotyped for PICALM (rs3851179) and APOE (rs429358 and rs7412) polymorphisms. The association of PICALM and APOE-PICALM genetic interaction with cognitive dysfunction in PD was studied using logistic regression models, and the relationship of PICALM with cognitive decline onset was assessed with Cox regression analysis. PICALM effect was then replicated in an international, independent cohort (Parkinson's Progression Markers Initiative, N = 231). RESULTS PICALM rs3851179 TT genotype was significantly associated with a decreased risk of cognitive impairment in PD (TT vs. CC + CT, P = 0.041, odds ratio = 0.309). Replication studies further demonstrated its protective effect on cognitive impairment in PD. In addition, the protective effect of the PICALM rs3851179 TT genotype was more pronounced in the APOE ε4 (-) carriers from the discovery cohort (P = 0.037, odds ratio = 0.241), although these results were not replicated in the Parkinson's Progression Markers Initiative cohort. CONCLUSIONS Our results support the fact that PICALM is associated with cognitive impairment in PD. The understanding of its contribution to cognitive decline in PD could provide new targets for the development of novel therapies. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- María Teresa Periñán
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del, Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel Macías-García
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del, Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Miguel Ángel Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del, Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del, Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Dolores Buiza-Rueda
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del, Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Astrid D Adarmes-Gómez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del, Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laura Muñoz-Delgado
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del, Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain
| | - Pilar Gómez-Garre
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del, Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del, Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
16
|
Ponomareva N, Andreeva T, Protasova M, Konovalov R, Krotenkova M, Malina D, Mitrofanov A, Fokin V, Illarioshkin S, Rogaev E. Genetic Association Between Alzheimer's Disease Risk Variant of the PICALM Gene and EEG Functional Connectivity in Non-demented Adults. Front Neurosci 2020; 14:324. [PMID: 32372909 PMCID: PMC7177435 DOI: 10.3389/fnins.2020.00324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/19/2020] [Indexed: 11/13/2022] Open
Abstract
Genome wide association studies (GWAS) have identified and validated the association of the PICALM genotype with Alzheimer's disease (AD). The PICALM rs3851179 A allele is thought to have a protective effect, whereas the G allele appears to confer risk for AD. The influence of the PICALM genotype on brain functional connectivity in non-demented subjects remains largely unknown. We examined the association of the PICALM rs3851179 genotype with the characteristics of lagged linear connectivity (LLC) of resting EEG sources in 104 non-demented adults younger than 60 years of age. The EEG analysis was performed using exact low-resolution brain electromagnetic tomography (eLORETA) freeware (Pascual-Marqui et al., 2011). We found that the carriers of the A PICALM allele (PICALM AA and AG genotypes) had higher widespread interhemispheric LLC of alpha sources compared to the carriers of the GG PICALM allele. An exploratory correlation analysis showed a moderate positive association between the alpha LLC interhemispheric characteristics and the corpus callosum size and between the alpha interhemispheric LLC characteristics and the Luria word memory scores. These results suggest that the PICALM rs3851179 A allele provides protection against cognitive decline by facilitating neurophysiological reserve capacities in non-demented adults. In contrast, lower functional connectivity in carriers of the AD risk variant, PICALM GG, suggests early functional alterations in alpha rhythm networks.
Collapse
Affiliation(s)
- Natalya Ponomareva
- Research Center of Neurology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Andreeva
- Laboratory of Evolutionary Genomics, Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Protasova
- Laboratory of Evolutionary Genomics, Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Rodion Konovalov
- Research Center of Neurology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Krotenkova
- Research Center of Neurology, Russian Academy of Sciences, Moscow, Russia
| | - Daria Malina
- Research Center of Neurology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Mitrofanov
- Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow, Russia
| | - Vitaly Fokin
- Research Center of Neurology, Russian Academy of Sciences, Moscow, Russia
| | | | - Evgeny Rogaev
- Laboratory of Evolutionary Genomics, Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, United States.,Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
17
|
Perdigão C, Barata MA, Araújo MN, Mirfakhar FS, Castanheira J, Guimas Almeida C. Intracellular Trafficking Mechanisms of Synaptic Dysfunction in Alzheimer's Disease. Front Cell Neurosci 2020; 14:72. [PMID: 32362813 PMCID: PMC7180223 DOI: 10.3389/fncel.2020.00072] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease characterized by progressive memory loss. Although AD neuropathological hallmarks are extracellular amyloid plaques and intracellular tau tangles, the best correlate of disease progression is synapse loss. What causes synapse loss has been the focus of several researchers in the AD field. Synapses become dysfunctional before plaques and tangles form. Studies based on early-onset familial AD (eFAD) models have supported that synaptic transmission is depressed by β-amyloid (Aβ) triggered mechanisms. Since eFAD is rare, affecting only 1% of patients, research has shifted to the study of the most common late-onset AD (LOAD). Intracellular trafficking has emerged as one of the pathways of LOAD genes. Few studies have assessed the impact of trafficking LOAD genes on synapse dysfunction. Since endocytic traffic is essential for synaptic function, we reviewed Aβ-dependent and independent mechanisms of the earliest synaptic dysfunction in AD. We have focused on the role of intraneuronal and secreted Aβ oligomers, highlighting the dysfunction of endocytic trafficking as an Aβ-dependent mechanism of synapse dysfunction in AD. Here, we reviewed the LOAD trafficking genes APOE4, ABCA7, BIN1, CD2AP, PICALM, EPH1A, and SORL1, for which there is a synaptic link. We conclude that in eFAD and LOAD, the earliest synaptic dysfunctions are characterized by disruptions of the presynaptic vesicle exo- and endocytosis and of postsynaptic glutamate receptor endocytosis. While in eFAD synapse dysfunction seems to be triggered by Aβ, in LOAD, there might be a direct synaptic disruption by LOAD trafficking genes. To identify promising therapeutic targets and biomarkers of the earliest synaptic dysfunction in AD, it will be necessary to join efforts in further dissecting the mechanisms used by Aβ and by LOAD genes to disrupt synapses.
Collapse
Affiliation(s)
- Catarina Perdigão
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Mariana A Barata
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Margarida N Araújo
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Farzaneh S Mirfakhar
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jorge Castanheira
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Cláudia Guimas Almeida
- Laboratory Neuronal Trafficking in Aging, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
18
|
Essayan-Perez S, Zhou B, Nabet AM, Wernig M, Huang YWA. Modeling Alzheimer's disease with human iPS cells: advancements, lessons, and applications. Neurobiol Dis 2019; 130:104503. [PMID: 31202913 PMCID: PMC6689423 DOI: 10.1016/j.nbd.2019.104503] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/24/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
One in three people will develop Alzheimer's disease (AD) or another dementia and, despite intense research efforts, treatment options remain inadequate. Understanding the mechanisms of AD pathogenesis remains our principal hurdle to developing effective therapeutics to tackle this looming medical crisis. In light of recent discoveries from whole-genome sequencing and technical advances in humanized models, studying disease risk genes with induced human neural cells presents unprecedented advantages. Here, we first review the current knowledge of the proposed mechanisms underlying AD and focus on modern genetic insights to inform future studies. To highlight the utility of human pluripotent stem cell-based innovations, we then present an update on efforts in recapitulating the pathophysiology by induced neuronal, non-neuronal and a collection of brain cell types, departing from the neuron-centric convention. Lastly, we examine the translational potentials of such approaches, and provide our perspectives on the promise they offer to deepen our understanding of AD pathogenesis and to accelerate the development of intervention strategies for patients and risk carriers.
