1
|
Zobaroğlu-Özer P, Bora-Akoğlu G. Split but merge: Golgi fragmentation in physiological and pathological conditions. Mol Biol Rep 2024; 51:214. [PMID: 38280063 DOI: 10.1007/s11033-023-09153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/12/2023] [Indexed: 01/29/2024]
Abstract
The Golgi complex is a highly dynamic and tightly regulated cellular organelle with essential roles in the processing as well as the sorting of proteins and lipids. Its structure undergoes rapid disassembly and reassembly during normal physiological processes, including cell division, migration, polarization, differentiation, and cell death. Golgi dispersal or fragmentation also occurs in pathological conditions, such as neurodegenerative diseases, infectious diseases, congenital disorders of glycosylation diseases, and cancer. In this review, current knowledge about both structural organization and morphological alterations in the Golgi in physiological and pathological conditions is summarized together with the methodologies that help to reveal its structure.
Collapse
Affiliation(s)
- Pelin Zobaroğlu-Özer
- Faculty of Medicine, Department of Medical Biology, Hacettepe University, Ankara, Turkey
- Faculty of Medicine, Department of Medical Biology, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Gamze Bora-Akoğlu
- Faculty of Medicine, Department of Medical Biology, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
2
|
Rajanala K, Wedegaertner PB. Gβγ signaling regulates microtubule-dependent control of Golgi integrity. Cell Signal 2023; 106:110630. [PMID: 36805843 PMCID: PMC10079639 DOI: 10.1016/j.cellsig.2023.110630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Gβγ subunits regulate several non-canonical functions at distinct intracellular organelles. Previous studies have shown that Gβγ signaling at the Golgi is necessary to mediate vesicular protein transport function and to regulate mitotic Golgi fragmentation. Disruption of Golgi structure also occurs in response to microtubule depolymerizing agents, such as nocodazole. In this study, we use siRNA against Gβ1/2 or specific Gγ subunits to deplete their expression, and show that their knockdown causes a significant reduction in nocodazole-induced Golgi fragmentation. We establish that knockdown of Gβγ or inhibition of Gβγ with gallein resulted in decreased activation of protein kinase D (PKD) in response to nocodazole treatment. We demonstrate that restricting the amount of free Gβγ available for signaling by either inhibiting Gαi activation using pertussis toxin or by knockdown of the non-GPCR GEF, Girdin/GIV protein, results in a substantial decrease in nocodazole-induced Golgi fragmentation and PKD phosphorylation. Our results also indicate that depletion of Gβγ or inhibition with gallein or pertussis toxin significantly reduces the microtubule disruption-dependent Golgi fragmentation phenotype observed in cells transfected with mutant SOD1, a major causative protein in familial amyotrophic lateral sclerosis (ALS). These results provide compelling evidence that Gβγ signaling is critical for the regulation of Golgi integrity.
Collapse
Affiliation(s)
- Kalpana Rajanala
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA 19107, United States of America
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA 19107, United States of America.
| |
Collapse
|
3
|
Liang Y, Su Y, Xu C, Zhang N, Liu D, Li G, Tong T, Chen J. Protein kinase D1 phosphorylation of KAT7 enhances its protein stability and promotes replication licensing and cell proliferation. Cell Death Discov 2020; 6:89. [PMID: 33014433 PMCID: PMC7501302 DOI: 10.1038/s41420-020-00323-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/09/2020] [Accepted: 09/02/2020] [Indexed: 01/24/2023] Open
Abstract
The histone acetyltransferase (HAT) KAT7/HBO1/MYST2 plays a crucial role in the pre-replication complex (pre-RC) formation, DNA replication and cell proliferation via acetylation of histone H4 and H3. In a search for protein kinase D1 (PKD1)-interacting proteins, we have identified KAT7 as a potential PKD1 substrate. We show that PKD1 directly interacts and phosphorylates KAT7 at Thr97 and Thr331 in vitro and in vivo. PKD1-mediated phosphorylation of KAT7 enhances its expression levels and stability by reducing its ubiquitination-mediated degradation. Significantly, the phospho-defective mutant KAT7-Thr97/331A attenuates histone H4 acetylation levels, MCM2/6 loading on the chromatin, DNA replication and cell proliferation. Similarly, PKD1 knockdown decreases, whereas the constitutive active mutant PKD1-CA increases histone H4 acetylation levels and MCM2/6 loading on the chromatin. Overall, these results suggest that PKD1-mediated phosphorylation of KAT7 may be required for pre-RC formation and DNA replication.
