1
|
Brandão-Teles C, Antunes ASLM, de Moraes Vrechi TA, Martins-de-Souza D. The Roles of hnRNP Family in the Brain and Brain-Related Disorders. Mol Neurobiol 2024; 61:3578-3595. [PMID: 37999871 DOI: 10.1007/s12035-023-03747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) belong to a complex family of RNA-binding proteins that are essential to control alternative splicing, mRNA trafficking, synaptic plasticity, stress granule formation, cell cycle regulation, and axonal transport. Over the past decade, hnRNPs have been associated with different brain disorders such as Alzheimer's disease, multiple sclerosis, and schizophrenia. Given their essential role in maintaining cell function and integrity, it is not surprising that dysregulated hnRNP levels lead to neurological implications. This review aims to explore the primary functions of hnRNPs in neurons, oligodendrocytes, microglia, and astrocytes, and their roles in brain disorders. We also discuss proteomics and other technologies and their potential for studying and evaluating hnRNPs in brain disorders, including the discovery of new therapeutic targets and possible pharmacological interventions.
Collapse
Affiliation(s)
- Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
| | - André S L M Antunes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Talita Aparecida de Moraes Vrechi
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, 13083-862, Brazil.
- INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), São Paulo, Brazil.
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, Instituto Nacional de Biomarcadores em Neuropsiquiatria, São Paulo, Brazil.
| |
Collapse
|
2
|
Li Y, Zhang S, Li Y, Liu J, Li Q, Zang W, Pan Y. The Regulatory Network of hnRNPs Underlying Regulating PKM Alternative Splicing in Tumor Progression. Biomolecules 2024; 14:566. [PMID: 38785973 PMCID: PMC11117501 DOI: 10.3390/biom14050566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
One of the hallmarks of cancer is metabolic reprogramming in tumor cells, and aerobic glycolysis is the primary mechanism by which glucose is quickly transformed into lactate. As one of the primary rate-limiting enzymes, pyruvate kinase (PK) M is engaged in the last phase of aerobic glycolysis. Alternative splicing is a crucial mechanism for protein diversity, and it promotes PKM precursor mRNA splicing to produce PKM2 dominance, resulting in low PKM1 expression. Specific splicing isoforms are produced in various tissues or illness situations, and the post-translational modifications are linked to numerous disorders, including cancers. hnRNPs are one of the main components of the splicing factor families. However, there have been no comprehensive studies on hnRNPs regulating PKM alternative splicing. Therefore, this review focuses on the regulatory network of hnRNPs on PKM pre-mRNA alternative splicing in tumors and clinical drug research. We elucidate the role of alternative splicing in tumor progression, prognosis, and the potential mechanism of abnormal RNA splicing. We also summarize the drug targets retarding tumorous splicing events, which may be critical to improving the specificity and effectiveness of current therapeutic interventions.
Collapse
Affiliation(s)
- Yuchao Li
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| | - Shuwei Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| | - Yuexian Li
- Department of Radiation Oncology Gastrointestinal and Urinary and Musculoskeletal Cancer, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang 110042, China;
| | - Junchao Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| | - Qian Li
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| | - Wenli Zang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| | - Yaping Pan
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; (Y.L.); (S.Z.); (J.L.); (Q.L.); (W.Z.)
| |
Collapse
|
3
|
Khalil B, Linsenmeier M, Smith CL, Shorter J, Rossoll W. Nuclear-import receptors as gatekeepers of pathological phase transitions in ALS/FTD. Mol Neurodegener 2024; 19:8. [PMID: 38254150 PMCID: PMC10804745 DOI: 10.1186/s13024-023-00698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders on a disease spectrum that are characterized by the cytoplasmic mislocalization and aberrant phase transitions of prion-like RNA-binding proteins (RBPs). The common accumulation of TAR DNA-binding protein-43 (TDP-43), fused in sarcoma (FUS), and other nuclear RBPs in detergent-insoluble aggregates in the cytoplasm of degenerating neurons in ALS/FTD is connected to nuclear pore dysfunction and other defects in the nucleocytoplasmic transport machinery. Recent advances suggest that beyond their canonical role in the nuclear import of protein cargoes, nuclear-import receptors (NIRs) can prevent and reverse aberrant phase transitions of TDP-43, FUS, and related prion-like RBPs and restore their nuclear localization and function. Here, we showcase the NIR family and how they recognize cargo, drive nuclear import, and chaperone prion-like RBPs linked to ALS/FTD. We also discuss the promise of enhancing NIR levels and developing potentiated NIR variants as therapeutic strategies for ALS/FTD and related neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Bilal Khalil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, U.S.A
| | - Miriam Linsenmeier
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, U.S.A
| | - Courtney L Smith
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, U.S.A
- Mayo Clinic Graduate School of Biomedical Sciences, Neuroscience Track, Mayo Clinic, Jacksonville, FL, 32224, U.S.A
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, U.S.A..
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, U.S.A..
| |
Collapse
|
4
|
Role of Heterogeneous Nuclear Ribonucleoproteins in the Cancer-Immune Landscape. Int J Mol Sci 2023; 24:ijms24065086. [PMID: 36982162 PMCID: PMC10049280 DOI: 10.3390/ijms24065086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer remains the second leading cause of death, accounting for approximately 20% of all fatalities. Evolving cancer cells and a dysregulated immune system create complex tumor environments that fuel tumor growth, metastasis, and resistance. Over the past decades, significant progress in deciphering cancer cell behavior and recognizing the immune system as a hallmark of tumorigenesis has been achieved. However, the underlying mechanisms controlling the evolving cancer-immune landscape remain mostly unexplored. Heterogeneous nuclear ribonuclear proteins (hnRNP), a highly conserved family of RNA-binding proteins, have vital roles in critical cellular processes, including transcription, post-transcriptional modifications, and translation. Dysregulation of hnRNP is a critical contributor to cancer development and resistance. HnRNP contribute to the diversity of tumor and immune-associated aberrant proteomes by controlling alternative splicing and translation. They can also promote cancer-associated gene expression by regulating transcription factors, binding to DNA directly, or promoting chromatin remodeling. HnRNP are emerging as newly recognized mRNA readers. Here, we review the roles of hnRNP as regulators of the cancer-immune landscape. Dissecting the molecular functions of hnRNP will provide a better understanding of cancer-immune biology and will impact the development of new approaches to control and treat cancer.
Collapse
|
5
|
Heterogeneous nuclear ribonucleoprotein A/B: an emerging group of cancer biomarkers and therapeutic targets. Cell Death Dis 2022; 8:337. [PMID: 35879279 PMCID: PMC9314375 DOI: 10.1038/s41420-022-01129-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein A/B (hnRNPA/B) is one of the core members of the RNA binding protein (RBP) hnRNPs family, including four main subtypes, A0, A1, A2/B1 and A3, which share the similar structure and functions. With the advance in understanding the molecular biology of hnRNPA/B, it has been gradually revealed that hnRNPA/B plays a critical role in almost the entire steps of RNA life cycle and its aberrant expression and mutation have important effects on the occurrence and progression of various cancers. This review focuses on the clinical significance of hnRNPA/B in various cancers and systematically summarizes its biological function and molecular mechanisms.
Collapse
|
6
|
McCann CJ, Hasan NM, Padilla-Benavides T, Roy S, Lutsenko S. Heterogeneous nuclear ribonucleoprotein hnRNPA2/B1 regulates the abundance of the copper-transporter ATP7A in an isoform-dependent manner. Front Mol Biosci 2022; 9:1067490. [PMID: 36545508 PMCID: PMC9762481 DOI: 10.3389/fmolb.2022.1067490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 12/11/2022] Open
Abstract
Copper (Cu) is an essential micronutrient with a critical role in mammalian growth and development. Imbalance of Cu causes severe diseases in humans; therefore, cellular Cu levels are tightly regulated. Major Cu-transport proteins and their cellular behavior have been characterized in detail, whereas their regulation at the mRNA level and associated factors are not well-understood. We show that the heterogeneous nuclear ribonucleoprotein hnRNPA2/B1 regulates Cu homeostasis by modulating the abundance of Cu(I)-transporter ATP7A. Downregulation of hnRNPA2/B1 in HeLa cells increases the ATP7A mRNA and protein levels and significantly decreases cellular Cu; this regulation involves the 3' UTR of ATP7A transcript. Downregulation of B1 and B1b isoforms of hnRNPA2/B1 is sufficient to elevate ATP7A, whereas overexpression of either hnRNPA2 or hnRNPB1 isoforms decreases the ATP7A mRNA levels. Concurrent decrease in hnRNPA2/B1, increase in ATP7A, and a decrease in Cu levels was observed in neuroblastoma SH-SY5Y cells during retinoic acid-induced differentiation; this effect was reversed by overexpression of B1/B1b isoforms. We conclude that hnRNPA2/B1 is a new isoform-specific negative regulator of ATP7A abundance.
