1
|
Terglane J, Mertes N, Weischer S, Zobel T, Johnsson K, Gerke V. Chemigenetic Ca2+ indicators report elevated Ca2+ levels in endothelial Weibel-Palade bodies. PLoS One 2025; 20:e0316854. [PMID: 39869616 PMCID: PMC11771901 DOI: 10.1371/journal.pone.0316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER. ER, Golgi and WPB themselves provide a unique milieu for the maturation of VWF, which at the level of the Golgi consists of a low pH and elevated Ca2+ concentrations. WPB are also characterized by low luminal pH, but their Ca2+ content has not been addressed so far. Here, we employed a chemigenetic approach to circumvent the problems of Ca2+ imaging in an acidic environment and show that WPB indeed also harbor elevated Ca2+ concentrations. We also show that depletion of the Golgi resident Ca2+ pump ATP2C1 resulted in only a minor decrease of luminal Ca2+ in WPB suggesting additional mechanisms for Ca2+ uptake into the organelle.
Collapse
Affiliation(s)
- Julian Terglane
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany
| | - Nicole Mertes
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Sarah Weischer
- Münster Imaging Network, Cells in Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Thomas Zobel
- Münster Imaging Network, Cells in Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany
| |
Collapse
|
2
|
El-Mansi S, Mitchell TP, Mobayen G, McKinnon TAJ, Miklavc P, Frick M, Nightingale TD. Myosin-1C augments endothelial secretion of von Willebrand factor by linking contractile actomyosin machinery to the plasma membrane. Blood Adv 2024; 8:4714-4726. [PMID: 38669344 PMCID: PMC11413703 DOI: 10.1182/bloodadvances.2024012590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
ABSTRACT Blood endothelial cells control the hemostatic and inflammatory response by secreting von Willebrand factor (VWF) and P-selectin from storage organelles called Weibel-Palade bodies (WPBs). Actin-associated motor proteins regulate this secretory pathway at multiple points. Before fusion, myosin Va forms a complex that anchors WPBs to peripheral actin structures, allowing for the maturation of content. After fusion, an actomyosin ring/coat is recruited and compresses the WPB to forcibly expel the largest VWF multimers. Here, we provide, to our knowledge, the first evidence for the involvement of class I myosins during regulated VWF secretion. We show that the unconventional myosin-1C (Myo1c) is recruited after fusion via its pleckstrin homology domain in an actin-independent process. This provides a link between the actin ring and phosphatidylinositol 4,5-bisphosphate (PIP2) at the membrane of the fused organelle and is necessary to ensure maximal VWF secretion. This is an active process requiring Myo1c ATPase activity because inhibition of class I myosins using the inhibitor pentachloropseudilin or expression of an ATPase-deficient Myo1c rigor mutant perturbs the expulsion of VWF and alters the kinetics of the exocytic actin ring. These data offer a novel insight into the control of an essential physiological process and provide a new way in which it can be regulated.
Collapse
Affiliation(s)
- Sammy El-Mansi
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Tom P. Mitchell
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Golzar Mobayen
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Thomas A. J. McKinnon
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Pika Miklavc
- School of Science, Engineering & Environment, University of Salford, Manchester, United Kingdom
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Thomas D. Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
3
|
Liu W, Gao T, Li N, Shao S, Liu B. Vesicle fusion and release in neurons under dynamic mechanical equilibrium. iScience 2024; 27:109793. [PMID: 38736547 PMCID: PMC11088343 DOI: 10.1016/j.isci.2024.109793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Vesicular fusion plays a pivotal role in cellular processes, involving stages like vesicle trafficking, fusion pore formation, content release, and membrane integration or separation. This dynamic process is regulated by a complex interplay of protein assemblies, osmotic forces, and membrane tension, which together maintain a mechanical equilibrium within the cell. Changes in cellular mechanics or external pressures prompt adjustments in this equilibrium, highlighting the system's adaptability. This review delves into the synergy between intracellular proteins, structural components, and external forces in facilitating vesicular fusion and release. It also explores how cells respond to mechanical stress, maintaining equilibrium and offering insights into vesicle fusion mechanisms and the development of neurological disorders.
