1
|
Umotoy JC, Kroon PZ, Man S, van Dort KA, Atabey T, Schriek AI, Dekkers G, Herrera-Carrillo E, Geijtenbeek TB, Heukers R, Kootstra NA, van Gils MJ, de Taeye SW. Inhibition of HIV-1 replication by nanobodies targeting tetraspanin CD9. iScience 2024; 27:110958. [PMID: 39391729 PMCID: PMC11465043 DOI: 10.1016/j.isci.2024.110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
HIV-1 alters the dynamics and distribution of tetraspanins, a group of proteins integral to membrane organization, to facilitate both entry and egress. Notably, the tetraspanin CD9 is dysregulated during HIV-1 infection, correlating with multifaceted effects on viral replication. Here, we generated llama-derived nanobodies against CD9 to restrict HIV-1 replication. We immunized llamas with recombinant large extracellular loop of CD9 and identified eight clonally distinct nanobodies targeting CD9, each exhibiting a range of affinities and differential binding to cell surface-expressed CD9. Notably, nanobodies T2C001 and T2C002 demonstrated low nanomolar affinities and exhibited differential sensitivities against endogenous and overexpressed CD9 on the cell surface. Although CD9-directed nanobodies did not impede the early stages of HIV-1 life cycle, they effectively inhibited virus-induced syncytia formation and virus replication in T cells and monocyte-derived macrophages. This discovery opens new avenues for host-targeted therapeutic strategies, potentially augmenting existing antiretroviral treatments for HIV-1.
Collapse
Affiliation(s)
- Jeffrey C. Umotoy
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Pascal Z. Kroon
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Shirley Man
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Karel A. van Dort
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Tugba Atabey
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Angela I. Schriek
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Gillian Dekkers
- QVQ Holding BV, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Elena Herrera-Carrillo
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Teunis B.H. Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Raimond Heukers
- QVQ Holding BV, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Steven W. de Taeye
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Notario Manzano R, Chaze T, Rubinstein E, Penard E, Matondo M, Zurzolo C, Brou C. Proteomic landscape of tunneling nanotubes reveals CD9 and CD81 tetraspanins as key regulators. eLife 2024; 13:RP99172. [PMID: 39250349 PMCID: PMC11383530 DOI: 10.7554/elife.99172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Tunneling nanotubes (TNTs) are open actin- and membrane-based channels, connecting remote cells and allowing direct transfer of cellular material (e.g. vesicles, mRNAs, protein aggregates) from the cytoplasm to the cytoplasm. Although they are important especially, in pathological conditions (e.g. cancers, neurodegenerative diseases), their precise composition and their regulation were still poorly described. Here, using a biochemical approach allowing to separate TNTs from cell bodies and from extracellular vesicles and particles (EVPs), we obtained the full composition of TNTs compared to EVPs. We then focused on two major components of our proteomic data, the CD9 and CD81 tetraspanins, and further investigated their specific roles in TNT formation and function. We show that these two tetraspanins have distinct non-redundant functions: CD9 participates in stabilizing TNTs, whereas CD81 expression is required to allow the functional transfer of vesicles in the newly formed TNTs, possibly by regulating docking to or fusion with the opposing cell.
Collapse
Affiliation(s)
- Roberto Notario Manzano
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and Infection, CNRS 18 UMR 3691, Institut Pasteur, Université Paris Cité, Paris, France
- Sorbonne Université, ED394 - Physiologie, Physiopathologie et Thérapeutique, Paris, France
| | - Thibault Chaze
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut Pasteur, Paris, France
| | - Eric Rubinstein
- Centre d'Immunologie et des Maladies Infectieuses, Inserm, CNRS, Sorbonne Université, CIMI-Paris, Paris, France
| | - Esthel Penard
- Ultrastructural BioImaging Core Facility (UBI), C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mariette Matondo
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut Pasteur, Paris, France
| | - Chiara Zurzolo
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and Infection, CNRS 18 UMR 3691, Institut Pasteur, Université Paris Cité, Paris, France
| | - Christel Brou
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and Infection, CNRS 18 UMR 3691, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Dharan R, Sorkin R. Tetraspanin proteins in membrane remodeling processes. J Cell Sci 2024; 137:jcs261532. [PMID: 39051897 DOI: 10.1242/jcs.261532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Membrane remodeling is a fundamental cellular process that is crucial for physiological functions such as signaling, membrane fusion and cell migration. Tetraspanins (TSPANs) are transmembrane proteins of central importance to membrane remodeling events. During these events, TSPANs are known to interact with themselves and other proteins and lipids; however, their mechanism of action in controlling membrane dynamics is not fully understood. Since these proteins span the membrane, membrane properties such as rigidity, curvature and tension can influence their behavior. In this Review, we summarize recent studies that explore the roles of TSPANs in membrane remodeling processes and highlight the unique structural features of TSPANs that mediate their interactions and localization. Further, we emphasize the influence of membrane curvature on TSPAN distribution and membrane domain formation and describe how these behaviors affect cellular functions. This Review provides a comprehensive perspective on the multifaceted function of TSPANs in membrane remodeling processes and can help readers to understand the intricate molecular mechanisms that govern cellular membrane dynamics.
Collapse
Affiliation(s)
- Raviv Dharan
- School of Chemistry , Raymond & Beverly Sackler Faculty of Exact Sciences , Tel Aviv University, 6997801, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems , Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Raya Sorkin
- School of Chemistry , Raymond & Beverly Sackler Faculty of Exact Sciences , Tel Aviv University, 6997801, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems , Tel Aviv University, 6997801, Tel Aviv, Israel
| |
Collapse
|
4
|
Multiple Receptors Involved in Invasion and Neuropathogenicity of Canine Distemper Virus: A Review. Viruses 2022; 14:v14071520. [PMID: 35891500 PMCID: PMC9317347 DOI: 10.3390/v14071520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 12/04/2022] Open
Abstract
The canine distemper virus (CDV) is a morbillivirus that infects a broad range of terrestrial carnivores, predominantly canines, and is associated with high mortality. Similar to another morbillivirus, measles virus, which infects humans and nonhuman primates, CDV transmission from an infected host to a naïve host depends on two cellular receptors, namely, the signaling lymphocyte activation molecule (SLAM or CD150) and the adherens junction protein nectin-4 (also known as PVRL4). CDV can also invade the central nervous system by anterograde spread through olfactory nerves or in infected lymphocytes through the circulation, thus causing chronic progressive or relapsing demyelination of the brain. However, the absence of the two receptors in the white matter, primary cultured astrocytes, and neurons in the brain was recently demonstrated. Furthermore, a SLAM/nectin-4-blind recombinant CDV exhibits full cell-to-cell transmission in primary astrocytes. This strongly suggests the existence of a third CDV receptor expressed in neural cells, possibly glial cells. In this review, we summarize the recent progress in the study of CDV receptors, highlighting the unidentified glial receptor and its contribution to pathogenicity in the host nervous system. The reviewed studies focus on CDV neuropathogenesis, and neural receptors may provide promising directions for the treatment of neurological diseases caused by CDV. We also present an overview of other neurotropic viruses to promote further research and identification of CDV neural receptors.