Collapse
Affiliation(s)
- Courtney J McCann
- Department of Physiology, Johns Hopkins University, Baltimore, MD, United States.,Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
| | - Nesrin M Hasan
- Department of Physiology, Johns Hopkins University, Baltimore, MD, United States
| | | | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins University, Baltimore, MD, United States
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
7
|
Petri BJ, Piell KM, South Whitt GC, Wilt AE, Poulton CC, Lehman NL, Clem BF, Nystoriak MA, Wysoczynski M, Klinge CM. HNRNPA2B1 regulates tamoxifen- and fulvestrant-sensitivity and hallmarks of endocrine resistance in breast cancer cells. Cancer Lett 2021; 518:152-168. [PMID: 34273466 PMCID: PMC8358706 DOI: 10.1016/j.canlet.2021.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/31/2022]
Abstract
Despite new combination therapies improving survival of breast cancer patients with estrogen receptor α (ER+) tumors, the molecular mechanisms for endocrine-resistant disease remain unresolved. Previously we demonstrated that expression of the RNA binding protein and N6-methyladenosine (m6A) reader HNRNPA2B1 (A2B1) is higher in LCC9 and LY2 tamoxifen (TAM)-resistant ERα breast cancer cells relative to parental TAM-sensitive MCF-7 cells. Here we report that A2B1 protein expression is higher in breast tumors than paired normal breast tissue. Modest stable overexpression of A2B1 in MCF-7 cells (MCF-7-A2B1 cells) resulted in TAM- and fulvestrant- resistance whereas knockdown of A2B1 in LCC9 and LY2 cells restored TAM and fulvestrant, endocrine-sensitivity. MCF-7-A2B1 cells gained hallmarks of TAM-resistant metastatic behavior: increased migration and invasion, clonogenicity, and soft agar colony size, which were attenuated by A2B1 knockdown in MCF-7-A2B1 and the TAM-resistant LCC9 and LY2 cells. MCF-7-A2B1, LCC9, and LY2 cells have a higher proportion of CD44+/CD24-/low cancer stem cells (CSC) compared to MCF-7 cells. MCF-7-A2B1 cells have increased ERα and reduced miR-222-3p that targets ERα. Like LCC9 cells, MCF-7-A2B1 have activated AKT and MAPK that depend on A2B1 expression and are growth inhibited by inhibitors of these pathways. These data support that targeting A2B1 could provide a complimentary therapeutic approach to reduce acquired endocrine resistance.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Kellianne M Piell
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Gordon C South Whitt
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Ali E Wilt
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Claire C Poulton
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Norman L Lehman
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Brian F Clem
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Matthew A Nystoriak
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Marcin Wysoczynski
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
8
|
Thibault PA, Ganesan A, Kalyaanamoorthy S, Clarke JPWE, Salapa HE, Levin MC. hnRNP A/B Proteins: An Encyclopedic Assessment of Their Roles in Homeostasis and Disease. BIOLOGY 2021; 10:biology10080712. [PMID: 34439945 PMCID: PMC8389229 DOI: 10.3390/biology10080712] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
The hnRNP A/B family of proteins is canonically central to cellular RNA metabolism, but due to their highly conserved nature, the functional differences between hnRNP A1, A2/B1, A0, and A3 are often overlooked. In this review, we explore and identify the shared and disparate homeostatic and disease-related functions of the hnRNP A/B family proteins, highlighting areas where the proteins have not been clearly differentiated. Herein, we provide a comprehensive assembly of the literature on these proteins. We find that there are critical gaps in our grasp of A/B proteins' alternative splice isoforms, structures, regulation, and tissue and cell-type-specific functions, and propose that future mechanistic research integrating multiple A/B proteins will significantly improve our understanding of how this essential protein family contributes to cell homeostasis and disease.
Collapse
Affiliation(s)
- Patricia A. Thibault
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - Aravindhan Ganesan
- ArGan’s Lab, School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Subha Kalyaanamoorthy
- Department of Chemistry, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Joseph-Patrick W. E. Clarke
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Hannah E. Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - Michael C. Levin
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Correspondence:
| |
Collapse
|
9
|
Liu Y, Shi SL. The roles of hnRNP A2/B1 in RNA biology and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1612. [PMID: 32588964 DOI: 10.1002/wrna.1612] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
The RNA-binding protein hnRNPA2/B1 is a member of the hnRNPs family and is widely expressed in various tissues. hnRNPA2/B1 recognizes and binds specific RNA substrates and DNA motifs and is involved in the transcription, splicing processing, transport, stability, and translation regulation of a variety of RNA molecules and in regulating the expression of a large number of genes. hnRNPA2/B1 is also involved in telomere maintenance and DNA repair, while its expression changes and mutations are involved in the development of various tumors and neurodegenerative and autoimmune diseases. This paper reviews the role and mechanism of hnRNPA2/B1 in RNA metabolism, tumors, and neurodegenerative and autoimmune diseases. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Yu Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Song-Lin Shi
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Xu H, Dzhashiashvili Y, Shah A, Kunjamma RB, Weng YL, Elbaz B, Fei Q, Jones JS, Li YI, Zhuang X, Ming GL, He C, Popko B. m 6A mRNA Methylation Is Essential for Oligodendrocyte Maturation and CNS Myelination. Neuron 2019; 105:293-309.e5. [PMID: 31901304 DOI: 10.1016/j.neuron.2019.12.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 10/15/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022]
Abstract
The molecular mechanisms that govern the maturation of oligodendrocyte lineage cells remain unclear. Emerging studies have shown that N6-methyladenosine (m6A), the most common internal RNA modification of mammalian mRNA, plays a critical role in various developmental processes. Here, we demonstrate that oligodendrocyte lineage progression is accompanied by dynamic changes in m6A modification on numerous transcripts. In vivo conditional inactivation of an essential m6A writer component, METTL14, results in decreased oligodendrocyte numbers and CNS hypomyelination, although oligodendrocyte precursor cell (OPC) numbers are normal. In vitro Mettl14 ablation disrupts postmitotic oligodendrocyte maturation and has distinct effects on OPC and oligodendrocyte transcriptomes. Moreover, the loss of Mettl14 in oligodendrocyte lineage cells causes aberrant splicing of myriad RNA transcripts, including those that encode the essential paranodal component neurofascin 155 (NF155). Together, our findings indicate that dynamic RNA methylation plays an important regulatory role in oligodendrocyte development and CNS myelination.
Collapse
Affiliation(s)
- Huan Xu
- Center for Peripheral Neuropathy and Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Yulia Dzhashiashvili
- Center for Peripheral Neuropathy and Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Ankeeta Shah
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL 60637, USA; Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Rejani B Kunjamma
- Center for Peripheral Neuropathy and Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Yi-Lan Weng
- Department of Neuroscience and Mahoney Institute for Neurosciences, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benayahu Elbaz
- Center for Peripheral Neuropathy and Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Qili Fei
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Joshua S Jones
- Center for Peripheral Neuropathy and Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Yang I Li
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Xiaoxi Zhuang
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Brian Popko
- Center for Peripheral Neuropathy and Department of Neurology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
11
|
Nguyen ED, Balas MM, Griffin AM, Roberts JT, Johnson AM. Global profiling of hnRNP A2/B1-RNA binding on chromatin highlights LncRNA interactions. RNA Biol 2018; 15:901-913. [PMID: 29938567 PMCID: PMC6161681 DOI: 10.1080/15476286.2018.1474072] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/02/2018] [Indexed: 01/03/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) often carry out their functions through associations with adaptor proteins. We recently identified heterogeneous ribonucleoprotein (hnRNP) A2/B1 as an adaptor of the human HOTAIR lncRNA. hnRNP A2 and B1 are splice isoforms of the same gene. The spliced version of HOTAIR preferentially associates with the B1 isoform, which we hypothesize contributes to RNA-RNA matching between HOTAIR and transcripts of target genes in breast cancer. Here we used enhanced cross-linking immunoprecipitation (eCLIP) to map the direct interactions between A2/B1 and RNA in breast cancer cells. Despite differing by only twelve amino acids, the A2 and B1 splice isoforms associate preferentially with distinct populations of RNA in vivo. Through cellular fractionation experiments we characterize the pattern of RNA association in chromatin, nucleoplasm, and cytoplasm. We find that a majority of interactions occur on chromatin, even those that do not contribute to co-transcriptional splicing. A2/B1 binding site locations on multiple RNAs hint at a contribution to the regulation and function of lncRNAs. Surprisingly, the strongest A2/B1 binding site occurs in a retained intron of HOTAIR, which interrupts an RNA-RNA interaction hotspot. In vitro eCLIP experiments highlight additional exonic B1 binding sites in HOTAIR which also surround the RNA-RNA interaction hotspot. Interestingly, a version of HOTAIR with the intron retained is still capable of making RNA-RNA interactions in vitro through the hotspot region. Our data further characterize the multiple functions of a repurposed splicing factor with isoform-biased interactions, and highlight that the majority of these functions occur on chromatin-associated RNA.
