1
|
Park S, Noblett N, Pitts L, Colavita A, Wehman AM, Jin Y, Chisholm AD. Dopey-dependent regulation of extracellular vesicles maintains neuronal morphology. Curr Biol 2024; 34:4920-4933.e11. [PMID: 39378880 PMCID: PMC11537831 DOI: 10.1016/j.cub.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
Mature neurons maintain their distinctive morphology for extended periods in adult life. Compared to developmental neurite outgrowth, axon guidance, and target selection, relatively little is known of mechanisms that maintain the morphology of mature neurons. Loss of function in C. elegans dip-2, a member of the conserved lipid metabolic regulator Dip2 family, results in progressive overgrowth of neurites in adults. We find that dip-2 mutants display specific genetic interactions with sax-2, the C. elegans ortholog of Drosophila Furry and mammalian FRY. Combined loss of dip-2 and sax-2 results in failure to maintain neuronal morphology and elevated release of neuronal extracellular vesicles (EVs). By screening for suppressors of dip-2(0) sax-2(0) double mutant defects, we identified gain-of-function (gf) mutations in the conserved Dopey family protein PAD-1 and its associated phospholipid flippase TAT-5/ATP9A that restore normal neuronal morphology and normal levels of EV release to dip-2(0) sax-2(0) double mutants. Neuron-specific knockdown suggests that PAD-1(gf) can act cell autonomously in neurons. PAD-1(gf) displays increased association with the plasma membrane in oocytes and inhibits EV release in multiple cell types. Our findings uncover a novel functional network of DIP-2, SAX-2, PAD-1, and TAT-5 that maintains neuronal morphology and modulates EV release.
Collapse
Affiliation(s)
- Seungmee Park
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathaniel Noblett
- Neuroscience Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Lauren Pitts
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Antonio Colavita
- Neuroscience Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Andrew D Chisholm
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Wang J, Barr MM, Wehman AM. Extracellular vesicles. Genetics 2024; 227:iyae088. [PMID: 38884207 PMCID: PMC11304975 DOI: 10.1093/genetics/iyae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Extracellular vesicles (EVs) encompass a diverse array of membrane-bound organelles released outside cells in response to developmental and physiological cell needs. EVs play important roles in remodeling the shape and content of differentiating cells and can rescue damaged cells from toxic or dysfunctional content. EVs can send signals and transfer metabolites between tissues and organisms to regulate development, respond to stress or tissue damage, or alter mating behaviors. While many EV functions have been uncovered by characterizing ex vivo EVs isolated from body fluids and cultured cells, research using the nematode Caenorhabditis elegans has provided insights into the in vivo functions, biogenesis, and uptake pathways. The C. elegans EV field has also developed methods to analyze endogenous EVs within the organismal context of development and adult physiology in free-living, behaving animals. In this review, we summarize major themes that have emerged for C. elegans EVs and their relevance to human health and disease. We also highlight the diversity of biogenesis mechanisms, locations, and functions of worm EVs and discuss open questions and unexplored topics tenable in C. elegans, given the nematode model is ideal for light and electron microscopy, genetic screens, genome engineering, and high-throughput omics.
Collapse
Affiliation(s)
- Juan Wang
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Maureen M Barr
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| |
Collapse
|
3
|
Park S, Noblett N, Pitts L, Colavita A, Wehman AM, Jin Y, Chisholm AD. Dopey-dependent regulation of extracellular vesicles maintains neuronal morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.591898. [PMID: 38766017 PMCID: PMC11100700 DOI: 10.1101/2024.05.07.591898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Mature neurons maintain their distinctive morphology for extended periods in adult life. Compared to developmental neurite outgrowth, axon guidance, and target selection, relatively little is known of mechanisms that maintain mature neuron morphology. Loss of function in C. elegans DIP-2, a member of the conserved lipid metabolic regulator Dip2 family, results in progressive overgrowth of neurites in adults. We find that dip-2 mutants display specific genetic interactions with sax-2, the C. elegans ortholog of Drosophila Furry and mammalian FRY. Combined loss of DIP-2 and SAX-2 results in severe disruption of neuronal morphology maintenance accompanied by increased release of neuronal extracellular vesicles (EVs). By screening for suppressors of dip-2 sax-2 double mutant defects we identified gain-of-function (gf) mutations in the conserved Dopey family protein PAD-1 and its associated phospholipid flippase TAT-5/ATP9A. In dip-2 sax-2 double mutants carrying either pad-1(gf) or tat-5(gf) mutation, EV release is reduced and neuronal morphology across multiple neuron types is restored to largely normal. PAD-1(gf) acts cell autonomously in neurons. The domain containing pad-1(gf) is essential for PAD-1 function, and PAD-1(gf) protein displays increased association with the plasma membrane and inhibits EV release. Our findings uncover a novel functional network of DIP-2, SAX-2, PAD-1, and TAT-5 that maintains morphology of neurons and other types of cells, shedding light on the mechanistic basis of neurological disorders involving human orthologs of these genes.
Collapse
Affiliation(s)
- Seungmee Park
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Nathaniel Noblett
- Neuroscience Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Lauren Pitts
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Antonio Colavita
- Neuroscience Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Palmgren M. P-type ATPases: Many more enigmas left to solve. J Biol Chem 2023; 299:105352. [PMID: 37838176 PMCID: PMC10654040 DOI: 10.1016/j.jbc.2023.105352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023] Open
Abstract
P-type ATPases constitute a large ancient super-family of primary active pumps that have diverse substrate specificities ranging from H+ to phospholipids. The significance of these enzymes in biology cannot be overstated. They are structurally related, and their catalytic cycles alternate between high- and low-affinity conformations that are induced by phosphorylation and dephosphorylation of a conserved aspartate residue. In the year 1988, all P-type sequences available by then were analyzed and five major families, P1 to P5, were identified. Since then, a large body of knowledge has accumulated concerning the structure, function, and physiological roles of members of these families, but only one additional family, P6 ATPases, has been identified. However, much is still left to be learned. For each family a few remaining enigmas are presented, with the intention that they will stimulate interest in continued research in the field. The review is by no way comprehensive and merely presents personal views with a focus on evolution.
