1
|
Pedersen MP, Wolters JC, de Boer R, Krikken AM, van der Klei IJ. The Hansenula polymorpha mitochondrial carrier family protein Mir1 is dually localized at peroxisomes and mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119742. [PMID: 38702017 DOI: 10.1016/j.bbamcr.2024.119742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Peroxisomes are ubiquitous cell organelles involved in various metabolic pathways. In order to properly function, several cofactors, substrates and products of peroxisomal enzymes need to pass the organellar membrane. So far only a few transporter proteins have been identified. We analysed peroxisomal membrane fractions purified from the yeast Hansenula polymorpha by untargeted label-free quantitation mass spectrometry. As expected, several known peroxisome-associated proteins were enriched in the peroxisomal membrane fraction. In addition, several other proteins were enriched, including mitochondrial transport proteins. Localization studies revealed that one of them, the mitochondrial phosphate carrier Mir1, has a dual localization on mitochondria and peroxisomes. To better understand the molecular mechanisms of dual sorting, we localized Mir1 in cells lacking Pex3 or Pex19, two peroxins that play a role in targeting of peroxisomal membrane proteins. In these cells Mir1 only localized to mitochondria, indicating that Pex3 and Pex19 are required to sort Mir1 to peroxisomes. Analysis of the localization of truncated versions of Mir1 in wild-type H. polymorpha cells revealed that most of them localized to mitochondria, but only one, consisting of the transmembrane domains 3-6, was peroxisomal. Peroxisomal localization of this construct was lost in a MIR1 deletion strain, indicating that full-length Mir1 was required for the localization of the truncated protein to peroxisomes. Our data suggest that only full-length Mir1 sorts to peroxisomes, while Mir1 contains multiple regions with mitochondrial sorting information. Data are available via ProteomeXchange with identifier PXD050324.
Collapse
Affiliation(s)
- Marc Pilegaard Pedersen
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Justina C Wolters
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rinse de Boer
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Arjen M Krikken
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
2
|
de Lange EMF, Vlijm R. Super-Resolution Imaging of Peroxisomal Proteins Using STED Nanoscopy. Methods Mol Biol 2023; 2643:65-84. [PMID: 36952178 DOI: 10.1007/978-1-0716-3048-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Peroxisomes are crucial organelles that occur in almost all eukaryotes. Well known are their roles in various metabolic processes, such as hydrogen peroxide detoxification and lipid metabolism. Recent studies indicated that peroxisomes also have several non-metabolic functions, for instance, in stress response, signaling, and cellular ageing. In mammalian cells, the small size of peroxisomes (~200 nm, near the diffraction limit) hinders unveiling peroxisomal structures by conventional light microscopy. However, in the yeast Hansenula polymorpha, they can reach up to 1.5 μm in diameter, depending on the carbon source. To study the localization of peroxisomal proteins in cells in more detail, super-resolution imaging techniques such as stimulated emission depletion (STED) microscopy can be used. STED enables fast (live-cell) imaging well beyond the diffraction limit of light (30-40 nm in cells), without further data processing. Here, we present optimized protocols for the fluorescent labeling of specific peroxisomal proteins in fixed and living cells. Moreover, detailed measurement protocols for successful STED imaging of human and yeast peroxisomes (using antibodies or genetic tags labeled with dyes) are described, extended with suggestions for individual optimizations.
Collapse
Affiliation(s)
- Eline M F de Lange
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Rifka Vlijm
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Deori NM, Nagotu S. Peroxisome biogenesis and inter-organelle communication: an indispensable role for Pex11 and Pex30 family proteins in yeast. Curr Genet 2022; 68:537-550. [PMID: 36242632 DOI: 10.1007/s00294-022-01254-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022]
Abstract
Peroxisomes are highly dynamic organelles present in most eukaryotic cells. They also play an important role in human health and the optimum functioning of cells. An extensive repertoire of proteins is associated with the biogenesis and function of these organelles. Two protein families that are involved in regulating peroxisome number in a cell directly or indirectly are Pex11 and Pex30. Interestingly, these proteins are also reported to regulate the contact sites between peroxisomes and other cell organelles such as mitochondria, endoplasmic reticulum and lipid droplets. In this manuscript, we review our current knowledge of the role of these proteins in peroxisome biogenesis in various yeast species. Further, we also discuss in detail the role of these protein families in the regulation of inter-organelle contacts in yeast.
Collapse
Affiliation(s)
- Nayan Moni Deori
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
4
|
Liu Y, Zhang J, Li Q, Wang Z, Cui Z, Su T, Lu X, Qi Q, Hou J. Engineering Yarrowia lipolytica for the sustainable production of β-farnesene from waste oil feedstock. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:101. [PMID: 36192797 PMCID: PMC9528160 DOI: 10.1186/s13068-022-02201-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/24/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND β-Farnesene is a sesquiterpene with versatile industrial applications. The production of β-farnesene from waste lipid feedstock is an attractive method for sustainable production and recycling waste oil. Yarrowia lipolytica is an unconventional oleaginous yeast, which can use lipid feedstock and has great potential to synthesize acetyl-CoA-derived chemicals. RESULTS In this study, we engineered Y. lipolytica to produce β-farnesene from lipid feedstock. To direct the flux of acetyl-CoA, which is generated from lipid β-oxidation, to β-farnesene synthesis, the mevalonate synthesis pathway was compartmentalized into peroxisomes. β-Farnesene production was then engineered by the protein engineering of β-farnesene synthase and pathway engineering. The regulation of lipid metabolism by enhancing β-oxidation and eliminating intracellular lipid synthesis was further performed to improve the β-farnesene synthesis. As a result, the final β-farnesene production with bio-engineering reached 35.2 g/L and 31.9 g/L using oleic acid and waste cooking oil, respectively, which are the highest β-farnesene titers reported in Y. lipolytica. CONCLUSIONS This study demonstrates that engineered Y. lipolytica could realize the sustainable production of value-added acetyl-CoA-derived chemicals from waste lipid feedstock.
Collapse
Affiliation(s)
- Yinghang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Jin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Qingbin Li
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Zhaoxuan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, China.
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, China.
| |
Collapse
|
5
|
Carmichael RE, Schrader M. Determinants of Peroxisome Membrane Dynamics. Front Physiol 2022; 13:834411. [PMID: 35185625 PMCID: PMC8853631 DOI: 10.3389/fphys.2022.834411] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Organelles within the cell are highly dynamic entities, requiring dramatic morphological changes to support their function and maintenance. As a result, organelle membranes are also highly dynamic, adapting to a range of topologies as the organelle changes shape. In particular, peroxisomes—small, ubiquitous organelles involved in lipid metabolism and reactive oxygen species homeostasis—display a striking plasticity, for example, during the growth and division process by which they proliferate. During this process, the membrane of an existing peroxisome elongates to form a tubule, which then constricts and ultimately undergoes scission to generate new peroxisomes. Dysfunction of this plasticity leads to diseases with developmental and neurological phenotypes, highlighting the importance of peroxisome dynamics for healthy cell function. What controls the dynamics of peroxisomal membranes, and how this influences the dynamics of the peroxisomes themselves, is just beginning to be understood. In this review, we consider how the composition, biophysical properties, and protein-lipid interactions of peroxisomal membranes impacts on their dynamics, and in turn on the biogenesis and function of peroxisomes. In particular, we focus on the effect of the peroxin PEX11 on the peroxisome membrane, and its function as a major regulator of growth and division. Understanding the roles and regulation of peroxisomal membrane dynamics necessitates a multidisciplinary approach, encompassing knowledge across a range of model species and a number of fields including lipid biochemistry, biophysics and computational biology. Here, we present an integrated overview of our current understanding of the determinants of peroxisome membrane dynamics, and reflect on the outstanding questions still remaining to be solved.