Collapse
Affiliation(s)
- Yao Liang
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| | - Yuanyuan Su
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| | - Chenzhong Xu
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| | - Na Zhang
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| | - Doudou Liu
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| | - Guodong Li
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| | - Tanjun Tong
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| |
Collapse
|
4
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
5
|
Jensch A, Frey Y, Bitschar K, Weber P, Schmid S, Hausser A, Olayioye MA, Radde NE. The tumor suppressor protein DLC1 maintains protein kinase D activity and Golgi secretory function. J Biol Chem 2018; 293:14407-14416. [PMID: 30045871 DOI: 10.1074/jbc.ra118.003787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
Many newly synthesized cellular proteins pass through the Golgi complex from where secretory transport carriers sort them to the plasma membrane and the extracellular environment. The formation of these secretory carriers at the trans-Golgi network is promoted by the protein kinase D (PKD) family of serine/threonine kinases. Here, using mathematical modeling and experimental validation of the PKD activation and substrate phosphorylation kinetics, we reveal that the expression level of the PKD substrate deleted in liver cancer 1 (DLC1), a Rho GTPase-activating protein that is inhibited by PKD-mediated phosphorylation, determines PKD activity at the Golgi membranes. RNAi-mediated depletion of DLC1 reduced PKD activity in a Rho-Rho-associated protein kinase (ROCK)-dependent manner, impaired the exocytosis of the cargo protein horseradish peroxidase, and was associated with the accumulation of the small GTPase RAB6 on Golgi membranes, indicating a protein-trafficking defect. In summary, our findings reveal that DLC1 maintains basal activation of PKD at the Golgi and Golgi secretory activity, in part by down-regulating Rho-ROCK signaling. We propose that PKD senses cytoskeletal changes downstream of DLC1 to coordinate Rho signaling with Golgi secretory function.
Collapse
Affiliation(s)
- Antje Jensch
- From the Institute for Systems Theory and Automatic Control and
| | - Yannick Frey
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany and
| | - Katharina Bitschar
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany and
| | - Patrick Weber
- From the Institute for Systems Theory and Automatic Control and
| | - Simone Schmid
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany and
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany and.,the Stuttgart Research Center Systems Biology (SRCSB), 70569 Stuttgart, Germany
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany and .,the Stuttgart Research Center Systems Biology (SRCSB), 70569 Stuttgart, Germany
| | - Nicole E Radde
- From the Institute for Systems Theory and Automatic Control and .,the Stuttgart Research Center Systems Biology (SRCSB), 70569 Stuttgart, Germany
| |
Collapse
|
6
|
Eisler SA, Curado F, Link G, Schulz S, Noack M, Steinke M, Olayioye MA, Hausser A. A Rho signaling network links microtubules to PKD controlled carrier transport to focal adhesions. eLife 2018; 7:35907. [PMID: 30028295 PMCID: PMC6070338 DOI: 10.7554/elife.35907] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022] Open
Abstract
Protein kinase D (PKD) is a family of serine/threonine kinases that is required for the structural integrity and function of the Golgi complex. Despite its importance in the regulation of Golgi function, the molecular mechanisms regulating PKD activity are still incompletely understood. Using the genetically encoded PKD activity reporter G-PKDrep we now uncover a Rho signaling network comprising GEF-H1, the RhoGAP DLC3, and the Rho effector PLCε that regulate the activation of PKD at trans-Golgi membranes. We further show that this molecular network coordinates the formation of TGN-derived Rab6-positive transport carriers delivering cargo for localized exocytosis at focal adhesions.