Collapse
Affiliation(s)
- Sofia Essayan-Perez
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, United States of America
| | - Bo Zhou
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, United States of America; Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University Medical School, Stanford, CA 94305, United States of America
| | - Amber M Nabet
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, United States of America
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University Medical School, Stanford, CA 94305, United States of America
| | - Yu-Wen Alvin Huang
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, United States of America.
| |
Collapse
|
19
|
Mercorio R, Pergoli L, Galimberti D, Favero C, Carugno M, Dalla Valle E, Barretta F, Cortini F, Scarpini E, Valentina VB, Pesatori AC. PICALM Gene Methylation in Blood of Alzheimer's Disease Patients Is Associated with Cognitive Decline. J Alzheimers Dis 2019; 65:283-292. [PMID: 30040717 DOI: 10.3233/jad-180242] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epigenetic mechanisms might be involved in Alzheimer's disease (AD). Genetic polymorphisms in several genes, including APOE (Apolipoprotein E), PSEN1 (Presenilin 1), CR1 (Complement receptor 1), and PICALM (Phosphatidylinositol binding clathrin assembly protein), have been associated to an increased AD risk. However, data regarding methylation of these specific genes are lacking. We evaluated DNA methylation measured by quantitative bisulfite-PCR pyrosequencing in 43 AD patients and 38 healthy subjects (HS). In a multivariate age- and gender-adjusted model, PICALM methylation was decreased in AD compared to HS (mean = 3.54 and 4.63, respectively, p = 0.007). In AD, PICALM methylation level was also positively associated to Mini-Mental Scale Examination (MMSE) score (percent change 3.48%, p = 0.008). Moreover, a negative association between PICALM methylation and age was observed only in HS (percent change - 2.29%, p = 0.002). In conclusion, our data suggest a possible role of PICALM methylation in AD, particularly related to cognitive function. Given the small study sample and the associative nature of our study, further prospective investigations are required to assess the dynamics of DNA methylation in the early stages of AD development.
Collapse
Affiliation(s)
- Roberta Mercorio
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Laura Pergoli
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Daniela Galimberti
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Favero
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Michele Carugno
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Elisabetta Dalla Valle
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Barretta
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Francesca Cortini
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Elio Scarpini
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bollati Valentina
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Angela Cecilia Pesatori
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab - Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy.,Epidemiology Unit, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
20
|
Van Acker ZP, Bretou M, Annaert W. Endo-lysosomal dysregulations and late-onset Alzheimer's disease: impact of genetic risk factors. Mol Neurodegener 2019; 14:20. [PMID: 31159836 PMCID: PMC6547588 DOI: 10.1186/s13024-019-0323-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence supports that cellular dysregulations in the degradative routes contribute to the initiation and progression of neurodegenerative diseases, including Alzheimer's disease. Autophagy and endolysosomal homeostasis need to be maintained throughout life as they are major cellular mechanisms involved in both the production of toxic amyloid peptides and the clearance of misfolded or aggregated proteins. As such, alterations in endolysosomal and autophagic flux, as a measure of degradation activity in these routes or compartments, may directly impact as well on disease-related mechanisms such as amyloid-β clearance through the blood-brain-barrier and the interneuronal spreading of amyloid-β and/or Tau seeds, affecting synaptic function, plasticity and metabolism. The emerging of several genetic risk factors for late-onset Alzheimer's disease that are functionally related to endocytic transport regulation, including cholesterol metabolism and clearance, supports the notion that in particular the autophagy/lysosomal flux might become more vulnerable during ageing thereby contributing to disease onset. In this review we discuss our current knowledge of the risk genes APOE4, BIN1, CD2AP, PICALM, PLD3 and TREM2 and their impact on endolysosomal (dys)regulations in the light of late-onset Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Zoë P. Van Acker
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, Gasthuisberg, O&N4, Rm. 7.159, Herestraat 49, B-3000 Leuven, Belgium
| | - Marine Bretou
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, Gasthuisberg, O&N4, Rm. 7.159, Herestraat 49, B-3000 Leuven, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, Gasthuisberg, O&N4, Rm. 7.159, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
21
|
Moshkanbaryans L, Chan LS, Engholm-Keller K, Wark JR, Robinson PJ, Graham ME. The interaction of assembly protein AP180 and clathrin is inhibited by multi-site phospho-mimetics. Neurochem Int 2019; 129:104474. [PMID: 31129113 DOI: 10.1016/j.neuint.2019.104474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
Clathrin-mediated endocytosis at the nerve terminal is dependent on assembly protein 180 (AP180) and adapter protein complex 2 (AP2). Both membrane adapter proteins bind to each other and to clathrin, to drive assembly of the clathrin coat over nascent synaptic vesicles. Using knowledge of in vivo phosphorylation sites, AP180 was mutated to determine the effect on binding. N-terminally truncated AP180 exhibited phospho-mimetic (Ser/Thr to Glu)-dependent interaction with AP2, but not clathrin. C-terminally truncated and full length phospho-mutant AP180 bound less AP2 than wild type. However, there was no difference in AP2 binding for the phospho-mimetic or phospho-deficient (Ser/Thr to Ala) AP180 mutants. Thus, the phospho-mutant approach did not provide clarity for the role of phosphorylation in AP180-AP2 binding. Clathrin exhibited a phospho-mimetic-dependent interaction with full-length AP180. Furthermore, phospho-mimetic AP180 was deficient at assembling clathrin cages. These latter discoveries support a model where AP180 phosphorylation inhibits clathrin binding and assembly.
Collapse
Affiliation(s)
- Lia Moshkanbaryans
- Children's Medical Research Institute, The University of Sydney, Westmead, Australia
| | - Ling-Shan Chan
- Children's Medical Research Institute, The University of Sydney, Westmead, Australia
| | - Kasper Engholm-Keller
- Children's Medical Research Institute, The University of Sydney, Westmead, Australia; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark; Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Westmead, Australia
| | - Jesse Ray Wark
- Children's Medical Research Institute, The University of Sydney, Westmead, Australia
| | - Phillip James Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Westmead, Australia
| | - Mark Evan Graham
- Children's Medical Research Institute, The University of Sydney, Westmead, Australia.
| |
Collapse
|
22
|
Misra A, Chakrabarti SS, Gambhir IS. New genetic players in late-onset Alzheimer's disease: Findings of genome-wide association studies. Indian J Med Res 2019; 148:135-144. [PMID: 30381536 PMCID: PMC6206761 DOI: 10.4103/ijmr.ijmr_473_17] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Late-onset Alzheimer's disease (LOAD) or sporadic AD is the most common form of AD. The precise pathogenetic changes that trigger the development of AD remain largely unknown. Large-scale genome-wide association studies (GWASs) have identified single-nucleotide polymorphisms in multiple genes which are associated with AD; most notably, these are ABCA7, bridging integrator 1(B1N1), triggering receptor expressed on myeloid cells 2 (TREM2), CD33, clusterin (CLU), complement receptor 1 (CRI), ephrin type-A receptor 1 (EPHA1), membrane-spanning 4-domains, subfamily A (MS4A) and phosphatidylinositol binding clathrin assembly protein (PICALM) genes. The proteins coded by the candidate genes participate in a variety of cellular processes such as oxidative balance, protein metabolism, cholesterol metabolism and synaptic function. This review summarizes the major gene loci affecting LOAD identified by large GWASs. Tentative mechanisms have also been elaborated in various studies by which the proteins coded by these genes may exert a role in AD pathogenesis have also been elaborated. The review suggests that these may together affect LOAD pathogenesis in a complementary fashion.