Collapse
Affiliation(s)
- Ruth E Carmichael
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
6
|
Krikken AM, Wu H, de Boer R, Devos DP, Levine TP, van der Klei IJ. Peroxisome retention involves Inp1-dependent peroxisome-plasma membrane contact sites in yeast. J Cell Biol 2020; 219:152028. [PMID: 32805027 PMCID: PMC7659721 DOI: 10.1083/jcb.201906023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 03/15/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Retention of peroxisomes in yeast mother cells requires Inp1, which is recruited to the organelle by the peroxisomal membrane protein Pex3. Here we show that Hansenula polymorpha Inp1 associates peroxisomes to the plasma membrane. Peroxisome-plasma membrane contact sites disappear upon deletion of INP1 but increase upon INP1 overexpression. Analysis of truncated Inp1 variants showed that the C terminus is important for association to the peroxisome, while a stretch of conserved positive charges and a central pleckstrin homology-like domain are important for plasma membrane binding. In cells of a PEX3 deletion, strain Inp1-GFP localizes to the plasma membrane, concentrated in patches near the bud neck and in the cortex of nascent buds. Upon disruption of the actin cytoskeleton by treatment of the cells with latrunculin A, Inp1-GFP became cytosolic, indicating that Inp1 localization is dependent on the presence of an intact actin cytoskeleton.
Collapse
Affiliation(s)
- Arjen M Krikken
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Huala Wu
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Rinse de Boer
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Pablo de Olavide University, Seville, Spain
| | - Tim P Levine
- Institute of Ophthalmology, University College London, London, UK
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Wu F, de Boer R, Krikken AM, Akşit A, Bordin N, Devos DP, van der Klei IJ. Pex24 and Pex32 are required to tether peroxisomes to the ER for organelle biogenesis, positioning and segregation in yeast. J Cell Sci 2020; 133:jcs246983. [PMID: 32665322 DOI: 10.1242/jcs.246983] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
The yeast Hansenula polymorpha contains four members of the Pex23 family of peroxins, which characteristically contain a DysF domain. Here we show that all four H. polymorpha Pex23 family proteins localize to the endoplasmic reticulum (ER). Pex24 and Pex32, but not Pex23 and Pex29, predominantly accumulate at peroxisome-ER contacts. Upon deletion of PEX24 or PEX32 - and to a much lesser extent, of PEX23 or PEX29 - peroxisome-ER contacts are lost, concomitant with defects in peroxisomal matrix protein import, membrane growth, and organelle proliferation, positioning and segregation. These defects are suppressed by the introduction of an artificial peroxisome-ER tether, indicating that Pex24 and Pex32 contribute to tethering of peroxisomes to the ER. Accumulation of Pex32 at these contact sites is lost in cells lacking the peroxisomal membrane protein Pex11, in conjunction with disruption of the contacts. This indicates that Pex11 contributes to Pex32-dependent peroxisome-ER contact formation. The absence of Pex32 has no major effect on pre-peroxisomal vesicles that occur in pex3 atg1 deletion cells.
Collapse
Affiliation(s)
- Fei Wu
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9300CC Groningen, The Netherlands
| | - Rinse de Boer
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9300CC Groningen, The Netherlands
| | - Arjen M Krikken
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9300CC Groningen, The Netherlands
| | - Arman Akşit
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9300CC Groningen, The Netherlands
| | - Nicola Bordin
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Carretera de Utrera, Km.1, Seville 41013, Spain
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Carretera de Utrera, Km.1, Seville 41013, Spain
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9300CC Groningen, The Netherlands
| |
Collapse
|
8
|
Passmore JB, Carmichael RE, Schrader TA, Godinho LF, Ferdinandusse S, Lismont C, Wang Y, Hacker C, Islinger M, Fransen M, Richards DM, Freisinger P, Schrader M. Mitochondrial fission factor (MFF) is a critical regulator of peroxisome maturation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118709. [PMID: 32224193 PMCID: PMC7262603 DOI: 10.1016/j.bbamcr.2020.118709] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/21/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Peroxisomes are highly dynamic subcellular compartments with important functions in lipid and ROS metabolism. Impaired peroxisomal function can lead to severe metabolic disorders with developmental defects and neurological abnormalities. Recently, a new group of disorders has been identified, characterised by defects in the membrane dynamics and division of peroxisomes rather than by loss of metabolic functions. However, the contribution of impaired peroxisome plasticity to the pathophysiology of those disorders is not well understood. Mitochondrial fission factor (MFF) is a key component of both the peroxisomal and mitochondrial division machinery. Patients with MFF deficiency present with developmental and neurological abnormalities. Peroxisomes (and mitochondria) in patient fibroblasts are highly elongated as a result of impaired organelle division. The majority of studies into MFF-deficiency have focused on mitochondrial dysfunction, but the contribution of peroxisomal alterations to the pathophysiology is largely unknown. Here, we show that MFF deficiency does not cause alterations to overall peroxisomal biochemical function. However, loss of MFF results in reduced import-competency of the peroxisomal compartment and leads to the accumulation of pre-peroxisomal membrane structures. We show that peroxisomes in MFF-deficient cells display alterations in peroxisomal redox state and intra-peroxisomal pH. Removal of elongated peroxisomes through induction of autophagic processes is not impaired. A mathematical model describing key processes involved in peroxisome dynamics sheds further light into the physical processes disturbed in MFF-deficient cells. The consequences of our findings for the pathophysiology of MFF-deficiency and related disorders with impaired peroxisome plasticity are discussed. Peroxisomes are highly elongated in cells from patients lacking fission factor MFF. Peroxisomal proteins are not uniformly distributed in highly elongated peroxisomes. Peroxisomal metabolism is unaltered in MFF-deficient patients. Peroxisomal elongations are stabilised through interaction with microtubules. Highly elongated peroxisomes are not spared from degradation.
Collapse
Affiliation(s)
| | | | | | | | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, the Netherlands
| | - Celien Lismont
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Yunhong Wang
- Institute of Neuroanatomy, Medical Faculty Manheim, University of Heidelberg, Mannheim, Germany
| | | | - Markus Islinger
- Institute of Neuroanatomy, Medical Faculty Manheim, University of Heidelberg, Mannheim, Germany
| | - Marc Fransen
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Peter Freisinger
- Department of Pediatrics, Kreiskliniken Reutlingen, Reutlingen, Germany
| | | |
Collapse
|
9
|
Singh R, Manivannan S, Krikken AM, de Boer R, Bordin N, Devos DP, van der Klei IJ. Hansenula polymorpha Pex37 is a peroxisomal membrane protein required for organelle fission and segregation. FEBS J 2019; 287:1742-1757. [PMID: 31692262 PMCID: PMC7318627 DOI: 10.1111/febs.15123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/29/2019] [Accepted: 11/04/2019] [Indexed: 11/30/2022]
Abstract
Here, we describe a novel peroxin, Pex37, in the yeast Hansenula polymorpha. H. polymorpha Pex37 is a peroxisomal membrane protein, which belongs to a protein family that includes, among others, the Neurospora crassa Woronin body protein Wsc, the human peroxisomal membrane protein PXMP2, the Saccharomyces cerevisiae mitochondrial inner membrane protein Sym1, and its mammalian homologue MPV17. We show that deletion of H. polymorpha PEX37 does not appear to have a significant effect on peroxisome biogenesis or proliferation in cells grown at peroxisome‐inducing growth conditions (methanol). However, the absence of Pex37 results in a reduction in peroxisome numbers and a defect in peroxisome segregation in cells grown at peroxisome‐repressing conditions (glucose). Conversely, overproduction of Pex37 in glucose‐grown cells results in an increase in peroxisome numbers in conjunction with a decrease in their size. The increase in numbers in PEX37‐overexpressing cells depends on the dynamin‐related protein Dnm1. Together our data suggest that Pex37 is involved in peroxisome fission in glucose‐grown cells. Introduction of human PXMP2 in H. polymorpha pex37 cells partially restored the peroxisomal phenotype, indicating that PXMP2 represents a functional homologue of Pex37. H.polymorpha pex37 cells did not show aberrant growth on any of the tested carbon and nitrogen sources that are metabolized by peroxisomal enzymes, suggesting that Pex37 may not fulfill an essential function in transport of these substrates or compounds required for their metabolism across the peroxisomal membrane.