Collapse
|
5
|
Nair TS, Kakaraparthi BN, Yang L, Lu L, Thomas TB, Morris AC, Kommareddi P, Kanicki A, Carey TE. Slc44a2 deletion alters tetraspanin and N-cadherin expression: Reduced adhesion and enhanced proliferation in cultured mesenchymal lung cells. Tissue Cell 2021; 73:101599. [PMID: 34371293 DOI: 10.1016/j.tice.2021.101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Slc44a2 is reported to interact with tetraspanins CD9 and CD81. To investigate how Slc44a2 affects adhesion protein expression, cells from wild-type (WT) Slc44a2+/+, heterozygous (HET) Slc44a2+/-, and knockout (KO) Slc44a2-/- mice were cultured from lung tissue. The cultured cells expressed vimentin, N-cadherin, p120 catenin, beta-catenin, actin, CD9, and CD81, but not E-cadherin. Vimentin expression with lack of E-cadherin indicated that the cultured cells were of mesenchymal origin. Slc44a2 KO cells and HET cells demonstrated lower adherence and faster proliferation than the WT cells. All three groups displayed dramatically altered intracellular distribution of N-cadherin, CD9, and CD81. The CD9 membrane foci observed in WT cell membranes were less frequent and diminished in size in HET cells and KO cells. N-cadherin was dispersed throughout both the cytoplasm and membrane in WT cells, with similar yet weaker distribution in HET cells; however, in KO cells, N-cadherin was densely aggregated in the perinuclear cytoplasm. CD81 had a distribution pattern in WT, HET, and KO cells similar to that of N-cadherin with dense cytoplasmic clusters in the cells. KO cells also exhibited reduced filamentous actin as compared to WT cells. These results suggest that Slc44a2 is necessary for proper cellular localization of adhesion proteins and growth regulation that may be related to altered adhesion signals.
Collapse
Affiliation(s)
- Thankam S Nair
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Bala Naveen Kakaraparthi
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Lucy Yang
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Lillian Lu
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Trey B Thomas
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Anna C Morris
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Pavan Kommareddi
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Ariane Kanicki
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Thomas E Carey
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States.
| |
Collapse
|
6
|
Milburn JV, Hoog AM, Winkler S, van Dongen KA, Leitner J, Patzl M, Saalmüller A, de Luca K, Steinberger P, Mair KH, Gerner W. Expression of CD9 on porcine lymphocytes and its relation to T cell differentiation and cytokine production. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104080. [PMID: 33781781 DOI: 10.1016/j.dci.2021.104080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
In this work, we report on two novel monoclonal antibodies, specific for porcine CD9. CD9 is a tetraspanin that is expressed on a wide variety of cells. We phenotyped porcine immune cell subsets and found that CD9 was expressed on all monocytes as well as a subset of B cells. CD9 was variably expressed on T cells, with CD4 T cells containing the highest frequency of CD9+ cells. CD9 expression positively correlated with the frequency of central memory CD4 T cells in ex vivo PBMC. Therefore, we proceeded to explore CD9 as a marker of T cell function. Here we observed that CD9 was expressed on the vast majority of long-lived influenza A virus-specific effector cells that retained the capacity for cytokine production in response to in vitro recall antigen. Therefore, the new antibodies enable the detection of a cell surface molecule with functional relevance to T cells. Considering the importance of CD9 in membrane remodelling across many cell types, they will also benefit the wider field of swine biomedical research.
Collapse
Affiliation(s)
- Jemma V Milburn
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Anna M Hoog
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Simona Winkler
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Katinka A van Dongen
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Judith Leitner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Martina Patzl
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Karelle de Luca
- Laboratory of Veterinary Immunology, Global Innovation, Boehringer Ingelheim Animal Health, Lyon, France
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Kerstin H Mair
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria; Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Wilhelm Gerner
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria; Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
7
|
The large extracellular loop of CD63 interacts with gp41 of HIV-1 and is essential for establishing the virological synapse. Sci Rep 2021; 11:10011. [PMID: 33976357 PMCID: PMC8113602 DOI: 10.1038/s41598-021-89523-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) persists lifelong in infected individuals and has evolved unique strategies in order to evade the immune system. One of these strategies is the direct cell-to-cell spread of HIV-1. The formation of a virological synapse (VS) between donor and target cell is important for this process. Tetraspanins are cellular proteins that are actively involved in the formation of a VS. However, the molecular mechanisms of recruiting host proteins for the cell–cell transfer of particles to the VS remains unclear. Our study has mapped the binding site for the transmembrane envelope protein gp41 of HIV-1 within the large extracellular loop (LEL) of CD63 and showed that this interaction occurs predominantly at the VS between T cells where viral particles are transferred. Mutations within the highly conserved CCG motif of the tetraspanin superfamily abrogated recruiting of expressed HIV-1 GFP fused Gag core protein and CD63 to the VS. This demonstrates the biological significance of CD63 for enhanced formation of a VS. Since cell–cell spread of HIV-1 is a major route of persistent infection, these results highlight the central role of CD63 as a member of the tetraspanin superfamily during HIV-1 infection and pathogenesis.
Collapse
|
8
|
Lorico A, Lorico-Rappa M, Karbanová J, Corbeil D, Pizzorno G. CD9, a tetraspanin target for cancer therapy? Exp Biol Med (Maywood) 2021; 246:1121-1138. [PMID: 33601913 DOI: 10.1177/1535370220981855] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the present minireview, we intend to provide a brief history of the field of CD9 involvement in oncogenesis and in the metastatic process of cancer, considering its potential value as a tumor-associated antigenic target. Over the years, CD9 has been identified as a favorable prognostic marker or predictor of metastatic potential depending on the cancer type. To understand its implications in cancer beside its use as an antigenic biomarker, it is essential to know its physiological functions, including its molecular partners in a given cell system. Moreover, the discovery that CD9 is one of the most specific and broadly expressed markers of extracellular membrane vesicles, nanometer-sized entities that are released into extracellular space and various physiological body fluids and play a role in intercellular communication under physiological and pathological conditions, notably the establishment of cancer metastases, has added a new dimension to our knowledge of CD9 function in cancer. Here, we will discuss these issues as well as the possible cancer therapeutic implications of CD9, their limitations, and pitfalls.