Collapse
Affiliation(s)
- Wenhao Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
| | - Tianyu Gao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
| | - Na Li
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Shuai Shao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Hordijk S, Carter T, Bierings R. A new look at an old body: molecular determinants of Weibel-Palade body composition and von Willebrand factor exocytosis. J Thromb Haemost 2024; 22:1290-1303. [PMID: 38307391 DOI: 10.1016/j.jtha.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/04/2024]
Abstract
Endothelial cells, forming a monolayer along blood vessels, intricately regulate vascular hemostasis, inflammatory responses, and angiogenesis. A key determinant of these functions is the controlled secretion of Weibel-Palade bodies (WPBs), which are specialized endothelial storage organelles housing a presynthesized pool of the hemostatic protein von Willebrand factor and various other hemostatic, inflammatory, angiogenic, and vasoactive mediators. This review delves into recent mechanistic insights into WPB biology, including the biogenesis that results in their unique morphology, the acquisition of intraluminal vesicles and other cargo, and the contribution of proton pumps to organelle acidification. Additionally, in light of a number of proteomic approaches to unravel the regulatory networks that control WPB formation and secretion, we provide a comprehensive overview of the WPB exocytotic machinery, including their molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Sophie Hordijk
- Hematology, Erasmus MC University Medical Center, Rotterdam, The Netherlands. https://twitter.com/SophieHordijk
| | - Tom Carter
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Ruben Bierings
- Hematology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Naß J, Terglane J, Zeuschner D, Gerke V. Evoked Weibel-Palade Body Exocytosis Modifies the Endothelial Cell Surface by Releasing a Substrate-Selective Phosphodiesterase. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306624. [PMID: 38359017 PMCID: PMC11040351 DOI: 10.1002/advs.202306624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Weibel Palade bodies (WPB) are lysosome-related secretory organelles of endothelial cells. Commonly known for their main cargo, the platelet and leukocyte receptors von-Willebrand factor (VWF) and P-selectin, WPB play a crucial role in hemostasis and inflammation. Here, the authors identify the glycerophosphodiester phosphodiesterase domain-containing protein 5 (GDPD5) as a WPB cargo protein and show that GDPD5 is transported to WPB following uptake from the plasma membrane via an unique endocytic transport route. GDPD5 cleaves GPI-anchored, plasma membrane-resident proteins within their GPI-motif, thereby regulating their local activity. The authors identify a novel target of GDPD5 , the complement regulator CD59, and show that it is released from the endothelial surface by GDPD5 following WPB exocytosis. This results in increased deposition of complement components and can enhance local inflammatory and thrombogenic responses. Thus, stimulus-induced WPB exocytosis can modify the endothelial cell surface by GDPD5-mediated selective release of a subset of GPI-anchored proteins.
Collapse
Affiliation(s)
- Johannes Naß
- Institute of Medical Biochemistry, Center for Molecular Biology of InflammationUniversity of Muenstervon‐Esmarch‐Str. 5648149MuensterGermany
| | - Julian Terglane
- Institute of Medical Biochemistry, Center for Molecular Biology of InflammationUniversity of Muenstervon‐Esmarch‐Str. 5648149MuensterGermany
| | - Dagmar Zeuschner
- Electron Microscopy FacilityMax Planck Institute for Molecular BiomedicineRoentgenstr. 2048149MuensterGermany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of InflammationUniversity of Muenstervon‐Esmarch‐Str. 5648149MuensterGermany
| |
Collapse
|
6
|
Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol 2023; 11:1243038. [PMID: 37799273 PMCID: PMC10548473 DOI: 10.3389/fcell.2023.1243038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Intracellular protein trafficking and sorting are extremely arduous in endocrine and neuroendocrine cells, which synthesize and secrete on-demand substantial quantities of proteins. To ensure that neuroendocrine secretion operates correctly, each step in the secretion pathways is tightly regulated and coordinated both spatially and temporally. At the trans-Golgi network (TGN), intrinsic structural features of proteins and several sorting mechanisms and distinct signals direct newly synthesized proteins into proper membrane vesicles that enter either constitutive or regulated secretion pathways. Furthermore, this anterograde transport is counterbalanced by retrograde transport, which not only maintains membrane homeostasis but also recycles various proteins that function in the sorting of secretory cargo, formation of transport intermediates, or retrieval of resident proteins of secretory organelles. The retromer complex recycles proteins from the endocytic pathway back to the plasma membrane or TGN and was recently identified as a critical player in regulated secretion in the hypothalamus. Furthermore, melanoma antigen protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the retromer-dependent endosomal protein recycling pathway and, by doing so, ensures proper secretory granule formation and maturation. MAGEL2 is a mammalian-specific and maternally imprinted gene implicated in Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly discuss the current understanding of the regulated secretion pathway, encompassing anterograde and retrograde traffic. Although our understanding of the retrograde trafficking and sorting in regulated secretion is not yet complete, we will review recent insights into the molecular role of MAGEL2 in hypothalamic neuroendocrine secretion and how its dysregulation contributes to the symptoms of Prader-Willi and Schaaf-Yang patients. Given that the activation of many secreted proteins occurs after they enter secretory granules, modulation of the sorting efficiency in a tissue-specific manner may represent an evolutionary adaptation to environmental cues.
