1
|
Pérez-Sala D, Quinlan RA. The redox-responsive roles of intermediate filaments in cellular stress detection, integration and mitigation. Curr Opin Cell Biol 2024; 86:102283. [PMID: 37989035 DOI: 10.1016/j.ceb.2023.102283] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023]
Abstract
Intermediate filaments are critical for cell and tissue homeostasis and for stress responses. Cytoplasmic intermediate filaments form versatile and dynamic assemblies that interconnect cellular organelles, participate in signaling and protect cells and tissues against stress. Here we have focused on their involvement in redox signaling and oxidative stress, which arises in numerous pathophysiological situations. We pay special attention to type III intermediate filaments, mainly vimentin, because it provides a physical interface for redox signaling, stress responses and mechanosensing. Vimentin possesses a single cysteine residue that is a target for multiple oxidants and electrophiles. This conserved residue fine tunes vimentin assembly, response to oxidative stress and crosstalk with other cellular structures. Here we integrate evidence from the intermediate filament and redox biology fields to propose intermediate filaments as redox sentinel networks of the cell. To support this, we appraise how vimentin detects and orchestrates cellular responses to oxidative and electrophilic stress.
Collapse
Affiliation(s)
- Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040 Madrid, Spain.
| | - Roy A Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy Science Site, Durham, United Kingdom; Biophysical Sciences Institute, University of Durham, Durham, United Kingdom; Department of Biological Structure, University of Washington, Seattle, WA, United States.
| |
Collapse
|
2
|
Castillo S, Gence R, Pagan D, Koraïchi F, Bouchenot C, Pons BJ, Boëlle B, Olichon A, Lajoie-Mazenc I, Favre G, Pédelacq JD, Cabantous S. Visualizing the subcellular localization of RHOB-GTP and GTPase-Effector complexes using a split-GFP/nanobody labelling assay. Eur J Cell Biol 2023; 102:151355. [PMID: 37639782 DOI: 10.1016/j.ejcb.2023.151355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023] Open
Abstract
Small GTPases are highly regulated proteins that control essential signaling pathways through the activity of their effector proteins. Among the RHOA subfamily, RHOB regulates peculiar functions that could be associated with the control of the endocytic trafficking of signaling proteins. Here, we used an optimized assay based on tripartite split-GFP complementation to localize GTPase-effector complexes with high-resolution. The detection of RHOB interaction with the Rhotekin Rho binding domain (RBD) that specifically recognizes the active GTP-bound GTPase, is performed in vitro by the concomitant addition of recombinant GFP1-9 and a GFP nanobody. Analysis of RHOB-RBD complexes localization profiles combined with immunostaining and live cell imaging indicated a serum-dependent reorganization of the endosomal and membrane pool of active RHOB. We further applied this technology to the detection of RHO-effector complexes that highlighted their subcellular localization with high resolution among the different cellular compartments.
Collapse
Affiliation(s)
- Sebastian Castillo
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France
| | - Rémi Gence
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France
| | - Delphine Pagan
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France
| | - Faten Koraïchi
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France
| | | | - Benoit J Pons
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, United Kingdom
| | - Betty Boëlle
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France
| | - Aurélien Olichon
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97410 Saint-Pierre, La Réunion, France
| | - Isabelle Lajoie-Mazenc
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France
| | - Gilles Favre
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France
| | - Jean-Denis Pédelacq
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France.