Collapse
Affiliation(s)
- Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
5
|
Kriegenburg F, Huiting W, van Buuren-Broek F, Zwilling E, Hardenberg R, Mari M, Kraft C, Reggiori F. The lipid flippase Drs2 regulates anterograde transport of Atg9 during autophagy. AUTOPHAGY REPORTS 2022; 1:345-367. [PMID: 38106996 PMCID: PMC7615381 DOI: 10.1080/27694127.2022.2104781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Macroautophagy/autophagy is a conserved catabolic pathway during which cellular material is sequestered within newly formed double-membrane vesicles called autophagosomes and delivered to the lytic compartment of eukaryotic cells for degradation. Autophagosome biogenesis depends on the core autophagy-related (Atg) machinery, and involves a massive supply and remodelling of membranes. To gain insight into the lipid remodelling mechanisms during autophagy, we have systematically investigated whether lipid flippases are required for this pathway in the yeast Saccharomyces cerevisiae. We found that the flippase Drs2, which transfers phosphatidylserine and phosphatidylethanolamine from the lumenal to the cytosolic leaflet of the limiting membrane at the trans-Golgi network, is required for normal progression of autophagy. We also show that Drs2 is important for the trafficking of the core Atg protein Atg9. Atg9 is a transmembrane protein important for autophagosome biogenesis and its anterograde transport from its post-Golgi reservoirs to the site of autophagosome formation is severely impaired in the absence of Drs2. Thus, our results identify a novel autophagy player and highlight that membrane asymmetry regulates early autophagy steps.
Collapse
Affiliation(s)
- Franziska Kriegenburg
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University medical Centre Groningen, 9713AV Groningen, The Netherlands
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Wouter Huiting
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University medical Centre Groningen, 9713AV Groningen, The Netherlands
| | - Fleur van Buuren-Broek
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University medical Centre Groningen, 9713AV Groningen, The Netherlands
| | - Emma Zwilling
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University medical Centre Groningen, 9713AV Groningen, The Netherlands
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark
| | - Ralph Hardenberg
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University medical Centre Groningen, 9713AV Groningen, The Netherlands
| | - Muriel Mari
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University medical Centre Groningen, 9713AV Groningen, The Netherlands
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University medical Centre Groningen, 9713AV Groningen, The Netherlands
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Molière A, Beer KB, Wehman AM. Dopey proteins are essential but overlooked regulators of membrane trafficking. J Cell Sci 2022; 135:274973. [PMID: 35388894 DOI: 10.1242/jcs.259628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Dopey family proteins play crucial roles in diverse processes from morphogenesis to neural function and are conserved from yeast to mammals. Understanding the mechanisms behind these critical functions could have major clinical significance, as dysregulation of Dopey proteins has been linked to the cognitive defects in Down syndrome, as well as neurological diseases. Dopey proteins form a complex with the non-essential GEF-like protein Mon2 and an essential lipid flippase from the P4-ATPase family. Different combinations of Dopey, Mon2 and flippases have been linked to regulating membrane remodeling, from endosomal recycling to extracellular vesicle formation, through their interactions with lipids and other membrane trafficking regulators, such as ARL1, SNX3 and the kinesin-1 light chain KLC2. Despite these important functions and their likely clinical significance, Dopey proteins remain understudied and their roles elusive. Here, we review the major scientific discoveries relating to Dopey proteins and detail key open questions regarding their function to draw attention to these fascinating enigmas.
Collapse
Affiliation(s)
- Adrian Molière
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Katharina B Beer
- Rudolf Virchow Center, Julius Maximilian University of Würzburg, D-97080, Würzburg, Germany
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.,Rudolf Virchow Center, Julius Maximilian University of Würzburg, D-97080, Würzburg, Germany
| |
Collapse
|
7
|
Bai L, Jain BK, You Q, Duan HD, Takar M, Graham TR, Li H. Structural basis of the P4B ATPase lipid flippase activity. Nat Commun 2021; 12:5963. [PMID: 34645814 PMCID: PMC8514546 DOI: 10.1038/s41467-021-26273-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
P4 ATPases are lipid flippases that are phylogenetically grouped into P4A, P4B and P4C clades. The P4A ATPases are heterodimers composed of a catalytic α-subunit and accessory β-subunit, and the structures of several heterodimeric flippases have been reported. The S. cerevisiae Neo1 and its orthologs represent the P4B ATPases, which function as monomeric flippases without a β-subunit. It has been unclear whether monomeric flippases retain the architecture and transport mechanism of the dimeric flippases. Here we report the structure of a P4B ATPase, Neo1, in its E1-ATP, E2P-transition, and E2P states. The structure reveals a conserved architecture as well as highly similar functional intermediate states relative to dimeric flippases. Consistently, structure-guided mutagenesis of residues in the proposed substrate translocation path disrupted Neo1’s ability to establish membrane asymmetry. These observations indicate that evolutionarily distant P4 ATPases use a structurally conserved mechanism for substrate transport. The P4 ATPase lipid flippases play a crucial role in membrane biogenesis. Here the authors report the structure of the monomeric P4B ATPase Neo1 in several states, clarifying the mechanism of substrate transport.
Collapse
Affiliation(s)
- Lin Bai
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Qinglong You
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - H Diessel Duan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Mehmet Takar
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
8
|
López-Marqués RL. Lipid flippases as key players in plant adaptation to their environment. NATURE PLANTS 2021; 7:1188-1199. [PMID: 34531559 DOI: 10.1038/s41477-021-00993-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Lipid flippases (P4 ATPases) are active transporters that catalyse the translocation of lipids between the two sides of the biological membranes in the secretory pathway. This activity modulates biological membrane properties, contributes to vesicle formation, and is the trigger for lipid signalling events, which makes P4 ATPases essential for eukaryotic cell survival. Plant P4 ATPases (also known as aminophospholipid ATPases (ALAs)) are crucial for plant fertility and proper development, and are involved in key adaptive responses to biotic and abiotic stress, including chilling tolerance, heat adaptation, nutrient deficiency responses and pathogen defence. While ALAs present many analogies to mammalian and yeast P4 ATPases, they also show characteristic features as the result of their independent evolution. In this Review, the main properties, roles, regulation and mechanisms of action of ALA proteins are discussed.
Collapse
Affiliation(s)
- Rosa L López-Marqués
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
9
|
The transport mechanism of P4 ATPase lipid flippases. Biochem J 2021; 477:3769-3790. [PMID: 33045059 DOI: 10.1042/bcj20200249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/02/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022]
Abstract
P4 ATPase lipid flippases are ATP-driven transporters that translocate specific lipids from the exoplasmic to the cytosolic leaflet of biological membranes, thus establishing a lipid gradient between the two leaflets that is essential for many cellular processes. While substrate specificity, subcellular and tissue-specific expression, and physiological functions have been assigned to a number of these transporters in several organisms, the mechanism of lipid transport has been a topic of intense debate in the field. The recent publication of a series of structural models based on X-ray crystallography and cryo-EM studies has provided the first glimpse into how P4 ATPases have adapted the transport mechanism used by the cation-pumping family members to accommodate a substrate that is at least an order of magnitude larger than cations.