Collapse
Affiliation(s)
- Denis Štepihar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| |
Collapse
|
7
|
Di Matteo A, Belloni E, Pradella D, Chiaravalli AM, Pini GM, Bugatti M, Alfieri R, Barzan C, Franganillo Tena E, Bione S, Terenzani E, Sessa F, Wyatt CDR, Vermi W, Ghigna C. Alternative Splicing Changes Promoted by NOVA2 Upregulation in Endothelial Cells and Relevance for Gastric Cancer. Int J Mol Sci 2023; 24:ijms24098102. [PMID: 37175811 PMCID: PMC10178952 DOI: 10.3390/ijms24098102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Angiogenesis is crucial for cancer progression. While several anti-angiogenic drugs are in use for cancer treatment, their clinical benefits are unsatisfactory. Thus, a deeper understanding of the mechanisms sustaining cancer vessel growth is fundamental to identify novel biomarkers and therapeutic targets. Alternative splicing (AS) is an essential modifier of human proteome diversity. Nevertheless, AS contribution to tumor vasculature development is poorly known. The Neuro-Oncological Ventral Antigen 2 (NOVA2) is a critical AS regulator of angiogenesis and vascular development. NOVA2 is upregulated in tumor endothelial cells (ECs) of different cancers, thus representing a potential driver of tumor blood vessel aberrancies. Here, we identified novel AS transcripts generated upon NOVA2 upregulation in ECs, suggesting a pervasive role of NOVA2 in vascular biology. In addition, we report that NOVA2 is also upregulated in ECs of gastric cancer (GC), and its expression correlates with poor overall survival of GC patients. Finally, we found that the AS of the Rap Guanine Nucleotide Exchange Factor 6 (RapGEF6), a newly identified NOVA2 target, is altered in GC patients and associated with NOVA2 expression, tumor angiogenesis, and poor patient outcome. Our findings provide a better understanding of GC biology and suggest that AS might be exploited to identify novel biomarkers and therapeutics for anti-angiogenic GC treatments.