Collapse
Affiliation(s)
- Anamika Misra
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Indrajeet Singh Gambhir
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
23
|
Rezazadeh M, Hosseinzadeh H, Moradi M, Salek Esfahani B, Talebian S, Parvin S, Gharesouran J. Genetic discoveries and advances in late‐onset Alzheimer’s disease. J Cell Physiol 2019; 234:16873-16884. [DOI: 10.1002/jcp.28372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Maryam Rezazadeh
- Department of Medical Genetics Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
- Division of Medical Genetics Tabriz Children’s Hospital, Tabriz University of Medical Sciences Tabriz Iran
| | | | - Mohsen Moradi
- Department of Medical Genetics Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Behnaz Salek Esfahani
- Department of Medical Genetics Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Shahrzad Talebian
- Department of Medical Genetics Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Shaho Parvin
- Department of Medical Genetics Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Jalal Gharesouran
- Department of Medical Genetics Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
- Division of Medical Genetics Tabriz Children’s Hospital, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
24
|
Moustafa AA, Hassan M, Hewedi DH, Hewedi I, Garami JK, Al Ashwal H, Zaki N, Seo SY, Cutsuridis V, Angulo SL, Natesh JY, Herzallah MM, Frydecka D, Misiak B, Salama M, Mohamed W, El Haj M, Hornberger M. Genetic underpinnings in Alzheimer's disease - a review. Rev Neurosci 2018; 29:21-38. [PMID: 28949931 DOI: 10.1515/revneuro-2017-0036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/10/2017] [Indexed: 12/13/2022]
Abstract
In this review, we discuss the genetic etiologies of Alzheimer's disease (AD). Furthermore, we review genetic links to protein signaling pathways as novel pharmacological targets to treat AD. Moreover, we also discuss the clumps of AD-m ediated genes according to their single nucleotide polymorphism mutations. Rigorous data mining approaches justified the significant role of genes in AD prevalence. Pedigree analysis and twin studies suggest that genetic components are part of the etiology, rather than only being risk factors for AD. The first autosomal dominant mutation in the amyloid precursor protein (APP) gene was described in 1991. Later, AD was also associated with mutated early-onset (presenilin 1/2, PSEN1/2 and APP) and late-onset (apolipoprotein E, ApoE) genes. Genome-wide association and linkage analysis studies with identified multiple genomic areas have implications for the treatment of AD. We conclude this review with future directions and clinical implications of genetic research in AD.
Collapse
Affiliation(s)
- Ahmed A Moustafa
- School of Social Sciences and Psychology, Western Sydney University, 48 Martin Pl, Sydney, New South Wales 2000, Australia
| | - Mubashir Hassan
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju, Chungcheongnam 32588, Republic of Korea
| | - Doaa H Hewedi
- Psychogeriatric Research Center, Institute of Psychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Iman Hewedi
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Julia K Garami
- School of Social Sciences and Psychology, Western Sydney University, 48 Martin Pl, Sydney, New South Wales 2000, Australia
| | - Hany Al Ashwal
- College of Information Technology, Department of Computer Science and Software Eng-(CIT), United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Nazar Zaki
- College of Information Technology, Department of Computer Science and Software Eng-(CIT), United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Sung-Yum Seo
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju, Chungcheongnam 32588, Republic of Korea
| | - Vassilis Cutsuridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Nikolaou Plastira 100, GR-70013 Heraklion, Crete, Greece
| | - Sergio L Angulo
- Departments of Physiology/Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Joman Y Natesh
- Center for Molecular and Behavioural Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Mohammad M Herzallah
- Center for Molecular and Behavioural Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Dorota Frydecka
- Wroclaw Medical University, Department and Clinic of Psychiatry, 50-367 Wrocław, Poland
| | - Błażej Misiak
- Wroclaw Medical University, Department of Genetics, 50-368 Wroclaw, Poland
| | - Mohamed Salama
- School of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Wael Mohamed
- International Islamic University Malaysia, Jalan Gombak, Selangor 53100, Malaysia
| | - Mohamad El Haj
- University of Lille, CNRS, CHU Lille, UMR 9193 - SCALab - Sciences Cognitive Sciences Affectives, F-59000 Lille, France
| | - Michael Hornberger
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
25
|
Abstract
Alzheimer's disease (AD), the main form of dementia in the elderly, is the most common progressive neurodegenerative disease characterized by rapidly progressive cognitive dysfunction and behavior impairment. AD exhibits a considerable heritability and great advances have been made in approaches to searching the genetic etiology of AD. In AD genetic studies, methods have developed from classic linkage-based and candidate-gene-based association studies to genome-wide association studies (GWAS) and next generation sequencing (NGS). The identification of new susceptibility genes has provided deeper insights to understand the mechanisms underlying AD. In addition to searching novel genes associated with AD in large samples, the NGS technologies can also be used to shed light on the 'black matter' discovery even in smaller samples. The shift in AD genetics between traditional studies and individual sequencing will allow biomaterials of each patient as the central unit of genetic studies. This review will cover genetic findings in AD and consequences of AD genetic findings. Firstly, we will discuss the discovery of mutations in APP, PSEN1, PSEN2, APOE, and ADAM10. Then we will summarize and evaluate the information obtained from GWAS of AD. Finally, we will outline the efforts to identify rare variants associated with AD using NGS.