Collapse
Affiliation(s)
- Aurelio Lorico
- Touro University College of Medicine, Henderson, NV 89014, USA.,Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | | | - Jana Karbanová
- Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Denis Corbeil
- Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Giuseppe Pizzorno
- University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Erlanger Health System, Chattanooga, TN 37403 , USA
| |
Collapse
|
9
|
Glatzová D, Cebecauer M. Dual Role of CD4 in Peripheral T Lymphocytes. Front Immunol 2019; 10:618. [PMID: 31001252 PMCID: PMC6454155 DOI: 10.3389/fimmu.2019.00618] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/08/2019] [Indexed: 01/07/2023] Open
Abstract
The interaction of T-cell receptors (TCRs) with self- and non-self-peptides in the major histocompatibility complex (MHC) stimulates crucial signaling events, which in turn can activate T lymphocytes. A variety of accessory molecules further modulate T-cell signaling. Of these, the CD4 and CD8 coreceptors make the most critical contributions to T cell sensitivity in vivo. Whereas, CD4 function in T cell development is well-characterized, its role in peripheral T cells remains incompletely understood. It was originally suggested that CD4 stabilizes weak interactions between TCRs and peptides in the MHC and delivers Lck kinases to that complex. The results of numerous experiments support the latter role, indicating that the CD4-Lck complex accelerates TCR-triggered signaling and controls the availability of the kinase for TCR in the absence of the ligand. On the other hand, extremely low affinity of CD4 for MHC rules out its ability to stabilize the receptor-ligand complex. In this review, we summarize the current knowledge on CD4 in T cells, with a special emphasis on the spatio-temporal organization of early signaling events and the relevance for CD4 function. We further highlight the capacity of CD4 to interact with the MHC in the absence of TCR. It drives the adhesion of T cells to the cells that express the MHC. This process is facilitated by the CD4 accumulation in the tips of microvilli on the surface of unstimulated T cells. Based on these observations, we suggest an alternative model of CD4 role in T-cell activation.
Collapse
Affiliation(s)
- Daniela Glatzová
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
10
|
Dias MVS, Costa CS, daSilva LLP. The Ambiguous Roles of Extracellular Vesicles in HIV Replication and Pathogenesis. Front Microbiol 2018; 9:2411. [PMID: 30364166 PMCID: PMC6191503 DOI: 10.3389/fmicb.2018.02411] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022] Open
Abstract
Cells from all kingdoms of life can release membrane-enclosed vesicles to the extracellular milieu. These extracellular vesicles (EVs) may function as mediators of intercellular communication, allowing the transfer of biologically active molecules between cells and organisms. It has become clear that HIV particles and certain types of EVs, such as exosomes, share many similarities regarding morphology, composition, and biogenesis. This review presents a summary of the literature describing the intricate relationship between HIV and EVs biogenesis. Also, we discuss the latest progress toward understanding the mechanisms by which EVs influence HIV pathogenesis, as well as, how HIV modulates EVs composition in infected cells to facilitate viral spread.
Collapse
Affiliation(s)
- Marcos V S Dias
- Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cristina S Costa
- Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luis L P daSilva
- Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
11
|
Brosseau C, Colas L, Magnan A, Brouard S. CD9 Tetraspanin: A New Pathway for the Regulation of Inflammation? Front Immunol 2018; 9:2316. [PMID: 30356731 PMCID: PMC6189363 DOI: 10.3389/fimmu.2018.02316] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
CD9 belongs to the tetraspanin superfamily. Depending on the cell type and associated molecules, CD9 has a wide variety of biological activities such as cell adhesion, motility, metastasis, growth, signal transduction, differentiation, and sperm-egg fusion. This review focuses on CD9 expression by hematopoietic cells and its role in modulating cellular processes involved in the regulation of inflammation. CD9 is functionally very important in many diseases and is involved either in the regulation or in the mediation of the disease. The role of CD9 in various diseases, such as viral and bacterial infections, cancer and chronic lung allograft dysfunction, is discussed. This review focuses also on its interest as a biomarker in diseases. Indeed CD9 is primarily known as a specific exosome marker however, its expression is now recognized as an anti-inflammatory marker of monocytes and macrophages. It was also described as a marker of murine IL-10-competent Breg cells and IL-10-secreting CD9+ B cells were associated with better allograft outcome in lung transplant patients, and identified as a new predictive biomarker of long-term survival. In the field of cancer, CD9 was both identified as a favorable prognostic marker or as a predictor of metastatic potential depending on cancer types. Finally, this review discusses strategies to target CD9 as a therapeutic tool. Because CD9 can have opposite effects depending on the situation, the environment and the pathology, modulating CD9 expression or blocking its effects seem to be a new promising therapeutic strategy.
Collapse
Affiliation(s)
- Carole Brosseau
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France
| | - Luc Colas
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut du Thorax, Plateforme Transversale d'Allergologie, CHU de Nantes, Nantes, France
| | - Antoine Magnan
- Institut du Thorax, Plateforme Transversale d'Allergologie, CHU de Nantes, Nantes, France.,Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France
| |
Collapse
|
12
|
Huang C, Fu C, Wren JD, Wang X, Zhang F, Zhang YH, Connel SA, Chen T, Zhang XA. Tetraspanin-enriched microdomains regulate digitation junctions. Cell Mol Life Sci 2018; 75:3423-3439. [PMID: 29589089 PMCID: PMC6615572 DOI: 10.1007/s00018-018-2803-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/18/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022]
Abstract
Tetraspanins co-emerged with multi-cellular organisms during evolution and are typically localized at the cell–cell interface, [corrected] and form tetraspanin-enriched microdomains (TEMs) by associating with each other and other membrane molecules. Tetraspanins affect various biological functions, but how tetraspanins engage in multi-faceted functions at the cellular level is largely unknown. When cells interact, the membrane microextrusions at the cell-cell interfaces form dynamic, digit-like structures between cells, which we term digitation junctions (DJs). We found that (1) tetraspanins CD9, CD81, and CD82 and (2) TEM-associated molecules integrin α3β1, CD44, EWI2/PGRL, and PI-4P are present in DJs of epithelial, endothelial, and cancer cells. Tetraspanins and their associated molecules also regulate the formation and development of DJs. Moreover, (1) actin cytoskeleton, RhoA, and actomyosin activities and (2) growth factor receptor-Src-MAP kinase signaling, but not PI-3 kinase, regulate DJs. Finally, we showed that DJs consist of various forms in different cells. Thus, DJs are common, interactive structures between cells, and likely affect cell adhesion, migration, and communication. TEMs probably modulate various cell functions through DJs. Our findings highlight that DJ morphogenesis reflects the transition between cell-matrix adhesion and cell-cell adhesion and involves both cell-cell and cell-matrix adhesion molecules.