Collapse
Affiliation(s)
- Ritika Singh
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Selvambigai Manivannan
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Arjen M Krikken
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Rinse de Boer
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Nicola Bordin
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Seville, Spain.,Structural and Molecular Biology, University College London, UK
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Seville, Spain
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| |
Collapse
|
10
|
Wróblewska JP, van der Klei IJ. Peroxisome Maintenance Depends on De Novo Peroxisome Formation in Yeast Mutants Defective in Peroxisome Fission and Inheritance. Int J Mol Sci 2019; 20:ijms20164023. [PMID: 31426544 PMCID: PMC6719073 DOI: 10.3390/ijms20164023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 01/15/2023] Open
Abstract
There is an ongoing debate on how peroxisomes form: by growth and fission of pre-existing peroxisomes or de novo from another membrane. It has been proposed that, in wild type yeast cells, peroxisome fission and careful segregation of the organelles over mother cells and buds is essential for organelle maintenance. Using live cell imaging we observed that cells of the yeast Hansenula polymorpha, lacking the peroxisome fission protein Pex11, still show peroxisome fission and inheritance. Also, in cells of mutants without the peroxisome inheritance protein Inp2 peroxisome segregation can still occur. In contrast, peroxisome fission and inheritance were not observed in cells of a pex11 inp2 double deletion strain. In buds of cells of this double mutant, new organelles likely appear de novo. Growth of pex11 inp2 cells on methanol, a growth substrate that requires functional peroxisomes, is retarded relative to the wild type control. Based on these observations we conclude that in H. polymorpha de novo peroxisome formation is a rescue mechanism, which is less efficient than organelle fission and inheritance to maintain functional peroxisomes.
Collapse
Affiliation(s)
- Justyna P Wróblewska
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (BBA), University of Groningen, PO Box 11103, 9300 CC Groningen, The Netherlands
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (BBA), University of Groningen, PO Box 11103, 9300 CC Groningen, The Netherlands.
| |
Collapse
|
11
|
Zhang M, Yang S, Shi M, Zhang S, Zhang T, Li Y, Xu S, Cha M, Meng Y, Lin S, Yu J, Li X, Mu A, Hu D, Liu S. Regulatory Roles of Peroxisomal Metabolic Pathways Involved in Musk Secretion in Muskrats. J Membr Biol 2019; 252:61-75. [PMID: 30604068 DOI: 10.1007/s00232-018-0057-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 12/10/2018] [Indexed: 11/30/2022]
Abstract
In this study, we analyzed the main components of muskrat musk by gas chromatography-mass spectrometry, the results showed that muskrat musk contained fatty acids (29.32%), esters (31.89%), cholesterol (4.38%), cyclic ketones (16.31%), alcohols (6.42%) and other compounds, among which 9-octadecenoic acid accounted for 4.89%. We also analyzed the genes of the metabolic pathway in the scent gland at the transcriptomic level during musk-secreting and non-secreting seasons by RNA-seq (RNA sequencing). We detected 21 genes in the peroxisomal metabolic pathways, including PEX14(peroxin-14) and ACOX3(acyl-CoA oxidase), which exhibited significant differential expression between the musk-secreting season and the non-secreting season (p < 0.05). The RNA-seq results for these genes were validated by reverse transcription PCR(RT-PCR) for both seasons. In addition, we examined changes in the composition of muskrat musk from the glandular cells of scent glands cultured in vitro after RNA interference-mediated silencing of 2 differentially expressed genes, ACOX3 and HSD17B4(D-bifunctional protein, DBP). The 9-Octadecenoic acid content in muskrat musk decreased significantly following the silencing of ACOX3 and HSD17B4(D-bifunctional protein, DBP). These results suggest that peroxisomal metabolic pathways play important roles in the regulation of musk secretion in scent glands in the muskrat.
Collapse
Affiliation(s)
- Meishan Zhang
- College of Nature Conservation, Beijing Forestry University, No.35, Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Shuang Yang
- College of Nature Conservation, Beijing Forestry University, No.35, Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Minghui Shi
- College of Nature Conservation, Beijing Forestry University, No.35, Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Shumiao Zhang
- Beijing Milu Ecological Research Center, Beijing, 100076, People's Republic of China
| | - Tianxiang Zhang
- College of Nature Conservation, Beijing Forestry University, No.35, Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Yimeng Li
- College of Nature Conservation, Beijing Forestry University, No.35, Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Shanghua Xu
- College of Nature Conservation, Beijing Forestry University, No.35, Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Muha Cha
- College of Nature Conservation, Beijing Forestry University, No.35, Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Yuping Meng
- Beijing Milu Ecological Research Center, Beijing, 100076, People's Republic of China
| | - Shaobi Lin
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, Fujian, 363700, People's Republic of China
| | - Juan Yu
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, Fujian, 363700, People's Republic of China
| | - Xuxin Li
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, Fujian, 363700, People's Republic of China
| | - Ali Mu
- Qingdao Feed and Veterinary Drug Inspection Station, Qingdao, 266000, People's Republic of China
| | - Defu Hu
- College of Nature Conservation, Beijing Forestry University, No.35, Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China.
| | - Shuqiang Liu
- College of Nature Conservation, Beijing Forestry University, No.35, Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China. .,Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, Fujian, 363700, People's Republic of China.
| |
Collapse
|
12
|
Abstract
Peroxisomes are key metabolic organelles, which contribute to cellular lipid metabolism, e.g. the β-oxidation of fatty acids and the synthesis of myelin sheath lipids, as well as cellular redox balance. Peroxisomal dysfunction has been linked to severe metabolic disorders in man, but peroxisomes are now also recognized as protective organelles with a wider significance in human health and potential impact on a large number of globally important human diseases such as neurodegeneration, obesity, cancer, and age-related disorders. Therefore, the interest in peroxisomes and their physiological functions has significantly increased in recent years. In this review, we intend to highlight recent discoveries, advancements and trends in peroxisome research, and present an update as well as a continuation of two former review articles addressing the unsolved mysteries of this astonishing organelle. We summarize novel findings on the biological functions of peroxisomes, their biogenesis, formation, membrane dynamics and division, as well as on peroxisome-organelle contacts and cooperation. Furthermore, novel peroxisomal proteins and machineries at the peroxisomal membrane are discussed. Finally, we address recent findings on the role of peroxisomes in the brain, in neurological disorders, and in the development of cancer.
Collapse
Affiliation(s)
- Markus Islinger
- Institute of Neuroanatomy, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Manheim, University of Heidelberg, 68167, Mannheim, Germany
| | - Alfred Voelkl
- Institute for Anatomy and Cell Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | - H Dariush Fahimi
- Institute for Anatomy and Cell Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | | |
Collapse
|
13
|
Akşit A, van der Klei IJ. Yeast peroxisomes: How are they formed and how do they grow? Int J Biochem Cell Biol 2018; 105:24-34. [PMID: 30268746 DOI: 10.1016/j.biocel.2018.09.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 01/01/2023]
Abstract
Peroxisomes are single membrane enclosed cell organelles, which are present in almost all eukaryotic cells. In addition to the common peroxisomal pathways such as β-oxidation of fatty acids and decomposition of H2O2, these organelles fulfil a range of metabolic and non-metabolic functions. Peroxisomes are very important since various human disorders exist that are caused by a defect in peroxisome function. Here we describe our current knowledge on the molecular mechanisms of peroxisome biogenesis in yeast, including peroxisomal protein sorting, organelle dynamics and peroxisomal membrane contact sites.