Collapse
Affiliation(s)
- Anna Di Matteo
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Elisa Belloni
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Davide Pradella
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | | | - Giacomo Maria Pini
- Department of Pathology, Ospedale di Circolo, ASST-Sette Laghi, 21100 Varese, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
| | - Roberta Alfieri
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Chiara Barzan
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
- Istituto Universitario di Studi Superiori (IUSS), Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Elena Franganillo Tena
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Silvia Bione
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Elisa Terenzani
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Fausto Sessa
- Department of Pathology, Ospedale di Circolo, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Surgery, Università degli Studi dell'Insubria, 21100 Varese, Italy
| | - Christopher D R Wyatt
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Claudia Ghigna
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| |
Collapse
|
8
|
Overlapping Machinery in Lysosome-Related Organelle Trafficking: A Lesson from Rare Multisystem Disorders. Cells 2022; 11:cells11223702. [PMID: 36429129 PMCID: PMC9688865 DOI: 10.3390/cells11223702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Lysosome-related organelles (LROs) are a group of functionally diverse, cell type-specific compartments. LROs include melanosomes, alpha and dense granules, lytic granules, lamellar bodies and other compartments with distinct morphologies and functions allowing specialised and unique functions of their host cells. The formation, maturation and secretion of specific LROs are compromised in a number of hereditary rare multisystem disorders, including Hermansky-Pudlak syndromes, Griscelli syndrome and the Arthrogryposis, Renal dysfunction and Cholestasis syndrome. Each of these disorders impacts the function of several LROs, resulting in a variety of clinical features affecting systems such as immunity, neurophysiology and pigmentation. This has demonstrated the close relationship between LROs and led to the identification of conserved components required for LRO biogenesis and function. Here, we discuss aspects of this conserved machinery among LROs in relation to the heritable multisystem disorders they associate with, and present our current understanding of how dysfunctions in the proteins affected in the disease impact the formation, motility and ultimate secretion of LROs. Moreover, we have analysed the expression of the members of the CHEVI complex affected in Arthrogryposis, Renal dysfunction and Cholestasis syndrome, in different cell types, by collecting single cell RNA expression data from the human protein atlas. We propose a hypothesis describing how transcriptional regulation could constitute a mechanism that regulates the pleiotropic functions of proteins and their interacting partners in different LROs.
Collapse
|
9
|
Carew JA, Cristofaro V, Dasari SP, Carey S, Goyal RK, Sullivan MP. Myosin 5a in the Urinary Bladder: Localization, Splice Variant Expression, and Functional Role in Neurotransmission. Front Physiol 2022; 13:890102. [PMID: 35845995 PMCID: PMC9284544 DOI: 10.3389/fphys.2022.890102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Dysregulation of neurotransmission is a feature of several prevalent lower urinary tract conditions, but the mechanisms regulating neurotransmitter release in the bladder are not completely understood. The unconventional motor protein, Myosin 5a, transports neurotransmitter-containing synaptic vesicles along actin fibers towards the varicosity membrane, tethering them at the active zone prior to reception of a nerve impulse. Our previous studies indicated that Myosin 5a is expressed and functionally relevant in the peripheral nerves of visceral organs such as the stomach and the corpora cavernosa. However, its potential role in bladder neurotransmission has not previously been investigated. The expression of Myosin 5a was examined by quantitative PCR and restriction analyses in bladders from DBA (dilute-brown-nonagouti) mice which express a Myosin 5a splicing defect and in control mice expressing the wild-type Myosin 5a allele. Functional differences in contractile responses to intramural nerve stimulation were examined by ex vivo isometric tension analysis. Data demonstrated Myosin 5a localized in cholinergic nerve fibers in the bladder and identified several Myosin 5a splice variants in the detrusor. Full-length Myosin 5a transcripts were less abundant and the expression of splice variants was altered in DBA bladders compared to control bladders. Moreover, attenuation of neurally-mediated contractile responses in DBA bladders compared to control bladders indicates that Myosin 5a facilitates excitatory neurotransmission in the bladder. Therefore, the array of Myosin 5a splice variants expressed, and the abundance of each, may be critical parameters for efficient synaptic vesicle transport and neurotransmission in the urinary bladder.