Collapse
Affiliation(s)
- Chao Huang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC Building West Room 1474, 975 N.E. 10th Street, Oklahoma City, OK, 73104, USA
| | - Chenying Fu
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC Building West Room 1474, 975 N.E. 10th Street, Oklahoma City, OK, 73104, USA
| | - Jonathan D Wren
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Xuejun Wang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC Building West Room 1474, 975 N.E. 10th Street, Oklahoma City, OK, 73104, USA
| | - Feng Zhang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC Building West Room 1474, 975 N.E. 10th Street, Oklahoma City, OK, 73104, USA
| | - Yanhui H Zhang
- University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Taosheng Chen
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xin A Zhang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC Building West Room 1474, 975 N.E. 10th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
13
|
Champion TC, Partridge LJ, Ong SM, Malleret B, Wong SC, Monk PN. Monocyte Subsets Have Distinct Patterns of Tetraspanin Expression and Different Capacities to Form Multinucleate Giant Cells. Front Immunol 2018; 9:1247. [PMID: 29937768 PMCID: PMC6002745 DOI: 10.3389/fimmu.2018.01247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/17/2018] [Indexed: 12/24/2022] Open
Abstract
Monocytes are able to undergo homotypic fusion to produce different types of multinucleated giant cells, such as Langhans giant cells in response to M. tuberculosis infection or foreign body giant cells in response to implanted biomaterials. Monocyte fusion is highly coordinated and complex, with various soluble, intracellular, and cell-surface components mediating different stages of the process. Tetraspanins, such as CD9, CD63, and CD81, are known to be involved in cell:cell fusion and have been suggested to play a role in regulating homotypic monocyte fusion. However, peripheral human monocytes are not homogenous: they exist as a heterogeneous population consisting of three subsets, classical (CD14++CD16-), intermediate (CD14++CD16+), and non-classical (CD14+CD16+), at steady state. During infection with mycobacteria, the circulating populations of intermediate and non-classical monocytes increase, suggesting they may play a role in the disease outcome. Human monocytes were separated into subsets and then induced to fuse using concanavalin A. The intermediate monocytes were able to fuse faster and form significantly larger giant cells than the other subsets. When antibodies targeting tetraspanins were added, the intermediate monocytes responded to anti-CD63 by forming smaller giant cells, suggesting an involvement of tetraspanins in fusion for at least this subset. However, the expression of fusion-associated tetraspanins on monocyte subsets did not correlate with the extent of fusion or with the inhibition by tetraspanin antibody. We also identified a CD9High and a CD9Low monocyte population within the classical subset. The CD9High classical monocytes expressed higher levels of tetraspanin CD151 compared to CD9Low classical monocytes but the CD9High classical subset did not exhibit greater potential to fuse and the role of these cells in immunity remains unknown. With the exception of dendrocyte-expressed seven transmembrane protein, which was expressed at higher levels on the intermediate monocyte subset, the expression of fusion-related proteins between the subsets did not clearly correlate with their ability to fuse. We also did not observe any clear correlation between giant cell formation and the expression of pro-inflammatory or fusogenic cytokines. Although tetraspanin expression appears to be important for the fusion of intermediate monocytes, the control of multinucleate giant cell formation remains obscure.
Collapse
Affiliation(s)
- Thomas C Champion
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Lynda J Partridge
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Siew-Min Ong
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Siew-Cheng Wong
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Peter N Monk
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
14
|
Florin L, Lang T. Tetraspanin Assemblies in Virus Infection. Front Immunol 2018; 9:1140. [PMID: 29887866 PMCID: PMC5981178 DOI: 10.3389/fimmu.2018.01140] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/07/2018] [Indexed: 12/23/2022] Open
Abstract
Tetraspanins (Tspans) are a family of four-span transmembrane proteins, known as plasma membrane “master organizers.” They form Tspan-enriched microdomains (TEMs or TERMs) through lateral association with one another and other membrane proteins. If multiple microdomains associate with each other, larger platforms can form. For infection, viruses interact with multiple cell surface components, including receptors, activating proteases, and signaling molecules. It appears that Tspans, such as CD151, CD82, CD81, CD63, CD9, Tspan9, and Tspan7, coordinate these associations by concentrating the interacting partners into Tspan platforms. In addition to mediating viral attachment and entry, these platforms may also be involved in intracellular trafficking of internalized viruses and assist in defining virus assembly and exit sites. In conclusion, Tspans play a role in viral infection at different stages of the virus replication cycle. The present review highlights recently published data on this topic, with a focus on events at the plasma membrane. In light of these findings, we propose a model for how Tspan interactions may organize cofactors for viral infection into distinct molecular platforms.
Collapse
Affiliation(s)
- Luise Florin
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Thorsten Lang
- Department of Membrane Biochemistry, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
CD9 suppresses human extravillous trophoblast invasion. Placenta 2016; 47:105-112. [DOI: 10.1016/j.placenta.2016.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/18/2016] [Accepted: 09/22/2016] [Indexed: 11/22/2022]
|
16
|
Hwang JY, Kwon MG, Seo JS, Do JW, Park MA, Jung SH, Ahn SJ. Differentially expressed genes after viral haemorrhagic septicaemia virus infection in olive flounder (Paralichthys olivaceus). Vet Microbiol 2016; 193:72-82. [PMID: 27599933 DOI: 10.1016/j.vetmic.2016.05.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 02/08/2023]
Abstract
A strain of viral haemorrhagic septicaemia virus (VHSV) was isolated from cultured olive flounder (Paralichthys olivaceus) during epizootics in South Korean. This strain showed high mortality to olive flounder in in vivo challenge experiment. The complete genomic RNA sequences were determined and phylogenetic analysis of the amino acid sequences of glycoprotein revealed that this isolate was grouped into genotype IVa of genus Novirhabdovirus. Expression profile of genes in olive flounder was analyzed at day 1 and day3 after infection with this VHSV isolate by using cDNA microarray containing olive flounder 13K cDNA clones. Microarray analysis revealed 785 up-regulated genes and 641 down-regulated genes by at least two-fold in virus-infected fish compared to healthy control groups. Among 785 up-regulated genes, we identified seven immune response-associated genes, including the interferon (IFN)-induced 56-kDa protein (IFI56), suppressor of cytokine signaling 1 (SOCS1), interleukin 8 (IL-8), cluster of differentiation 83 (CD83), α-globin (HBA), VHSV-induced protein-6 (VHSV6), and cluster of differentiation antigen 9 (CD9). Our results confirm previous reports that even virulent strain of VHSV induces expression of genes involved in protective immunity against VHSV.