Collapse
|
26
|
Omtri RS, Thompson KJ, Tang X, Gali CC, Panzenboeck U, Davidson MW, Kalari KR, Kandimalla KK. Differential Effects of Alzheimer’s Disease Aβ40 and 42 on Endocytosis and Intraneuronal Trafficking. Neuroscience 2018; 373:159-168. [DOI: 10.1016/j.neuroscience.2018.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 11/29/2022]
|
27
|
Ahmad S, Bannister C, Lee SJ, Vojinovic D, Adams HH, Ramirez A, Escott‐Price V, Sims R, Baker E, Williams J, Holmans P, Vernooij MW, Ikram MA, Amin N, Duijn CM. Disentangling the biological pathways involved in early features of Alzheimer's disease in the Rotterdam Study. Alzheimers Dement 2018; 14:848-857. [DOI: 10.1016/j.jalz.2018.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/31/2017] [Accepted: 01/18/2018] [Indexed: 10/17/2022]
Affiliation(s)
- Shahzad Ahmad
- Department of EpidemiologyErasmus Medical CentreRotterdamThe Netherlands
| | - Christian Bannister
- MRC Centre for Neuropsychiatric Genetics & GenomicsInstitute of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUnited Kingdom
| | - Sven J. Lee
- Department of EpidemiologyErasmus Medical CentreRotterdamThe Netherlands
| | - Dina Vojinovic
- Department of EpidemiologyErasmus Medical CentreRotterdamThe Netherlands
| | - Hieab H.H. Adams
- Department of EpidemiologyErasmus Medical CentreRotterdamThe Netherlands
- Department of Radiology and Nuclear MedicineErasmus Medical CentreRotterdamThe Netherlands
| | - Alfredo Ramirez
- Department for Neurodegenerative Diseases and Geriatric PsychiatryUniversity Hospital BonnBonnGermany
- Department of Psychiatry and PsychotherapyUniversity Hospital CologneCologneGermany
- Institute of Human GeneticsUniversity of BonnBonnGermany
| | - Valentina Escott‐Price
- MRC Centre for Neuropsychiatric Genetics & GenomicsInstitute of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUnited Kingdom
| | - Rebecca Sims
- MRC Centre for Neuropsychiatric Genetics & GenomicsInstitute of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUnited Kingdom
| | - Emily Baker
- MRC Centre for Neuropsychiatric Genetics & GenomicsInstitute of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUnited Kingdom
| | - Julie Williams
- MRC Centre for Neuropsychiatric Genetics & GenomicsInstitute of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUnited Kingdom
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics & GenomicsInstitute of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUnited Kingdom
| | - Meike W. Vernooij
- Department of EpidemiologyErasmus Medical CentreRotterdamThe Netherlands
- Department of Radiology and Nuclear MedicineErasmus Medical CentreRotterdamThe Netherlands
| | - M. Arfan Ikram
- Department of EpidemiologyErasmus Medical CentreRotterdamThe Netherlands
- Department of Radiology and Nuclear MedicineErasmus Medical CentreRotterdamThe Netherlands
| | - Najaf Amin
- Department of EpidemiologyErasmus Medical CentreRotterdamThe Netherlands
| | - Cornelia M. Duijn
- Department of EpidemiologyErasmus Medical CentreRotterdamThe Netherlands
| |
Collapse
|
28
|
Association Analysis of Polymorphisms in TOMM40, CR1, PVRL2, SORL1, PICALM, and 14q32.13 Regions in Colombian Alzheimer Disease Patients. Alzheimer Dis Assoc Disord 2017; 30:305-309. [PMID: 27023435 DOI: 10.1097/wad.0000000000000142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE We evaluated the association of several single-nucleotide polymorphisms in different genes including APOE, TOMM40, CR1, PVRL2, SORL1, PICALM, and GWA_14q32.13 in a Colombian sample of Late-Onset Alzheimer disease (LOAD) patients. METHODS A case-control study was conducted in 362 individuals (181 LOADs and 181 controls) to determine the association of single-nucleotide polymorphisms in APOE (e2, e3, and e4), TOMM40 (rs2075650), CR1 (rs665640), PVRL2 (rs6859), SORL1 (rs11218304), PICALM (rs3851179), and GWA_14q32.13 (rs11622883) with LOAD in a sample from Colombia. RESULTS We were able to confirm the previously reported association of the APOE4 allele with AD. In addition, we report a new significant association with rs2075650 of TOMM40 for LOAD in our sample. We did not detect any significant interaction between TOMM40 and APOE4 carriers (heterozygous or homozygous) for disease risk development. However, Kaplan-Meier survival analyses suggest that AD patients with TOMM40 allele rs2075650-G have an average age of disease onset of 6 years earlier compared with carriers of the A allele. In addition, the age of disease onset is earlier if APOE4/4 is present. CONCLUSION Our findings suggest that rs2075650 of TOMM40 could be involved in earlier presentation of LOAD in the Colombian population.
Collapse
|
29
|
rs3851179 Polymorphism at 5' to the PICALM Gene is Associated with Alzheimer and Parkinson Diseases in Brazilian Population. Neuromolecular Med 2017; 19:293-299. [PMID: 28567584 DOI: 10.1007/s12017-017-8444-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 05/19/2017] [Indexed: 12/17/2022]
Abstract
Alzheimer's (AD) and Parkinson's diseases (PD) share clinical and pathological features, suggesting that they could have common pathogenic mechanisms, as well as overlapping genetic modifiers. Here, we performed a case-control study in a Brazilian population to clarify whether the risk of AD and PD might be influenced by shared polymorphisms at PICALM (rs3851179), CR1 (rs6656401) and CLU (rs11136000) genes, which were previously identified as AD risk factors by genome-wide association studies. For this purpose, 174 late-onset AD patients, 166 PD patients and 176 matched controls were genotyped using TaqMan® assays. The results revealed that there were significant differences in genotype and allele frequencies for the SNP PICALM rs3851179 between AD/PD cases and controls, but none for CR1 rs6656401 and CLU rs11136000 intronic polymorphisms. After stratification by APOE ε4 status, the protective effect of the PICALM rs3851179 A allele in AD cases remains evident only in APOE ε4 (-) carriers, suggesting that the APOE ε4 risky allele weakens its protective effect in the APOE ε4 (+) subgroup. More genetic studies using large-sized and well-defined matched samples of AD and PD patients from mixed populations as well as functional correlation analysis are urgently needed to clarify the role of rs3851179 in the AD/PD risk. An understanding of the contribution of rs3851179 to the development of AD and PD could provide new targets for the development of novel therapies.
Collapse
|
30
|
Sochacki KA, Dickey AM, Strub MP, Taraska JW. Endocytic proteins are partitioned at the edge of the clathrin lattice in mammalian cells. Nat Cell Biol 2017; 19:352-361. [PMID: 28346440 DOI: 10.1038/ncb3498] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/23/2017] [Indexed: 12/15/2022]
Abstract
Dozens of proteins capture, polymerize and reshape the clathrin lattice during clathrin-mediated endocytosis (CME). How or if this ensemble of proteins is organized in relation to the clathrin coat is unknown. Here, we map key molecules involved in CME at the nanoscale using correlative super-resolution light and transmission electron microscopy. We localize 19 different endocytic proteins (amphiphysin1, AP2, β2-arrestin, CALM, clathrin, DAB2, dynamin2, EPS15, epsin1, epsin2, FCHO2, HIP1R, intersectin, NECAP, SNX9, stonin2, syndapin2, transferrin receptor, VAMP2) on thousands of individual clathrin structures, generating a comprehensive molecular architecture of endocytosis with nanoscale precision. We discover that endocytic proteins distribute into distinct spatial zones in relation to the edge of the clathrin lattice. The presence or concentrations of proteins within these zones vary at distinct stages of organelle development. We propose that endocytosis is driven by the recruitment, reorganization and loss of proteins within these partitioned nanoscale zones.