| |
Collapse
|
3
|
Post-Translational Modification and Subcellular Compartmentalization: Emerging Concepts on the Regulation and Physiopathological Relevance of RhoGTPases. Cells 2021; 10:cells10081990. [PMID: 34440759 PMCID: PMC8393718 DOI: 10.3390/cells10081990] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022] Open
Abstract
Cells and tissues are continuously exposed to both chemical and physical stimuli and dynamically adapt and respond to this variety of external cues to ensure cellular homeostasis, regulated development and tissue-specific differentiation. Alterations of these pathways promote disease progression-a prominent example being cancer. Rho GTPases are key regulators of the remodeling of cytoskeleton and cell membranes and their coordination and integration with different biological processes, including cell polarization and motility, as well as other signaling networks such as growth signaling and proliferation. Apart from the control of GTP-GDP cycling, Rho GTPase activity is spatially and temporally regulated by post-translation modifications (PTMs) and their assembly onto specific protein complexes, which determine their controlled activity at distinct cellular compartments. Although Rho GTPases were traditionally conceived as targeted from the cytosol to the plasma membrane to exert their activity, recent research demonstrates that active pools of different Rho GTPases also localize to endomembranes and the nucleus. In this review, we discuss how PTM-driven modulation of Rho GTPases provides a versatile mechanism for their compartmentalization and functional regulation. Understanding how the subcellular sorting of active small GTPase pools occurs and what its functional significance is could reveal novel therapeutic opportunities.
Collapse
|
4
|
Kilisch M, Mayer S, Mitkovski M, Roehse H, Hentrich J, Schwappach B, Papadopoulos T. A GTPase-induced switch in phospholipid affinity of collybistin contributes to synaptic gephyrin clustering. J Cell Sci 2020; 133:jcs.232835. [PMID: 31932505 DOI: 10.1242/jcs.232835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 12/19/2019] [Indexed: 11/20/2022] Open
Abstract
Synaptic transmission between neurons relies on the exact spatial organization of postsynaptic transmitter receptors, which are recruited and positioned by dedicated scaffolding and regulatory proteins. At GABAergic synapses, the regulatory protein collybistin (Cb, also known as ARHGEF9) interacts with small GTPases, cell adhesion proteins and phosphoinositides to recruit the scaffolding protein gephyrin and GABAA receptors to nascent synapses. We dissected the interaction of Cb with the small Rho-like GTPase TC10 (also known as RhoQ) and phospholipids. Our data define a protein-lipid interaction network that controls the clustering of gephyrin at synapses. Within this network, TC10 and monophosphorylated phosphoinositides, particulary phosphatidylinositol 3-phosphate (PI3P), provide a coincidence detection platform that allows the accumulation and activation of Cb in endomembranes. Upon activation, TC10 induces a phospholipid affinity switch in Cb, which allows Cb to specifically interact with phosphoinositide species present at the plasma membrane. We propose that this GTPase-based regulatory switch mechanism represents an important step in the process of tethering of Cb-dependent scaffolds and receptors at nascent postsynapses.
Collapse
Affiliation(s)
- Markus Kilisch
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, Göttingen 37073, Germany
| | - Simone Mayer
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein Str. 3, Göttingen 37075, Germany
| | - Miso Mitkovski
- MPI-EM Light Microscopy Facility, Max Planck Institute of Experimental Medicine, Hermann-Rein Str. 3, Göttingen 37075, Germany
| | - Heiko Roehse
- MPI-EM Light Microscopy Facility, Max Planck Institute of Experimental Medicine, Hermann-Rein Str. 3, Göttingen 37075, Germany
| | - Jennifer Hentrich
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, Göttingen 37073, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, Göttingen 37073, Germany
| | - Theofilos Papadopoulos
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, Göttingen 37073, Germany
| |
Collapse
|
5
|