Collapse
Affiliation(s)
- Jee Youn Hwang
- Pathology Division, National Institute of Fisheries Science (NIFS), 216 GijangHaean-Ro, Gijang-up, Gijang-Gun, Busan 46083, Republic of Korea
| | - Mun-Gyeong Kwon
- Pathology Division, National Institute of Fisheries Science (NIFS), 216 GijangHaean-Ro, Gijang-up, Gijang-Gun, Busan 46083, Republic of Korea
| | - Jung Soo Seo
- Pathology Division, National Institute of Fisheries Science (NIFS), 216 GijangHaean-Ro, Gijang-up, Gijang-Gun, Busan 46083, Republic of Korea
| | - Jung Wan Do
- Pathology Division, National Institute of Fisheries Science (NIFS), 216 GijangHaean-Ro, Gijang-up, Gijang-Gun, Busan 46083, Republic of Korea
| | - Myoung-Ae Park
- Pathology Division, National Institute of Fisheries Science (NIFS), 216 GijangHaean-Ro, Gijang-up, Gijang-Gun, Busan 46083, Republic of Korea
| | - Sung-Hee Jung
- Pathology Division, National Institute of Fisheries Science (NIFS), 216 GijangHaean-Ro, Gijang-up, Gijang-Gun, Busan 46083, Republic of Korea
| | - Sang Jung Ahn
- Pathology Division, National Institute of Fisheries Science (NIFS), 216 GijangHaean-Ro, Gijang-up, Gijang-Gun, Busan 46083, Republic of Korea.
| |
Collapse
|
17
|
Rappa G, Green TM, Karbanová J, Corbeil D, Lorico A. Tetraspanin CD9 determines invasiveness and tumorigenicity of human breast cancer cells. Oncotarget 2016; 6:7970-91. [PMID: 25762645 PMCID: PMC4480729 DOI: 10.18632/oncotarget.3419] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 02/02/2015] [Indexed: 01/10/2023] Open
Abstract
Interaction of breast cancer cells (BCCs) with stromal components is critical for tumor growth and metastasis. Here, we assessed the role of CD9 in adhesion, migration and invasiveness of BCCs. We used co-cultures of BCCs and bone marrow-derived multipotent mesenchymal stromal cells (MSCs), and analyzed their behavior and morphology by dynamic total internal reflection fluorescence, confocal and scanning electron microscopy. 83, 16 and 10% of contacts between MDA-MB-231 (MDA), MA-11 or MCF-7 cells and MSCs, respectively, resulted in MSC invasion. MDA cells developed long magnupodia, lamellipodia and dorsal microvilli, whereas long microvilli emerged from MA-11 cells. MCF-7 cells displayed large dorsal ruffles. CD9 knockdown and antibody blockage in MDA cells inhibited MSC invasion by 95 and 70%, respectively, suggesting that CD9 is required for this process. Remarkably, CD9-deficient MDA cells displayed significant alteration of their plasma membrane, harboring numerous peripheral and dorsal membrane ruffles instead of intact magnupodium/lamellipodium and microvillus, respectively. Such modification might explain the delayed adhesion, and hence MSC invasion. In agreement with this hypothesis, CD9-knockdown suppressed the metastatic capacity of MDA cells in mouse xenografts. Our data indicate that CD9 is implicated in BCC invasiveness and metastases by cellular mechanisms that involve specific CD9+ plasma membrane protrusions of BCCs.
Collapse
Affiliation(s)
- Germana Rappa
- Cancer Research Center, Roseman University of Health Sciences with Roseman University College of Medicine, Las Vegas, Nevada, USA
| | - Toni M Green
- Cancer Research Center, Roseman University of Health Sciences with Roseman University College of Medicine, Las Vegas, Nevada, USA
| | - Jana Karbanová
- Tissue Engineering Laboratories (BIOTEC) and DFG Research Center and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Tatzberg, Dresden, Germany
| | - Denis Corbeil
- Tissue Engineering Laboratories (BIOTEC) and DFG Research Center and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Tatzberg, Dresden, Germany
| | - Aurelio Lorico
- Cancer Research Center, Roseman University of Health Sciences with Roseman University College of Medicine, Las Vegas, Nevada, USA
| |
Collapse
|
18
|
Cell–cell fusion induced by the Ig3 domain of receptor FGFRL1 in CHO cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2273-85. [DOI: 10.1016/j.bbamcr.2015.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/18/2015] [Accepted: 05/22/2015] [Indexed: 11/29/2022]
|
19
|
Avota E, Koethe S, Schneider-Schaulies S. Membrane dynamics and interactions in measles virus dendritic cell infections. Cell Microbiol 2012; 15:161-9. [PMID: 22963539 DOI: 10.1111/cmi.12025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 12/14/2022]
Abstract
Viral entry, compartmentalization and transmission depend on the formation of membrane lipid/protein microdomains concentrating receptors and signalosomes. Dendritic cells (DCs) are prime targets for measles virus (MV) infection, and this interaction promotes immune activation and generalized immunosuppression, yet also MV transport to secondary lymphatics where transmission to T cells occurs. In addition to MV trapping, DC-SIGN interaction can enhance MV uptake by activating cellular sphingomyelinases and, thereby, vertical surface transport of its entry receptor CD150. To exploit DCs as Trojan horses for transport, MV promotes DC maturation accompanied by mobilization, and restrictions of viral replication in these cells may support this process. MV-infected DCs are unable to support formation of functional immune synapses with conjugating T cells and signalling via viral glycoproteins or repulsive ligands (such as semaphorins) plays a key role in the induction of T-cell paralysis. In the absence of antigen recognition, MV transmission from infected DCs to T cells most likely involves formation of polyconjugates which concentrate viral structural proteins, viral receptors and with components enhancing either viral uptake or conjugate stability. Because DCs barely support production of infectious MV particles, these organized interfaces are likely to represent virological synapses essential for MV transmission.