Collapse
Affiliation(s)
- Kem A Sochacki
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Andrea M Dickey
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Marie-Paule Strub
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Justin W Taraska
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
31
|
Moreno DJ, Ruiz S, Ríos Á, Lopera F, Ostos H, Via M, Bedoya G. Association of GWAS Top Genes With Late-Onset Alzheimer's Disease in Colombian Population. Am J Alzheimers Dis Other Demen 2017; 32:27-35. [PMID: 28084078 PMCID: PMC10857032 DOI: 10.1177/1533317516679303] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The association of variants in CLU, CR1, PICALM, BIN1, ABCA7, and CD33 genes with late-onset Alzheimer's disease (LOAD) was evaluated and confirmed through genome-wide association study. However, it is unknown whether these associations can be replicated in admixed populations. METHODS The association of 14 single-nucleotide polymorphisms in those genes was evaluated in 280 LOAD cases and 357 controls from the Colombian population. RESULTS In a multivariate analysis using age, gender, APOE∊4 status, and admixture covariates, significant associations were obtained ( P < .05) for variants in BIN1 (rs744373, odds ratio [OR]: 1.42), CLU (rs11136000, OR: 0.66), PICALM (rs541458, OR: 0.69), ABCA7 (rs3764650, OR: 1.7), and CD33 (rs3865444, OR: 1.12). Likewise, a significant interaction effect was observed between CLU and CR1 variants with APOE. CONCLUSION This study replicated the associations previously reported in populations of European ancestry and shows that APOE variants have a regulatory role on the effect that variants in other loci have on LOAD, reflecting the importance of gene-gene interactions in the etiology of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Susana Ruiz
- Grupo de Genética Molecular, Universidad de Antioquia, Medellín, Colombia
| | - Ángela Ríos
- Grupo de Neuropsicología, Universidad Surcolombiana, Neiva, Colombia
| | - Francisco Lopera
- Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
| | - Henry Ostos
- Grupo de Medicina Genómica, Universidad Surcolombiana, Neiva, Colombia
| | - Marc Via
- Psicologia Clínica i Psicobiologia and Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Gabriel Bedoya
- Grupo de Genética Molecular, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
32
|
Kanatsu K, Tomita T. Membrane trafficking and proteolytic activity of γ-secretase in Alzheimer’s disease. Biol Chem 2016; 397:827-35. [DOI: 10.1515/hsz-2016-0146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/04/2016] [Indexed: 12/26/2022]
Abstract
Abstract
γ-Secretase is an intramembrane-cleaving protease that generates various forms of amyloid-β peptides (Aβ) that accumulate in the brains of Alzheimer’s disease (AD) patients. The intracellular trafficking and subcellular localization of γ-secretase are linked to both qualitative and quantitative changes in Aβ production. However, the precise intracellular localization of γ-secretase as well as its detailed regulatory mechanisms have remained elusive. Recent genetic studies on AD provide ample evidence that alteration of the subcellular localization of γ-secretase contributes to the pathogenesis of AD. Here we review our current understanding of the intracellular membrane trafficking of γ-secretase, the association between its localization and proteolytic activity, and the possibility of γ-secretase as a therapeutic target against AD.
Collapse
|
33
|
Kanatsu K, Hori Y, Takatori S, Watanabe T, Iwatsubo T, Tomita T. Partial loss of CALM function reduces Aβ42 production and amyloid depositionin vivo. Hum Mol Genet 2016; 25:3988-3997. [DOI: 10.1093/hmg/ddw239] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 02/18/2016] [Accepted: 03/11/2016] [Indexed: 12/31/2022] Open
|
34
|
Thomas RS, Henson A, Gerrish A, Jones L, Williams J, Kidd EJ. Decreasing the expression of PICALM reduces endocytosis and the activity of β-secretase: implications for Alzheimer's disease. BMC Neurosci 2016; 17:50. [PMID: 27430330 PMCID: PMC4949774 DOI: 10.1186/s12868-016-0288-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Polymorphisms in the gene for phosphatidylinositol binding clathrin assembly protein (PICALM), an endocytic-related protein, are associated with a small, increased risk of developing Alzheimer's disease (AD), strongly suggesting that changes in endocytosis are involved in the aetiology of the disease. We have investigated the involvement of PICALM in the processing of amyloid precursor protein (APP) to understand how PICALM could be linked to the development of AD. We used siRNA to deplete levels of PICALM, its isoforms and clathrin heavy chain in the human brain-derived H4 neuroglioma cell line that expresses endogenous levels of APP. We then used Western blotting, ELISA and immunohistochemistry to detect intra- and extracellular protein levels of endocytic-related proteins, APP and APP metabolites including β-amyloid (Aβ). Levels of functional endocytosis were quantified using ALEXA 488-conjugated transferrin and flow cytometry as a marker of clathrin-mediated endocytosis (CME). RESULTS Following depletion of all the isoforms of PICALM by siRNA in H4 cells, levels of intracellular APP, intracellular β-C-terminal fragment (β-CTF) and secreted sAPPβ (APP fragments produced by β-secretase cleavage) were significantly reduced but Aβ40 was not affected. Functional endocytosis was significantly reduced after both PICALM and clathrin depletion, highlighting the importance of PICALM in this process. However, depletion of clathrin did not affect APP but did reduce β-CTF levels. PICALM depletion altered the intracellular distribution of clathrin while clathrin reduction affected the subcellular pattern of PICALM labelling. Both PICALM and clathrin depletion reduced the expression of BACE1 mRNA and PICALM siRNA reduced protein levels. Individual depletion of PICALM isoforms 1 and 2 did not affect APP levels while clathrin depletion had a differential effect on the isoforms, increasing isoform 1 while decreasing isoform 2 expression. CONCLUSIONS The depletion of PICALM in brain-derived cells has significant effects on the processing of APP, probably by reducing CME. In particular, it affects the production of β-CTF which is increasingly considered to be an important mediator in AD independent of Aβ. Thus a decrease in PICALM expression in the brain could be beneficial to slow or prevent the development of AD.
Collapse
Affiliation(s)
- Rhian S. Thomas
- />School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB UK
| | - Alex Henson
- />School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB UK
| | - Amy Gerrish
- />MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
- />West Midlands Regional Genetics Laboratory, Birmingham Women’s NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2TG UK
| | - Lesley Jones
- />MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| | - Julie Williams
- />MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| | - Emma J. Kidd
- />School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB UK
| |
Collapse
|
35
|
Smith AR, Mill J, Smith RG, Lunnon K. Elucidating novel dysfunctional pathways in Alzheimer's disease by integrating loci identified in genetic and epigenetic studies. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.nepig.2016.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Membrane Lipids in Presynaptic Function and Disease. Neuron 2016; 90:11-25. [DOI: 10.1016/j.neuron.2016.02.033] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/28/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022]
|
37
|
Wojnacki J, Galli T. Membrane traffic during axon development. Dev Neurobiol 2016; 76:1185-1200. [PMID: 26945675 DOI: 10.1002/dneu.22390] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
Brain formation requires the establishment of complex neural circuits between a diverse array of neuronal subtypes in an intricate and ever changing microenvironment and yet with a large degree of specificity and reproducibility. In the last three decades, mounting evidence has established that neuronal development relies on the coordinated regulation of gene expression, cytoskeletal dynamics, and membrane trafficking. Membrane trafficking has been considered important in that it brings new membrane and proteins to the plasma membrane of developing neurons and because it also generates and maintains the polarized distribution of proteins into neuronal subdomains. More recently, accumulating evidence suggests that membrane trafficking may have an even more active role during development by regulating the distribution and degree of activation of a wide variety of proteins located in plasma membrane subdomains and endosomes. In this article the evidence supporting the different roles of membrane trafficking during axonal development, particularly focusing on the role of SNAREs and Rabs was reviewed. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1185-1200, 2016.
Collapse
Affiliation(s)
- José Wojnacki
- Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Membrane Traffic in Health & Disease, INSERM ERL U950, Paris, F-75013, France
| | - Thierry Galli
- Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Membrane Traffic in Health & Disease, INSERM ERL U950, Paris, F-75013, France.
| |
Collapse
|
38
|
Yoon SY, Kim DH. Alzheimer's disease genes and autophagy. Brain Res 2016; 1649:201-209. [PMID: 27016058 DOI: 10.1016/j.brainres.2016.03.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 03/09/2016] [Accepted: 03/13/2016] [Indexed: 11/15/2022]
Abstract
Autophagy is a process to degrade and recycle cellular constituents via the lysosome for regulating cellular homeostasis. Its dysfunction is now considered to be involved in many diseases, including neurodegenerative diseases. Many features reflecting autophagy impairment, such as autophagosome accumulation and lysosomal dysfunction, have been also revealed to be involved in Alzheimer's disease (AD). Recent genetic studies such as genome-wide association studies in AD have identified a number of novel genes associated with AD. Some of the identified genes have demonstrated dysfunction in autophagic processes in AD, while others remain under investigation. Since autophagy is strongly regarded to be one of the major pathogenic mechanisms of AD, it is necessary to review how the AD-associated genes are related to autophagy. We anticipate our current review to be a starting point for future studies regarding AD-associated genes and autophagy. This article is part of a Special Issue entitled SI:Autophagy.