Collapse
Affiliation(s)
- Josephine A. Carew
- Urology Research, VA Boston Healthcare System, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Brigham and Women’s Hospital, Boston, MA, United States
- *Correspondence: Josephine A. Carew,
| | - Vivian Cristofaro
- Urology Research, VA Boston Healthcare System, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Brigham and Women’s Hospital, Boston, MA, United States
| | - Suhas P. Dasari
- Urology Research, VA Boston Healthcare System, Boston, MA, United States
| | - Sean Carey
- Urology Research, VA Boston Healthcare System, Boston, MA, United States
| | - Raj K. Goyal
- Urology Research, VA Boston Healthcare System, Boston, MA, United States
- Brigham and Women’s Hospital, Boston, MA, United States
| | - Maryrose P. Sullivan
- Urology Research, VA Boston Healthcare System, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
10
|
Defective VWF secretion due to the expression of MYH9-RD E1841K mutant in endothelial cells disrupts hemostasis. Blood Adv 2022; 6:4537-4552. [PMID: 35764499 DOI: 10.1182/bloodadvances.2022008011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
Mutations in MYH9, the gene encoding the heavy chain of non-muscle myosin IIa (NMII-A), cause MYH9-related disease (MYH9-RD) that is an autosomal-dominant thrombocytopenia with bleeding tendency. Previously, we showed that NMII-A in endothelial cells (ECs) is critical for hemostasis via regulating von Willebrand factor (VWF) release from Weibel-Palade bodies (WPBs). The aim of this study was to determine the role of the expression of MYH9 mutants in ECs in the pathogenesis of the MYH9-RD bleeding symptom. First, we expressed the 5 most common NMII-A mutants in ECs, and found that E1841K mutant-expressing ECs secreted less VWF than the controls in response to a cAMP signaling agonist. Then, we generated 2 knockin mouse lines, one with Myh9 E1841K in ECs and the other in megakaryocytes. Endothelium-specific E1841K mice exhibited impaired cAMP-induced VWF release and a prolonged bleeding time with normal platelets, while megakaryocyte-specific E1841K mice exhibited macrothrombocytopenia and a prolonged bleeding time with normal VWF release. Finally, we present mechanistic findings that E1841K mutation not only interferes with S1943 phosphorylation and impairs the peripheral distribution of Rab27a positive WPBs in ECs under quiescent condition, but also interferes with S1916 phosphorylation by disrupting the interaction with zyxin and CKIIα, and reduces actin framework formation around WPBs and subsequent VWF secretion under the stimulation by a cAMP agonist. Altogether, our results suggest that impaired cAMP-induced endothelial VWF secretion by E1841K mutant expression may contribute to the MYH9-RD bleeding phenotype.
Collapse
|
11
|
Tip-end fusion of a rod-shaped secretory organelle. Cell Mol Life Sci 2022; 79:344. [PMID: 35660980 PMCID: PMC9167223 DOI: 10.1007/s00018-022-04367-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/03/2022]
Abstract
AbstractWeibel–Palade bodies (WPB) are elongated, rod-like secretory organelles unique to endothelial cells that store the pro-coagulant von-Willebrand factor (VWF) and undergo regulated exocytosis upon stimulation with Ca2+- or cAMP-raising agonists. We show here that WPB preferentially initiate fusion with the plasma membrane at their tips and identify synaptotagmin-like protein 2-a (Slp2-a) as a positive regulator of VWF secretion most likely mediating this topological selectivity. Following secretagogue stimulation, Slp2-a accumulates at one WPB tip before fusion occurs at this site. Depletion of Slp2-a reduces Ca2+-dependent secretion of highly multimeric VWF and interferes with the formation of actin rings at WPB–plasma membrane fusion sites that support the expulsion of the VWF multimers and most likely require a tip-end fusion topology. Phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] binding via the C2A domain of Slp2-a is required for accumulation of Slp2-a at the tip ends of fusing WPB, suggesting that Slp2-a mediates polar exocytosis by initiating contacts between WPB tips and plasma membrane PI(4,5)P2.
Collapse
|
12
|
Holthenrich A, Terglane J, Naß J, Mietkowska M, Kerkhoff E, Gerke V. Spire1 and Myosin Vc promote Ca 2+-evoked externalization of von Willebrand factor in endothelial cells. Cell Mol Life Sci 2022; 79:96. [PMID: 35084586 PMCID: PMC8794916 DOI: 10.1007/s00018-021-04108-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Weibel–Palade bodies (WPB) are endothelial cell-specific storage granules that regulate vascular hemostasis by releasing the platelet adhesion receptor von Willebrand factor (VWF) following stimulation. Fusion of WPB with the plasma membrane is accompanied by the formation of actin rings or coats that support the expulsion of large multimeric VWF fibers. However, factor(s) organizing these actin ring structures have remained elusive. We now identify the actin-binding proteins Spire1 and Myosin Vc (MyoVc) as cytosolic factors that associate with WPB and are involved in actin ring formation at WPB-plasma membrane fusion sites. We show that both, Spire1 and MyoVc localize only to mature WPB and that upon Ca2+ evoked exocytosis of WPB, Spire1 and MyoVc together with F-actin concentrate in ring-like structures at the fusion sites. Depletion of Spire1 or MyoVc reduces the number of these actin rings and decreases the amount of VWF externalized to the cell surface after histamine stimulation.