Collapse
|
10
|
Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158581. [PMID: 31786280 DOI: 10.1016/j.bbalip.2019.158581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
The type IV P-type ATPases (P4-ATPases) thus far characterized are lipid flippases that transport specific substrates, such as phosphatidylserine (PS) and phosphatidylethanolamine (PE), from the exofacial leaflet to the cytofacial leaflet of membranes. This transport activity generates compositional asymmetry between the two leaflets important for signal transduction, cytokinesis, vesicular transport, and host-pathogen interactions. Most P4-ATPases function as a heterodimer with a β-subunit from the Cdc50 protein family, but Neo1 from Saccharomyces cerevisiae and its metazoan orthologs lack a β-subunit requirement and it is unclear how these proteins transport substrate. Here we tested if residues linked to lipid substrate recognition in other P4-ATPases also contribute to Neo1 function in budding yeast. Point mutations altering entry gate residues in the first (Q209A) and fourth (S457Q) transmembrane segments of Neo1, where phospholipid substrate would initially be selected, disrupt PS and PE membrane asymmetry, but do not perturb growth of cells. Mutation of both entry gate residues inactivates Neo1, and cells expressing this variant are inviable. We also identified a gain-of-function mutation in the second transmembrane segment of Neo1 (Neo1[Y222S]), predicted to help form the entry gate, that substantially enhances Neo1's ability to replace the function of a well characterized phospholipid flippase, Drs2, in establishing PS and PE asymmetry. These results suggest a common mechanism for substrate recognition in widely divergent P4-ATPases.
Collapse
|
11
|
Singer‐Krüger B, Fröhlich T, Franz‐Wachtel M, Nalpas N, Macek B, Jansen R. APEX2‐mediated proximity labeling resolves protein networks in
Saccharomyces cerevisiae
cells. FEBS J 2019; 287:325-344. [DOI: 10.1111/febs.15007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/18/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022]
Affiliation(s)
| | - Theresa Fröhlich
- Interfaculty Institute of Biochemistry University of Tübingen Germany
| | | | | | - Boris Macek
- Proteome Center Tübingen University of Tübingen Germany
| | - Ralf‐Peter Jansen
- Interfaculty Institute of Biochemistry University of Tübingen Germany
| |
Collapse
|
12
|
Zhao SB, Suda Y, Nakanishi H, Wang N, Yoko-O T, Gao XD, Fujita M. Yeast Dop1 is required for glycosyltransferase retrieval from the trans-Golgi network. Biochim Biophys Acta Gen Subj 2019; 1863:1147-1157. [PMID: 30981741 DOI: 10.1016/j.bbagen.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Glycosyltransferases are type II membrane proteins that are responsible for glycan modification of proteins and lipids, and localize to distinct cisternae in the Golgi apparatus. During cisternal maturation, retrograde trafficking helps maintain the steady-state localization of these enzymes in the sub-compartments of the Golgi. METHODS To understand how glycosyltransferases are recycled in the late Golgi complex, we searched for genes that are essential for budding yeast cell growth and that encode proteins localized in endosomes and in the Golgi. We specifically analyzed the roles of Dop1 and its binding partner Neo1 in retaining Golgi-resident glycosyltransferases, in the late Golgi complex. RESULTS Dop1 primarily localized to younger compartments of the trans-Golgi network (TGN) and seemed to cycle within the TGN. In contrast, Neo1, a P4-ATPase that interacts with Dop1, localized to the TGN. Abolition of DOP1 expression led to defects in the FM4-64 endocytic pathway. Dop1 and Neo1 were required for correct glycosylation of invertase, a secretory protein, at the Golgi. In DOP1-shutdown cells, Och1, a mannosyltransferase that is typically located in the cis-Golgi, mislocalized to the TGN. In addition, the function of multiple glycosyltransferases required for N- and O-glycosylation were impaired in DOP1-shutdown cells. CONCLUSIONS Our results indicate that Dop1 is involved in vesicular transport at the TGN, and is critical for retrieving glycosyltransferases from the TGN to the Golgi in yeast. GENERAL SIGNIFICANCE Golgi-resident glycosyltransferases recycling from the TGN to the Golgi is dependent on Dop1 and the P4-ATPase Neo1.
Collapse
Affiliation(s)
- Shen-Bao Zhao
- Key Laboratory of Carbohydrate Chemistry, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yasuyuki Suda
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan; Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Takehiko Yoko-O
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
13
|
Best JT, Xu P, Graham TR. Phospholipid flippases in membrane remodeling and transport carrier biogenesis. Curr Opin Cell Biol 2019; 59:8-15. [PMID: 30897446 DOI: 10.1016/j.ceb.2019.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/21/2022]
Abstract
Molecular mechanisms underlying the formation of multiple classes of transport carriers or vesicles from Golgi and endosomal membranes remain poorly understood. However, one theme that has emerged over three decades is the dramatic influence of membrane lipid remodeling on transport mechanisms. A large cohort of lipid transfer proteins, lipid transporters, and lipid modifying enzymes are linked to protein sorting, carrier formation and SNARE-mediated fusion events. Here, we focus on one type of lipid transporter, phospholipid flippases in the type IV P-type ATPase (P4-ATPase) family, and discuss recent advances in defining P4-ATPase influences on membrane remodeling and vesicular transport.
Collapse
Affiliation(s)
- Jordan T Best
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Peng Xu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
14
|
Schultzhaus Z, Cunningham GA, Mouriño-Pérez RR, Shaw BD. The phospholipid flippase DnfD localizes to late Golgi and is involved in asexual differentiation in Aspergillus nidulans. Mycologia 2019; 111:13-25. [PMID: 30699058 DOI: 10.1080/00275514.2018.1543927] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The maintenance of cell shape requires finely tuned and robust vesicle trafficking in order to provide sufficient plasma membrane materials. The hyphal cells of filamentous fungi are an extreme example of cell shape maintenance due to their ability to grow rapidly and respond to the environment while keeping a relatively consistent shape. We have previously shown that two phospholipid flippases, which regulate the asymmetry of specific phospholipids within the plasma membrane, are important for hyphal growth in Aspergillus nidulans. Here, we examine the rest of the phospholipid flippases encoded by A. nidulans by obtaining single and double deletions of all four family members, dnfA, dnfB, dnfC, and dnfD. We find that deleting dnfC does not impart a noticeable phenotype, by itself or with other deletions, but that dnfD, the homolog of the essential yeast gene neo1, is important for conidiation. dnfD deletion mutants form misshapen conidiophore vesicles that are defective in metulae formation. We localize DnfD to late Golgi equivalents, where it appears just before dissociation of this organelle. We propose that DnfD functions in a trafficking process that is specifically required for the morphological changes that take place during conidiation.