Collapse
Affiliation(s)
- Seung-Yong Yoon
- Alzheimer's Disease Experts Lab (ADEL), Asan Institute of Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Brain Science, University of Ulsan College of Medicine, Seoul, Republic of Korea; Bio-Medical Institute of Technology (BMIT), University of Ulsan College of Medicine, Seoul, Republic of Korea; Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Dong-Hou Kim
- Alzheimer's Disease Experts Lab (ADEL), Asan Institute of Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Brain Science, University of Ulsan College of Medicine, Seoul, Republic of Korea; Bio-Medical Institute of Technology (BMIT), University of Ulsan College of Medicine, Seoul, Republic of Korea; Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
39
|
Rezazadeh M, Khorrami A, Yeghaneh T, Talebi M, Kiani SJ, Heshmati Y, Gharesouran J. Genetic Factors Affecting Late-Onset Alzheimer's Disease Susceptibility. Neuromolecular Med 2015; 18:37-49. [PMID: 26553058 DOI: 10.1007/s12017-015-8376-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/19/2015] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease is considered a progressive brain disease in the older population. Late-onset Alzheimer's disease (LOAD) as a multifactorial dementia has a polygenic inheritance. Age, environment, and lifestyle along with a growing number of genetic factors have been reported as risk factors for LOAD. Our aim was to present results of LOAD association studies that have been done in northwestern Iran, and we also explored possible interactions with apolipoprotein E (APOE) status. We re-evaluated the association of these markers in dominant, recessive, and additive models. In all, 160 LOAD and 163 healthy control subjects of Azeri Turkish ethnicity were studied. The Chi-square test with Yates' correction and Fisher's exact test were used for statistical analysis. A Bonferroni-corrected p value, based on the number of statistical tests, was considered significant. Our results confirmed that chemokine receptor type 2 (CCR2), estrogen receptor 1 (ESR1), toll-like receptor 2 (TLR2), tumor necrosis factor alpha (TNF α), APOE, bridging integrator 1 (BIN1), and phosphatidylinositol-binding clathrin assembly protein (PICALM) are LOAD susceptibility loci in Azeri Turk ancestry populations. Among them, variants of CCR2, ESR1, TNF α, and APOE revealed associations in three different genetic models. After adjusting for APOE, the association (both allelic and genotypic) with CCR2, BIN1, and ESRα (PvuII) was evident only among subjects without the APOE ε4, whereas the association with CCR5, without Bonferroni correction, was significant only among subjects carrying the APOE ε4 allele. This result is an evidence of a synergistic and antagonistic effect of APOE on variant associations with LOAD.
Collapse
Affiliation(s)
- Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Khorrami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tarlan Yeghaneh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Talebi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Jalal Kiani
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Heshmati
- Department of Medicine, Huddinge, H7, Karolinska Institutet, Stockholm, Sweden
| | - Jalal Gharesouran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins. Nat Commun 2015; 6:8392. [PMID: 26399746 PMCID: PMC4598626 DOI: 10.1038/ncomms9392] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 08/18/2015] [Indexed: 01/01/2023] Open
Abstract
Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier. Neurotransmission is mediated by synaptic vesicles (SVs) fusion with the plasma membrane near active zones. Here, Gimber et al. observe that rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone through SV protein association with the clathrin-based machinery.
Collapse
|
41
|
Mercer JL, Argus JP, Crabtree DM, Keenan MM, Wilks MQ, Chi JTA, Bensinger SJ, Lavau CP, Wechsler DS. Modulation of PICALM Levels Perturbs Cellular Cholesterol Homeostasis. PLoS One 2015; 10:e0129776. [PMID: 26075887 PMCID: PMC4467867 DOI: 10.1371/journal.pone.0129776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022] Open
Abstract
PICALM (Phosphatidyl Inositol Clathrin Assembly Lymphoid Myeloid protein) is a ubiquitously expressed protein that plays a role in clathrin-mediated endocytosis. PICALM also affects the internalization and trafficking of SNAREs and modulates macroautophagy. Chromosomal translocations that result in the fusion of PICALM to heterologous proteins cause leukemias, and genome-wide association studies have linked PICALM Single Nucleotide Polymorphisms (SNPs) to Alzheimer's disease. To obtain insight into the biological role of PICALM, we performed gene expression studies of PICALM-deficient and PICALM-expressing cells. Pathway analysis demonstrated that PICALM expression influences the expression of genes that encode proteins involved in cholesterol biosynthesis and lipoprotein uptake. Gas Chromatography-Mass Spectrometry (GC-MS) studies indicated that loss of PICALM increases cellular cholesterol pool size. Isotopic labeling studies revealed that loss of PICALM alters increased net scavenging of cholesterol. Flow cytometry analyses confirmed that internalization of the LDL receptor is enhanced in PICALM-deficient cells as a result of higher levels of LDLR expression. These findings suggest that PICALM is required for cellular cholesterol homeostasis and point to a novel mechanism by which PICALM alterations may contribute to disease.
Collapse
Affiliation(s)
- Jacob L. Mercer
- Department of Pharmacology & Cancer Biology, Duke University, Durham, North Carolina, United States of America
| | - Joseph P. Argus
- Department of Microbiology, Immunology and Molecular Genetics, Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Donna M. Crabtree
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Duke University, Durham, North Carolina, United States of America
| | - Melissa M. Keenan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - Moses Q. Wilks
- Department of Radiology, Center for Advanced Medical Imaging Sciences, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jen-Tsan Ashley Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - Steven J. Bensinger
- Department of Microbiology, Immunology and Molecular Genetics, Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Catherine P. Lavau
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Duke University, Durham, North Carolina, United States of America
| | - Daniel S. Wechsler
- Department of Pharmacology & Cancer Biology, Duke University, Durham, North Carolina, United States of America
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
42
|
Renard HF, Garcia-Castillo MD, Chambon V, Lamaze C, Johannes L. Shiga toxin stimulates clathrin-independent endocytosis of the VAMP2, VAMP3 and VAMP8 SNARE proteins. J Cell Sci 2015; 128:2891-902. [PMID: 26071526 DOI: 10.1242/jcs.171116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/08/2015] [Indexed: 01/08/2023] Open
Abstract
Endocytosis is an essential cellular process that is often hijacked by pathogens and pathogenic products. Endocytic processes can be classified into two broad categories, those that are dependent on clathrin and those that are not. The SNARE proteins VAMP2, VAMP3 and VAMP8 are internalized in a clathrin-dependent manner. However, the full scope of their endocytic behavior has not yet been elucidated. Here, we found that VAMP2, VAMP3 and VAMP8 are localized on plasma membrane invaginations and very early uptake structures that are induced by the bacterial Shiga toxin, which enters cells by clathrin-independent endocytosis. We show that toxin trafficking into cells and cell intoxication rely on these SNARE proteins. Of note, the cellular uptake of VAMP3 is increased in the presence of Shiga toxin, even when clathrin-dependent endocytosis is blocked. We therefore conclude that VAMP2, VAMP3 and VAMP8 are removed from the plasma membrane by non-clathrin-mediated pathways, in addition to by clathrin-dependent uptake. Moreover, our study identifies these SNARE proteins as the first transmembrane trafficking factors that functionally associate at the plasma membrane with the toxin-driven clathrin-independent invaginations during the uptake process.