Wang H, Lu Z, Zhao X. Tumorigenesis, diagnosis, and therapeutic potential of exosomes in liver cancer. J Hematol Oncol 2019; 12:133. [PMID: 31815633 PMCID: PMC6902437 DOI: 10.1186/s13045-019-0806-6] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC, also called primary liver cancer) is one of the most fatal cancers in the world. Due to the insidiousness of the onset of HCC and the lack of effective treatment methods, the prognosis of HCC is extremely poor, and the 5-year average survival rate is less than 10%. Exosomes are nano-sized microvesicle and contain various components such as nucleic acids, proteins, and lipids. Exosomes are important carriers for signal transmission or transportation of material from cell to cell or between cells and tissues. In recent years, exosomes have been considered as potential therapeutic targets of HCC. A large number of reports indicate that exosomes play a key role in the establishment of an HCC microenvironment, as well as the development, progression, invasion, metastasis, and even the diagnosis, treatment, and prognosis of HCC. However, the exact molecular mechanisms and roles of exosomes in these processes remain unclear. We believe that elucidation of the regulatory mechanism of HCC-related exosomes and its signaling pathway and analysis of its clinical applications in the diagnosis and treatment of HCC can provide useful clues for future treatment regimens for HCC. This article discusses and summarizes the research progress of HCC-related exosomes and their potential clinical applications.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
6
|
Wang H, Lu Z, Zhao X. Tumorigenesis, diagnosis, and therapeutic potential of exosomes in liver cancer. J Hematol Oncol 2019; 12:133. [DOI: doi10.1186/s13045-019-0806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/17/2019] [Indexed: 09/01/2023] Open
Abstract
AbstractHepatocellular carcinoma (HCC, also called primary liver cancer) is one of the most fatal cancers in the world. Due to the insidiousness of the onset of HCC and the lack of effective treatment methods, the prognosis of HCC is extremely poor, and the 5-year average survival rate is less than 10%. Exosomes are nano-sized microvesicle and contain various components such as nucleic acids, proteins, and lipids. Exosomes are important carriers for signal transmission or transportation of material from cell to cell or between cells and tissues. In recent years, exosomes have been considered as potential therapeutic targets of HCC. A large number of reports indicate that exosomes play a key role in the establishment of an HCC microenvironment, as well as the development, progression, invasion, metastasis, and even the diagnosis, treatment, and prognosis of HCC. However, the exact molecular mechanisms and roles of exosomes in these processes remain unclear. We believe that elucidation of the regulatory mechanism of HCC-related exosomes and its signaling pathway and analysis of its clinical applications in the diagnosis and treatment of HCC can provide useful clues for future treatment regimens for HCC. This article discusses and summarizes the research progress of HCC-related exosomes and their potential clinical applications.
Collapse
|
7
|
García-Martín E, Sánchez-Gómez FJ, Amo G, García Menaya J, Cordobés C, Ayuso P, Plaza Serón MC, Blanca M, Campo P, Esguevillas G, Pajares MA, G Agúndez JA, Pérez-Sala D. Asthma and allergic rhinitis associate with the rs2229542 variant that induces a p.Lys90Glu mutation and compromises AKR1B1 protein levels. Hum Mutat 2018; 39:1081-1091. [PMID: 29726087 DOI: 10.1002/humu.23548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/11/2018] [Accepted: 04/30/2018] [Indexed: 12/20/2022]
Abstract
Asthma and rhinitis are two of the main clinical manifestations of allergy, in which increased reactive oxygen or electrophilic species can play a pathogenic role. Aldose reductase (AKR1B1) is involved in aldehyde detoxification and redox balance. Recent evidence from animal models points to a role of AKR1B1 in asthma and rhinitis, but its involvement in human allergy has not been addressed. Here, the putative association of allergic rhinitis and asthma with AKR1B1 variants has been explored by analysis of single-strand variants on the AKR1B1 gene sequence in 526 healthy subjects and 515 patients with allergic rhinitis, 366 of whom also had asthma. We found that the rs2229542 variant, introducing the p.Lys90Glu mutation, was significantly more frequent in allergic patients than in healthy subjects. Additionally, in cells transfected with expression vectors carrying the wild-type or the p.Lys90Glu variant of AKR1B1, the mutant consistently attained lower protein levels than the wild-type and showed a compromised thermal stability. Taken together, our results show that the rs2229542 variant associates with asthma and rhinitis, and hampers AKR1B1 protein levels and stability. This unveils a connection between the genetic variability of aldose reductase and allergic processes.