Collapse
Affiliation(s)
- Arman Akşit
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands.
| |
Collapse
|
14
|
Wu H, de Boer R, Krikken AM, Akşit A, Yuan W, van der Klei IJ. Peroxisome development in yeast is associated with the formation of Pex3-dependent peroxisome-vacuole contact sites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:349-359. [PMID: 30595161 DOI: 10.1016/j.bbamcr.2018.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/29/2022]
Abstract
Using electron and fluorescence microscopy techniques, we identified various physical contacts between peroxisomes and other cell organelles in the yeast Hansenula polymorpha. In exponential glucose-grown cells, which typically contain a single small peroxisome, contacts were only observed with the endoplasmic reticulum and the plasma membrane. Here we focus on a novel peroxisome-vacuole contact site that is formed when glucose-grown cells are shifted to methanol containing media, conditions that induce strong peroxisome development. At these conditions, the small peroxisomes rapidly increase in size, a phenomenon that is paralleled by the formation of distinct intimate contacts with the vacuole. Localization studies showed that the peroxin Pex3 accumulated in patches at the peroxisome-vacuole contact sites. In wild-type cells growing exponentially on medium containing glucose, peroxisome-vacuole contact sites were never observed. However, upon overproduction of Pex3 peroxisomes also associated to vacuoles at these growth conditions. Our observations strongly suggest a role for Pex3 in the formation of a novel peroxisome-vacuole contact site. This contact likely plays a role in membrane growth as it is formed solely at conditions of strong peroxisome expansion.
Collapse
Affiliation(s)
- Huala Wu
- Molecular Cell Biology, University of Groningen, PO Box 11103, 9300, CC, Groningen, the Netherlands
| | - Rinse de Boer
- Molecular Cell Biology, University of Groningen, PO Box 11103, 9300, CC, Groningen, the Netherlands
| | - Arjen M Krikken
- Molecular Cell Biology, University of Groningen, PO Box 11103, 9300, CC, Groningen, the Netherlands
| | - Arman Akşit
- Molecular Cell Biology, University of Groningen, PO Box 11103, 9300, CC, Groningen, the Netherlands
| | - Wei Yuan
- Molecular Cell Biology, University of Groningen, PO Box 11103, 9300, CC, Groningen, the Netherlands
| | - Ida J van der Klei
- Molecular Cell Biology, University of Groningen, PO Box 11103, 9300, CC, Groningen, the Netherlands.
| |
Collapse
|
15
|
Thomas AS, Krikken AM, de Boer R, Williams C. Hansenula polymorpha Aat2p is targeted to peroxisomes via a novel Pex20p-dependent pathway. FEBS Lett 2018; 592:2466-2475. [PMID: 29924881 PMCID: PMC6099311 DOI: 10.1002/1873-3468.13168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/25/2018] [Accepted: 06/11/2018] [Indexed: 12/29/2022]
Abstract
Saccharomyces cerevisiae Aat2p contains a peroxisomal targeting signal type‐1 and localizes to peroxisomes in oleate‐grown cells, but not in glucose‐grown cells. Here, we have investigated Aat2p from the yeast Hansenula polymorpha, which lacks a recognizable peroxisomal targeting signal. Aat2p tagged with GFP at its C terminus displays a dual cytosol‐peroxisome localization in ethanol‐grown cells. The partial peroxisomal localization of Aat2p persisted in the absence of the classical cycling receptors Pex5p and Pex7p but Aat2p targeting to peroxisomes was reduced in cells deleted for the matrix protein import factors PEX1, PEX2 and PEX13. Furthermore, we demonstrate that Aat2p targeting to peroxisomes requires Pex20p. Together, our data identify a Pex20p‐dependent pathway for targeting Aat2p to peroxisomes.
Collapse
Affiliation(s)
- Ann S Thomas
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Arjen M Krikken
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Rinse de Boer
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Chris Williams
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| |
Collapse
|
16
|
Chen X, Devarajan S, Danda N, Williams C. Insights into the Role of the Peroxisomal Ubiquitination Machinery in Pex13p Degradation in the Yeast Hansenula polymorpha. J Mol Biol 2018; 430:1545-1558. [PMID: 29694833 DOI: 10.1016/j.jmb.2018.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/13/2022]
Abstract
The import of matrix proteins into peroxisomes in yeast requires the action of the ubiquitin-conjugating enzyme Pex4p and a complex consisting of the ubiquitin E3 ligases Pex2p, Pex10p and Pex12p. Together, this peroxisomal ubiquitination machinery is thought to ubiquitinate the cycling receptor protein Pex5p and members of the Pex20p family of co-receptors, a modification that is required for receptor recycling. However, recent reports have demonstrated that this machinery plays a role in additional peroxisome-associated processes. Hence, our understanding of the function of these proteins in peroxisome biology is still incomplete. Here, we identify a role for the peroxisomal ubiquitination machinery in the degradation of the peroxisomal membrane protein Pex13p. Our data demonstrate that Pex13p levels build up in cells lacking members of this machinery and also establish that Pex13p undergoes rapid degradation in wild-type cells. Furthermore, we show that Pex13p is ubiquitinated in wild-type cells and also establish that Pex13p ubiquitination is reduced in cells lacking a functional peroxisomal E3 ligase complex. Finally, deletion of PEX2 causes Pex13p to build up at the peroxisomal membrane. Taken together, our data provide further evidence that the role of the peroxisomal ubiquitination machinery in peroxisome biology goes much deeper than receptor recycling alone.
Collapse
Affiliation(s)
- Xin Chen
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, the Netherlands
| | - Srishti Devarajan
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, the Netherlands
| | - Natasha Danda
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, the Netherlands
| | - Chris Williams
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, the Netherlands.
| |
Collapse
|
17
|
Su J, Thomas AS, Grabietz T, Landgraf C, Volkmer R, Marrink SJ, Williams C, Melo MN. The N-terminal amphipathic helix of Pex11p self-interacts to induce membrane remodelling during peroxisome fission. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1292-1300. [PMID: 29501607 DOI: 10.1016/j.bbamem.2018.02.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/07/2018] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
Abstract
Pex11p plays a crucial role in peroxisome fission. Previously, it was shown that a conserved N-terminal amphipathic helix in Pex11p, termed Pex11-Amph, was necessary for peroxisomal fission in vivo while in vitro studies revealed that this region alone was sufficient to bring about tubulation of liposomes with a lipid consistency resembling the peroxisomal membrane. However, molecular details of how Pex11-Amph remodels the peroxisomal membrane remain unknown. Here we have combined in silico, in vitro and in vivo approaches to gain insights into the molecular mechanisms underlying Pex11-Amph activity. Using molecular dynamics simulations, we observe that Pex11-Amph peptides form linear aggregates on a model membrane. Furthermore, we identify mutations that disrupted this aggregation in silico, which also abolished the peptide's ability to remodel liposomes in vitro, establishing that Pex11p oligomerisation plays a direct role in membrane remodelling. In vivo studies revealed that these mutations resulted in a strong reduction in Pex11 protein levels, indicating that these residues are important for Pex11p function. Taken together, our data demonstrate the power of combining in silico techniques with experimental approaches to investigate the molecular mechanisms underlying Pex11p-dependent membrane remodelling.