Collapse
Affiliation(s)
- Elita Avota
- Institute for Virology and Immunobiology, University of Wuerzburg, Versbacher Str. 7, 97878 Wuerzburg, Germany
| | | | | |
Collapse
|
20
|
Zhang XA, Huang C. Tetraspanins and cell membrane tubular structures. Cell Mol Life Sci 2012; 69:2843-52. [PMID: 22450717 PMCID: PMC10438980 DOI: 10.1007/s00018-012-0954-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/07/2012] [Accepted: 02/27/2012] [Indexed: 12/14/2022]
Abstract
Tetraspanins regulate a variety of cellular functions. However, the general cellular mechanisms by which tetraspanins regulate these functions remain poorly understood. In this article we collected the observations that tetraspanins regulate the formation and/or development of various tubular structures of cell membrane. Because tetraspanins and their associated proteins (1) are localized at the tubular structures, such as the microvilli, adhesion zipper, foot processes, and penetration peg, and/or (2) regulate the morphogenesis of these membrane tubular structures, tetraspanins probably modulate various cellular functions through these membrane tubular structures. Some tetraspanins inhibit membrane tubule formation and/or extension, while others promote them. We predict that tetraspanins regulate the formation and/or development of various membrane tubular structures: (1) microvilli or nanovilli at the plasma membranes free of cell and matrix contacts, (2) membrane tubules at the plasma membrane of cell-matrix and cell-cell interfaces, and (3) membrane tubules at the intracellular membrane compartments. These different membrane tubular structures likely share a common morphogenetic mechanism that involves tetraspanins. Tetraspanins probably regulate the morphogenesis of membrane tubular structures by altering (1) the biophysical properties of the cell membrane such as curvature and/or (2) the membrane connections of cytoskeleton. Since membrane tubular structures are associated with cell functions such as adhesion, migration, and intercellular communication, in all of which tetraspanins are involved, the differential effects of tetraspanins on membrane tubular structures likely lead to the functional difference of tetraspanins.
Collapse
Affiliation(s)
- Xin A Zhang
- Department of Medicine, Vascular Biology and Cancer Centers, University of Tennessee Health Science Center, Cancer Research Building Room 220, 19 South Manassas Street, Memphis, TN 38163, USA.
| | | |
Collapse
|
21
|
Trueb B, Steinberg F. A net-like structure with pores is observed during cell fusion induced by the receptor FGFRL1. Commun Integr Biol 2011; 4:287-90. [PMID: 21980560 DOI: 10.4161/cib.4.3.14892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 01/20/2011] [Indexed: 11/19/2022] Open
Abstract
FGFRL1 is the fifth member of the fibroblast growth factor receptor (FGFR) family. Similar to the other members, it harbors three Ig loops in its extracellular domain, but in contrast to the other receptors, it lacks the intracellular protein tyrosine kinase domain that would be required for signaling by transphosphorylation. FGFRL1 is mainly found in the musculoskeletal system, where it appears to inhibit cell proliferation but to induce cell adhesion and differentiation. Mice with a targeted disruption of the FGFRL1 gene die during birth due to a malformed diaphragm muscle, which is not strong enough to inflate the lungs after birth. Expression of FGFRL1 is highly upregulated during the differentiation of myoblasts to multinucleated myotubes, suggesting an important role for FGFRL1 in cell-cell fusion. Recently we showed that FGFRL1 does indeed induce fusion of cultured cells into large syncytia. A reporter gene assay demonstrated that the third Ig domain and the transmembrane domain of FGFRL1 are both necessary and sufficient to fuse CHO cells into syncytia comprising several hundred nuclei. At the contact site, the fusing cells reveal a peculiar net-like structure with pores of about 1 µm diameter. It is possible that these structures represent membrane areas with fusion pores that set in motion the cell-cell fusion process. FGFRL1 is the first mammalian protein that is capable of triggering cell-cell fusion in vitro.
Collapse
Affiliation(s)
- Beat Trueb
- Department of Clinical Research; University of Bern; Bern, Switzerland
| | | |
Collapse
|
22
|
Bari R, Guo Q, Xia B, Zhang YH, Giesert EE, Levy S, Zheng JJ, Zhang XA. Tetraspanins regulate the protrusive activities of cell membrane. Biochem Biophys Res Commun 2011; 415:619-26. [PMID: 22079629 DOI: 10.1016/j.bbrc.2011.10.121] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 02/07/2023]
Abstract
Tetraspanins have gained increased attention due to their functional versatility. But the universal cellular mechanism that governs such versatility remains unknown. Herein we present the evidence that tetraspanins CD81 and CD82 regulate the formation and/or development of cell membrane protrusions. We analyzed the ultrastructure of the cells in which a tetraspanin is either overexpressed or ablated using transmission electron microscopy. The numbers of microvilli on the cell surface were counted, and the radii of microvillar tips and the lengths of microvilli were measured. We found that tetraspanin CD81 promotes the microvillus formation and/or extension while tetraspanin CD82 inhibits these events. In addition, CD81 enhances the outward bending of the plasma membrane while CD82 inhibits it. We also found that CD81 and CD82 proteins are localized at microvilli using immunofluorescence. CD82 regulates microvillus morphogenesis likely by altering the plasma membrane curvature and/or the cortical actin cytoskeletal organization. We predict that membrane protrusions embody a common morphological phenotype and cellular mechanism for, at least some if not all, tetraspanins. The differential effects of tetraspanins on microvilli likely lead to the functional diversification of tetraspanins and appear to correlate with their functional propensity.
Collapse
Affiliation(s)
- Rafijul Bari
- Cancer Center and Department of Medicine, University of Tennessee, Memphis, TN, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang HX, Kolesnikova TV, Denison C, Gygi SP, Hemler ME. The C-terminal tail of tetraspanin protein CD9 contributes to its function and molecular organization. J Cell Sci 2011; 124:2702-10. [PMID: 21771881 DOI: 10.1242/jcs.085449] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tetraspanin protein CD9 supports sperm-egg fusion, and regulates cell adhesion, motility, metastasis, proliferation and signaling. The large extracellular loop and transmembrane domains of CD9 engage in functionally important interactions with partner proteins. However, neither functional nor biochemical roles have been shown for the CD9 C-terminal tail, despite it being highly conserved throughout vertebrate species. To gain new insight into the CD9 tail, three C-terminal amino acids (Glu-Met-Val) were replaced with residues corresponding to C-terminal amino acids from tetraspanin protein CD82 (Pro-Lys-Tyr). Wild-type and mutant CD9 were then stably expressed in MOLT-4, K562, U937, RD and HT1080 cells. Whereas wild-type CD9 inhibited cell adhesion and spreading on fibronectin, mutant CD9 did not. Wild-type CD9 also promoted homotypic cell-cell aggregation and microvilli formation, whereas mutant CD9 did not. Protein interactions of wild-type and mutant CD9 were compared quantitatively using stable isotope labeling with amino acids in cell culture (SILAC) in conjunction with liquid-chromatography-tandem mass spectrometry (LC-MS/MS) technology. SILAC results showed that, despite wild-type and mutant CD9 having identical expression levels, mutant CD9 and its major transmembrane interacting partners were recovered in substantially reduced amounts from 1% Brij 96 lysates. Immunoprecipitation experiments confirmed that mutant CD9 recovery was decreased in Brij 96, but not in more stringent Triton X-100 detergent. Additionally, compared with wild-type CD9 complexes, mutant CD9 complexes were larger and more oligomerized in Brij 96 detergent, consistent with decreased Brij 96 solubility, perhaps due to more membrane domains packing more tightly together. In conclusion, multiple CD9 functions depend on its C-terminal tail, which affects the molecular organization of CD9 complexes, as manifested by their altered solubilization in Brij 96 and organization on the cell surface.