Collapse
Affiliation(s)
- Z Schultzhaus
- a Department of Plant Pathology and Microbiology , Texas A&M University , 2132 TAMU , College Station , Texas 77845.,b Center for Biomolecular Science and Engineering , Naval Research laboratory , Washington , District of Columbia 20375
| | - G A Cunningham
- a Department of Plant Pathology and Microbiology , Texas A&M University , 2132 TAMU , College Station , Texas 77845
| | - R R Mouriño-Pérez
- c Departamento de Microbiología , Centro de Investigación Científica y de Educación Superior de Ensenada , Ensenada , Baja California , México
| | - B D Shaw
- a Department of Plant Pathology and Microbiology , Texas A&M University , 2132 TAMU , College Station , Texas 77845
| |
Collapse
|
15
|
Hanadate Y, Saito-Nakano Y, Nakada-Tsukui K, Nozaki T. Identification and Characterization of the Entamoeba Histolytica Rab8a Binding Protein: A Cdc50 Homolog. Int J Mol Sci 2018; 19:ijms19123831. [PMID: 30513690 PMCID: PMC6321534 DOI: 10.3390/ijms19123831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022] Open
Abstract
Membrane traffic plays a pivotal role in virulence in the enteric protozoan parasite Entamoeba histolytica. EhRab8A small GTPase is a key regulator of membrane traffic at the endoplasmic reticulum (ER) of this protist and is involved in the transport of plasma membrane proteins. Here we identified the binding proteins of EhRab8A. The Cdc50 homolog, a non-catalytic subunit of lipid flippase, was identified as an EhRab8A binding protein candidate by affinity coimmunoprecipitation. Binding of EhRab8A to EhCdc50 was also confirmed by reciprocal immunoprecipitation and blue-native polyacrylamide gel electrophoresis, the latter of which revealed an 87 kDa complex. Indirect immunofluorescence imaging with and without Triton X100 showed that endogenous EhCdc50 localized on the surface in the absence of permeabilizing agent but was observed on the intracellular structures and overlapped with the ER marker Bip when Triton X100 was used. Overexpression of N-terminal HA-tagged EhCdc50 impaired its translocation to the plasma membrane and caused its accumulation in the ER. As reported previously in other organisms, overexpression and accumulation of Cdc50 in the ER likely inhibited surface transport and function of the plasma membrane lipid flippase P4-ATPase. Interestingly, HA-EhCdc50-expressing trophozoites gained resistance to miltefosine, which is consistent with the prediction that HA-EhCdc50 overexpression caused its accumulation in the ER and mislocalization of the unidentified lipid flippase. Similarly, EhRab8A gene silenced trophozoites showed increased resistance to miltefosine, supporting EhRab8A-dependent transport of EhCdc50. This study demonstrated for the first time that EhRab8A mediates the transport of EhCdc50 and lipid flippase P4-ATPase from the ER to the plasma membrane.
Collapse
Affiliation(s)
- Yuki Hanadate
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| |
Collapse
|
16
|
McGough IJ, de Groot REA, Jellett AP, Betist MC, Varandas KC, Danson CM, Heesom KJ, Korswagen HC, Cullen PJ. SNX3-retromer requires an evolutionary conserved MON2:DOPEY2:ATP9A complex to mediate Wntless sorting and Wnt secretion. Nat Commun 2018; 9:3737. [PMID: 30213940 PMCID: PMC6137200 DOI: 10.1038/s41467-018-06114-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/13/2018] [Indexed: 12/28/2022] Open
Abstract
Wntless transports Wnt morphogens to the cell surface and is required for Wnt secretion and morphogenic gradients formation. Recycling of endocytosed Wntless requires the sorting nexin-3 (SNX3)-retromer-dependent endosome-to-Golgi transport pathway. Here we demonstrate the essential role of SNX3-retromer assembly for Wntless transport and report that SNX3 associates with an evolutionary conserved endosome-associated membrane re-modelling complex composed of MON2, DOPEY2 and the putative aminophospholipid translocase, ATP9A. In vivo suppression of Ce-mon-2, Ce-pad-1 or Ce-tat-5 (respective MON2, DOPEY2 and ATP9A orthologues) phenocopy a loss of SNX3-retromer function, leading to enhanced lysosomal degradation of Wntless and a Wnt phenotype. Perturbed Wnt signalling is also observed upon overexpression of an ATPase-inhibited TAT-5(E246Q) mutant, suggesting a role for phospholipid flippase activity during SNX3-retromer-mediated Wntless sorting. Together, these findings provide in vitro and in vivo mechanistic details to describe SNX3-retromer-mediated transport during Wnt secretion and the formation of Wnt-morphogenic gradients.
Collapse
Affiliation(s)
- Ian J McGough
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Reinoud E A de Groot
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Adam P Jellett
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Marco C Betist
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Katherine C Varandas
- Program in Cell Biology, University of California, San Francisco, 16th Street, San Francisco, CA, 94158, USA
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Chris M Danson
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Hendrik C Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands.
| | - Peter J Cullen
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
17
|
Extracellular vesicle budding is inhibited by redundant regulators of TAT-5 flippase localization and phospholipid asymmetry. Proc Natl Acad Sci U S A 2018; 115:E1127-E1136. [PMID: 29367422 PMCID: PMC5819400 DOI: 10.1073/pnas.1714085115] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells release extracellular vesicles (EVs) that mediate intercellular communication and repair damaged membranes. Despite the pleiotropic functions of EVs in vitro, their in vivo function is debated, largely because it is unclear how to induce or inhibit their formation. In particular, the mechanisms of EV release by plasma membrane budding or ectocytosis are poorly understood. We previously showed that TAT-5 phospholipid flippase activity maintains the asymmetric localization of the lipid phosphatidylethanolamine (PE) in the plasma membrane and inhibits EV budding by ectocytosis in Caenorhabditis elegans However, no proteins that inhibit ectocytosis upstream of TAT-5 were known. Here, we identify TAT-5 regulators associated with retrograde endosomal recycling: PI3Kinase VPS-34, Beclin1 homolog BEC-1, DnaJ protein RME-8, and the uncharacterized Dopey homolog PAD-1. PI3Kinase, RME-8, and semiredundant sorting nexins are required for the plasma membrane localization of TAT-5, which is important to maintain PE asymmetry and inhibit EV release. PAD-1 does not directly regulate TAT-5 localization, but is required for the lipid flipping activity of TAT-5. PAD-1 also has roles in endosomal trafficking with the GEF-like protein MON-2, which regulates PE asymmetry and EV release redundantly with sorting nexins independent of the core retromer. Thus, in addition to uncovering redundant intracellular trafficking pathways, our study identifies additional proteins that regulate EV release. This work pinpoints TAT-5 and PE as key regulators of plasma membrane budding, further supporting the model that PE externalization drives ectocytosis.