Collapse
Affiliation(s)
- Stephan A Eisler
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Filipa Curado
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Gisela Link
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Sarah Schulz
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Melanie Noack
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Maren Steinke
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Monilola A Olayioye
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany.,Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Angelika Hausser
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany.,Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
7
|
Liliom H, Tárnok K, Ábrahám Z, Rácz B, Hausser A, Schlett K. Protein kinase D exerts neuroprotective functions during oxidative stress via nuclear factor kappa B-independent signaling pathways. J Neurochem 2017; 142:948-961. [DOI: 10.1111/jnc.14131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Hanna Liliom
- Department of Physiology and Neurobiology; Eötvös Loránd University; Budapest Hungary
| | - Krisztián Tárnok
- Department of Physiology and Neurobiology; Eötvös Loránd University; Budapest Hungary
| | - Zsófia Ábrahám
- Department of Physiology and Neurobiology; Eötvös Loránd University; Budapest Hungary
| | - Bence Rácz
- Department of Anatomy and Histology; University of Veterinary Medicine; Budapest Hungary
| | - Angelika Hausser
- Institute of Cell Biology and Immunology; University Stuttgart; Stuttgart Germany
- Stuttgart Research Center Systems Biology; University of Stuttgart; Stuttgart Germany
| | - Katalin Schlett
- Department of Physiology and Neurobiology; Eötvös Loránd University; Budapest Hungary
- MTA-ELTE-NAP B - Neuronal Cell Biology Research Group; Eötvös Loránd University; Budapest Hungary
| |
Collapse
|
8
|
Klayman LM, Wedegaertner PB. Inducible Inhibition of Gβγ Reveals Localization-dependent Functions at the Plasma Membrane and Golgi. J Biol Chem 2016; 292:1773-1784. [PMID: 27994056 DOI: 10.1074/jbc.m116.750430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/16/2016] [Indexed: 01/28/2023] Open
Abstract
Heterotrimeric G proteins signal at a variety of endomembrane locations, in addition to their canonical function at the cytoplasmic surface of the plasma membrane (PM), where they are activated by cell surface G protein-coupled receptors. Here we focus on βγ signaling at the Golgi, where βγ activates a signaling cascade, ultimately resulting in vesicle fission from the trans-Golgi network (TGN). To develop a novel molecular tool for inhibiting endogenous βγ in a spatial-temporal manner, we take advantage of a lipid association mutant of the widely used βγ inhibitor GRK2ct (GRK2ct-KERE) and the FRB/FKBP heterodimerization system. We show that GRK2ct-KERE cannot inhibit βγ function when expressed in cells, but recruitment to a specific membrane location recovers the ability of GRK2ct-KERE to inhibit βγ signaling. PM-recruited GRK2ct-KERE inhibits lysophosphatidic acid-induced phosphorylation of Akt, whereas Golgi-recruited GRK2ct-KERE inhibits cargo transport from the TGN to the PM. Moreover, we show that Golgi-recruited GRK2ct-KERE inhibits model basolaterally targeted but not apically targeted cargo delivery, for both PM-destined and secretory cargo, providing the first evidence of selectivity in terms of cargo transport regulated by βγ. Last, we show that Golgi fragmentation induced by ilimaquinone and nocodazole is blocked by βγ inhibition, demonstrating that βγ is a key regulator of multiple pathways that impact Golgi morphology. Thus, we have developed a new molecular tool, recruitable GRK2ct-KERE, to modulate βγ signaling at specific subcellular locations, and we demonstrate novel cargo selectivity for βγ regulation of TGN to PM transport and a novel role for βγ in mediating Golgi fragmentation.
Collapse
Affiliation(s)
- Lauren M Klayman
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Philip B Wedegaertner
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| |
Collapse
|
9
|
Häupl B, Ihling CH, Sinz A. Protein Interaction Network of Human Protein Kinase D2 Revealed by Chemical Cross-Linking/Mass Spectrometry. J Proteome Res 2016; 15:3686-3699. [PMID: 27559607 DOI: 10.1021/acs.jproteome.6b00513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated the interaction network of human PKD2 in the cytosol and in Golgi-enriched subcellular protein fractions by an affinity enrichment strategy combined with chemical cross-linking/mass spectrometry (MS). Analysis of the subproteomes revealed the presence of distinct proteins in the cytosolic and Golgi fractions. The covalent fixation of transient or weak interactors by chemical cross-linking allowed capturing interaction partners that might otherwise disappear during conventional pull-down experiments. In total, 31 interaction partners were identified for PKD2, including glycogen synthase kinase-3 beta (GSK3B), 14-3-3 protein gamma (YWHAG), and the alpha isoform of 55 kDa regulatory subunit B of protein phosphatase 2A (PPP2R2A). Remarkably, the entire seven-subunit Arp2/3 complex (ARPC1B, ARPC2, ARPC3, ARPC4, ARPC5, ACTR3, ACTR2) as well as ARPC1A and ARPC5L, which are putative substitutes of ARPC1B and ARPC5, were identified. We provide evidence of a direct protein-protein interaction between PKD2 and Arp2/3. Our findings will pave the way for further structural and functional studies of PKD2 complexes, especially the PKD2/Arp2/3 interaction, to elucidate the role of PKD2 for transport processes at the trans-Golgi network. Data are available via ProteomeXchange with identifiers PXD003909 (enrichment from cytosolic fractions), PXD003913 (enrichment from Golgi fractions), and PXD003917 (subcellular fractionation).