Collapse
Affiliation(s)
- Hong-Xing Wang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
24
|
Singethan K, Schneider-Schaulies J. Tetraspanins: Small transmembrane proteins with big impact on membrane microdomain structures. Commun Integr Biol 2011; 1:11-3. [PMID: 19704780 DOI: 10.4161/cib.1.1.6406] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 01/15/2023] Open
Abstract
Members of the tetraspanin family of transmembrane proteins including CD9, CD37, CD53, CD63, CD81, CD82, CD151, etc., contribute to the structural organization of the plasma membrane by forming microdomain structures, influencing cell fusion and regulating cell motility. Interestingly, K41, a CD9-specific monoclonal antibody (mAb), inhibits the release of human immunodeficiency virus (HIV-1), and the canine distemper virus (CDV)-, but not measles virus (MV)-induced cell-cell fusion. This mAb, which recognizes a conformational epitope on the large extracellular loop (LEL) of CD9, induced rapid relocation and clustering of CD9 in net-like structures at cell-cell contact areas.1 High-resolution analyses revealed that CD9 clustering is accompanied by the formation of microvilli that protrude from either side of adjacent cell surfaces, thus forming structures like microvilli zippers. While the cellular CD9-associated proteins beta1-integrin and EWI-F were co-clustered with CD9 at cell-cell interfaces, viral proteins in infected cells were differentially affected. MV envelope proteins were detected within, whereas CDV proteins were excluded from CD9 clusters, and thus, the tetraspanin CD9 can regulate cell-cell fusion by controlling the access of the viral fusion machinery to cell contact areas.
Collapse
Affiliation(s)
- Katrin Singethan
- Institute for Virology and Immunobiology; University of Würzburg; Würzburg, Germany
| | | |
Collapse
|
25
|
Abstract
Membrane fusion underlies such important biological processes as virus entry into host cells, intracellular protein trafficking, fertilization, formation of muscle fibres and bone resorption. In addition, pathologies such as osteoporosis and implant rejection have been attributed to aberrant fusion. Members of the tetraspanin protein superfamily have been ascribed multiple roles in membrane biology, forming extensive lateral associations and regulating the function of effector molecules by clustering them in specific areas of the membrane. The present review aims to summarize the experimental evidence for tetraspanin function in different fusion events and highlight common themes.
Collapse
|
26
|
Chen S, Sun Y, Jin Z, Jing X. Functional and biochemical studies of CD9 in fibrosarcoma cell line. Mol Cell Biochem 2010; 350:89-99. [PMID: 21161334 DOI: 10.1007/s11010-010-0685-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 12/02/2010] [Indexed: 12/16/2022]
Abstract
CD9, a member of the tetraspanin family, plays important roles in a variety of cell activities. Fibrosarcoma is a malignant tumor that arises from fibroblasts. Low CD9 expression is found in fibrosarcoma tumor, but function of CD9 in fibrosarcoma has been rarely studied. In this study, stable cell lines for CD9 overexpression and vector were generated in HT1080, a human fibroscarcoma cell line, and cellular functions were widely investigated. In CD9-HT1080 cells, CD9 mainly localized in the membrane and co-localized with F-actin in the filopodia of cell surface. In functional assays, we demonstrated that CD9 could up-regulate total and active caspase-3 expression and induce cell apoptosis, but cell proliferation remained unchanged. CD9 overexpression inhibited HT1080 cell adhesion to FN but promoted cell spreading on FN. We also observed CD9 reduced cell migration using FN a chemoattractant and inhibited cell colony formation in soft agar medium. To explore the biochemical mechanism for functional changes, we investigated the effects of CD9 overexpression on cellular pathways and protein association. CD9 overexpression induced Akt phosphorylation on FN but did not change total Akt expression. Phosphorylation of p38 but not ERK was increased by CD9 overexpression, total p38 and ERK were not affected. CD9 overexpression did not affect the expression of TGFα, EGFR, β1, and EWI-2, but EWI-F expression was up-regulated. Moreover, CD9 could associate with TGFα, EGFR, β1, EWI-2, and EWI-F in HT1080 cell line. Take together, CD9 overexpression had promoting effects on cell apoptosis and cell spreading, but had inhibitory effects on cell adhesion, migration, and cell colony formation. These effects might be ascribed to CD9 associations with EWI-2/EWI-F/β1 complex and EGFR pathway, and the activation of Akt and p38 signalings as well.
Collapse
Affiliation(s)
- Shuli Chen
- Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | | | | | | |
Collapse
|
27
|
Krementsov DN, Rassam P, Margeat E, Roy NH, Schneider-Schaulies J, Milhiet PE, Thali M. HIV-1 Assembly Differentially Alters Dynamics and Partitioning of Tetraspanins and Raft Components. Traffic 2010; 11:1401-14. [DOI: 10.1111/j.1600-0854.2010.01111.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Hassuna N, Monk PN, Moseley GW, Partridge LJ. Strategies for targeting tetraspanin proteins: potential therapeutic applications in microbial infections. BioDrugs 2010; 23:341-59. [PMID: 19894777 PMCID: PMC7100176 DOI: 10.2165/11315650-000000000-00000] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The identification of novel targets and strategies for therapy of microbial infections is an area of intensive research due to the failure of conventional vaccines or antibiotics to combat both newly emerging diseases (e.g. viruses such as severe acute respiratory syndrome (SARS) and new influenza strains, and antibiotic-resistant bacteria) and entrenched, pandemic diseases exemplified by HIV. One clear approach to this problem is to target processes of the host organism rather than the microbe. Recent data have indicated that members of the tetraspanin superfamily, proteins with a widespread distribution in eukaryotic organisms and 33 members in humans, may provide such an approach. Tetraspanins traverse the membrane four times, but are distinguished from other four-pass membrane proteins by the presence of conserved charged residues in the transmembrane domains and a defining ‘signature’ motif in the larger of the two extracellular domains (the EC2). They characteristically form promiscuous associations with one another and with other membrane proteins and lipids to generate a specialized type of microdomain: the tetraspanin-enriched microdomain (TEM). TEMs are integral to the main role of tetraspanins as ‘molecular organizers’ involved in functions such as membrane trafficking, cell-cell fusion, motility, and signaling. Increasing evidence demonstrates that tetraspanins are used by intracellular pathogens as a means of entering and replicating within human cells. Although previous investigations focused mainly on viruses such as hepatitis C and HIV, it is now becoming clear that other microbes associate with tetraspanins, using TEMs as a ‘gateway’ to infection. In this article we review the properties and functions of tetraspanins/TEMs that are relevant to infective processes and discuss the accumulating evidence that shows how different pathogens exploit these properties in infection and in the pathogenesis of disease. We then investigate the novel and exciting possibilities of targeting tetraspanins for the treatment of infectious disease, using specific antibodies, recombinant EC2 domains, small-molecule mimetics, and small interfering RNA. Such therapies, directed at host-cell molecules, may provide alternative options for combating fast-mutating or newly emerging pathogens, where conventional approaches face difficulties.