Collapse
Affiliation(s)
- Eric D. Nguyen
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, Aurora, University of Colorado School of Medicine, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Maggie M. Balas
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, Aurora, University of Colorado School of Medicine, CO, USA
- University of Colorado School of Medicine RNA Bioscience Initiative, Aurora, CO, USA
| | - April M. Griffin
- Department of Biochemistry and Molecular Genetics, Aurora, University of Colorado School of Medicine, CO, USA
| | - Justin T. Roberts
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, Aurora, University of Colorado School of Medicine, CO, USA
| | - Aaron M. Johnson
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, Aurora, University of Colorado School of Medicine, CO, USA
- University of Colorado School of Medicine RNA Bioscience Initiative, Aurora, CO, USA
| |
Collapse
|
12
|
SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells. Leukemia 2018; 32:2659-2671. [PMID: 29858584 PMCID: PMC6274620 DOI: 10.1038/s41375-018-0152-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 03/20/2018] [Accepted: 04/20/2018] [Indexed: 01/30/2023]
Abstract
Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA splicing of a vital gene product; alternatively, a whole network of gene products could be affected. Here we determine how SRSF2 mutations globally affect RNA binding and splicing in vivo using HITS-CLIP. Remarkably, the majority of differential binding events do not translate into alternative splicing of exons with SRSF2P95H binding sites. Alternative splice alterations appear to be dominated by indirect effects. Importantly, SRSF2P95H targets are enriched in RNA processing and splicing genes, including several members of the hnRNP and SR families of proteins, suggesting a "splicing-cascade" phenotype wherein mutation of a single splicing factor leads to widespread modifications in multiple RNA processing and splicing proteins. We show that splice alteration of HNRNPA2B1, a splicing factor differentially bound and spliced by SRSF2P95H, impairs hematopoietic differentiation in vivo. Our data suggests a model whereby the recurrent mutations in splicing factors set off a cascade of gene regulatory events that together affect hematopoiesis and drive cancer.
Collapse
|
13
|
Anderson M, Kashanchi F, Jacobson S. Role of Exosomes in Human Retroviral Mediated Disorders. J Neuroimmune Pharmacol 2018; 13:279-291. [PMID: 29656370 DOI: 10.1007/s11481-018-9784-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023]
Abstract
Retroviruses comprise an ancient and varied group of viruses with the unique ability to integrate DNA from an RNA transcript into the genome, a subset of which are able to integrate in humans. The timing of these integrations during human history has dictated whether these viruses have remained exogenous and given rise to various human diseases or have become inseparable from the host genome (endogenous retroviruses). Given the ability of retroviruses to integrate into the host and subsequently co-opt host cellular process for viral propagation, retroviruses have been shown to be closely associated with several cellular processes including exosome formation. Exosomes are 30-150 nm unilamellar extracellular vesicles that originate from intraluminal vesicles (ILVs) that form in the endosomal compartment. Exosomes have been shown to be important in intercellular communication and immune cell function. Almost every cell type studied has been shown to produce these types of vesicles, with the cell type dictating the contents, which include proteins, mRNA, and miRNAs. Importantly, recent evidence has shown that infection by viruses, including retroviruses, alter the contents and subsequent function of produced exosomes. In this review, we will discuss the important retroviruses associated with human health and disease. Furthermore, we will delve into the impact of exosome formation and manipulation by integrated retroviruses on human health, survival, and human retroviral disease pathogenesis.
Collapse
Affiliation(s)
- Monique Anderson
- National Institute of Neurological Disorders and Stroke, Neuroimmunology Branch, Viral Immunology Section, National Institutes of Health, Bethesda, MD, 20892, USA. .,Department of Pathology, Molecular and Cellular Basis of Disease Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
| | - Fatah Kashanchi
- National Center for Biodefense and Infectious Disease, Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Steven Jacobson
- National Institute of Neurological Disorders and Stroke, Neuroimmunology Branch, Viral Immunology Section, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
14
|
Hoch-Kraft P, White R, Tenzer S, Krämer-Albers EM, Trotter J, Gonsior C. Dual role of the RNA helicase DDX5 in post-transcriptional regulation of Myelin Basic Protein in oligodendrocytes. J Cell Sci 2018; 131:jcs.204750. [DOI: 10.1242/jcs.204750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 03/28/2018] [Indexed: 01/11/2023] Open
Abstract
In the central nervous system, oligodendroglial expression of Myelin Basic Protein (MBP) is crucial for the assembly and structure of the myelin sheath. MBP synthesis is tightly regulated in space and time, particularly on the post-transcriptional level. We have identified the DEAD-box RNA helicase DDX5 (alias p68) in a complex with Mbp mRNA in oligodendroglial cells. Expression of DDX5 is highest in progenitor cells and immature oligodendrocytes, where it localizes to heterogeneous populations of cytoplasmic ribonucleoprotein (RNP) complexes associated with Mbp mRNA in the cell body and processes. Manipulation of DDX5 protein amounts inversely affects levels of MBP protein. We present evidence that DDX5 is involved in post-transcriptional regulation of MBP protein synthesis, with implications for oligodendroglial development. In addition, DDX5 knockdown results in an increased abundance of MBP exon 2-positive isoforms in immature oligodendrocytes, most likely by regulating alternative splicing of Mbp. Our findings contribute to the understanding of the complex nature of MBP post-transcriptional control in immature oligodendrocytes where DDX5 appears to affect the abundance of MBP proteins via distinct but converging mechanisms.
Collapse
Affiliation(s)
- Peter Hoch-Kraft
- Molecular Cell Biology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128 Mainz, Germany
| | - Robin White
- Molecular Cell Biology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128 Mainz, Germany
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128 Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Eva-Maria Krämer-Albers
- Molecular Cell Biology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128 Mainz, Germany
| | - Jacqueline Trotter
- Molecular Cell Biology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128 Mainz, Germany
| | - Constantin Gonsior
- Molecular Cell Biology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128 Mainz, Germany
| |
Collapse
|
15
|
Uversky VN. The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll-Mr. Hyde" behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy 2017; 13:2115-2162. [PMID: 28980860 DOI: 10.1080/15548627.2017.1384889] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pathological developments leading to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are associated with misbehavior of several key proteins, such as SOD1 (superoxide dismutase 1), TARDBP/TDP-43, FUS, C9orf72, and dipeptide repeat proteins generated as a result of the translation of the intronic hexanucleotide expansions in the C9orf72 gene, PFN1 (profilin 1), GLE1 (GLE1, RNA export mediator), PURA (purine rich element binding protein A), FLCN (folliculin), RBM45 (RNA binding motif protein 45), SS18L1/CREST, HNRNPA1 (heterogeneous nuclear ribonucleoprotein A1), HNRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2/B1), ATXN2 (ataxin 2), MAPT (microtubule associated protein tau), and TIA1 (TIA1 cytotoxic granule associated RNA binding protein). Although these proteins are structurally and functionally different and have rather different pathological functions, they all possess some levels of intrinsic disorder and are either directly engaged in or are at least related to the physiological liquid-liquid phase transitions (LLPTs) leading to the formation of various proteinaceous membrane-less organelles (PMLOs), both normal and pathological. This review describes the normal and pathological functions of these ALS- and FTLD-related proteins, describes their major structural properties, glances at their intrinsic disorder status, and analyzes the involvement of these proteins in the formation of normal and pathological PMLOs, with the ultimate goal of better understanding the roles of LLPTs and intrinsic disorder in the "Dr. Jekyll-Mr. Hyde" behavior of those proteins.