Collapse
Affiliation(s)
- Björn Häupl
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Christian H Ihling
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| |
Collapse
|
10
|
Tsutsuki H, Yahiro K, Ogura K, Ichimura K, Iyoda S, Ohnishi M, Nagasawa S, Seto K, Moss J, Noda M. Subtilase cytotoxin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli induces stress granule formation. Cell Microbiol 2016; 18:1024-40. [PMID: 26749168 PMCID: PMC10068837 DOI: 10.1111/cmi.12565] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 12/24/2015] [Accepted: 01/06/2016] [Indexed: 12/13/2022]
Abstract
Subtilase cytotoxin (SubAB) is mainly produced by locus of enterocyte effacement (LEE)-negative strains of Shiga-toxigenic Escherichia coli (STEC). SubAB cleaves an endoplasmic reticulum (ER) chaperone, BiP/Grp78, leading to induction of ER stress. This stress causes activation of ER stress sensor proteins and induction of caspase-dependent apoptosis. We found that SubAB induces stress granules (SG) in various cells. Aim of this study was to explore the mechanism by which SubAB induced SG formation. Here, we show that SubAB-induced SG formation is regulated by activation of double-stranded RNA-activated protein kinase (PKR)-like endoplasmic reticulum kinase (PERK). The culture supernatant of STEC O113:H21 dramatically induced SG in Caco2 cells, although subAB knockout STEC O113:H21 culture supernatant did not. Treatment with phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, and lysosomal inhibitors, NH4 Cl and chloroquine, suppressed SubAB-induced SG formation, which was enhanced by PKC and PKD inhibitors. SubAB attenuated the level of PKD1 phosphorylation. Depletion of PKCδ and PKD1 by siRNA promoted SG formation in response to SubAB. Furthermore, death-associated protein 1 (DAP1) knockdown increased basal phospho-PKD1(S916) and suppressed SG formation by SubAB. However, SG formation by an ER stress inducer, Thapsigargin, was not inhibited in PMA-treated cells. Our findings show that SubAB-induced SG formation is regulated by the PERK/DAP1 signalling pathway, which may be modulated by PKCδ/PKD1, and different from the signal transduction pathway that results in Thapsigargin-induced SG formation.
Collapse
Affiliation(s)
- Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kohei Ogura
- Pathogenic Microbe Laboratory, Research Institute, National Centre for Global Health and Medicine, Tokyo, Japan
| | - Kimitoshi Ichimura
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sayaka Nagasawa
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuko Seto
- Division of Bacteriology, Osaka Prefectural Institute of Public Health, Osaka, Japan
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Masatoshi Noda
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
11
|
Wortzel I, Hanoch T, Porat Z, Hausser A, Seger R. Mitotic Golgi translocation of ERK1c is mediated by a PI4KIIIβ-14-3-3γ shuttling complex. J Cell Sci 2015; 128:4083-95. [PMID: 26459638 DOI: 10.1242/jcs.170910] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 10/05/2015] [Indexed: 01/01/2023] Open
Abstract
Golgi fragmentation is a highly regulated process that allows division of the Golgi complex between the two daughter cells. The mitotic reorganization of the Golgi is accompanied by a temporary block in Golgi functioning, as protein transport in and out of the Golgi stops. Our group has previously demonstrated the involvement of the alternatively spliced variants ERK1c and MEK1b (ERK1 is also known as MAPK3, and MEK1 as MAP2K1) in mitotic Golgi fragmentation. We had also found that ERK1c translocates to the Golgi at the G2 to M phase transition, but the molecular mechanism underlying this recruitment remains unknown. In this study, we narrowed the translocation timing to prophase and prometaphase, and elucidated its molecular mechanism. We found that CDK1 phosphorylates Ser343 of ERK1c, thereby allowing the binding of phosphorylated ERK1c to a complex that consists of PI4KIIIβ (also known as PI4KB) and the 14-3-3γ dimer (encoded by YWHAB). The stability of the complex is regulated by protein kinase D (PKD)-mediated phosphorylation of PI4KIIIβ. The complex assembly induces the Golgi shuttling of ERK1c, where it is activated by MEK1b, and induces Golgi fragmentation. Our work shows that protein shuttling to the Golgi is not completely abolished at the G2 to M phase transition, thus integrating several independent Golgi-regulating processes into one coherent pathway.