Collapse
Affiliation(s)
| | - Francisco J Sánchez-Gómez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, C.S.I.C., Madrid, Spain
| | - Gemma Amo
- Departamento de Farmacología, Universidad de Extremadura, Cáceres, Spain
| | | | | | - Pedro Ayuso
- Allergy Unit, IBIMA-Regional University Hospital of Málaga, UMA, Málaga, Spain
| | | | - Miguel Blanca
- Servicio de Alergología, Hospital Infanta Leonor, Madrid, Spain
| | - Paloma Campo
- Allergy Unit, IBIMA-Regional University Hospital of Málaga, UMA, Málaga, Spain
| | - Gara Esguevillas
- Departamento de Farmacología, Universidad de Extremadura, Cáceres, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, C.S.I.C., Madrid, Spain.,Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - José A G Agúndez
- Departamento de Farmacología, Universidad de Extremadura, Cáceres, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, C.S.I.C., Madrid, Spain
| |
Collapse
|
8
|
García-Mariscal A, Li H, Pedersen E, Peyrollier K, Ryan KM, Stanley A, Quondamatteo F, Brakebusch C. Loss of RhoA promotes skin tumor formation and invasion by upregulation of RhoB. Oncogene 2018; 37:847-860. [PMID: 29059167 DOI: 10.1038/onc.2017.333] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/26/2017] [Accepted: 08/12/2017] [Indexed: 02/06/2023]
Abstract
Cellular movement is controlled by small GTPases, such as RhoA. Although migration is crucial for cancer cell invasion, the specific role of RhoA in tumor formation is unclear. Inducing skin tumors in mice with a keratinocyte-restricted loss of RhoA, we observed increased tumor frequency, growth and invasion. In vitro invasion assays revealed that in the absence of RhoA cell invasiveness is increased in a Rho-associated protein kinase (ROCK) activation and cell contraction-dependent manner. Surprisingly, loss of RhoA causes increased Rho signaling via overcompensation by RhoB because of reduced lysosomal degradation of RhoB in Gamma-aminobutyric acid receptor-associated protein (GABARAP)+ autophagosomes and endosomes. In the absence of RhoA, RhoB relocalized to the plasma membrane and functionally replaced RhoA with respect to invasion, clonogenic growth and survival. Our data demonstrate for the first time that RhoA is a tumor suppressor in 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol 13-acetate skin carcinogenesis and identify Rho signaling dependent on RhoA and RhoB as a potent driver of tumor progression.
Collapse
Affiliation(s)
- A García-Mariscal
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | - H Li
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | - E Pedersen
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | - K Peyrollier
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | | | - A Stanley
- Skin and Extracellular Matrix Research Group, Anatomy, NUI, Galway, Ireland
| | - F Quondamatteo
- Skin and Extracellular Matrix Research Group, Anatomy, NUI, Galway, Ireland
| | - C Brakebusch
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Oeste CL, Martínez-López M, Pérez-Sala D. Taking a lipidation-dependent path toward endolysosomes. Commun Integr Biol 2016; 8:e1078041. [PMID: 27066167 PMCID: PMC4802854 DOI: 10.1080/19420889.2015.1078041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 12/29/2022] Open
Abstract
We recently reported that the isoprenylation and palmitoylation motif present at the C-terminus of human RhoB protein promotes intraluminal vesicle delivery of proteins in cells from organisms as phylogenetically apart as fungi and humans. Here we build on these observations by showing that chimeras of fluorescent proteins bearing this sequence, namely, CINCCKVL, which become isoprenylated and palmitoylated in cells, may be used to mark endolysosomes while preserving their morphology. Indeed, these chimeric proteins are devoid of the effects derived from overexpression of fluorescent constructs of full-length, active proteins widely used as endolysosomal markers, such as Lamp1 or Rab7, which cause lysosomal enlargement, or RhoB, which induces actin stress fibers. Moreover, the fact that lipidation-dependent endolysosomal localization of CINCCKVL chimeras can be ascertained in a wide variety of cells indicates that they follow a path toward endolysosomes that is conserved in diverse species. Therefore, CINCCKVL chimeras serve as robust tools to mark these late endocytic compartments
Collapse
Affiliation(s)
- Clara L Oeste