Collapse
Affiliation(s)
- Vladimir N Uversky
- a Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute , Morsani College of Medicine , University of South Florida , Tampa , FL , USA.,b Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino, Moscow region , Russia
| |
Collapse
|
16
|
Cholinergic Regulation of hnRNPA2/B1 Translation by M1 Muscarinic Receptors. J Neurosci 2017; 36:6287-96. [PMID: 27277805 DOI: 10.1523/jneurosci.4614-15.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/02/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Cholinergic vulnerability, characterized by loss of acetylcholine (ACh), is one of the hallmarks of Alzheimer's disease (AD). Previous work has suggested that decreased ACh activity in AD may contribute to pathological changes through global alterations in alternative splicing. This occurs, at least partially, via the regulation of the expression of a critical protein family in RNA processing, heterogeneous nuclear ribonucleoprotein (hnRNP) A/B proteins. These proteins regulate several steps of RNA metabolism, including alternative splicing, RNA trafficking, miRNA export, and gene expression, providing multilevel surveillance in RNA functions. To investigate the mechanism by which cholinergic tone regulates hnRNPA2/B1 expression, we used a combination of genetic mouse models and in vivo and in vitro techniques. Decreasing cholinergic tone reduced levels of hnRNPA2/B1, whereas increasing cholinergic signaling in vivo increased expression of hnRNPA2/B1. This effect was not due to decreased hnRNPA2/B1 mRNA expression, increased aggregation, or degradation of the protein, but rather to decreased mRNA translation by nonsense-mediated decay regulation of translation. Cell culture and knock-out mice experiments demonstrated that M1 muscarinic signaling is critical for cholinergic control of hnRNPA2/B1 protein levels. Our experiments suggest an intricate regulation of hnRNPA2/B1 levels by cholinergic activity that interferes with alternative splicing in targeted neurons mimicking deficits found in AD. SIGNIFICANCE STATEMENT In Alzheimer's disease, degeneration of basal forebrain cholinergic neurons is an early event. These neurons communicate with target cells and regulate their long-term activity by poorly understood mechanisms. Recently, the splicing factor hnRNPA2/B, which is decreased in Alzheimer's disease, was implicated as a potential mediator of long-term cholinergic regulation. Here, we demonstrate a mechanism by which cholinergic signaling controls the translation of hnRNPA2/B1 mRNA by activation of M1 muscarinic type receptors. Loss of cholinergic activity can have profound effects in target cells by modulating hnRNPA2/B1 levels.
Collapse
|
17
|
Falkenberg CV, Carson JH, Blinov ML. Multivalent Molecules as Modulators of RNA Granule Size and Composition. Biophys J 2017; 113:235-245. [PMID: 28242011 DOI: 10.1016/j.bpj.2017.01.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 01/22/2023] Open
Abstract
RNA granules are ensembles of specific RNA and protein molecules that mediate localized translation in eukaryotic cells. The mechanisms for formation and selectivity of RNA granules are unknown. Here we present a model for assembly of one type of RNA granule based on experimentally measured binding interactions among three core multivalent molecular components necessary for such assembly: specific RNA molecules that contain a cis-acting sequence called the A2 response element (A2RE), hnRNP A2 proteins that bind specifically (with high affinity) to A2RE sequences or nonspecifically (with lower affinity) to other RNA sequences, and heptavalent protein cytoskeleton-associated protein 5 (CKAP5, an alternative name for TOG protein) that binds both hnRNP A2 molecules and RNA. Non-A2RE RNA molecules (RNA without the A2RE sequence) that may be recruited to the granules through nonspecific interactions are also considered in the model. Modeling multivalent molecular interactions in granules is challenging because of combinatorial complexity in the number of potential molecular complexes among these core components and dynamic changes in granule composition and structure in response to changes in local intracellular environment. We use a hybrid modeling approach (deterministic-stochastic-statistical) that is appropriate when the overall compositions of multimolecular ensembles are of greater importance than the specific interactions among individual molecular components. Modeling studies titrating the concentrations of various granule components and varying effective site pair affinities and RNA valency demonstrate that interactions between multivalent components (TOG and RNA) are modulated by a bivalent adaptor molecule (hnRNP A2). Formation and disruption of granules, as well as RNA selectivity in granule composition are regulated by distinct concentration regimes of A2. Our results suggest that granule assembly is tightly controlled by multivalent molecular interactions among RNA molecules, adaptor proteins, and scaffold proteins.
Collapse
Affiliation(s)
- Cibele Vieira Falkenberg
- Mechanical Engineering Department, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama.
| | - John H Carson
- Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut; Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Michael L Blinov
- Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut.
| |
Collapse
|
18
|
Russo J. Reproductive history and breast cancer prevention. Horm Mol Biol Clin Investig 2016; 27:3-10. [PMID: 27518906 DOI: 10.1515/hmbci-2016-0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/19/2016] [Indexed: 12/11/2022]
Abstract
The hormonal milieu of an early full-term pregnancy induces lobular development, completing the cycle of differentiation of the breast. This process induces a specific genomic signature in the mammary gland that is represented by the stem cell containing a heterochomatin condensed nucleus (HTN). Even though differentiation significantly reduces cell proliferation in the mammary gland, the mammary epithelium remains capable of responding with proliferation to given stimuli, such as a new pregnancy. The stem cell HTN is able to metabolize the carcinogen and repair the induced DNA damage more efficiently than the stem cell containing an euchromatinic structure (EUN), as it has been demonstrated in the rodent experimental system. The basic biological concept is that pregnancy shifts the stem cell EUN to the stem cell HTN that is refractory to carcinogenesis. Data generated by the use of cDNA micro array techniques have allowed to demonstrate that while lobular development regressed after pregnancy and lactation, programmed cell death genes, DNA repair genes, chromatin remodeling, transcription factors and immune-surveillance gene transcripts all of these genes are upregulated and are part of the genomic signature of pregnancy that is associated with the preventive effect of this physiological process.
Collapse
|
19
|
Konig MF, Giles JT, Nigrovic PA, Andrade F. Antibodies to native and citrullinated RA33 (hnRNP A2/B1) challenge citrullination as the inciting principle underlying loss of tolerance in rheumatoid arthritis. Ann Rheum Dis 2016; 75:2022-2028. [PMID: 26865600 DOI: 10.1136/annrheumdis-2015-208529] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/16/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Anti-citrullinated protein antibodies (ACPAs) are the hallmark of rheumatoid arthritis (RA). Protein citrullination is believed to drive autoantigen selection in RA. Nonetheless, several autoantigens in RA are targeted as native (unmodified) proteins. Here, the study of hnRNP A2/B1 (RA33) provides a framework to understand the humoral response to native and citrullinated autoantigens in RA. METHODS RA synovial fluid (SF) cells were analysed by immunoblotting and mass spectrometry. RA33 was cloned from RASF cells and splice variants expressed as recombinant proteins. Antibodies against native and citrullinated RA33 were characterised by ELISA, immunoblotting and immunoprecipitation. RESULTS RA33 is citrullinated in the rheumatoid joint and targeted either as a citrullinated or native protein in distinct patient subsets with RA. A novel splice variant (hnRNP B1b) previously associated with disease initiation in experimental arthritis was identified in the RA joint and acts as the major target of the anti-RA33 response. Antibodies exclusively targeting citrullinated RA33 were positively associated with disease duration and erosive disease. In contrast, anti-(native) RA33 antibodies were detected almost exclusively in early RA and identified patients with low radiographic erosion scores. Finally, a unique subset of double-reactive patients demonstrated intermediate severity, but rapid disease progression, suggesting a transitional disease phase in the evolution of an anti-native protein antibody to ACPA response in RA. CONCLUSIONS These data suggest that native and citrullinated proteins targeted by autoantibodies in RA may be part of a single antibody system and challenge the paradigm of citrullination as the unifying principle underlying loss of tolerance in RA.
Collapse
Affiliation(s)
- Maximilian F Konig
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jon T Giles
- Division of Rheumatology, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Peter A Nigrovic
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Müller C, Schäfer I, Luhmann HJ, White R. Oligodendroglial Argonaute protein Ago2 associates with molecules of the Mbp mRNA localization machinery and is a downstream target of Fyn kinase. Front Cell Neurosci 2015; 9:328. [PMID: 26379499 PMCID: PMC4548153 DOI: 10.3389/fncel.2015.00328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/10/2015] [Indexed: 01/10/2023] Open
Abstract
Oligodendrocytes myelinate neuronal axons in the central nervous system (CNS) facilitating rapid transmission of action potentials by saltatory conduction. Myelin basic protein (MBP) is an essential component of myelin and its absence results in severe hypomyelination in the CNS of rodents. Mbp mRNA is not translated immediately after exit from the nucleus in the cytoplasm, but is transported to the plasma membrane in RNA transport granules in a translationally silenced state. We have previously identified the small non-coding RNA 715 (sncRNA715) as an inhibitor of Mbp translation associated with RNA granules. Argonaute (Ago) proteins and small RNAs form the minimal core of the RNA induced silencing complex and together recognize target mRNAs to be translationally inhibited or degraded. Recently, tyrosine phosphorylation of Ago2 was reported to be a regulator of small RNA binding. The oligodendroglial non-receptor tyrosine kinase Fyn is activated by neuronal signals and stimulates the translation of Mbp mRNA at the axon-glial contact site. Here we analyzed the expression of Ago proteins in oligodendrocytes, if they associate with Mbp mRNA transport granules and are tyrosine phosphorylated by Fyn. We show that all Ago proteins (Ago1-4) are expressed by oligodendrocytes and that Ago2 colocalizes with hnRNP A2 in granular cytoplasmic structures. Ago2 associates with hnRNP A2, Mbp mRNA, sncRNA715 and Fyn kinase and is tyrosine phosphorylated in response to Fyn activity. Our findings suggest an involvement of Ago2 in the translational regulation of Mbp. The identification of Ago proteins as Fyn targets will foster further research to understand in more molecular detail how Fyn activity regulates Mbp translation.