Collapse
|
18
|
Feng L, Wang G, Hamilton EP, Xiong J, Yan G, Chen K, Chen X, Dui W, Plemens A, Khadr L, Dhanekula A, Juma M, Dang HQ, Kapler GM, Orias E, Miao W, Liu Y. A germline-limited piggyBac transposase gene is required for precise excision in Tetrahymena genome rearrangement. Nucleic Acids Res 2017; 45:9481-9502. [PMID: 28934495 PMCID: PMC5766162 DOI: 10.1093/nar/gkx652] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/15/2017] [Indexed: 12/20/2022] Open
Abstract
Developmentally programmed genome rearrangement accompanies differentiation of the silent germline micronucleus into the transcriptionally active somatic macronucleus in the ciliated protozoan Tetrahymena thermophila. Internal eliminated sequences (IES) are excised, followed by rejoining of MAC-destined sequences, while fragmentation occurs at conserved chromosome breakage sequences, generating macronuclear chromosomes. Some macronuclear chromosomes, referred to as non-maintained chromosomes (NMC), are lost soon after differentiation. Large NMC contain genes implicated in development-specific roles. One such gene encodes the domesticated piggyBac transposase TPB6, required for heterochromatin-dependent precise excision of IES residing within exons of functionally important genes. These conserved exonic IES determine alternative transcription products in the developing macronucleus; some even contain free-standing genes. Examples of precise loss of some exonic IES in the micronucleus and retention of others in the macronucleus of related species suggest an evolutionary analogy to introns. Our results reveal that germline-limited sequences can encode genes with specific expression patterns and development-related functions, which may be a recurring theme in eukaryotic organisms experiencing programmed genome rearrangement during germline to soma differentiation.
Collapse
Affiliation(s)
- Lifang Feng
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.,Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Guangying Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Eileen P Hamilton
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guanxiong Yan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao Chen
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wen Dui
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amber Plemens
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lara Khadr
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arjune Dhanekula
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mina Juma
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hung Quang Dang
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Geoffrey M Kapler
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Eduardo Orias
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yifan Liu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Cheng CY, Young JM, Lin CYG, Chao JL, Malik HS, Yao MC. The piggyBac transposon-derived genes TPB1 and TPB6 mediate essential transposon-like excision during the developmental rearrangement of key genes in Tetrahymena thermophila. Genes Dev 2017; 30:2724-2736. [PMID: 28087716 PMCID: PMC5238731 DOI: 10.1101/gad.290460.116] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/07/2016] [Indexed: 12/20/2022]
Abstract
Here, Cheng et al. present data from Tetrahymena that highlight a division of labor among ciliate piggyBac-derived genes, which carry out mutually exclusive categories of excision events mediated by either transposon-like features or RNA-directed heterochromatin. Ciliated protozoans perform extreme forms of programmed somatic DNA rearrangement during development. The model ciliate Tetrahymena thermophila removes 34% of its germline micronuclear genome from somatic macronuclei by excising thousands of internal eliminated sequences (IESs), a process that shares features with transposon excision. Indeed, piggyBac transposon-derived genes are necessary for genome-wide IES excision in both Tetrahymena (TPB2 [Tetrahymena piggyBac-like 2] and LIA5) and Paramecium tetraurelia (PiggyMac). T. thermophila has at least three other piggyBac-derived genes: TPB1, TPB6, and TPB7. Here, we show that TPB1 and TPB6 excise a small, distinct set of 12 unusual IESs that disrupt exons. TPB1-deficient cells complete mating, but their progeny exhibit slow growth, giant vacuoles, and osmotic shock sensitivity due to retention of an IES in the vacuolar gene DOP1 (Dopey domain-containing protein). Unlike most IESs, TPB1-dependent IESs have piggyBac-like terminal inverted motifs that are necessary for excision. Transposon-like excision mediated by TPB1 and TPB6 provides direct evidence for a transposon origin of not only IES excision machinery but also IESs themselves. Our study highlights a division of labor among ciliate piggyBac-derived genes, which carry out mutually exclusive categories of excision events mediated by either transposon-like features or RNA-directed heterochromatin.
Collapse
Affiliation(s)
- Chao-Yin Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Chih-Yi Gabriela Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University, Taipei 10617, Taiwan
| | - Ju-Lan Chao
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Meng-Chao Yao
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
20
|
Dalton LE, Bean BDM, Davey M, Conibear E. Quantitative high-content imaging identifies novel regulators of Neo1 trafficking at endosomes. Mol Biol Cell 2017; 28:1539-1550. [PMID: 28404745 PMCID: PMC5449152 DOI: 10.1091/mbc.e16-11-0772] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
P4-ATPases are a family of putative phospholipid flippases that regulate lipid membrane asymmetry, which is important for vesicle formation. Two yeast flippases, Drs2 and Neo1, have nonredundant functions in the recycling of the synaptobrevin-like v-SNARE Snc1 from early endosomes. Drs2 activity is needed to form vesicles and regulate its own trafficking, suggesting that flippase activity and localization are linked. However, the role of Neo1 in endosomal recycling is not well characterized. To identify novel regulators of Neo1 trafficking and activity at endosomes, we first identified mutants with impaired recycling of a Snc1-based reporter and subsequently used high-content microscopy to classify these mutants based on the localization of Neo1 or its binding partners, Mon2 and Dop1. This analysis identified a role for Arl1 in stabilizing the Mon2/Dop1 complex and uncovered a new function for Vps13 in early endosome recycling and Neo1 localization. We further showed that the cargo-selective sorting nexin Snx3 is required for Neo1 trafficking and identified an Snx3 sorting motif in the Neo1 N-terminus. Of importance, the Snx3-dependent sorting of Neo1 was required for the correct sorting of another Snx3 cargo protein, suggesting that the incorporation of Neo1 into recycling tubules may influence their formation.