Collapse
Affiliation(s)
- Anna Holthenrich
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Julian Terglane
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Johannes Naß
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Magdalena Mietkowska
- Institute of Molecular Cell Biology, Zoological Institute, Technical University of Braunschweig, Braunschweig, Germany
| | - Eugen Kerkhoff
- Department of Neurology, Molecular Cell Biology Laboratory, University Hospital Regensburg, Regensburg, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany.
| |
Collapse
|
13
|
Michalek AJ, Ali MY. Cargo properties play a critical role in myosin Va-driven cargo transport along actin filaments. Biochem Biophys Rep 2022; 29:101194. [PMID: 35024461 PMCID: PMC8733175 DOI: 10.1016/j.bbrep.2021.101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
High-resolution experiments revealed that a single myosin-Va motor can transport micron-sized cargo on actin filaments in a stepwise manner. However, intracellular cargo transport is mediated through the dense actin meshwork by a team of myosin Va motors. The mechanism of how motors interact mechanically to bring about efficient cargo transport is still poorly understood. This study describes a stochastic model where a quantitative understanding of the collective behaviors of myosin Va motors is developed based on cargo stiffness. To understand how cargo properties affect the overall cargo transport, we have designed a model in which two myosin Va motors were coupled by wormlike chain tethers with persistence length ranging from 10 to 80 nm and contour length from 100 to 200 nm, and predicted distributions of velocity, run length, and tether force. Our analysis showed that these parameters are sensitive to both the contour and persistence length of cargo. While the velocity of two couple motors is decreased compared to a single motor (from 531 ± 251 nm/s to as low as 318 ± 287 nm/s), the run length (716 ± 563 nm for a single motor) decreased for short, rigid tethers (to as low as 377 ± 187 μm) and increased for long, flexible tethers (to as high as 1.74 ± 1.50 μm). The sensitivity of processive properties to tether rigidity (persistence length) was greatest for short tethers, which caused the motors to exhibit close, yet anti-cooperative coordination. Motors coupled by longer tethers stepped more independently regardless of tether rigidity. Therefore, the properties of the cargo or linkage must play an essential role in motor-motor communication and cargo transport.
Collapse
Affiliation(s)
- Arthur J Michalek
- Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY, 13699, USA
| | - M Yusuf Ali
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05403, USA
| |
Collapse
|
14
|
Naß J, Terglane J, Gerke V. Weibel Palade Bodies: Unique Secretory Organelles of Endothelial Cells that Control Blood Vessel Homeostasis. Front Cell Dev Biol 2022; 9:813995. [PMID: 34977047 PMCID: PMC8717947 DOI: 10.3389/fcell.2021.813995] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial cells produce and release compounds regulating vascular tone, blood vessel growth and differentiation, plasma composition, coagulation and fibrinolysis, and also engage in interactions with blood cells thereby controlling hemostasis and acute inflammatory reactions. These interactions have to be tightly regulated to guarantee smooth blood flow in normal physiology, but also allow specific and often local responses to blood vessel injury and infectious or inflammatory insults. To cope with these challenges, endothelial cells have the remarkable capability of rapidly changing their surface properties from non-adhesive (supporting unrestricted blood flow) to adhesive (capturing circulating blood cells). This is brought about by the evoked secretion of major adhesion receptors for platelets (von-Willebrand factor, VWF) and leukocytes (P-selectin) which are stored in a ready-to-be-used form in specialized secretory granules, the Weibel-Palade bodies (WPB). WPB are unique, lysosome related organelles that form at the trans-Golgi network and further mature by receiving material from the endolysosomal system. Failure to produce correctly matured VWF and release it through regulated WPB exocytosis results in pathologies, most importantly von-Willebrand disease, the most common inherited blood clotting disorder. The biogenesis of WPB, their intracellular motility and their fusion with the plasma membrane are regulated by a complex interplay of proteins and lipids, involving Rab proteins and their effectors, cytoskeletal components as well as membrane tethering and fusion machineries. This review will discuss aspects of WPB biogenesis, trafficking and exocytosis focussing on recent findings describing factors contributing to WPB maturation, WPB-actin interactions and WPB-plasma membrane tethering and fusion.