Collapse
Affiliation(s)
| | | | | | - Robin White
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, MainzGermany
| |
Collapse
|
21
|
Intracellular Protein Shuttling: A Mechanism Relevant for Myelin Repair in Multiple Sclerosis? Int J Mol Sci 2015; 16:15057-85. [PMID: 26151843 PMCID: PMC4519887 DOI: 10.3390/ijms160715057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 12/15/2022] Open
Abstract
A prominent feature of demyelinating diseases such as multiple sclerosis (MS) is the degeneration and loss of previously established functional myelin sheaths, which results in impaired signal propagation and axonal damage. However, at least in early disease stages, partial replacement of lost oligodendrocytes and thus remyelination occur as a result of resident oligodendroglial precursor cell (OPC) activation. These cells represent a widespread cell population within the adult central nervous system (CNS) that can differentiate into functional myelinating glial cells to restore axonal functions. Nevertheless, the spontaneous remyelination capacity in the adult CNS is inefficient because OPCs often fail to generate new oligodendrocytes due to the lack of stimulatory cues and the presence of inhibitory factors. Recent studies have provided evidence that regulated intracellular protein shuttling is functionally involved in oligodendroglial differentiation and remyelination activities. In this review we shed light on the role of the subcellular localization of differentiation-associated factors within oligodendroglial cells and show that regulation of intracellular localization of regulatory factors represents a crucial process to modulate oligodendroglial maturation and myelin repair in the CNS.
Collapse
|
22
|
Du YJ, Hou YL, Hou WR. Nucleotide sequences of an important functional gene hnRNPA2/B1 from Ailuropoda melanoleuca and Ursus thibetanus mupinensis and its potential value in phylogenetic study. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2014; 33:18-30. [PMID: 24588753 DOI: 10.1080/15257770.2013.857028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cDNA fragments of hnRNPA2/B1 were cloned from the giant panda and black bear using RT-PCR method, which were, respectively, 1029bp and 1026bp in length encoding 343 and 341 amino acids. Analysis indicated the cDNA cloned from the giant panda encoded variant B1 while the cDNA cloned from black bear encoded variant A2. Analyzing the hnRNPA2B1 peptide of the giant panda and black bear, 76 glycine residues and 86 glycine residues were, respectively, found, and moreover, most glycine are concentrated in the latter halves of the hnRNPA2B1 peptides. Functional sites prediction also showed many N-myristoylation sites existed in the glycine-rich domain, which is probably related to the role of telomere maintenance. From base bias and substitution analysis, we can conclude that the ORF of hnRNPA2/B1 biased G while hated C, and transition of the third site did not achieve the level of saturation. Orthology analysis indicated that both the nucleotide sequence and the deduced amino acid sequence showed high identity to other 26 hnRNPA2/B1 sequences from mammals and nonmammals reported. These sequences were used to construct phylogenetic trees employing the NJ method with 1000 bootstrap, and the obtained tree demonstrated similar topology with the classical systematics, which suggested the potential value of hnRNPA2/B1 in phylogenetic analysis. This report will be the first step to the study function of hnRNPA2/B1 in the giant panda and black bear, and will provide a scientific basis to disease surveillance, captive breeding, and conservation of the endangered species.
Collapse
Affiliation(s)
- Yu-jie Du
- a Biochemical Department , Basic Education College of Zhanjiang Normal University , ZhanJiang , China
| | | | | |
Collapse
|
23
|
Smith R, Rathod RJ, Rajkumar S, Kennedy D. Nervous translation, do you get the message? A review of mRNPs, mRNA-protein interactions and translational control within cells of the nervous system. Cell Mol Life Sci 2014; 71:3917-37. [PMID: 24952431 PMCID: PMC11113408 DOI: 10.1007/s00018-014-1660-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/22/2014] [Accepted: 05/30/2014] [Indexed: 01/01/2023]
Abstract
In neurons, translation of a message RNA can occur metres away from its transcriptional origin and in normal cells this is orchestrated with perfection. The life of an mRNA will see it pass through multiple steps of processing in the nucleus and the cytoplasm before it reaches its final destination. Processing of mRNA is determined by a myriad of RNA-binding proteins in multi-protein complexes called messenger ribonucleoproteins; however, incorrect processing and delivery of mRNA can cause several human neurological disorders. This review takes us through the life of mRNA from the nucleus to its point of translation in the cytoplasm. The review looks at the various cis and trans factors that act on the mRNA and discusses their roles in different cells of the nervous system and human disorders.
Collapse
Affiliation(s)
- Ross Smith
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia,
| | | | | | | |
Collapse
|
24
|
Recent applications of fluorescence correlation spectroscopy in live systems. FEBS Lett 2014; 588:3571-84. [PMID: 24726724 DOI: 10.1016/j.febslet.2014.03.056] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 03/29/2014] [Accepted: 03/31/2014] [Indexed: 11/20/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) is a widely used technique in biophysics and has helped address many questions in the life sciences. It provides important advantages compared to other fluorescence and biophysical methods. Its single molecule sensitivity allows measuring proteins within biological samples at physiological concentrations without the need of overexpression. It provides quantitative data on concentrations, diffusion coefficients, molecular transport and interactions even in live organisms. And its reliance on simple fluorescence intensity and its fluctuations makes it widely applicable. In this review we focus on applications of FCS in live samples, with an emphasis on work in the last 5 years, in the hope to provide an overview of the present capabilities of FCS to address biologically relevant questions.
Collapse
|
25
|
Barton M, Santucci-Pereira J, Russo J. Molecular pathways involved in pregnancy-induced prevention against breast cancer. Front Endocrinol (Lausanne) 2014; 5:213. [PMID: 25540638 PMCID: PMC4261797 DOI: 10.3389/fendo.2014.00213] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/25/2014] [Indexed: 12/18/2022] Open
Abstract
Pregnancy produces a protective effect against breast cancer in women who had their first full term pregnancy (FTP) in their middle twenties. The later in life the first delivery occurs, the higher the risk of breast cancer development. Also, transiently during the postpartum period, the risk of developing breast cancer increases. This transient increased risk is taken over by a long-lasting protective period. The genomic profile of parous women has shown pregnancy induces a long-lasting "genomic signature" that explains the preventive effect on breast cancer. This signature reveals that chromatin remodeling is the driver of the differentiation process conferred by FTP. The chromatin remodeling process may be the ultimate step mediating the protection of the breast against developing breast cancer in post-menopausal years.
Collapse
Affiliation(s)
- Maria Barton
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Julia Santucci-Pereira
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Jose Russo
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
- *Correspondence: Jose Russo, The Irma H Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, 333 Cottman Avenue, Room P2037, Philadelphia, PA 19111, USA e-mail:
| |
Collapse
|
26
|
Friend LR, Landsberg MJ, Nouwens AS, Wei Y, Rothnagel JA, Smith R. Arginine methylation of hnRNP A2 does not directly govern its subcellular localization. PLoS One 2013; 8:e75669. [PMID: 24098712 PMCID: PMC3787039 DOI: 10.1371/journal.pone.0075669] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 08/16/2013] [Indexed: 11/18/2022] Open
Abstract
The hnRNP A/B paralogs A1, A2/B1 and A3 are key components of the nuclear 40S hnRNP core particles. Despite a high degree of sequence similarity, increasing evidence suggests they perform additional, functionally distinct roles in RNA metabolism. Here we identify and study the functional consequences of differential post-translational modification of hnRNPs A1, A2 and A3. We show that while arginine residues in the RGG box domain of hnRNP A1 and A3 are almost exhaustively, asymmetrically dimethylated, hnRNP A2 is dimethylated at only a single residue (Arg-254) and this modification is conserved across cell types. It has been suggested that arginine methylation regulates the nucleocytoplasmic distribution of hnRNP A/B proteins. However, we show that transfected cells expressing an A2R254A point mutant exhibit no difference in subcellular localization. Similarly, immunostaining and mass spectrometry of endogenous hnRNP A2 in transformed cells reveals a naturally-occurring pool of unmethylated protein but an exclusively nuclear pattern of localization. Our results suggest an alternative role for post-translational arginine methylation of hnRNPs and offer further evidence that the hnRNP A/B paralogs are not functionally redundant.