Collapse
Affiliation(s)
- Lauren E Dalton
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Björn D M Bean
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
21
|
van Leeuwen J, Pons C, Mellor JC, Yamaguchi TN, Friesen H, Koschwanez J, Ušaj MM, Pechlaner M, Takar M, Ušaj M, VanderSluis B, Andrusiak K, Bansal P, Baryshnikova A, Boone CE, Cao J, Cote A, Gebbia M, Horecka G, Horecka I, Kuzmin E, Legro N, Liang W, van Lieshout N, McNee M, San Luis BJ, Shaeri F, Shuteriqi E, Sun S, Yang L, Youn JY, Yuen M, Costanzo M, Gingras AC, Aloy P, Oostenbrink C, Murray A, Graham TR, Myers CL, Andrews BJ, Roth FP, Boone C. Exploring genetic suppression interactions on a global scale. Science 2017; 354:354/6312/aag0839. [PMID: 27811238 DOI: 10.1126/science.aag0839] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/04/2016] [Indexed: 12/21/2022]
Abstract
Genetic suppression occurs when the phenotypic defects caused by a mutation in a particular gene are rescued by a mutation in a second gene. To explore the principles of genetic suppression, we examined both literature-curated and unbiased experimental data, involving systematic genetic mapping and whole-genome sequencing, to generate a large-scale suppression network among yeast genes. Most suppression pairs identified novel relationships among functionally related genes, providing new insights into the functional wiring diagram of the cell. In addition to suppressor mutations, we identified frequent secondary mutations,in a subset of genes, that likely cause a delay in the onset of stationary phase, which appears to promote their enrichment within a propagating population. These findings allow us to formulate and quantify general mechanisms of genetic suppression.
Collapse
Affiliation(s)
- Jolanda van Leeuwen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Carles Pons
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA.,Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain
| | - Joseph C Mellor
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Takafumi N Yamaguchi
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Helena Friesen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - John Koschwanez
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Mojca Mattiazzi Ušaj
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Maria Pechlaner
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Mehmet Takar
- Department of Biological Sciences, Vanderbilt University, 1161 21st Avenue South, Nashville, TN 37232, USA
| | - Matej Ušaj
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Benjamin VanderSluis
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Kerry Andrusiak
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Pritpal Bansal
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Anastasia Baryshnikova
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Claire E Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Jessica Cao
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Atina Cote
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Marinella Gebbia
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Gene Horecka
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Ira Horecka
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Elena Kuzmin
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Nicole Legro
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Wendy Liang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Natascha van Lieshout
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Margaret McNee
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Bryan-Joseph San Luis
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Fatemeh Shaeri
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Ermira Shuteriqi
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Song Sun
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Lu Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Ji-Young Youn
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Michael Yuen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Andrew Murray
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, 1161 21st Avenue South, Nashville, TN 37232, USA
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. .,Canadian Institute for Advanced Research, 180 Dundas Street West, Toronto, Ontario M5G 1Z8, Canada
| | - Brenda J Andrews
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada. .,Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Frederick P Roth
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada. .,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Canadian Institute for Advanced Research, 180 Dundas Street West, Toronto, Ontario M5G 1Z8, Canada.,Department of Computer Science, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada. .,Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Canadian Institute for Advanced Research, 180 Dundas Street West, Toronto, Ontario M5G 1Z8, Canada
| |
Collapse
|
22
|
Bevers EM, Williamson PL. Getting to the Outer Leaflet: Physiology of Phosphatidylserine Exposure at the Plasma Membrane. Physiol Rev 2016; 96:605-45. [PMID: 26936867 DOI: 10.1152/physrev.00020.2015] [Citation(s) in RCA: 298] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Phosphatidylserine (PS) is a major component of membrane bilayers whose change in distribution between inner and outer leaflets is an important physiological signal. Normally, members of the type IV P-type ATPases spend metabolic energy to create an asymmetric distribution of phospholipids between the two leaflets, with PS confined to the cytoplasmic membrane leaflet. On occasion, membrane enzymes, known as scramblases, are activated to facilitate transbilayer migration of lipids, including PS. Recently, two proteins required for such randomization have been identified: TMEM16F, a scramblase regulated by elevated intracellular Ca(2+), and XKR8, a caspase-sensitive protein required for PS exposure in apoptotic cells. Once exposed at the cell surface, PS regulates biochemical reactions involved in blood coagulation, and bone mineralization, and also regulates a variety of cell-cell interactions. Exposed on the surface of apoptotic cells, PS controls their recognition and engulfment by other cells. This process is exploited by parasites to invade their host, and in specialized form is used to maintain photoreceptors in the eye and modify synaptic connections in the brain. This review discusses what is known about the mechanism of PS exposure at the surface of the plasma membrane of cells, how actors in the extracellular milieu sense surface exposed PS, and how this recognition is translated to downstream consequences of PS exposure.
Collapse
Affiliation(s)
- Edouard M Bevers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Biology, Amherst College, Amherst, Massachusetts
| | - Patrick L Williamson
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Biology, Amherst College, Amherst, Massachusetts
| |
Collapse
|
23
|
Andersen JP, Vestergaard AL, Mikkelsen SA, Mogensen LS, Chalat M, Molday RS. P4-ATPases as Phospholipid Flippases-Structure, Function, and Enigmas. Front Physiol 2016; 7:275. [PMID: 27458383 PMCID: PMC4937031 DOI: 10.3389/fphys.2016.00275] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/20/2016] [Indexed: 01/26/2023] Open
Abstract
P4-ATPases comprise a family of P-type ATPases that actively transport or flip phospholipids across cell membranes. This generates and maintains membrane lipid asymmetry, a property essential for a wide variety of cellular processes such as vesicle budding and trafficking, cell signaling, blood coagulation, apoptosis, bile and cholesterol homeostasis, and neuronal cell survival. Some P4-ATPases transport phosphatidylserine and phosphatidylethanolamine across the plasma membrane or intracellular membranes whereas other P4-ATPases are specific for phosphatidylcholine. The importance of P4-ATPases is highlighted by the finding that genetic defects in two P4-ATPases ATP8A2 and ATP8B1 are associated with severe human disorders. Recent studies have provided insight into how P4-ATPases translocate phospholipids across membranes. P4-ATPases form a phosphorylated intermediate at the aspartate of the P-type ATPase signature sequence, and dephosphorylation is activated by the lipid substrate being flipped from the exoplasmic to the cytoplasmic leaflet similar to the activation of dephosphorylation of Na(+)/K(+)-ATPase by exoplasmic K(+). How the phospholipid is translocated can be understood in terms of a peripheral hydrophobic gate pathway between transmembrane helices M1, M3, M4, and M6. This pathway, which partially overlaps with the suggested pathway for migration of Ca(2+) in the opposite direction in the Ca(2+)-ATPase, is wider than the latter, thereby accommodating the phospholipid head group. The head group is propelled along against its concentration gradient with the hydrocarbon chains projecting out into the lipid phase by movement of an isoleucine located at the position corresponding to an ion binding glutamate in the Ca(2+)- and Na(+)/K(+)-ATPases. Hence, the P4-ATPase mechanism is quite similar to the mechanism of these ion pumps, where the glutamate translocates the ions by moving like a pump rod. The accessory subunit CDC50 may be located in close association with the exoplasmic entrance of the suggested pathway, and possibly promotes the binding of the lipid substrate. This review focuses on properties of mammalian and yeast P4-ATPases for which most mechanistic insight is available. However, the structure, function and enigmas associated with mammalian and yeast P4-ATPases most likely extend to P4-ATPases of plants and other organisms.