Collapse
Affiliation(s)
- Inbal Wortzel
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamar Hanoch
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ziv Porat
- Department of Biological Services, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Angelika Hausser
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart 70550, Germany
| | - Rony Seger
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
12
|
Bencsik N, Szíber Z, Liliom H, Tárnok K, Borbély S, Gulyás M, Rátkai A, Szűcs A, Hazai-Novák D, Ellwanger K, Rácz B, Pfizenmaier K, Hausser A, Schlett K. Protein kinase D promotes plasticity-induced F-actin stabilization in dendritic spines and regulates memory formation. J Cell Biol 2015; 210:771-83. [PMID: 26304723 PMCID: PMC4555815 DOI: 10.1083/jcb.201501114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/23/2015] [Indexed: 02/07/2023] Open
Abstract
PKD regulates the stabilization of the F-actin network within dendritic spines upon chemically induced plasticity changes and is needed for proper hippocampal LTP and spatial memory formation. Actin turnover in dendritic spines influences spine development, morphology, and plasticity, with functional consequences on learning and memory formation. In nonneuronal cells, protein kinase D (PKD) has an important role in stabilizing F-actin via multiple molecular pathways. Using in vitro models of neuronal plasticity, such as glycine-induced chemical long-term potentiation (LTP), known to evoke synaptic plasticity, or long-term depolarization block by KCl, leading to homeostatic morphological changes, we show that actin stabilization needed for the enlargement of dendritic spines is dependent on PKD activity. Consequently, impaired PKD functions attenuate activity-dependent changes in hippocampal dendritic spines, including LTP formation, cause morphological alterations in vivo, and have deleterious consequences on spatial memory formation. We thus provide compelling evidence that PKD controls synaptic plasticity and learning by regulating actin stability in dendritic spines.
Collapse
Affiliation(s)
- Norbert Bencsik
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Zsófia Szíber
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Hanna Liliom
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Krisztián Tárnok
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Sándor Borbély
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Márton Gulyás
- MTA-ELTE-NAP B Neuronal Cell Biology Research Group, H-1117 Budapest, Hungary
| | - Anikó Rátkai
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Attila Szűcs
- MTA-ELTE-NAP B Neuronal Cell Biology Research Group, H-1117 Budapest, Hungary
| | - Diána Hazai-Novák
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, H-1400 Budapest, Hungary
| | - Kornelia Ellwanger
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Bence Rácz
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, H-1400 Budapest, Hungary
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Katalin Schlett
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary MTA-ELTE-NAP B Neuronal Cell Biology Research Group, H-1117 Budapest, Hungary
| |
Collapse
|
13
|
Oldach L, Zhang J. Genetically encoded fluorescent biosensors for live-cell visualization of protein phosphorylation. ACTA ACUST UNITED AC 2014; 21:186-97. [PMID: 24485761 DOI: 10.1016/j.chembiol.2013.12.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/22/2013] [Accepted: 12/10/2013] [Indexed: 11/30/2022]
Abstract
Fluorescence-based, genetically encodable biosensors are widely used tools for real-time analysis of biological processes. Over the last few decades, the number of available genetically encodable biosensors and the types of processes they can monitor have increased rapidly. Here, we aim to introduce the reader to general principles and practices in biosensor development and highlight ways in which biosensors can be used to illuminate outstanding questions of biological function. Specifically, we focus on sensors developed for monitoring kinase activity and use them to illustrate some common considerations for biosensor design. We describe several uses to which kinase and second-messenger biosensors have been put, and conclude with considerations for the use of biosensors once they are developed. Overall, as fluorescence-based biosensors continue to diversify and improve, we expect them to continue to be widely used as reliable and fruitful tools for gaining deeper insights into cellular and organismal function.