Collapse
Affiliation(s)
- Lexie R. Friend
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Michael J. Landsberg
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Amanda S. Nouwens
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Ying Wei
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Joseph A. Rothnagel
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Ross Smith
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
- * E-mail:
| |
Collapse
|
27
|
Müller C, Bauer NM, Schäfer I, White R. Making myelin basic protein -from mRNA transport to localized translation. Front Cell Neurosci 2013; 7:169. [PMID: 24098271 PMCID: PMC3784684 DOI: 10.3389/fncel.2013.00169] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/10/2013] [Indexed: 01/19/2023] Open
Abstract
In the central nervous system (CNS) of most vertebrates, oligodendrocytes enwrap neuronal axons with extensions of their plasma membrane to form the myelin sheath. Several proteins are characteristically found in myelin of which myelin basic protein (MBP) is the second most abundant one after proteolipid protein. The lack of functional MBP in rodents results in a severe hypomyelinated phenotype in the CNS demonstrating its importance for myelin synthesis. Mbp mRNA is transported from the nucleus to the plasma membrane and is translated locally at the axon-glial contact site. Axonal properties such as diameter or electrical activity influence the degree of myelination. As oligodendrocytes can myelinate many axonal segments with varying properties, localized MBP translation represents an important part of a rapid and axon-tailored synthesis machinery. MBP's ability to compact cellular membranes may be problematic for the integrity of intracellular membranous organelles and can also explain why MBP is transported in oligodendrocytes in the form of an mRNA rather than as a protein. Here we review the recent findings regarding intracellular transport and signaling mechanisms leading to localized translation of Mbp mRNA in oligodendrocytes. More detailed insights into the MBP synthesis pathway are important for a better understanding of the myelination process and may foster the development of remyelination therapies for demyelinating diseases.
Collapse
Affiliation(s)
- Christina Müller
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | | | | | | |
Collapse
|
28
|
Barbarese E, Ifrim MF, Hsieh L, Guo C, Tatavarty V, Maggipinto MJ, Korza G, Tutolo JW, Giampetruzzi A, Le H, Ma XM, Levine E, Bishop B, Kim DO, Kuwada S, Carson JH. Conditional knockout of tumor overexpressed gene in mouse neurons affects RNA granule assembly, granule translation, LTP and short term habituation. PLoS One 2013; 8:e69989. [PMID: 23936366 PMCID: PMC3735573 DOI: 10.1371/journal.pone.0069989] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/14/2013] [Indexed: 12/20/2022] Open
Abstract
In neurons, specific RNAs are assembled into granules, which are translated in dendrites, however the functional consequences of granule assembly are not known. Tumor overexpressed gene (TOG) is a granule-associated protein containing multiple binding sites for heterogeneous nuclear ribonucleoprotein (hnRNP) A2, another granule component that recognizes cis-acting sequences called hnRNP A2 response elements (A2REs) present in several granule RNAs. Translation in granules is sporadic, which is believed to reflect monosomal translation, with occasional bursts, which are believed to reflect polysomal translation. In this study, TOG expression was conditionally knocked out (TOG cKO) in mouse hippocampal neurons using cre/lox technology. In TOG cKO cultured neurons granule assembly and bursty translation of activity-regulated cytoskeletal associated (ARC) mRNA, an A2RE RNA, are disrupted. In TOG cKO brain slices synaptic sensitivity and long term potentiation (LTP) are reduced. TOG cKO mice exhibit hyperactivity, perseveration and impaired short term habituation. These results suggest that in hippocampal neurons TOG is required for granule assembly, granule translation and synaptic plasticity, and affects behavior.
Collapse
Affiliation(s)
- Elisa Barbarese
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shorter J, Taylor JP. Disease mutations in the prion-like domains of hnRNPA1 and hnRNPA2/B1 introduce potent steric zippers that drive excess RNP granule assembly. Rare Dis 2013; 1:e25200. [PMID: 25002999 PMCID: PMC3932941 DOI: 10.4161/rdis.25200] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/14/2013] [Accepted: 05/28/2013] [Indexed: 12/12/2022] Open
Abstract
Approximately 1% of human proteins harbor a prion-like domain (PrLD) of similar low complexity sequence and amino acid composition to domains that drive prionogenesis of yeast proteins like Sup35. PrLDs are over-represented in human RNA-binding proteins and mediate phase transitions underpinning RNP granule assembly. This modality renders PrLDs prone to misfold into conformers that accrue in pathological inclusions that characterize various fatal neurodegenerative diseases. For example, TDP-43 and FUS form cytoplasmic inclusions in amyotrophic lateral sclerosis (ALS) and mutations in TDP-43 and FUS can cause ALS. Here, we review our recent discovery of discrete missense mutations that alter a conserved gatekeeper aspartate residue in the PrLDs of hnRNPA2/B1 and hnRNPA1 and cause multisystem proteinopathy and ALS. The missense mutations generate potent steric zippers in the PrLDs, which enhance a natural propensity to form self-templating fibrils, promote recruitment to stress granules and drive cytoplasmic inclusion formation. PrLDs occur in ~250 human proteins and could contribute directly to the etiology of various degenerative disorders.
Collapse
Affiliation(s)
- James Shorter
- Department of Biochemistry and Biophysics; Perelman School of Medicine at The University of Pennsylvania; Philadelphia, PA USA
| | - J Paul Taylor
- Department of Developmental Neurobiology; St Jude Children's Research Hospital; Memphis, TN USA
| |
Collapse
|
30
|
Soreq L, Salomonis N, Bronstein M, Greenberg DS, Israel Z, Bergman H, Soreq H. Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced splicing changes that classify brain region transcriptomes. Front Mol Neurosci 2013; 6:10. [PMID: 23717260 PMCID: PMC3652308 DOI: 10.3389/fnmol.2013.00010] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/16/2013] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are key post transcriptional regulators of their multiple target genes. However, the detailed profile of miRNA expression in Parkinson's disease, the second most common neurodegenerative disease worldwide and the first motor disorder has not been charted yet. Here, we report comprehensive miRNA profiling by next-generation small-RNA sequencing, combined with targets inspection by splice-junction and exon arrays interrogating leukocyte RNA in Parkinson's disease patients before and after deep brain stimulation (DBS) treatment and of matched healthy control volunteers (HC). RNA-Seq analysis identified 254 miRNAs and 79 passenger strand forms as expressed in blood leukocytes, 16 of which were modified in patients pre-treatment as compared to HC. 11 miRNAs were modified following brain stimulation 5 of which were changed inversely to the disease induced changes. Stimulation cessation further induced changes in 11 miRNAs. Transcript isoform abundance analysis yielded 332 changed isoforms in patients compared to HC, which classified brain transcriptomes of 47 PD and control independent microarrays. Functional enrichment analysis highlighted mitochondrion organization. DBS induced 155 splice changes, enriched in ubiquitin homeostasis. Cellular composition analysis revealed immune cell activity pre and post treatment. Overall, 217 disease and 74 treatment alternative isoforms were predictably targeted by modified miRNAs within both 3′ and 5′ untranslated ends and coding sequence sites. The stimulation-induced network sustained 4 miRNAs and 7 transcripts of the disease network. We believe that the presented dynamic networks provide a novel avenue for identifying disease and treatment-related therapeutic targets. Furthermore, the identification of these networks is a major step forward in the road for understanding the molecular basis for neurological and neurodegenerative diseases and assessment of the impact of brain stimulation on human diseases.
Collapse
Affiliation(s)
- Lilach Soreq
- Department of Medical Neurobiology, Hadassah Faculty of Medicine, The Hebrew University of Jerusalem Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
31
|
Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. Function of alternative splicing. Gene 2013; 514:1-30. [PMID: 22909801 PMCID: PMC5632952 DOI: 10.1016/j.gene.2012.07.083] [Citation(s) in RCA: 515] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 12/15/2022]
Abstract
Almost all polymerase II transcripts undergo alternative pre-mRNA splicing. Here, we review the functions of alternative splicing events that have been experimentally determined. The overall function of alternative splicing is to increase the diversity of mRNAs expressed from the genome. Alternative splicing changes proteins encoded by mRNAs, which has profound functional effects. Experimental analysis of these protein isoforms showed that alternative splicing regulates binding between proteins, between proteins and nucleic acids as well as between proteins and membranes. Alternative splicing regulates the localization of proteins, their enzymatic properties and their interaction with ligands. In most cases, changes caused by individual splicing isoforms are small. However, cells typically coordinate numerous changes in 'splicing programs', which can have strong effects on cell proliferation, cell survival and properties of the nervous system. Due to its widespread usage and molecular versatility, alternative splicing emerges as a central element in gene regulation that interferes with almost every biological function analyzed.