Collapse
Affiliation(s)
- Juanjuan Su
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Ann S Thomas
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Tanja Grabietz
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Christiane Landgraf
- Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Rudolf Volkmer
- Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany; Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Siewert J Marrink
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Chris Williams
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Manuel N Melo
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
18
|
Choudhry SK, de Boer R, van der Klei IJ. Yeast cells contain a heterogeneous population of peroxisomes that segregate asymmetrically during cell division. J Cell Sci 2018; 131:jcs207522. [PMID: 29361529 DOI: 10.1242/jcs.207522] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/13/2017] [Indexed: 11/20/2022] Open
Abstract
Here, we used fluorescence microscopy and a peroxisome-targeted tandem fluorescent protein timer to determine the relative age of peroxisomes in yeast. Our data indicate that yeast cells contain a heterogeneous population of relatively old and young peroxisomes. During budding, the peroxisome retention factor inheritance of peroxisomes protein 1 (Inp1) selectively associates to the older organelles, which are retained in the mother cells. Inp2, a protein required for transport of peroxisomes to the bud, preferentially associates to younger organelles. Using a microfluidics device, we demonstrate that the selective segregation of younger peroxisomes to the buds is carefully maintained during multiple budding events. The replicative lifespan of mother cells increased upon deletion of INP2, which resulted in the retention of all organelles in mother cells. These data suggest that, in wild-type yeast, transport of aged and deteriorated peroxisomes to the bud is prevented, whereas the young and vital organelles are preferably transported to the newly forming buds.
Collapse
Affiliation(s)
- Sanjeev Kumar Choudhry
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, P.O. Box 11103, 9700CC, Groningen, The Netherlands
| | - Rinse de Boer
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, P.O. Box 11103, 9700CC, Groningen, The Netherlands
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, P.O. Box 11103, 9700CC, Groningen, The Netherlands
| |
Collapse
|
19
|
Wróblewska JP, Cruz-Zaragoza LD, Yuan W, Schummer A, Chuartzman SG, de Boer R, Oeljeklaus S, Schuldiner M, Zalckvar E, Warscheid B, Erdmann R, van der Klei IJ. Saccharomyces cerevisiae cells lacking Pex3 contain membrane vesicles that harbor a subset of peroxisomal membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1656-1667. [PMID: 28552664 DOI: 10.1016/j.bbamcr.2017.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 12/19/2022]
Abstract
Pex3 has been proposed to be important for the exit of peroxisomal membrane proteins (PMPs) from the ER, based on the observation that PMPs accumulate at the ER in Saccharomyces cerevisiae pex3 mutant cells. Using a combination of microscopy and biochemical approaches, we show that a subset of the PMPs, including the receptor docking protein Pex14, localizes to membrane vesicles in S. cerevisiae pex3 cells. These vesicles are morphologically distinct from the ER and do not co-sediment with ER markers in cell fractionation experiments. At the vesicles, Pex14 assembles with other peroxins (Pex13, Pex17, and Pex5) to form a complex with a composition similar to the PTS1 import pore in wild-type cells. Fluorescence microscopy studies revealed that also the PTS2 receptor Pex7, the importomer organizing peroxin Pex8, the ubiquitin conjugating enzyme Pex4 with its recruiting PMP Pex22, as well as Pex15 and Pex25 co-localize with Pex14. Other peroxins (including the RING finger complex and Pex27) did not accumulate at these structures, of which Pex11 localized to mitochondria. In line with these observations, proteomic analysis showed that in addition to the docking proteins and Pex5, also Pex7, Pex4/Pex22 and Pex25 were present in Pex14 complexes isolated from pex3 cells. However, formation of the entire importomer was not observed, most likely because Pex8 and the RING proteins were absent in the Pex14 protein complexes. Our data suggest that peroxisomal membrane vesicles can form in the absence of Pex3 and that several PMPs can insert in these vesicles in a Pex3 independent manner.
Collapse
Affiliation(s)
- Justyna P Wróblewska
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (BBA), University of Groningen, PO Box 11103, 9300 CC Groningen, The Netherlands
| | - Luis Daniel Cruz-Zaragoza
- Systembiochemie, Institut für Biochemie und Pathobiochemie, Medizinische Fakultät, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Wei Yuan
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (BBA), University of Groningen, PO Box 11103, 9300 CC Groningen, The Netherlands
| | - Andreas Schummer
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Silvia G Chuartzman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rinse de Boer
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (BBA), University of Groningen, PO Box 11103, 9300 CC Groningen, The Netherlands
| | - Silke Oeljeklaus
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Ralf Erdmann
- Systembiochemie, Institut für Biochemie und Pathobiochemie, Medizinische Fakultät, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (BBA), University of Groningen, PO Box 11103, 9300 CC Groningen, The Netherlands.
| |
Collapse
|
20
|
Nonenzymatic biomimetic remodeling of phospholipids in synthetic liposomes. Proc Natl Acad Sci U S A 2016; 113:8589-94. [PMID: 27439858 DOI: 10.1073/pnas.1605541113] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cell membranes have a vast repertoire of phospholipid species whose structures can be dynamically modified by enzymatic remodeling of acyl chains and polar head groups. Lipid remodeling plays important roles in membrane biology and dysregulation can lead to disease. Although there have been tremendous advances in creating artificial membranes to model the properties of native membranes, a major obstacle has been developing straightforward methods to mimic lipid membrane remodeling. Stable liposomes are typically kinetically trapped and are not prone to exchanging diacylphospholipids. Here, we show that reversible chemoselective reactions can be harnessed to achieve nonenzymatic spontaneous remodeling of phospholipids in synthetic membranes. Our approach relies on transthioesterification/acyl shift reactions that occur spontaneously and reversibly between tertiary amides and thioesters. We demonstrate exchange and remodeling of both lipid acyl chains and head groups. Using our synthetic model system we demonstrate the ability of spontaneous phospholipid remodeling to trigger changes in vesicle spatial organization, composition, and morphology as well as recruit proteins that can affect vesicle curvature. Membranes capable of chemically exchanging lipid fragments could be used to help further understand the specific roles of lipid structure remodeling in biological membranes.
Collapse
|
21
|
Motley AM, Galvin PC, Ekal L, Nuttall JM, Hettema EH. Reevaluation of the role of Pex1 and dynamin-related proteins in peroxisome membrane biogenesis. J Cell Biol 2016; 211:1041-56. [PMID: 26644516 PMCID: PMC4674274 DOI: 10.1083/jcb.201412066] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Analysis of Pex1 and dynamin-related protein function indicates peroxisomes multiply mainly by growth and division in Saccharomyces cerevisiae, whereas no evidence was found for the previously proposed role for Pex1 in peroxisome formation by fusion of ER-derived preperoxisomal vesicles. A recent model for peroxisome biogenesis postulates that peroxisomes form de novo continuously in wild-type cells by heterotypic fusion of endoplasmic reticulum–derived vesicles containing distinct sets of peroxisomal membrane proteins. This model proposes a role in vesicle fusion for the Pex1/Pex6 complex, which has an established role in matrix protein import. The growth and division model proposes that peroxisomes derive from existing peroxisomes. We tested these models by reexamining the role of Pex1/Pex6 and dynamin-related proteins in peroxisome biogenesis. We found that induced depletion of Pex1 blocks the import of matrix proteins but does not affect membrane protein delivery to peroxisomes; markers for the previously reported distinct vesicles colocalize in pex1 and pex6 cells; peroxisomes undergo continued growth if fission is blocked. Our data are compatible with the established primary role of the Pex1/Pex6 complex in matrix protein import and show that peroxisomes in Saccharomyces cerevisiae multiply mainly by growth and division.