Collapse
Affiliation(s)
- Johannes Naß
- Centre for Molecular Biology of Inflammation, Institute of Medical Biochemistry, University of Muenster, Muenster, Germany
| | - Julian Terglane
- Centre for Molecular Biology of Inflammation, Institute of Medical Biochemistry, University of Muenster, Muenster, Germany
| | - Volker Gerke
- Centre for Molecular Biology of Inflammation, Institute of Medical Biochemistry, University of Muenster, Muenster, Germany
| |
Collapse
|
15
|
Yamazaki Y, Eura Y, Kokame K. V-ATPase V0a1 promotes Weibel-Palade body biogenesis through the regulation of membrane fission. eLife 2021; 10:71526. [PMID: 34904569 PMCID: PMC8718113 DOI: 10.7554/elife.71526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/13/2021] [Indexed: 01/09/2023] Open
Abstract
Membrane fission, the division of a membrane-bound structure into two discrete compartments, is essential for diverse cellular events, such as endocytosis and vesicle/granule biogenesis; however, the process remains unclear. The hemostatic protein von Willebrand factor is produced in vascular endothelial cells and packaged into specialized secretory granules, Weibel–Palade bodies (WPBs) at the trans-Golgi network (TGN). Here, we reported that V0a1, a V-ATPase component, is required for the membrane fission of WPBs. We identified two V0a isoforms in distinct populations of WPBs in cultured endothelial cells, V0a1 and V0a2, on mature and nascent WPBs, respectively. Although WPB buds were formed, WPBs could not separate from the TGN in the absence of V0a1. Screening using dominant–negative forms of known membrane fission regulators revealed protein kinase D (PKD) as an essential factor in biogenesis of WPBs. Further, we showed that the induction of wild-type PKDs in V0a1-depleted cells does not support the segregation of WPBs from the TGN; suggesting a primary role of V0a1 in the membrane fission of WPBs. The identification of V0a1 as a new membrane fission regulator should facilitate the understanding of molecular events that enable membrane fission.
Collapse
Affiliation(s)
- Yasuo Yamazaki
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yuka Eura
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Koichi Kokame
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
16
|
GDP/GTP exchange factor MADD drives activation and recruitment of secretory Rab GTPases to Weibel-Palade bodies. Blood Adv 2021; 5:5116-5127. [PMID: 34551092 PMCID: PMC9153003 DOI: 10.1182/bloodadvances.2021004827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/19/2021] [Indexed: 02/02/2023] Open
Abstract
von Willebrand factor (VWF) is an essential hemostatic protein that is synthesized and secreted by endothelial cells and stored in Weibel-Palade bodies (WPBs). The secretory Rab GTPases Rab27A, Rab3B, and Rab3D have been linked with WPB trafficking and secretion. How these Rabs are activated and recruited to WPBs remains elusive. In this study, we identified MAP kinase-activating death domain (MADD) as the guanine nucleotide exchange factor for Rab27A and both Rab3 isoforms in primary human endothelial cells. Rab activity assays revealed a reduction in Rab27A, Rab3B, and Rab3D activation upon MADD silencing. Rab activation, but not binding, was dependent on the differentially expressed in normal and neoplastic cells (DENN) domain of MADD, indicating the potential existence of 2 Rab interaction modules. Furthermore, immunofluorescent analysis showed that Rab27A, Rab3B, and Rab3D recruitment to WPBs was dramatically decreased upon MADD knockdown, revealing that MADD drives Rab membrane targeting. Artificial mistargeting of MADD using a TOMM70 tag abolished Rab27A localization to WPB membranes in a DENN domain-dependent manner, indicating that normal MADD localization in the cytosol is crucial. Activation of Rab3B and Rab3D was reduced upon Rab27A silencing, suggesting that activation of these Rabs is enhanced through previous activation of Rab27A by MADD. MADD silencing did not affect WPB morphology, but it did reduce VWF intracellular content. Furthermore, MADD-depleted cells exhibited decreased histamine-evoked VWF release, similar to Rab27A-depleted cells. In conclusion, MADD acts as a master regulator of VWF secretion by coordinating the activation and membrane targeting of secretory Rabs to WPBs.