Collapse
Affiliation(s)
- Laurel Oldach
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 307 Hunterian Building, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 307 Hunterian Building, 725 North Wolfe Street, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Department of Oncology, The Johns Hopkins University School of Medicine, 307 Hunterian Building, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Naydenov NG, Baranwal S, Khan S, Feygin A, Gupta P, Ivanov AI. Novel mechanism of cytokine-induced disruption of epithelial barriers: Janus kinase and protein kinase D-dependent downregulation of junction protein expression. Tissue Barriers 2013; 1:e25231. [PMID: 24665409 PMCID: PMC3783224 DOI: 10.4161/tisb.25231] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/01/2013] [Accepted: 05/31/2013] [Indexed: 12/13/2022] Open
Abstract
The ductal epithelium plays a key role in physiological secretion of pancreatic enzymes into the digestive system. Loss of barrier properties of the pancreatic duct may contribute to the development of pancreatitis and metastatic dissemination of pancreatic tumors. Proinflammatory cytokines are essential mediators of pancreatic inflammation and tumor progression; however, their effects on the integrity and barrier properties of the ductal epithelium have not been previously addressed. In the present study, we investigate mechanisms of cytokine-induced disassembly of tight junctions (TJs) and adherens junctions (AJs) in a model pancreatic epithelium. Exposure of HPAF-II human pancreatic epithelial cell monolayers to interferon (IFN)γ disrupted integrity and function of apical junctions as manifested by increased epithelial permeability and cytosolic translocation of AJ and TJ proteins. Tumor necrosis factor (TNF)α potentiated the effects of IFNγ on pancreatic epithelial junctions. The cytokine-induced increase in epithelial permeability and AJ/TJ disassembly was attenuated by pharmacological inhibition of Janus kinase (JAK) and protein kinase D (PKD). Loss of apical junctions in IFNγ/TNFα-treated HPAF-II cells was accompanied by JAK and PKD dependent decrease in expression of AJ (E-cadherin, p120 catenin) and TJ (occludin, ZO-1) proteins. Depletion of E-cadherin or p120 catenin recapitulated the effects of cytokines on HPAF-II cell permeability and junctions. Our data suggests that proinflammatory cytokines disrupt pancreatic epithelial barrier via expressional downregulation of key structural components of AJs and TJs. This mechanism is likely to be important for pancreatic inflammatory injury and tumorigenesis.
Collapse
Affiliation(s)
- Nayden G Naydenov
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA USA
| | - Somesh Baranwal
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA USA
| | - Shadab Khan
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY USA
| | - Alex Feygin
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA USA
| | - Pooja Gupta
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA USA
| | - Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA USA; ; VCU Institute of Molecular Medicine; Virginia Commonwealth University School of Medicine; Richmond, VA USA ; VCU Massey Cancer Center; Virginia Commonwealth University School of Medicine; Richmond, VA USA
| |
Collapse
|
15
|
Kienzle C, Eisler SA, Villeneuve J, Brummer T, Olayioye MA, Hausser A. PKD controls mitotic Golgi complex fragmentation through a Raf-MEK1 pathway. Mol Biol Cell 2012; 24:222-33. [PMID: 23242995 PMCID: PMC3564543 DOI: 10.1091/mbc.e12-03-0198] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Before entering mitosis, the stacks of the Golgi cisternae are separated from each other, and inhibiting this process delays entry of mammalian cells into mitosis. Protein kinase D (PKD) is known to be involved in Golgi-to-cell surface transport by controlling the biogenesis of specific transport carriers. Here we show that depletion of PKD1 and PKD2 proteins from HeLa cells by small interfering RNA leads to the accumulation of cells in the G2 phase of the cell cycle and prevents cells from entering mitosis. We further provide evidence that inhibition of PKD blocks mitotic Raf-1 and mitogen-activated protein kinase kinase (MEK) activation, and, as a consequence, mitotic Golgi fragmentation, which could be rescued by expression of active MEK1. Finally, Golgi fluorescence recovery after photobleaching analyses demonstrate that PKD is crucial for the cleavage of the noncompact zones of Golgi membranes in G2 phase. Our findings suggest that PKD controls interstack Golgi connections in a Raf-1/MEK1-dependent manner, a process required for entry of the cells into mitosis.