Collapse
Affiliation(s)
- Alison M Motley
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England, UK
| | - Paul C Galvin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England, UK
| | - Lakhan Ekal
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England, UK
| | - James M Nuttall
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England, UK
| | - Ewald H Hettema
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England, UK
| |
Collapse
|
22
|
Yuan W, Veenhuis M, van der Klei IJ. The birth of yeast peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:902-10. [PMID: 26367802 DOI: 10.1016/j.bbamcr.2015.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 11/25/2022]
Abstract
This contribution describes the phenotypic differences of yeast peroxisome-deficient mutants (pex mutants). In some cases different phenotypes were reported for yeast mutants deleted in the same PEX gene. These differences are most likely related to the marker proteins and methods used to detect peroxisomal remnants. This is especially evident for pex3 and pex19 mutants, where the localization of receptor docking proteins (Pex13, Pex14) resulted in the identification of peroxisomal membrane remnants, which do not contain other peroxisomal membrane proteins, such as the ring proteins Pex2, Pex10 and Pex12. These structures in pex3 and pex19 cells are the template for peroxisome formation upon introduction of the missing gene. Taken together, these data suggest that in all yeast pex mutants analyzed so far peroxisomes are not formed de novo but use membrane remnant structures as a template for peroxisome formation upon reintroduction of the missing gene. The relevance of this model for peroxisomal membrane protein and lipid sorting to peroxisomes is discussed.
Collapse
Affiliation(s)
- Wei Yuan
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Marten Veenhuis
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
23
|
Wang J, Li L, Zhang Z, Qiu H, Li D, Fang Y, Jiang H, Chai RY, Mao X, Wang Y, Sun G. One of Three Pex11 Family Members Is Required for Peroxisomal Proliferation and Full Virulence of the Rice Blast Fungus Magnaporthe oryzae. PLoS One 2015. [PMID: 26218097 PMCID: PMC4517885 DOI: 10.1371/journal.pone.0134249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Peroxisomes play important roles in metabolisms of eukaryotes and infection of plant fungal pathogens. These organelles proliferate by de novo formation or division in response to environmental stimulation. Although the assembly of peroxisomes was documented in fungal pathogens, their division and its relationship to pathogenicity remain obscure. In present work, we analyzed the roles of three Pex11 family members in peroxisomal division and pathogenicity of the rice blast fungus Magnaporthe oryzae. Deletion of MoPEX11A led to fewer but enlarged peroxisomes, and impaired the separation of Woronin bodies from peroxisomes, while deletion of MoPEX11B or MoPEX11C put no evident impacts to peroxisomal profiles. MoPEX11A mutant exhibited typical peroxisome related defects, delayed conidial germination and appressoria formation, and decreased appressorial turgor and host penetration. As a result, the virulence of MoPEX11A mutant was greatly reduced. Deletion of MoPEX11B and MoPEX11C did not alter the virulence of the fungus. Further, double or triple deletions of the three genes were unable to enhance the virulence decrease in MoPEX11A mutant. Our data indicated that MoPEX11A is the main factor modulating peroxisomal division and is required for full virulence of the fungus.
Collapse
Affiliation(s)
- Jiaoyu Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ling Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- School of Agricultural and Food Sciences, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Zhen Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haiping Qiu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dongmei Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuan Fang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Hua Jiang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rong Yao Chai
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xueqin Mao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanli Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guochang Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- * E-mail:
| |
Collapse
|
24
|
Thomas AS, Krikken AM, van der Klei IJ, Williams CP. Phosphorylation of Pex11p does not regulate peroxisomal fission in the yeast Hansenula polymorpha. Sci Rep 2015; 5:11493. [PMID: 26099236 PMCID: PMC4477233 DOI: 10.1038/srep11493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/26/2015] [Indexed: 01/22/2023] Open
Abstract
Pex11p plays a crucial role in peroxisomal fission. Studies in Saccharomyces cerevisiae and Pichia pastoris indicated that Pex11p is activated by phosphorylation, which results in enhanced peroxisome proliferation. In S. cerevisiae but not in P. pastoris, Pex11p phosphorylation was shown to regulate the protein’s trafficking to peroxisomes. However, phosphorylation of PpPex11p was proposed to influence its interaction with Fis1p, another component of the organellar fission machinery. Here, we have examined the role of Pex11p phosphorylation in the yeast Hansenula polymorpha. Employing mass spectrometry, we demonstrate that HpPex11p is also phosphorylated on a Serine residue present at a similar position to that of ScPex11p and PpPex11p. Furthermore, through the use of mutants designed to mimic both phosphorylated and unphosphorylated forms of HpPex11p, we have investigated the role of this post-translational modification. Our data demonstrate that mutations to the phosphorylation site do not disturb the function of Pex11p in peroxisomal fission, nor do they alter the localization of Pex11p. Also, no effect on peroxisome inheritance was observed. Taken together, these data lead us to conclude that peroxisomal fission in H. polymorpha is not modulated by phosphorylation of Pex11p.
Collapse
Affiliation(s)
- Ann S Thomas
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Arjen M Krikken
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Chris P Williams
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| |
Collapse
|
25
|
The membrane remodeling protein Pex11p activates the GTPase Dnm1p during peroxisomal fission. Proc Natl Acad Sci U S A 2015; 112:6377-82. [PMID: 25941407 DOI: 10.1073/pnas.1418736112] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The initial phase of peroxisomal fission requires the peroxisomal membrane protein Peroxin 11 (Pex11p), which remodels the membrane, resulting in organelle elongation. Here, we identify an additional function for Pex11p, demonstrating that Pex11p also plays a crucial role in the final step of peroxisomal fission: dynamin-like protein (DLP)-mediated membrane scission. First, we demonstrate that yeast Pex11p is necessary for the function of the GTPase Dynamin-related 1 (Dnm1p) in vivo. In addition, our data indicate that Pex11p physically interacts with Dnm1p and that inhibiting this interaction compromises peroxisomal fission. Finally, we demonstrate that Pex11p functions as a GTPase activating protein (GAP) for Dnm1p in vitro. Similar observations were made for mammalian Pex11β and the corresponding DLP Drp1, indicating that DLP activation by Pex11p is conserved. Our work identifies a previously unknown requirement for a GAP in DLP function.
Collapse
|
26
|
Choudhry SK, Kawałek A, van der Klei IJ. Peroxisomal quality control mechanisms. Curr Opin Microbiol 2014; 22:30-7. [PMID: 25305535 DOI: 10.1016/j.mib.2014.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/08/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
Peroxisomes are ubiquitous organelles that harbor diverse metabolic pathways, which are essential for normal cell performance. Conserved functions of these organelles are hydrogen peroxide metabolism and β-oxidation. Cells employ multiple quality control mechanisms to ensure proper peroxisome function and to protect peroxisomes from damage. These involve the function of molecular chaperones, a peroxisomal Lon protease and autophagic removal of dysfunctional organelles. In addition, multiple mechanisms exist to combat peroxisomal oxidative stress. Here, we outline recent advances in our understanding of peroxisomal quality control, focussing on yeast and filamentous fungi.