Collapse
Affiliation(s)
- Noha Hassuna
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Sheffield, UK
| | | | | | | |
Collapse
|
29
|
Wyss-Fluehmann G, Zurbriggen A, Vandevelde M, Plattet P. Canine distemper virus persistence in demyelinating encephalitis by swift intracellular cell-to-cell spread in astrocytes is controlled by the viral attachment protein. Acta Neuropathol 2010; 119:617-30. [PMID: 20119836 PMCID: PMC2849939 DOI: 10.1007/s00401-010-0644-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/14/2010] [Accepted: 01/19/2010] [Indexed: 12/15/2022]
Abstract
The mechanism of viral persistence, the driving force behind the chronic progression of inflammatory demyelination in canine distemper virus (CDV) infection, is associated with non-cytolytic viral cell-to-cell spread. Here, we studied the molecular mechanisms of viral spread of a recombinant fluorescent protein-expressing virulent CDV in primary canine astrocyte cultures. Time-lapse video microscopy documented that CDV spread was very efficient using cell processes contacting remote target cells. Strikingly, CDV transmission to remote cells could occur in less than 6 h, suggesting that a complete viral cycle with production of extracellular free particles was not essential in enabling CDV to spread in glial cells. Titration experiments and electron microscopy confirmed a very low CDV particle production despite higher titers of membrane-associated viruses. Interestingly, confocal laser microscopy and lentivirus transduction indicated expression and functionality of the viral fusion machinery, consisting of the viral fusion (F) and attachment (H) glycoproteins, at the cell surface. Importantly, using a single-cycle infectious recombinant H-knockout, H-complemented virus, we demonstrated that H, and thus potentially the viral fusion complex, was necessary to enable CDV spread. Furthermore, since we could not detect CD150/SLAM expression in brain cells, the presence of a yet non-identified glial receptor for CDV was suggested. Altogether, our findings indicate that persistence in CDV infection results from intracellular cell-to-cell transmission requiring the CDV-H protein. Viral transfer, happening selectively at the tip of astrocytic processes, may help the virus to cover long distances in the astroglial network, “outrunning” the host’s immune response in demyelinating plaques, thus continuously eliciting new lesions.
Collapse
Affiliation(s)
- Gaby Wyss-Fluehmann
- Division of Neurology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andreas Zurbriggen
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001 Bern, Switzerland
| | - Marc Vandevelde
- Division of Neurology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Philippe Plattet
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001 Bern, Switzerland
| |
Collapse
|
30
|
Abstract
Tetraspanins are small integral membrane proteins that are known to control a variety of cellular processes, including signaling, migration and cell-cell fusion. Research over the past few years established that they are also regulators of various steps in the HIV-1 replication cycle, but the mechanisms through which these proteins either enhance or repress virus spread remain largely unknown.
Collapse
Affiliation(s)
- Markus Thali
- Department of Microbiology and Molecular Genetics, College of Medicine and CALS, University of Vermont, 318 Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0084, USA.
| |
Collapse
|
31
|
Krementsov DN, Weng J, Lambelé M, Roy NH, Thali M. Tetraspanins regulate cell-to-cell transmission of HIV-1. Retrovirology 2009; 6:64. [PMID: 19602278 PMCID: PMC2714829 DOI: 10.1186/1742-4690-6-64] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 07/14/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The presence of the tetraspanins CD9, CD63, CD81 and CD82 at HIV-1 budding sites, at the virological synapse (VS), and their enrichment in HIV-1 virions has been well-documented, but it remained unclear if these proteins play a role in the late phase of the viral replication cycle. Here we used overexpression and knockdown approaches to address this question. RESULTS Neither ablation of CD9, CD63 and/or CD81, nor overexpression of these tetraspanins was found to affect the efficiency of virus release. However, confirming recently reported data, tetraspanin overexpression in virus-producing cells resulted in the release of virions with substantially reduced infectivity. We also investigated the roles of these tetraspanins in cell-to-cell transmission of HIV-1. Overexpression of CD9 and CD63 led to reduced cell-to-cell transmission of this virus. Interestingly, in knockdown experiments we found that ablation of CD63, CD9 and/or CD81 had no effect on cell-free infectivity. However, knockdown of CD81, but not CD9 and CD63, enhanced productive particle transmission to target cells, suggesting additional roles for tetraspanins in the transmission process. Finally, tetraspanins were found to be downregulated in HIV-1-infected T lymphocytes, suggesting that HIV-1 modulates the levels of these proteins in order to maximize the efficiency of its transmission within the host. CONCLUSION Altogether, these results establish an active role of tetraspanins in HIV-1 producer cells.
Collapse
Affiliation(s)
- Dimitry N Krementsov
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | | | |
Collapse
|
32
|
Abstract
Despite high expression levels at the plasma membrane or in intracellular vesicles, tetraspanins remain among the most mysterious transmembrane molecules 20 years after their discovery. Several genetic studies in mammals and invertebrates have demonstrated key physiological roles for some of these tetraspanins, in particular in the immune response, sperm-egg fusion, photoreceptor function and the normal function of certain epithelia. Other studies have highlighted their ability to modulate cell migration and metastasis formation. Their role in the propagation of infectious agents has drawn recent attention, with evidence for HIV budding in tetraspanin-enriched plasma membrane domains. Infection of hepatocytic cells by two major pathogens, the hepatitis C virus and the malaria parasite, also requires the tetraspanin CD81. The function of tetraspanins is thought to be linked to their ability to associate with one another and a wealth of other integral proteins, thereby building up an interacting network or 'tetraspanin web'. On the basis of the biochemical dissection of the tetraspanin web and recent analysis of the dynamics of some of its constituents, we propose that tetraspanins tightly regulate transient interactions between a variety of molecules and as such favour the efficient assembly of specialized structures upon proper stimulation.
Collapse
|