Collapse
Affiliation(s)
- Olga Kelemen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Paolo Convertini
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhaiyi Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yuan Wen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Manli Shen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Marina Falaleeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
32
|
Bekenstein U, Soreq H. Heterogeneous nuclear ribonucleoprotein A1 in health and neurodegenerative disease: from structural insights to post-transcriptional regulatory roles. Mol Cell Neurosci 2012; 56:436-46. [PMID: 23247072 DOI: 10.1016/j.mcn.2012.12.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/02/2012] [Accepted: 12/06/2012] [Indexed: 12/14/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a family of conserved nuclear proteins that associate with nascent RNA polymerase II transcripts to yield hnRNP particles, playing key roles in mRNA metabolism, DNA-related functions and microRNA biogenesis. HnRNPs accompany transcripts from stages of transcriptional regulation through splicing and post-transcriptional regulation, and are believed to affect the majority of expressed genes in mammals. Most hnRNP mRNA transcripts undergo alternative splicing and post-translational modifications, to yield a remarkable diversity of proteins with numerous functional elements that work in concert in their multiple functions. Therefore, mis-regulation of hnRNPs leads to different maladies. Here, we focus on the role of one of the best-known members of this protein family, hnRNP A1 in RNA metabolism, and address recent works that note its multileveled involvement in several neurodegenerative disorders. Initially discovered as a DNA binding protein, hnRNP A1 includes two RNA recognition motifs, and post-translational modifications of these and other regions in this multifunctional protein alter both its nuclear pore shuttling properties and its RNA interactions and affect transcription, mRNA splicing and microRNA biogenesis. HnRNP A1 plays several key roles in neuronal functioning and its depletion, either due to debilitated cholinergic neurotransmission or under autoimmune reactions causes drastic changes in RNA metabolism. Consequently, hnRNP A1 decline contributes to the severity of symptoms in several neurodegenerative diseases, including Alzheimer's disease (AD), spinal muscular atrophy (SMA), fronto-temporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), hereditary spastic paraparesis (HSP) and HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP). At the translational level, these properties of hnRNP A1 led to massive research efforts aimed at developing RNA-targeted therapeutic tools such as splicing-modulating oligonucleotides with promising pharmaceutical potential. HnRNP A1 thus presents an intriguing example for the complexity and importance of heteronuclear ribonucleoproteins in health and disease. This article is part of a Special Issue entitled 'RNA and splicing regulation in neurodegeneration'.
Collapse
Affiliation(s)
- Uriya Bekenstein
- Dept of Biological Chemistry, The Life Sciences Institute and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, 91904, Israel
| | | |
Collapse
|
33
|
Identification in the rat brain of a set of nuclear proteins interacting with H1° mRNA. Neuroscience 2012; 229:71-6. [PMID: 23159318 DOI: 10.1016/j.neuroscience.2012.10.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/12/2012] [Accepted: 10/23/2012] [Indexed: 12/19/2022]
Abstract
Synthesis of H1° histone, in the developing rat brain, is also regulated at post-transcriptional level. Regulation of RNA metabolism depends on a series of RNA-binding proteins (RBPs); therefore, we searched for H1° mRNA-interacting proteins. With this aim, we used in vitro transcribed, biotinylated H1° RNA as bait to isolate, by a chromatographic approach, proteins which interact with this mRNA, in the nuclei of brain cells. Abundant RBPs, such as heterogeneous nuclear ribonucleoprotein (hnRNP) K and hnRNP A1, and molecular chaperones (heat shock cognate 70, Hsc70) were identified by mass spectrometry. Western blot analysis also revealed the presence of cold shock domain-containing protein 2 (CSD-C2, also known as PIPPin), a brain-enriched RBP previously described in our laboratory. Co-immunoprecipitation assays were performed to investigate the possibility that identified proteins interact with each other and with other nuclear proteins. We found that hnRNP K interacts with both hnRNP A1 and Hsc70 whereas there is no interaction between hnRNP A1 and Hsc70. Moreover, CSD-C2 interacts with hnRNP A1, Y box-binding protein 1 (YB-1), and hnRNP K. We also have indications that CSD-C2 interacts with Hsc70. Overall, we have contributed to the molecular characterization of a ribonucleoprotein particle possibly controlling H1° histone expression in the brain.
Collapse
|
34
|
Peri S, de Cicco RL, Santucci-Pereira J, Slifker M, Ross EA, Russo IH, Russo PA, Arslan AA, Belitskaya-Lévy I, Zeleniuch-Jacquotte A, Bordas P, Lenner P, Åhman J, Afanasyeva Y, Johansson R, Sheriff F, Hallmans G, Toniolo P, Russo J. Defining the genomic signature of the parous breast. BMC Med Genomics 2012; 5:46. [PMID: 23057841 PMCID: PMC3487939 DOI: 10.1186/1755-8794-5-46] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 09/19/2012] [Indexed: 11/10/2022] Open
Abstract
Background It is accepted that a woman's lifetime risk of developing breast cancer after menopause is reduced by early full term pregnancy and multiparity. This phenomenon is thought to be associated with the development and differentiation of the breast during pregnancy. Methods In order to understand the underlying molecular mechanisms of pregnancy induced breast cancer protection, we profiled and compared the transcriptomes of normal breast tissue biopsies from 71 parous (P) and 42 nulliparous (NP) healthy postmenopausal women using Affymetrix Human Genome U133 Plus 2.0 arrays. To validate the results, we performed real time PCR and immunohistochemistry. Results We identified 305 differentially expressed probesets (208 distinct genes). Of these, 267 probesets were up- and 38 down-regulated in parous breast samples; bioinformatics analysis using gene ontology enrichment revealed that up-regulated genes in the parous breast represented biological processes involving differentiation and development, anchoring of epithelial cells to the basement membrane, hemidesmosome and cell-substrate junction assembly, mRNA and RNA metabolic processes and RNA splicing machinery. The down-regulated genes represented biological processes that comprised cell proliferation, regulation of IGF-like growth factor receptor signaling, somatic stem cell maintenance, muscle cell differentiation and apoptosis. Conclusions This study suggests that the differentiation of the breast imprints a genomic signature that is centered in the mRNA processing reactome. These findings indicate that pregnancy may induce a safeguard mechanism at post-transcriptional level that maintains the fidelity of the transcriptional process.
Collapse
Affiliation(s)
- Suraj Peri
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Brazão TF, Demmers J, van IJcken W, Strouboulis J, Fornerod M, Romão L, Grosveld FG. A new function of ROD1 in nonsense-mediated mRNA decay. FEBS Lett 2012; 586:1101-10. [PMID: 22575643 DOI: 10.1016/j.febslet.2012.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/06/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
RNA-binding proteins play a crucial role in the post-transcriptional regulation of gene expression. Polypyrimidine tract binding protein (PTB in humans) has been extensively characterized as an important splicing factor, and has additional functions in 3' end processing and translation. ROD1 is a PTB paralog containing four RRM (RNA recognition motif) domains. Here, we discover a function of ROD1 in nonsense-mediated mRNA decay (NMD). We show that ROD1 and the core NMD factor UPF1 interact and co-regulate an extensive number of target genes. Using a reporter system, we demonstrate that ROD1, similarly to UPF1 and UPF2, is required for the destabilization of a known NMD substrate. Finally, we show through RIP-seq that ROD1 and UPF1 associate with a significant number of common transcripts.
Collapse
Affiliation(s)
- T F Brazão
- Department of Cell Biology & Genetics, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
36
|
Russo J, Santucci-Pereira J, de Cicco RL, Sheriff F, Russo PA, Peri S, Slifker M, Ross E, Mello MLS, Vidal BC, Belitskaya-Lévy I, Arslan A, Zeleniuch-Jacquotte A, Bordas P, Lenner P, Ahman J, Afanasyeva Y, Hallmans G, Toniolo P, Russo IH. Pregnancy-induced chromatin remodeling in the breast of postmenopausal women. Int J Cancer 2012; 131:1059-70. [PMID: 22025034 DOI: 10.1002/ijc.27323] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 09/22/2011] [Indexed: 01/12/2023]
Abstract
Early pregnancy and multiparity are known to reduce the risk of women to develop breast cancer at menopause. Based on the knowledge that the differentiation of the breast induced by the hormones of pregnancy plays a major role in this protection, this work was performed with the purpose of identifying what differentiation-associated molecular changes persist in the breast until menopause. Core needle biopsies (CNB) obtained from the breast of 42 nulliparous (NP) and 71 parous (P) postmenopausal women were analyzed in morphology, immunocytochemistry and gene expression. Whereas in the NP breast, nuclei of epithelial cells were large and euchromatic, in the P breast they were small and hyperchromatic, showing strong methylation of histone 3 at lysine 9 and 27. Transcriptomic analysis performed using Affymetrix HG_U133 oligonucleotide arrays revealed that in CNB of the P breast, there were 267 upregulated probesets that comprised genes controlling chromatin organization, transcription regulation, splicing machinery, mRNA processing and noncoding elements including XIST. We concluded that the differentiation process induced by pregnancy is centered in chromatin remodeling and in the mRNA processing reactome, both of which emerge as important regulatory pathways. These are indicative of a safeguard step that maintains the fidelity of the transcription process, becoming the ultimate mechanism mediating the protection of the breast conferred by full-term pregnancy.