Collapse
Affiliation(s)
- Sanjeev K Choudhry
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, P.O. Box 11103, 9300CC Groningen, The Netherlands
| | - Adam Kawałek
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, P.O. Box 11103, 9300CC Groningen, The Netherlands
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, P.O. Box 11103, 9300CC Groningen, The Netherlands.
| |
Collapse
|
27
|
Knoops K, Manivannan S, Cepinska MN, Krikken AM, Kram AM, Veenhuis M, van der Klei IJ. Preperoxisomal vesicles can form in the absence of Pex3. ACTA ACUST UNITED AC 2014; 204:659-68. [PMID: 24590171 PMCID: PMC3941047 DOI: 10.1083/jcb.201310148] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Contrary to earlier findings, preperoxisomal membrane structures form in yeast cells lacking the peroxin Pex3 and are competent to mature into functional peroxisomes upon Pex3 reintroduction. We demonstrate that the peroxin Pex3 is not required for the formation of peroxisomal membrane structures in yeast pex3 mutant cells. Notably, pex3 mutant cells already contain reticular and vesicular structures that harbor key proteins of the peroxisomal receptor docking complex—Pex13 and Pex14—as well as the matrix proteins Pex8 and alcohol oxidase. Other peroxisomal membrane proteins in these cells are unstable and transiently localized to the cytosol (Pex10, Pmp47) or endoplasmic reticulum (Pex11). These reticular and vesicular structures are more abundant in cells of a pex3 atg1 double deletion strain, as the absence of Pex3 may render them susceptible to autophagic degradation, which is blocked in this double mutant. Contrary to earlier suggestions, peroxisomes are not formed de novo from the endoplasmic reticulum when the PEX3 gene is reintroduced in pex3 cells. Instead, we find that reintroduced Pex3 sorts to the preperoxisomal structures in pex3 cells, after which these structures mature into normal peroxisomes.
Collapse
Affiliation(s)
- Kèvin Knoops
- Molecular Cell Biology, University of Groningen, 9747 AG Groningen, Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Veenhuis M, van der Klei IJ. A critical reflection on the principles of peroxisome formation in yeast. Front Physiol 2014; 5:110. [PMID: 24688473 PMCID: PMC3960572 DOI: 10.3389/fphys.2014.00110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 03/04/2014] [Indexed: 11/13/2022] Open
Abstract
We have evaluated the current knowledge on peroxisome proliferation in yeast. In wild-type cells, peroxisomes multiply predominantly by fission at conditions that require peroxisome function(s) for growth. In cells that lack peroxisomes, for instance in pex3 and pex19 mutants or in mutants that display inheritance defects, peroxisomes may form de novo. We propose a novel machinery for the de novo formation of peroxisomes in pex3 cells, in which new peroxisomes do not arise from the endoplasmic reticulum. This machinery is based on the recent observation that membrane vesicles are present in pex3 cells that display peroxisomal characteristics in that they contain specific peroxisomal membrane and matrix proteins. These structures are the source for newly formed peroxisomes upon reintroduction of Pex3. Furthermore, we critically evaluate the principles of sorting of other peroxisomal membrane proteins to their target organelle and the function of the endoplasmic reticulum therein.
Collapse
Affiliation(s)
- Marten Veenhuis
- Molecular Cell Biology, University of Groningen Groningen, Netherlands
| | | |
Collapse
|
29
|
Saraya R, Gidijala L, Veenhuis M, van der Klei IJ. Tools for genetic engineering of the yeast Hansenula polymorpha. Methods Mol Biol 2014; 1152:43-62. [PMID: 24744026 DOI: 10.1007/978-1-4939-0563-8_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Hansenula polymorpha is a methylotrophic yeast species that has favorable properties for heterologous protein production and metabolic engineering. It provides an attractive expression platform with the capability to secrete high levels of commercially important proteins. Over the past few years many efforts have led to advances in the development of this microbial host including the generation of expression vectors containing strong constitutive or inducible promoters and a large array of dominant and auxotrophic markers. Moreover, highly efficient transformation procedures used to generate genetically stable strains are now available. Here, we describe these tools as well as the methods for genetic engineering of H. polymorpha.
Collapse
Affiliation(s)
- Ruchi Saraya
- Molecular Cell Biology, Kluyver Centre for Genomics of Industrial Fermentation, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
30
|
Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat--store 'em up or burn 'em down. Genetics 2013; 193:1-50. [PMID: 23275493 PMCID: PMC3527239 DOI: 10.1534/genetics.112.143362] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lipid droplets (LDs) and peroxisomes are central players in cellular lipid homeostasis: some of their main functions are to control the metabolic flux and availability of fatty acids (LDs and peroxisomes) as well as of sterols (LDs). Both fatty acids and sterols serve multiple functions in the cell—as membrane stabilizers affecting membrane fluidity, as crucial structural elements of membrane-forming phospholipids and sphingolipids, as protein modifiers and signaling molecules, and last but not least, as a rich carbon and energy source. In addition, peroxisomes harbor enzymes of the malic acid shunt, which is indispensable to regenerate oxaloacetate for gluconeogenesis, thus allowing yeast cells to generate sugars from fatty acids or nonfermentable carbon sources. Therefore, failure of LD and peroxisome biogenesis and function are likely to lead to deregulated lipid fluxes and disrupted energy homeostasis with detrimental consequences for the cell. These pathological consequences of LD and peroxisome failure have indeed sparked great biomedical interest in understanding the biogenesis of these organelles, their functional roles in lipid homeostasis, interaction with cellular metabolism and other organelles, as well as their regulation, turnover, and inheritance. These questions are particularly burning in view of the pandemic development of lipid-associated disorders worldwide.
Collapse
|
31
|
Satori CP, Henderson MM, Krautkramer EA, Kostal V, Distefano MM, Arriaga EA. Bioanalysis of eukaryotic organelles. Chem Rev 2013; 113:2733-811. [PMID: 23570618 PMCID: PMC3676536 DOI: 10.1021/cr300354g] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chad P. Satori
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Michelle M. Henderson
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Elyse A. Krautkramer
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Vratislav Kostal
- Tescan, Libusina trida 21, Brno, 623 00, Czech Republic
- Institute of Analytical Chemistry ASCR, Veveri 97, Brno, 602 00, Czech Republic
| | - Mark M. Distefano
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Edgar A. Arriaga
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| |
Collapse
|
32
|
Manivannan S, de Boer R, Veenhuis M, van der Klei IJ. Lumenal peroxisomal protein aggregates are removed by concerted fission and autophagy events. Autophagy 2013; 9:1044-56. [PMID: 23614977 DOI: 10.4161/auto.24543] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We demonstrated that in the yeast Hansenula polymorpha peroxisome fission and degradation are coupled processes that are important to remove intra-organellar protein aggregates. Protein aggregates were formed in peroxisomes upon synthesis of a mutant catalase variant. We showed that the introduction of these aggregates in the peroxisomal lumen had physiological disadvantages as it affected growth and caused enhanced levels of reactive oxygen species. Formation of the protein aggregates was followed by asymmetric peroxisome fission to separate the aggregate from the mother organelle. Subsequently, these small, protein aggregate-containing organelles were degraded by autophagy. In line with this observation we showed that the degradation of the protein aggregates was strongly reduced in dnm1 and pex11 cells in which peroxisome fission is reduced. Moreover, this process was dependent on Atg1 and Atg11.
Collapse
|
33
|
Bonekamp NA, Grille S, Cardoso MJ, Almeida M, Aroso M, Gomes S, Magalhaes AC, Ribeiro D, Islinger M, Schrader M. Self-interaction of human Pex11pβ during peroxisomal growth and division. PLoS One 2013; 8:e53424. [PMID: 23308220 PMCID: PMC3538539 DOI: 10.1371/journal.pone.0053424] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/28/2012] [Indexed: 12/15/2022] Open
Abstract
Pex11 proteins are involved in membrane elongation and division processes associated with the multiplication of peroxisomes. Human Pex11pβ has recently been linked to a new disorder affecting peroxisome morphology and dynamics. Here, we have analyzed the exact membrane topology of Pex11pβ. Studies with an epitope-specific antibody and protease protection assays show that Pex11pβ is an integral membrane protein with two transmembrane domains flanking an internal region exposed to the peroxisomal matrix and N- and C-termini facing the cytosol. A glycine-rich internal region within Pex11pβ is dispensable for peroxisome membrane elongation and division. However, we demonstrate that an amphipathic helix (Helix 2) within the first N-terminal 40 amino acids is crucial for membrane elongation and self-interaction of Pex11pβ. Interestingly, we find that Pex11pβ self-interaction strongly depends on the detergent used for solubilization. We also show that N-terminal cysteines are not essential for membrane elongation, and that putative N-terminal phosphorylation sites are dispensable for Pex11pβ function. We propose that self-interaction of Pex11pβ regulates its membrane deforming activity in conjunction with membrane lipids.