Collapse
Affiliation(s)
| | | | | | | | - Madhavan Chalat
- Department of Biochemistry and Molecular Biology, University of British ColumbiaVancouver, BC, Canada
| | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British ColumbiaVancouver, BC, Canada
- *Correspondence: Robert S. Molday
| |
Collapse
|
24
|
Wiseman FK, Al-Janabi T, Hardy J, Karmiloff-Smith A, Nizetic D, Tybulewicz VLJ, Fisher EMC, Strydom A. A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat Rev Neurosci 2015; 16:564-74. [PMID: 26243569 PMCID: PMC4678594 DOI: 10.1038/nrn3983] [Citation(s) in RCA: 348] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Down syndrome, which arises in individuals carrying an extra copy of chromosome 21, is associated with a greatly increased risk of early-onset Alzheimer disease. It is thought that this risk is conferred by the presence of three copies of the gene encoding amyloid precursor protein (APP)--an Alzheimer disease risk factor--although the possession of extra copies of other chromosome 21 genes may also play a part. Further study of the mechanisms underlying the development of Alzheimer disease in people with Down syndrome could provide insights into the mechanisms that cause dementia in the general population.
Collapse
Affiliation(s)
- Frances K Wiseman
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Tamara Al-Janabi
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London W1T 7NF, UK
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Annette Karmiloff-Smith
- Centre for Brain and Cognitive Development, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Dean Nizetic
- Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, 11 Mandalay Road, Singapore 308232; and the Blizard Institute, Barts and the London School of Medicine, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | | | - Elizabeth M C Fisher
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - André Strydom
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London W1T 7NF, UK
| |
Collapse
|
25
|
P4-ATPases: lipid flippases in cell membranes. Pflugers Arch 2015; 466:1227-40. [PMID: 24077738 PMCID: PMC4062807 DOI: 10.1007/s00424-013-1363-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 12/13/2022]
Abstract
Cellular membranes, notably eukaryotic plasma membranes, are equipped with special proteins that actively translocate lipids from one leaflet to the other and thereby help generate membrane lipid asymmetry. Among these ATP-driven transporters, the P4 subfamily of P-type ATPases (P4-ATPases) comprises lipid flippases that catalyze the translocation of phospholipids from the exoplasmic to the cytosolic leaflet of cell membranes. While initially characterized as aminophospholipid translocases, recent studies of individual P4-ATPase family members from fungi, plants, and animals show that P4-ATPases differ in their substrate specificities and mediate transport of a broader range of lipid substrates, including lysophospholipids and synthetic alkylphospholipids. At the same time, the cellular processes known to be directly or indirectly affected by this class of transporters have expanded to include the regulation of membrane traffic, cytoskeletal dynamics, cell division, lipid metabolism, and lipid signaling. In this review, we will summarize the basic features of P4-ATPases and the physiological implications of their lipid transport activity in the cell.
Collapse
|
26
|
Sartorel E, Barrey E, Lau RK, Thorner J. Plasma membrane aminoglycerolipid flippase function is required for signaling competence in the yeast mating pheromone response pathway. Mol Biol Cell 2015; 26:134-50. [PMID: 25378585 PMCID: PMC4279224 DOI: 10.1091/mbc.e14-07-1193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/17/2014] [Accepted: 10/28/2014] [Indexed: 12/22/2022] Open
Abstract
The class 4 P-type ATPases ("flippases") maintain membrane asymmetry by translocating phosphatidylethanolamine and phosphatidylserine from the outer leaflet to the cytosolic leaflet of the plasma membrane. In Saccharomyces cerevisiae, five related gene products (Dnf1, Dnf2, Dnf3, Drs2, and Neo1) are implicated in flipping of phosphatidylethanolamine, phosphatidylserine, and phosphatidylcholine. In MAT A: cells responding to α-factor, we found that Dnf1, Dnf2, and Dnf3, as well as the flippase-activating protein kinase Fpk1, localize at the projection ("shmoo") tip where polarized growth is occurring and where Ste5 (the central scaffold protein of the pheromone-initiated MAPK cascade) is recruited. Although viable, a MAT A: dnf1∆ dnf2∆ dnf3∆ triple mutant exhibited a marked decrease in its ability to respond to α-factor, which we could attribute to pronounced reduction in Ste5 stability resulting from an elevated rate of its Cln2⋅Cdc28-initiated degradation. Similarly, a MAT A: dnf1∆ dnf3∆ drs2∆ triple mutant also displayed marked reduction in its ability to respond to α-factor, which we could attribute to inefficient recruitment of Ste5 to the plasma membrane due to severe mislocalization of the cellular phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate pools. Thus proper remodeling of plasma membrane aminoglycerolipids and phosphoinositides is necessary for efficient recruitment, stability, and function of the pheromone signaling apparatus.