- Department of Chemical and Physical Biology; Centro de Investigaciones Biológicas, CSIC ; Madrid, Spain
| | - Marta Martínez-López
- Department of Chemical and Physical Biology; Centro de Investigaciones Biológicas, CSIC ; Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Chemical and Physical Biology; Centro de Investigaciones Biológicas, CSIC ; Madrid, Spain
| |
Collapse
|
10
|
Oeste CL, Pinar M, Schink KO, Martínez-Turrión J, Stenmark H, Peñalva MA, Pérez-Sala D. An isoprenylation and palmitoylation motif promotes intraluminal vesicle delivery of proteins in cells from distant species. PLoS One 2014; 9:e107190. [PMID: 25207810 PMCID: PMC4160200 DOI: 10.1371/journal.pone.0107190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/07/2014] [Indexed: 12/22/2022] Open
Abstract
The C-terminal ends of small GTPases contain hypervariable sequences which may be posttranslationally modified by defined lipid moieties. The diverse structural motifs generated direct proteins towards specific cellular membranes or organelles. However, knowledge on the factors that determine these selective associations is limited. Here we show, using advanced microscopy, that the isoprenylation and palmitoylation motif of human RhoB (–CINCCKVL) targets chimeric proteins to intraluminal vesicles of endolysosomes in human cells, displaying preferential co-localization with components of the late endocytic pathway. Moreover, this distribution is conserved in distant species, including cells from amphibians, insects and fungi. Blocking lipidic modifications results in accumulation of CINCCKVL chimeras in the cytosol, from where they can reach endolysosomes upon release of this block. Remarkably, CINCCKVL constructs are sorted to intraluminal vesicles in a cholesterol-dependent process. In the lower species, neither the C-terminal sequence of RhoB, nor the endosomal distribution of its homologs are conserved; in spite of this, CINCCKVL constructs also reach endolysosomes in Xenopus laevis and insect cells. Strikingly, this behavior is prominent in the filamentous ascomycete fungus Aspergillus nidulans, in which GFP-CINCCKVL is sorted into endosomes and vacuoles in a lipidation-dependent manner and allows monitoring endosomal movement in live fungi. In summary, the isoprenylated and palmitoylated CINCCKVL sequence constitutes a specific structure which delineates an endolysosomal sorting strategy operative in phylogenetically diverse organisms.
Collapse
Affiliation(s)
- Clara L. Oeste
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Kay O. Schink
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Oslo, Norway
| | - Javier Martínez-Turrión
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Oslo, Norway
| | - Miguel A. Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- * E-mail:
| |
Collapse
|
11
|
Abstract
Background Myocilin (MYOC) is a gene linked directly to juvenile- and adult-onset open angle glaucoma. Mutations including Pro370Leu (P370L) and Gln368stop (Q368X) have been identified in patients. In the present study, we investigated the processing of myocilin in human trabecular meshwork (TM) cells as well as in inducible, stable RGC5 cell lines. Methodology/Principal Findings The turnover and photoactivation experiments revealed that the endogenous myocilin in human trabecular meshwork (TM) cells was a short-lived protein. It was found that the endogenous myocilin level in TM cells was increased by treatment of lysosomal and proteasomal inhibitors, but not by autophagic inhibitor. Multiple bands immunoreactive to anti-ubiquitin were seen in the myocilin pull down, indicating that myocilin was ubiquitinated. In inducible cell lines, the turnover rate of overexpressed wild-type and mutant P370L and Q368X myocilin-GFP fusion proteins was much prolonged. The proteasome function was compromised and autophagy was induced. A decreased PSMB5 level and an increased level of autophagic marker, LC3, were demonstrated. Conclusions/Significance The current study provided evidence that in normal homeostatic situation, the turnover of endogenous myocilin involves ubiquitin-proteasome and lysosomal pathways. When myocilin was upregulated or mutated, the ubiquitin-proteasome function is compromised and autophagy is induced. Knowledge of the degradation pathways acting on myocilin can help in design of novel therapeutic strategies for myocilin-related glaucoma.