Collapse
Affiliation(s)
- Nina A. Bonekamp
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Sandra Grille
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Maria Joao Cardoso
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Monica Almeida
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Miguel Aroso
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Silvia Gomes
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Ana Cristina Magalhaes
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Daniela Ribeiro
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Markus Islinger
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Michael Schrader
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, Devon, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Abstract
Peroxisomes are remarkably versatile cell organelles whose size, shape, number, and protein content can vary greatly depending on the organism, the developmental stage of the organism’s life cycle, and the environment in which the organism lives. The main functions usually associated with peroxisomes include the metabolism of lipids and reactive oxygen species. However, in recent years, it has become clear that these organelles may also act as intracellular signaling platforms that mediate developmental decisions by modulating extraperoxisomal concentrations of several second messengers. To fulfill their functions, peroxisomes physically and functionally interact with other cell organelles, including mitochondria and the endoplasmic reticulum. Defects in peroxisome dynamics can lead to organelle dysfunction and have been associated with various human disorders. The purpose of this paper is to thoroughly summarize and discuss the current concepts underlying peroxisome formation, multiplication, and degradation. In addition, this paper will briefly highlight what is known about the interplay between peroxisomes and other cell organelles and explore the physiological and pathological implications of this interorganellar crosstalk.
Collapse
Affiliation(s)
- Marc Fransen
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, P.O. Box 601, 3000 Leuven, Belgium
| |
Collapse
|
35
|
Manivannan S, Scheckhuber CQ, Veenhuis M, van der Klei IJ. The impact of peroxisomes on cellular aging and death. Front Oncol 2012; 2:50. [PMID: 22662318 PMCID: PMC3356858 DOI: 10.3389/fonc.2012.00050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/01/2012] [Indexed: 01/27/2023] Open
Abstract
Peroxisomes are ubiquitous eukaryotic organelles, which perform a plethora of functions including hydrogen peroxide metabolism and β-oxidation of fatty acids. Reactive oxygen species produced by peroxisomes are a major contributing factor to cellular oxidative stress, which is supposed to significantly accelerate aging and cell death according to the free radical theory of aging. However, relative to mitochondria, the role of the other oxidative organelles, the peroxisomes, in these degenerative pathways has not been extensively investigated. In this contribution we discuss our current knowledge on the role of peroxisomes in aging and cell death, with focus on studies performed in yeast.
Collapse
Affiliation(s)
- Selvambigai Manivannan
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, Kluyver Centre for Genomics of Industrial Fermentation, University of Groningen Groningen, Netherlands
| | | | | | | |
Collapse
|
36
|
Islinger M, Grille S, Fahimi HD, Schrader M. The peroxisome: an update on mysteries. Histochem Cell Biol 2012; 137:547-74. [DOI: 10.1007/s00418-012-0941-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2012] [Indexed: 12/31/2022]
|
37
|
Fission and proliferation of peroxisomes. Biochim Biophys Acta Mol Basis Dis 2011; 1822:1343-57. [PMID: 22240198 DOI: 10.1016/j.bbadis.2011.12.014] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 01/12/2023]
Abstract
Peroxisomes are remarkably dynamic, multifunctional organelles, which react to physiological changes in their cellular environment and adopt their morphology, number, enzyme content and metabolic functions accordingly. At the organelle level, the key molecular machinery controlling peroxisomal membrane elongation and remodeling as well as membrane fission is becoming increasingly established and defined. Key players in peroxisome division are conserved in animals, plants and fungi, and key fission components are shared with mitochondria. However, the physiological stimuli and corresponding signal transduction pathways regulating and modulating peroxisome maintenance and proliferation are, despite a few exceptions, largely unexplored. There is emerging evidence that peroxisomal dynamics and proper regulation of peroxisome number and morphology are crucial for the physiology of the cell, as well as for the pathology of the organism. Here, we discuss several key aspects of peroxisomal fission and proliferation and highlight their association with certain diseases. We address signaling and transcriptional events resulting in peroxisome proliferation, and focus on novel findings concerning the key division components and their interplay. Finally, we present an updated model of peroxisomal growth and division. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of Peroxisomes in Health and Disease.
Collapse
|
38
|
Saraya R, Krikken AM, Kiel JA, Baerends RJ, Veenhuis M, Klei IJ. Novel genetic tools for Hansenula polymorpha. FEMS Yeast Res 2011; 12:271-8. [DOI: 10.1111/j.1567-1364.2011.00772.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ruchi Saraya
- Molecular Cell Biology; Groningen Biomolecular Sciences and Biotechnology Institute; Kluyver Centre for Genomics of Industrial Fermentation; University of Groningen; Groningen; The Netherlands
| | - Arjen M. Krikken
- Molecular Cell Biology; Groningen Biomolecular Sciences and Biotechnology Institute; Kluyver Centre for Genomics of Industrial Fermentation; University of Groningen; Groningen; The Netherlands
| | - Jan A.K.W. Kiel
- Molecular Cell Biology; Groningen Biomolecular Sciences and Biotechnology Institute; Kluyver Centre for Genomics of Industrial Fermentation; University of Groningen; Groningen; The Netherlands
| | - Richard J.S. Baerends
- Molecular Cell Biology; Groningen Biomolecular Sciences and Biotechnology Institute; Kluyver Centre for Genomics of Industrial Fermentation; University of Groningen; Groningen; The Netherlands
| | - Marten Veenhuis
- Molecular Cell Biology; Groningen Biomolecular Sciences and Biotechnology Institute; Kluyver Centre for Genomics of Industrial Fermentation; University of Groningen; Groningen; The Netherlands
| | - Ida J. Klei
- Molecular Cell Biology; Groningen Biomolecular Sciences and Biotechnology Institute; Kluyver Centre for Genomics of Industrial Fermentation; University of Groningen; Groningen; The Netherlands
| |
Collapse
|
39
|
Koch J, Brocard C. Membrane elongation factors in organelle maintenance: the case of peroxisome proliferation. Biomol Concepts 2011; 2:353-364. [PMID: 21984887 DOI: 10.1515/bmc.2011.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Separation of metabolic pathways in organelles is critical for eukaryotic life. Accordingly, the number, morphology and function of organelles have to be maintained through processes linked with membrane remodeling events. Despite their acknowledged significance and intense study many questions remain about the molecular mechanisms by which organellar membranes proliferate. Here, using the example of peroxisome proliferation, we give an overview of how proteins elongate membranes. Subsequent membrane fission is achieved by dynamin-related proteins shared with mitochondria. We discuss basic criteria that membranes have to fulfill for these fission factors to complete the scission. Because peroxisome elongation is always associated with unequal distribution of matrix and membrane proteins, we propose peroxisomal division to be non-stochastic and asymmetric. We further show that these organelles need not be functional to carry on membrane elongation and present the most recent findings concerning members of the Pex11 protein family as membrane elongation factors. These factors, beside known proteins such as BAR-domain proteins, represent another family of proteins containing an amphipathic α-helix with membrane bending activity.
Collapse
Affiliation(s)
- Johannes Koch
- Department of Biochemistry and Cell Biology, University of Vienna, Max F. Perutz Laboratories, Center of Molecular Biology, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | |
Collapse
|