Collapse
Affiliation(s)
- Christine Kienzle
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Franz-Wachtel M, Eisler SA, Krug K, Wahl S, Carpy A, Nordheim A, Pfizenmaier K, Hausser A, Macek B. Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 2012; 11:160-70. [PMID: 22496350 DOI: 10.1074/mcp.m111.016014] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Protein kinase D (PKD) is a cytosolic serine/threonine kinase implicated in regulation of several cellular processes such as response to oxidative stress, directed cell migration, invasion, differentiation, and fission of the vesicles at the trans-Golgi network. Its variety of functions must be mediated by numerous substrates; however, only a couple of PKD substrates have been identified so far. Here we perform stable isotope labeling of amino acids in cell culture-based quantitative phosphoproteomic analysis to detect phosphorylation events dependent on PKD1 activity in human cells. We compare relative phosphorylation levels between constitutively active and kinase dead PKD1 strains of HEK293 cells, both treated with nocodazole, a microtubule-depolymerizing reagent that disrupts the Golgi complex and activates PKD1. We identify 124 phosphorylation sites that are significantly down-regulated upon decrease of PKD1 activity and show that the PKD target motif is significantly enriched among down-regulated phosphorylation events, pointing to the presence of direct PKD1 substrates. We further perform PKD1 target motif analysis, showing that a proline residue at position +1 relative to the phosphorylation site serves as an inhibitory cue for PKD1 activity. Among PKD1-dependent phosphorylation events, we detect predominantly proteins with localization at Golgi membranes and function in protein sorting, among them several sorting nexins and members of the insulin-like growth factor 2 receptor pathway. This study presents the first global detection of PKD1-dependent phosphorylation events and provides a wealth of information for functional follow-up of PKD1 activity upon disruption of the Golgi network in human cells.
Collapse
|
17
|
Novel Insights into the Interplay between Apoptosis and Autophagy. Int J Cell Biol 2012; 2012:317645. [PMID: 22496691 PMCID: PMC3312193 DOI: 10.1155/2012/317645] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/31/2011] [Indexed: 12/19/2022] Open
Abstract
For several decades, apoptosis has taken center stage as the principal mechanism of programmed cell death (type I cell death) in mammalian tissues. Autophagic cell death (type II) is characterized by the massive accumulation of autophagic vacuoles in the cytoplasm of cells. The autophagic process is activated as an adaptive response to a variety of extracellular and intracellular stresses, including nutrient deprivation, hormonal or therapeutic treatment, pathogenic infection, aggregated and misfolded proteins, and damaged organelles. Increasing evidence indicates that autophagy is associated with a number of pathological processes, including cancer. The regulation of autophagy in cancer cells is complex since it can enhance cancer cell survival in response to certain stresses, while it can also act to suppress the initiation of cancer growth. This paper focused on recent advances regarding autophagy in cancer and the techniques currently available to manipulate autophagy.
Collapse
|
18
|
Tanaka S, Takakuwa Y. Intracellular interactions between protein 4.1 and glycophorin C on transport vesicles, as determined by fluorescence correlation spectroscopy. FEBS Lett 2012; 586:668-74. [DOI: 10.1016/j.febslet.2012.01.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/18/2012] [Accepted: 01/23/2012] [Indexed: 11/26/2022]
|
19
|
Olayioye MA, Hausser A. Integration of non-vesicular and vesicular transport processes at the Golgi complex by the PKD-CERT network. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:1096-103. [PMID: 22226883 DOI: 10.1016/j.bbalip.2011.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/14/2011] [Accepted: 12/16/2011] [Indexed: 11/17/2022]
Abstract
Non-vesicular transport of ceramide from endoplasmic reticulum to Golgi membranes is essential for cellular lipid homeostasis. Protein kinase D (PKD) is a serine-threonine kinase that controls vesicle fission at Golgi membranes. Here we highlight the intimate connections between non-vesicular and vesicular transport at the level of the Golgi complex, and suggest that PKD and its substrate CERT, the ceramide transfer protein, play central roles in coordinating these processes by fine-tuning the local membrane lipid composition to maintain Golgi secretory function. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
Affiliation(s)
- Monilola A Olayioye
- University of Stuttgart, Institute of Cell Biology and Immunology, Allmandring 31, 70569 Stuttgart, Germany.
| | | |
Collapse
|
20
|
Eisler SA, Fuchs YF, Pfizenmaier K, Hausser A. G-PKDrep-live, a genetically encoded FRET reporter to measure PKD activity at the trans-Golgi-network. Biotechnol J 2011; 7:148-54. [DOI: 10.1002/biot.201100273] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/04/2011] [Accepted: 08/26/2011] [Indexed: 11/09/2022]
|
21
|
Abstract
The protein processing and trafficking function of the Golgi is intimately linked to multiple intracellular signaling pathways. Assembly of Golgi trafficking structures and lipid sorting at the Golgi complex is controlled and coordinated by specific phosphoinositide kinases and phosphatases. The intra-Golgi transport machinery is also regulated by kinases belonging to several functionally distinct families, for example, MAP kinase signaling is required for mitotic disassembly of the Golgi. However, the Golgi plays an additional, prominent role in compartmentalizing other signaling cascades that originate at the plasma membrane or at other organelles. This article summarizes recent advances in our understanding of the signaling network that converges at the Golgi.