Collapse
Affiliation(s)
- Elodie Sartorel
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Evelyne Barrey
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Rebecca K Lau
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| |
Collapse
|
27
|
Tanaka M, Izawa T, Yamate J, Franklin RJM, Kuramoto T, Serikawa T, Kuwamura M. The VF rat with abnormal myelinogenesis has a mutation in Dopey1. Glia 2014; 62:1530-42. [PMID: 24863653 DOI: 10.1002/glia.22698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/30/2014] [Accepted: 05/07/2014] [Indexed: 11/09/2022]
Abstract
The vacuole formation (VF) rat is an autosomal recessive myelin mutant characterized by generalized tremor, hypomyelination, and periaxonal vacuole formation of the central nervous system (CNS). Here, we report the most likely causative gene for neurological disease in the VF rat and pursue its roles in the development and maintenance of the CNS myelin. We identified a nonsense mutation in the dopey family member 1 (Dopey1) located on rat chromosome 8. Expression level of Dopey1 mRNA was decreased and DOPEY1 protein was undetectable both in the white and gray matter of the spinal cords in the VF rats. Double immunohistochemistry demonstrated that DOPEY1 was mainly expressed in neurons and oligodendrocytes in the wild-type rats, whereas no positive cells were detected in the VF rats. We also demonstrated a marked reduction in myelin components both at mRNA and protein levels during myelinogenesis in the VF rats. In addition, proteolipid protein and myelin-associated glycoprotein accumulated in oligodendrocyte cell body, suggesting that Dopey1 is likely to be involved in the traffic of myelin components. Our results highlighted the importance of Dopey1 for the development and maintenance of the CNS myelin.
Collapse
Affiliation(s)
- Miyuu Tanaka
- Laboratory of Veterinary Pathology, Osaka Prefecture University, Izumisano, Osaka, 598-8531, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Mammalian Mon2/Ysl2 regulates endosome-to-Golgi trafficking but possesses no guanine nucleotide exchange activity toward Arl1 GTPase. Sci Rep 2013; 3:3362. [PMID: 24285343 PMCID: PMC3842536 DOI: 10.1038/srep03362] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/11/2013] [Indexed: 11/08/2022] Open
Abstract
Arl1 is a member of Arf family small GTPases that is essential for the organization and function of Golgi complex. Mon2/Ysl2, which shares significant homology with Sec7 family Arf guanine nucleotide exchange factors, was poorly characterized in mammalian cells. Here, we report the first in depth characterization of mammalian Mon2. We found that Mon2 localized to trans-Golgi network which was dependent on both its N and C termini. The depletion of Mon2 did not affect the Golgi localized or cellular active form of Arl1. Furthermore, our in vitro assay demonstrated that recombinant Mon2 did not promote guanine nucleotide exchange of Arl1. Therefore, our results suggest that Mon2 could be neither necessary nor sufficient for the guanine nucleotide exchange of Arl1. We demonstrated that Mon2 was involved in endosome-to-Golgi trafficking as its depletion accelerated the delivery of furin and CI-M6PR to Golgi after endocytosis.
Collapse
|
29
|
Manlandro CMA, Palanivel VR, Schorr EB, Mihatov N, Antony AA, Rosenwald AG. Mon2 is a negative regulator of the monomeric G protein, Arl1. FEMS Yeast Res 2012; 12:637-50. [PMID: 22594927 DOI: 10.1111/j.1567-1364.2012.00814.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 04/27/2012] [Accepted: 05/11/2012] [Indexed: 11/30/2022] Open
Abstract
Using site-directed mutants of ARL1 predicted to alter nucleotide binding, we examined phenotypes associated with the loss of ARL1 , including effects on membrane traffic and K (+) homeostasis. The GTP-restricted allele, ARL[Q72L] , complemented the membrane traffic phenotype (CPY secretion), but not the K (+) homeostasis phenotypes (sensitivity to hygromycin B, steady-state levels of K (+) , and accumulation of (86) Rb (+) ), while the XTP-restricted mutant, ARL1[D130N] , complemented the ion phenotypes, but not the membrane traffic phenotype. A GDP-restricted allele, ARL1[T32N] , did not effectively complement either phenotype. These results are consistent with a model in which Arl1 has three different conformations in vivo. We also explored the relationship between ARL1 and MON2 using the synthetic lethal phenotype exhibited by these two genes and demonstrated that MON2 is a negative regulator of the GTP-restricted allele of ARL1 , ARL1[Q72L] . Finally, we constructed several new alleles predicted to alter binding of Arl1 to the sole GRIP domain containing protein in yeast, Imh1, and found that ARL1[F52G] and ARL1[Y82G] were unable to complement the loss of ARL1 with respect to either the membrane traffic or K (+) homeostasis phenotypes. Our study expands understanding of the roles of Arl1 in vivo.
Collapse
|
30
|
Arlt H, Perz A, Ungermann C. An Overexpression Screen in Saccharomyces cerevisiae Identifies Novel Genes that Affect Endocytic Protein Trafficking. Traffic 2011; 12:1592-603. [DOI: 10.1111/j.1600-0854.2011.01252.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Abstract
While accumulating evidence indicates that P4-ATPases catalyze phospholipid transport across cellular bilayers, their kinship to cation-pumping ATPases has raised fundamental questions concerning the underlying flippase mechanism. Loss of P4-ATPase function perturbs vesicle formation in late secretory and endocytic compartments. An intriguing concept is that P4-ATPases help drive vesicle budding by generating imbalances in transbilayer lipid numbers. Moreover, activation of P4-ATPases by phosphoinositides and other effectors of coat recruitment provide a potential mechanism to confine flippase activity to sites of vesicle biogenesis. These developments have raised considerable interest in understanding the mechanism, regulation and biological implications of P4-ATPase-catalyzed phospholipid transport.
Collapse
Affiliation(s)
- Rosa L López-Marqués
- Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
| | | | | |
Collapse
|
32
|
Tanaka K, Fujimura-Kamada K, Yamamoto T. Functions of phospholipid flippases. J Biochem 2010; 149:131-43. [PMID: 21134888 DOI: 10.1093/jb/mvq140] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Asymmetrical distribution of phospholipids is generally observed in the eukaryotic plasma membrane. Maintenance and changes of this phospholipid asymmetry are regulated by ATP-driven phospholipid translocases. Accumulating evidence indicates that type 4 P-type ATPases (P4-ATPases, also called flippases) translocate phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of the plasma membrane and internal membranes. Among P-type ATPases, P4-ATPases are unique in that they are associated with a conserved membrane protein of the Cdc50 family as a non-catalytic subunit. Recent studies indicate that flippases are involved in various cellular functions, including transport vesicle formation and cell polarity. In this review, we will focus on the functional aspect of phospholipid flippases.
Collapse
Affiliation(s)
- Kazuma Tanaka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo, Japan.
| | | | | |
Collapse
|