Collapse
Affiliation(s)
- Henri-François Renard
- Institut Curie - Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery Group, 26 rue d'Ulm, Paris 75248, Cedex 05, France CNRS UMR3666, Paris 75005, France INSERM U1143, Paris 75005, France
| | - Maria Daniela Garcia-Castillo
- Institut Curie - Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery Group, 26 rue d'Ulm, Paris 75248, Cedex 05, France CNRS UMR3666, Paris 75005, France INSERM U1143, Paris 75005, France
| | - Valérie Chambon
- Institut Curie - Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery Group, 26 rue d'Ulm, Paris 75248, Cedex 05, France CNRS UMR3666, Paris 75005, France INSERM U1143, Paris 75005, France
| | - Christophe Lamaze
- CNRS UMR3666, Paris 75005, France INSERM U1143, Paris 75005, France Institut Curie - Centre de Recherche, Membrane Dynamics and Mechanics of Intracellular Signaling Group, 26 rue d'Ulm, Paris 75248, Cedex 05, France
| | - Ludger Johannes
- Institut Curie - Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery Group, 26 rue d'Ulm, Paris 75248, Cedex 05, France CNRS UMR3666, Paris 75005, France INSERM U1143, Paris 75005, France
| |
Collapse
|
43
|
The specific and rapid labeling of cell surface proteins with recombinant FKBP-fused fluorescent proteins. Protein Cell 2015; 5:800-3. [PMID: 25109944 PMCID: PMC4180455 DOI: 10.1007/s13238-014-0090-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
44
|
Overlapping functions of stonin 2 and SV2 in sorting of the calcium sensor synaptotagmin 1 to synaptic vesicles. Proc Natl Acad Sci U S A 2015; 112:7297-302. [PMID: 26015569 PMCID: PMC4466747 DOI: 10.1073/pnas.1501627112] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Brain function depends on neurotransmission, and alterations in this process are linked to neurological disorders. Neurotransmitter release requires the rapid recycling of synaptic vesicles (SVs) by endocytosis. How synapses maintain the molecular composition of SVs during recycling is poorly understood. We demonstrate that overlapping functions of two completely distinct proteins, the vesicle protein SV2A/B and the adaptor stonin 2, mediate endocytic sorting of the vesicular calcium sensor synaptotagmin 1. As SV2A is the target of the commonly used antiepileptic drug levetiracetam and is linked to late onset Alzheimer’s disease, our findings bear implications for the treatment of neurological and neurodegenerative disorders. Neurotransmission involves the calcium-regulated exocytic fusion of synaptic vesicles (SVs) and the subsequent retrieval of SV membranes followed by reformation of properly sized and shaped SVs. An unresolved question is whether each SV protein is sorted by its own dedicated adaptor or whether sorting is facilitated by association between different SV proteins. We demonstrate that endocytic sorting of the calcium sensor synaptotagmin 1 (Syt1) is mediated by the overlapping activities of the Syt1-associated SV glycoprotein SV2A/B and the endocytic Syt1-adaptor stonin 2 (Stn2). Deletion or knockdown of either SV2A/B or Stn2 results in partial Syt1 loss and missorting of Syt1 to the neuronal surface, whereas deletion of both SV2A/B and Stn2 dramatically exacerbates this phenotype. Selective missorting and degradation of Syt1 in the absence of SV2A/B and Stn2 impairs the efficacy of neurotransmission at hippocampal synapses. These results indicate that endocytic sorting of Syt1 to SVs is mediated by the overlapping activities of SV2A/B and Stn2 and favor a model according to which SV protein sorting is guarded by both cargo-specific mechanisms as well as association between SV proteins.
Collapse
|
45
|
Ferencz B, Gerritsen L. Genetics and underlying pathology of dementia. Neuropsychol Rev 2015; 25:113-24. [PMID: 25567624 DOI: 10.1007/s11065-014-9276-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/21/2014] [Indexed: 12/14/2022]
Abstract
As the population steadily ages, dementia, in all its forms, remains a great societal challenge. Yet, our knowledge of their etiology remains rather limited. To this end, genetic studies can give us insight into the underlying mechanisms that lead to the development of dementia, potentially facilitating treatments in the future. In this review we cover the most recent genetic risk factors associated with the onset of the four most common dementia types today, including Alzheimer's disease (AD), Vascular Dementia (VaD), Frontotemporal Lobar Degeneration (FTLD) and Lewy Body Dementia (LBD). Moreover, we discuss the overlap in major underlying pathologies of dementia derived from their genetic associations. While all four dementia types appear to involve genes associated with tau-pathology and neuroinflammation only LBD, AD and VaD appear to involve amyloid genes while LBD and FTLD share alpha synuclein genes. Together these findings suggest that some of the dementias may exist along a spectrum and demonstrates the necessity to conduct large-scale studies pinpointing the etiology of the dementias and potential gene and environment interactions that may influence their development.
Collapse
Affiliation(s)
- Beata Ferencz
- Aging Research Center (ARC), Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
46
|
Karch CM, Goate AM. Alzheimer's disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 2015; 77:43-51. [PMID: 24951455 PMCID: PMC4234692 DOI: 10.1016/j.biopsych.2014.05.006] [Citation(s) in RCA: 879] [Impact Index Per Article: 97.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 01/18/2023]
Abstract
We review the genetic risk factors for late-onset Alzheimer's disease (AD) and their role in AD pathogenesis. More recent advances in understanding of the human genome-technologic advances in methods to analyze millions of polymorphisms in thousands of subjects-have revealed new genes associated with AD risk, including ABCA7, BIN1, CASS4, CD33, CD2AP, CELF1, CLU, CR1, DSG2, EPHA1, FERMT2, HLA-DRB5-DBR1, INPP5D, MS4A, MEF2C, NME8, PICALM, PTK2B, SLC24H4-RIN3, SORL1, and ZCWPW1. Emerging technologies to analyze the entire genome in large data sets have also revealed coding variants that increase AD risk: PLD3 and TREM2. We review the relationship between these AD risk genes and the cellular and neuropathologic features of AD. Understanding the mechanisms underlying the association of these genes with risk for disease will provide the most meaningful targets for therapeutic development to date.