Collapse
Affiliation(s)
- Peter Mayinger
- Division of Nephrology and Hypertension and Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
22
|
A glycosyltransferase-enriched reconstituted membrane system for the synthesis of branched O-linked glycans in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1509-19. [PMID: 21081110 DOI: 10.1016/j.bbamem.2010.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/14/2010] [Accepted: 11/02/2010] [Indexed: 11/23/2022]
Abstract
Mimicking the biochemical reactions that take place in cell organelles is becoming one of the most important challenges in biological chemistry. In particular, reproducing the Golgi glycosylation system in vitro would allow the synthesis of bioactive glycan polymers and glycoconjugates for many future applications including treatments of numerous pathologies. In the present study, we reconstituted a membrane system enriched in glycosyltransferases obtained by combining the properties of the wheat germ lectin with the dialysable detergent n-octylglucoside. When applied to cells engineered to express the O-glycan branching enzyme core2 beta (1,6)-N-acetylglucosaminyltransferase (C2GnT-I), this combination led to the reconstitution of lipid vesicles exhibiting an enzyme activity 11 times higher than that found in microsomal membranes. The enzyme also showed a slightly higher affinity than its soluble counterpart toward the acceptor substrate. Moreover, the use of either the detergent re-solubilization, glycoprotein substrates or N-glycanase digestion suggests that most of the reconstituted glycosyltransferases have their catalytic domains in an extravesicular orientation. Using the disaccharide substrate Galβ1-3GalNAc-O-p-nitrophenyl as a primer, we performed sequential glycosylation reactions and compared the recovered oligosaccharides to those synthesized by cultured parental cells. After three successive glycosylation reactions using a single batch of the reconstituted vesicles and without changing the buffer, the acceptor was transformed into an O-glycan with chromatographic properties similar to glycans produced by C2GnT-I-expressing cells. Therefore, this new and efficient approach would greatly improve the synthesis of bioactive carbohydrates and glycoconjugates in vitro and could be easily adapted for the study of other reactions naturally occurring in the Golgi apparatus such as N-glycosylation or sulfation.
Collapse
|
23
|
Czöndör K, Ellwanger K, Fuchs YF, Lutz S, Gulyás M, Mansuy IM, Hausser A, Pfizenmaier K, Schlett K. Protein kinase D controls the integrity of Golgi apparatus and the maintenance of dendritic arborization in hippocampal neurons. Mol Biol Cell 2009; 20:2108-20. [PMID: 19211839 DOI: 10.1091/mbc.e08-09-0957] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein kinase D (PKD) is known to participate in various cellular functions, including secretory vesicle fission from the Golgi and plasma membrane-directed transport. Here, we report on expression and function of PKD in hippocampal neurons. Expression of an enhanced green fluorescent protein (EGFP)-tagged PKD activity reporter in mouse embryonal hippocampal neurons revealed high endogenous PKD activity at the Golgi complex and in the dendrites, whereas PKD activity was excluded from the axon in parallel with axonal maturation. Expression of fluorescently tagged wild-type PKD1 and constitutively active PKD1(S738/742E) (caPKD1) in neurons revealed that both proteins were slightly enriched at the trans-Golgi network (TGN) and did not interfere with its thread-like morphology. By contrast, expression of dominant-negative kinase inactive PKD1(K612W) (kdPKD1) led to the disruption of the neuronal Golgi complex, with kdPKD1 strongly localized to the TGN fragments. Similar findings were obtained from transgenic mice with inducible, neuron-specific expression of kdPKD1-EGFP. As a prominent consequence of kdPKD1 expression, the dendritic tree of transfected neurons was reduced, whereas caPKD1 increased dendritic arborization. Our results thus provide direct evidence that PKD activity is selectively involved in the maintenance of dendritic arborization and Golgi structure of hippocampal neurons.
Collapse
Affiliation(s)
- Katalin Czöndör
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary H-1117
| | | | | | | | | | | | | | | | | |
Collapse
|