Collapse
|
12
|
|
13
|
Regulation of the methylation status of G protein-coupled receptor kinase 1 (rhodopsin kinase). Cell Signal 2012; 24:2259-67. [PMID: 22846544 DOI: 10.1016/j.cellsig.2012.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/09/2012] [Accepted: 07/24/2012] [Indexed: 01/03/2023]
Abstract
Rhodopsin kinase (GRK1) is a member of G protein-coupled receptor kinase family and a key enzyme in the quenching of photolysed rhodopsin activity and desensitisation of the rod photoreceptor neurons. Like some other rod proteins involved in phototransduction, GRK1 is posttranslationally modified at the C terminus by isoprenylation (farnesylation), endoproteolysis and α-carboxymethylation. In this study, we examined the potential mechanisms of regulation of GRK1 methylation status, which have remained unexplored so far. We found that considerable fraction of GRK1 is endogenously methylated. In isolated rod outer segments, its methylation is inhibited and demethylation stimulated by low-affinity nucleotide binding. This effect is not specific for ATP and was observed in the presence of a non-hydrolysable ATP analogue AMP-PNP, GTP and other nucleotides, and thus may involve a site distinct from the active site of the kinase. GRK1 demethylation is inhibited in the presence of Ca(2+) by recoverin. This inhibition requires recoverin myristoylation and the presence of the membranes, and may be due to changes in GRK1 availability for processing enzymes upon its redistribution to the membranes induced by recoverin/Ca(2+). We hypothesise that increased GRK1 methylation in dark-adapted rods due to elevated cytoplasmic Ca(2+) levels would further increase its association with the membranes and recoverin, providing a positive feedback to efficiently suppress spurious phosphorylation of non-activated rhodopsin molecules and thus maximise senstivity of the photoreceptor. This study provides the first evidence for dynamic regulation of GRK1 α-carboxymethylation, which might play a role in the regulation of light sensitivity and adaptation in the rod photoreceptors.
Collapse
|
14
|
Protein palmitoylation and subcellular trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2981-94. [DOI: 10.1016/j.bbamem.2011.07.009] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/06/2011] [Accepted: 07/12/2011] [Indexed: 02/07/2023]
|
15
|
Sender V, Moulakakis C, Stamme C. Pulmonary surfactant protein A enhances endolysosomal trafficking in alveolar macrophages through regulation of Rab7. THE JOURNAL OF IMMUNOLOGY 2011; 186:2397-411. [PMID: 21248257 DOI: 10.4049/jimmunol.1002446] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Surfactant protein A (SP-A), the most abundant pulmonary soluble collectin, modulates innate and adaptive immunity of the lung, partially via its direct effects on alveolar macrophages (AM), the most predominant intra-alveolar cells under physiological conditions. Enhanced phagocytosis and endocytosis are key functional consequences of AM/SP-A interaction, suggesting a SP-A-mediated modulation of small Rab (Ras related in brain) GTPases that are pivotal membrane organizers in both processes. In this article, we show that SP-A specifically and transiently enhances the protein expression of endogenous Rab7 and Rab7b, but not Rab5 and Rab11, in primary AM from rats and mice. SP-A-enhanced GTPases are functionally active as determined by increased interaction of Rab7 with its downstream effector Rab7 interacting lysosomal protein (RILP) and enhanced maturation of cathepsin-D, a function of Rab7b. In AM and RAW264.7 macrophages, the SP-A-enhanced lysosomal delivery of GFP-Escherichia coli is abolished by the inhibition of Rab7 and Rab7 small interfering RNA transfection, respectively. The constitutive expression of Rab7 in AM from SP-A(-/-) mice is significantly reduced compared with SP-A(+/+) mice and is restored by SP-A. Rab7 blocking peptides antagonize SP-A-rescued lysosomal delivery of GFP-E. coli in AM from SP-A(-/-) mice. Activation of Rab7, but not Rab7b, by SP-A depends on the PI3K/Akt/protein kinase Cζ (PKCζ) signal transduction pathway in AM and RAW264.7 macrophages. SP-A induces a Rab7/PKCζ interaction in these cells, and the disruption of PKCζ by small interfering RNA knockdown abolishes the effect of SP-A on Rab7. The data demonstrate a novel role for SP-A in modulating endolysosomal trafficking via Rab7 in primary AM and define biochemical pathways involved.