Collapse
Affiliation(s)
| | - Alison M. Goate
- Corresponding author Contact information: Department of Psychiatry, Washington University School of Medicine, 425 S. Euclid Ave, Campus Box 8134, St. Louis, MO 63110, phone: 314-362-8691, fax: 314-747-2983,
| |
Collapse
|
47
|
Ishikawa Y, Maeda M, Pasham M, Aguet F, Tacheva-Grigorova SK, Masuda T, Yi H, Lee SU, Xu J, Teruya-Feldstein J, Ericsson M, Mullally A, Heuser J, Kirchhausen T, Maeda T. Role of the clathrin adaptor PICALM in normal hematopoiesis and polycythemia vera pathophysiology. Haematologica 2014; 100:439-51. [PMID: 25552701 DOI: 10.3324/haematol.2014.119537] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Clathrin-dependent endocytosis is an essential cellular process shared by all cell types. Despite this, precisely how endocytosis is regulated in a cell-type-specific manner and how this key pathway functions physiologically or pathophysiologically remain largely unknown. PICALM, which encodes the clathrin adaptor protein PICALM, was originally identified as a component of the CALM/AF10 leukemia oncogene. Here we show, by employing a series of conditional Picalm knockout mice, that PICALM critically regulates transferrin uptake in erythroid cells by functioning as a cell-type-specific regulator of transferrin receptor endocytosis. While transferrin receptor is essential for the development of all hematopoietic lineages, Picalm was dispensable for myeloid and B-lymphoid development. Furthermore, global Picalm inactivation in adult mice did not cause gross defects in mouse fitness, except for anemia and a coat color change. Freeze-etch electron microscopy of primary erythroblasts and live-cell imaging of murine embryonic fibroblasts revealed that Picalm function is required for efficient clathrin coat maturation. We showed that the PICALM PIP2 binding domain is necessary for transferrin receptor endocytosis in erythroblasts and absolutely essential for erythroid development from mouse hematopoietic stem/progenitor cells in an erythroid culture system. We further showed that Picalm deletion entirely abrogated the disease phenotype in a Jak2(V617F) knock-in murine model of polycythemia vera. Our findings provide new insights into the regulation of cell-type-specific transferrin receptor endocytosis in vivo. They also suggest a new strategy to block cellular uptake of transferrin-bound iron, with therapeutic potential for disorders characterized by inappropriate red blood cell production, such as polycythemia vera.
Collapse
Affiliation(s)
- Yuichi Ishikawa
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute of the City of Hope, Duarte, CA, USA Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Japan
| | - Manami Maeda
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute of the City of Hope, Duarte, CA, USA Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mithun Pasham
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA Department of Pediatrics Harvard Medical School, Boston, MA, USA Program in Cellular & Molecular Medicine, Boston Children's Hospital, MA, USA
| | - Francois Aguet
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Silvia K Tacheva-Grigorova
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA Department of Pediatrics Harvard Medical School, Boston, MA, USA Program in Cellular & Molecular Medicine, Boston Children's Hospital, MA, USA
| | - Takeshi Masuda
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hai Yi
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Department of Hematology, General Hospital of Chengdu Military Region, Chengdu, China
| | - Sung-Uk Lee
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute of the City of Hope, Duarte, CA, USA Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jian Xu
- Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Julie Teruya-Feldstein
- Department of Pathology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Maria Ericsson
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John Heuser
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA Department of Pediatrics Harvard Medical School, Boston, MA, USA Program in Cellular & Molecular Medicine, Boston Children's Hospital, MA, USA
| | - Takahiro Maeda
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute of the City of Hope, Duarte, CA, USA Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Moreau K, Fleming A, Imarisio S, Lopez Ramirez A, Mercer JL, Jimenez-Sanchez M, Bento CF, Puri C, Zavodszky E, Siddiqi F, Lavau CP, Betton M, O'Kane CJ, Wechsler DS, Rubinsztein DC. PICALM modulates autophagy activity and tau accumulation. Nat Commun 2014; 5:4998. [PMID: 25241929 PMCID: PMC4199285 DOI: 10.1038/ncomms5998] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 08/14/2014] [Indexed: 12/30/2022] Open
Abstract
Genome-wide association studies have identified several loci associated with
Alzheimer’s disease (AD), including proteins involved in endocytic
trafficking such as PICALM/CALM
(phosphatidylinositol binding clathrin
assembly protein). It is unclear how these loci may contribute to
AD pathology. Here we show that CALM modulates autophagy and alters clearance of tau, a protein which is a known autophagy
substrate and which is causatively linked to AD, both in vitro and in
vivo. Furthermore, altered CALM expression exacerbates tau-mediated toxicity in zebrafish transgenic models.
CALM influences autophagy by
regulating the endocytosis of SNAREs, such as VAMP2, VAMP3
and VAMP8, which have diverse
effects on different stages of the autophagy pathway, from autophagosome formation
to autophagosome degradation. This study suggests that the AD genetic risk factor
CALM modulates autophagy, and
this may affect disease in a number of ways including modulation of tau turnover. The protein PICALM/CALM is implicated in Alzheimer’s
disease (AD) pathology, but it is unclear how. In this study, the authors show that CALM
regulates clearance of the protein tau, which is also implicated in AD pathology, by
facilitating endocytosis-dependent autophagy.
Collapse
Affiliation(s)
- Kevin Moreau
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Angeleen Fleming
- 1] Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK [2] Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Sara Imarisio
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Ana Lopez Ramirez
- 1] Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK [2] Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Jacob L Mercer
- 1] Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA [2] Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Maria Jimenez-Sanchez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Carla F Bento
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Claudia Puri
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Eszter Zavodszky
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Farah Siddiqi
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Catherine P Lavau
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Maureen Betton
- 1] Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK [2] Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Cahir J O'Kane
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Daniel S Wechsler
- 1] Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA [2] Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
49
|
Xu W, Tan L, Yu JT. The Role of PICALM in Alzheimer's Disease. Mol Neurobiol 2014; 52:399-413. [PMID: 25186232 DOI: 10.1007/s12035-014-8878-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/25/2014] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is a highly heritable disease (with heritability up to 76%) with a complex genetic profile of susceptibility, among which large genome-wide association studies (GWASs) pointed to the phosphatidylinositol-binding clathrin assembly protein (PICALM) gene as a susceptibility locus for late-onset Alzheimer's disease (LOAD) incidence. Here, we summarize the known functions of PICALM and discuss its genetic polymorphisms and their potential physiological effects associated with LOAD. Compelling data indicated that PICALM affects AD risk primarily by modulating production, transportation, and clearance of β-amyloid (Aβ) peptide, but other Aβ-independent pathways are discussed, including tauopathy, synaptic dysfunction, disorganized lipid metabolism, immune disorder, and disrupted iron homeostasis. Finally, given the potential involvement of PICALM in facilitating AD occurrence in multiple ways, it might be possible that targeting PICALM might provide promising and novel avenues for AD therapy.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | | | | |
Collapse
|
50
|
Moshkanbaryans L, Chan LS, Graham ME. The Biochemical Properties and Functions of CALM and AP180 in Clathrin Mediated Endocytosis. MEMBRANES 2014; 4:388-413. [PMID: 25090048 PMCID: PMC4194041 DOI: 10.3390/membranes4030388] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/03/2014] [Accepted: 07/22/2014] [Indexed: 01/26/2023]
Abstract
Clathrin-mediated endocytosis (CME) is a fundamental process for the regulated internalization of transmembrane cargo and ligands via the formation of vesicles using a clathrin coat. A vesicle coat is initially created at the plasma membrane by clathrin assembly into a lattice, while a specific cargo sorting process selects and concentrates proteins for inclusion in the new vesicle. Vesicles formed via CME traffic to different parts of the cell and fuse with target membranes to deliver cargo. Both clathrin assembly and cargo sorting functions are features of the two gene family consisting of assembly protein 180 kDa (AP180) and clathrin assembly lymphoid myeloid leukemia protein (CALM). In this review, we compare the primary structure and domain organization of CALM and AP180 and relate these properties to known functions and roles in CME and disease.
Collapse
Affiliation(s)
- Lia Moshkanbaryans
- Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead, NSW 2145, Australia.
| | - Ling-Shan Chan
- Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead, NSW 2145, Australia.
| | - Mark E Graham
- Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead, NSW 2145, Australia.
| |
Collapse
|