Collapse
Affiliation(s)
- Jose Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Roig B, Moyano S, Martorell L, Costas J, Vilella E. The discoidin domain receptor 1 gene has a functional A2RE sequence. J Neurochem 2011; 120:408-18. [PMID: 22077590 DOI: 10.1111/j.1471-4159.2011.07580.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Discoidin domain receptor 1 (DDR1) is expressed in myelin oligodendrocytes and co-localizes with myelin basic protein (MBP). Alternative splicing of DDR1 generates five isoforms designated DDR1a-e. The MBP mRNA contains an hnRNP A2 response element (A2RE) sequence that is recognized by heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1, which is responsible for transport of the MBP mRNA to oligodendrocyte processes. We hypothesized that DDR1 could have a functional A2RE sequence. By in silico analysis, we identified an A2RE-like sequence in the human DDR1 mRNA. We observed nuclear and dendrite cytoplasmic immunofluorescence, indicating that DDR1 and hnRNP A2/B1 co-localize in human oligodendrocytes and in differentiated HOG16 cells. The A2RE-like sequence of DDR1 contains the single nucleotide polymorphism rs2267641, and we found that in the human brain, the minor allele is associated with lower and higher levels DDR1b and DDR1c mRNA expression, respectively. Moreover, a positive correlation between DDR1c and the myelin genes myelin-associated glycoprotein and oligodendrocyte lineage transcription factor 2 was found. Differentiated HOG16 cells transfected with an hnRNP A2/B1 siRNA simultaneously show a decrease and an increase in the DDR1c and DDR1b mRNA expression levels, respectively, which was accompanied by a decrease in DDR1 protein levels at the cytoplasmic edges. These results suggest that the DDR1 A2RE sequence is functionally involved in the hnRNP A2/B1-mediated splicing and transport of the DDR1c mRNA.
Collapse
Affiliation(s)
- Barbara Roig
- Hospital Universitari Psiquiàtric Institut Pere Mata, IISPV, Universitat Rovira i Virgili, Reus, Spain.
| | | | | | | | | |
Collapse
|
38
|
White R, Gonsior C, Bauer NM, Krämer-Albers EM, Luhmann HJ, Trotter J. Heterogeneous nuclear ribonucleoprotein (hnRNP) F is a novel component of oligodendroglial RNA transport granules contributing to regulation of myelin basic protein (MBP) synthesis. J Biol Chem 2011; 287:1742-54. [PMID: 22128153 DOI: 10.1074/jbc.m111.235010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Myelin basic protein (MBP) is a major component of central nervous system (CNS) myelin. The absence of MBP results in the loss of almost all compact myelin in the CNS. MBP mRNA is sorted into RNA granules that are transported to the periphery of oligodendrocytes in a translationally inactive state. A central mediator of this transport process is the trans-acting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 that binds to the cis-acting A2-response element in the 3'UTR of MBP mRNA. Recently, we found that activation of the Src family nonreceptor tyrosine kinase Fyn in oligodendrocytes leads to phosphorylation of hnRNP A2 and to increased translation of MBP mRNA. Here, we identify the RNA-binding protein hnRNP F as a novel component of MBP mRNA transport granules. It is associated with hnRNP A2 and MBP mRNA in cytoplasmic granular structures and is involved in post-transcriptional regulation of MBP expression. Fyn kinase activity results in phosphorylation of hnRNP F in the cytoplasm and its release from MBP mRNA and RNA granules. Our results define hnRNP F as a regulatory element of MBP expression in oligodendrocytes and imply an important function of hnRNP F in the control of myelin synthesis.
Collapse
Affiliation(s)
- Robin White
- Department of Biology, Molecular Cell Biology, Johannes Gutenberg University of Mainz, Bentzelweg 3, 55128 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Heterogeneous nuclear ribonucleoprotein A2 participates in the replication of Japanese encephalitis virus through an interaction with viral proteins and RNA. J Virol 2011; 85:10976-88. [PMID: 21865391 DOI: 10.1128/jvi.00846-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that is kept in a zoonotic transmission cycle between pigs and mosquitoes. JEV causes infection of the central nervous system with a high mortality rate in dead-end hosts, including humans. Many studies have suggested that the flavivirus core protein is not only a component of nucleocapsids but also an important pathogenic determinant. In this study, we identified heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2) as a binding partner of the JEV core protein by pulldown purification and mass spectrometry. Reciprocal coimmunoprecipitation analyses in transfected and infected cells confirmed a specific interaction between the JEV core protein and hnRNP A2. Expression of the JEV core protein induced cytoplasmic retention of hnRNP A2 in JEV subgenomic replicon cells. Small interfering RNA (siRNA)-mediated knockdown of hnRNP A2 resulted in a 90% reduction of viral RNA replication in cells infected with JEV, and the reduction was cancelled by the expression of an siRNA-resistant hnRNP A2 mutant. In addition to the core protein, hnRNP A2 also associated with JEV nonstructural protein 5, which has both methyltransferase and RNA-dependent RNA polymerase activities, and with the 5'-untranslated region of the negative-sense JEV RNA. During one-step growth, synthesis of both positive- and negative-strand JEV RNAs was delayed by the knockdown of hnRNP A2. These results suggest that hnRNP A2 plays an important role in the replication of JEV RNA through the interaction with viral proteins and RNA.
Collapse
|
40
|
Abstract
The hnRNPs (heterogeneous nuclear ribonucleoproteins) are RNA-binding proteins with important roles in multiple aspects of nucleic acid metabolism, including the packaging of nascent transcripts, alternative splicing and translational regulation. Although they share some general characteristics, they vary greatly in terms of their domain composition and functional properties. Although the traditional grouping of the hnRNPs as a collection of proteins provided a practical framework, which has guided much of the research on them, this approach is becoming increasingly incompatible with current knowledge about their structural and functional divergence. Hence, we review the current literature to examine hnRNP diversity, and discuss how this impacts upon approaches to the classification of RNA-binding proteins in general.
Collapse
|
41
|
Han SP, Kassahn KS, Skarshewski A, Ragan MA, Rothnagel JA, Smith R. Functional implications of the emergence of alternative splicing in hnRNP A/B transcripts. RNA (NEW YORK, N.Y.) 2010; 16:1760-1768. [PMID: 20651029 PMCID: PMC2924535 DOI: 10.1261/rna.2142810] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 06/03/2010] [Indexed: 05/29/2023]
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNPs) A/B are a family of RNA-binding proteins that participate in various aspects of nucleic acid metabolism, including mRNA trafficking, telomere maintenance, and splicing. They are both regulators and targets of alternative splicing, and the patterns of alternative splicing of their transcripts have diverged between paralogs and between orthologs in different species. Surprisingly, the extent of this splicing variation and its implications for post-transcriptional regulation have remained largely unexplored. Here, we conducted a detailed analysis of hnRNP A/B sequences and expression patterns across six vertebrates. Alternative exons emerged via the introduction of new splice sites, changes in the strengths of existing splice sites, and the accumulation of auxiliary splicing regulatory motifs. Observed isoform expression patterns could be attributed to the frequency and strength of cis-elements. We found a trend toward increased splicing variation in mammals and identified novel alternatively spliced isoforms in human and chicken. Pulldown and translational assays demonstrated that the inclusion of alternative exons altered the affinity of hnRNP A/B proteins for their cognate nucleic acids and modified protein expression levels. As the hnRNPs A/B regulate several key steps in mRNA processing, the involvement of diverse hnRNP isoforms in multiple cellular contexts and species implies concomitant differences in the transcriptional output of these systems. We conclude that the emergence of alternative splicing in the hnRNPs A/B has contributed to the diversification of their roles in the regulation of alternative splicing and has thus added an unexpected layer of regulatory complexity to transcription in vertebrates.
Collapse
Affiliation(s)
- Siew Ping Han
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|