Collapse
Affiliation(s)
- Vicky Sender
- Division of Cellular Pneumology, Department of Experimental Pneumology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23845 Borstel, Germany
| | | | | |
Collapse
|
16
|
Oeste CL, Díez-Dacal B, Bray F, García de Lacoba M, de la Torre BG, Andreu D, Ruiz-Sánchez AJ, Pérez-Inestrosa E, García-Domínguez CA, Rojas JM, Pérez-Sala D. The C-terminus of H-Ras as a target for the covalent binding of reactive compounds modulating Ras-dependent pathways. PLoS One 2011; 6:e15866. [PMID: 21253588 PMCID: PMC3017061 DOI: 10.1371/journal.pone.0015866] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/25/2010] [Indexed: 12/30/2022] Open
Abstract
Ras proteins are crucial players in differentiation and oncogenesis and constitute important drug targets. The localization and activity of Ras proteins are highly dependent on posttranslational modifications at their C-termini. In addition to an isoprenylated cysteine, H-Ras, but not other Ras proteins, possesses two cysteine residues (C181 and C184) in the C-terminal hypervariable domain that act as palmitoylation sites in cells. Cyclopentenone prostaglandins (cyPG) are reactive lipidic mediators that covalently bind to H-Ras and activate H-Ras dependent pathways. Dienone cyPG, such as 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2) and Δ12-PGJ2 selectively bind to the H-Ras hypervariable domain. Here we show that these cyPG bind simultaneously C181 and C184 of H-Ras, thus potentially altering the conformational tendencies of the hypervariable domain. Based on these results, we have explored the capacity of several bifunctional cysteine reactive small molecules to bind to the hypervariable domain of H-Ras proteins. Interestingly, phenylarsine oxide (PAO), a widely used tyrosine phosphatase inhibitor, and dibromobimane, a cross-linking agent used for cysteine mapping, effectively bind H-Ras hypervariable domain. The interaction of PAO with H-Ras takes place in vitro and in cells and blocks modification of H-Ras by 15d-PGJ2. Moreover, PAO treatment selectively alters H-Ras membrane partition and the pattern of H-Ras activation in cells, from the plasma membrane to endomembranes. These results identify H-Ras as a novel target for PAO. More importantly, these observations reveal that small molecules or reactive intermediates interacting with spatially vicinal cysteines induce intramolecular cross-linking of H-Ras C-terminus potentially contributing to the modulation of Ras-dependent pathways.
Collapse
Affiliation(s)
- Clara L. Oeste
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Beatriz Díez-Dacal
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Francesca Bray
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mario García de Lacoba
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Beatriz G. de la Torre
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Andreu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - Carlota A. García-Domínguez
- Unidad de Biología Celular, Área de Biología Celular y del Desarrollo, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - José M. Rojas
- Unidad de Biología Celular, Área de Biología Celular y del Desarrollo, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- * E-mail:
| |
Collapse
|