Collapse
|
17
|
Izumi T. In vivo Roles of Rab27 and Its Effectors in Exocytosis. Cell Struct Funct 2021; 46:79-94. [PMID: 34483204 PMCID: PMC10511049 DOI: 10.1247/csf.21043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
The monomeric GTPase Rab27 regulates exocytosis of a broad range of vesicles in multicellular organisms. Several effectors bind GTP-bound Rab27a and/or Rab27b on secretory vesicles to execute a series of exocytic steps, such as vesicle maturation, movement along microtubules, anchoring within the peripheral F-actin network, and tethering to the plasma membrane, via interactions with specific proteins and membrane lipids in a local milieu. Although Rab27 effectors generally promote exocytosis, they can also temporarily restrict it when they are involved in the rate-limiting step. Genetic alterations in Rab27-related molecules cause discrete diseases manifesting pigment dilution and immunodeficiency, and can also affect common diseases such as diabetes and cancer in complex ways. Although the function and mechanism of action of these effectors have been explored, it is unclear how multiple effectors act in coordination within a cell to regulate the secretory process as a whole. It seems that Rab27 and various effectors constitutively reside on individual vesicles to perform consecutive exocytic steps. The present review describes the unique properties and in vivo roles of the Rab27 system, and the functional relationship among different effectors coexpressed in single cells, with pancreatic beta cells used as an example.Key words: membrane trafficking, regulated exocytosis, insulin granules, pancreatic beta cells.
Collapse
Affiliation(s)
- Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
18
|
Carew JA, Cristofaro V, Siegelman NA, Goyal RK, Sullivan MP. Expression of Myosin 5a splice variants in murine stomach. Neurogastroenterol Motil 2021; 33:e14162. [PMID: 33939222 DOI: 10.1111/nmo.14162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The motor protein, Myosin 5a (Myo5a) is known to play a role in inhibitory neurotransmission in gastric fundus. However, there is no information regarding the relative expression of total Myo5a, or of its alternative exon splice variants, across the stomach. This study investigated the differential distribution of Myo5a variants expressed within distinct anatomical regions of murine stomach. METHODS The distribution of Myo5a protein and mRNA in the stomach was assessed by immunofluorescence microscopy and fluorescent in situ hybridization. Quantitative PCR, restriction enzyme analysis, and electrophoresis were used to identify Myo5a splice variants and quantify their expression levels in the fundus, body, antrum, and pylorus. KEY RESULTS Myo5a protein colocalized with βIII-Tubulin in the myenteric plexus, and with synaptophysin in nerve fibers. Total Myo5a mRNA expression was lower in pylorus than in antrum, body, or fundus (p < 0.001), which expressed equivalent amounts of Myo5a. However, Myo5a splice variants were differentially expressed across the stomach. While the ABCE splice variant predominated in the antrum and body regions, the ACEF/ACDEF variants were enriched in fundus and pylorus. CONCLUSIONS AND INFERENCES Myo5a splice variants varied in their relative expression across anatomically distinguishable stomach regions and might mediate distinct physiological functions in gastric neurotransmission.
Collapse
Affiliation(s)
- Josephine A Carew
- VA Boston Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Vivian Cristofaro
- VA Boston Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | | | - Raj K Goyal
- VA Boston Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Maryrose P Sullivan
- VA Boston Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Shan MM, Sun SC. The multiple roles of RAB GTPases in female and male meiosis. Hum Reprod Update 2021; 27:1013-1029. [PMID: 34227671 DOI: 10.1093/humupd/dmab019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/06/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND RAB GTPases constitute the largest family of small GTPases and are found in all eukaryotes. RAB GTPases regulate components of the endomembrane system, the nucleus and the plasma membrane, and are involved in intracellular actin/tubulin-dependent vesicle movement, membrane fusion and cell growth in mitosis. OBJECTIVE AND RATIONALE RAB GTPases play multiple critical roles during both female and male meiosis. This review summarizes the progress made in our understanding of the role of RAB GTPases in female and male meiosis in different species. We also discuss the potential relationship between RAB GTPases and oocyte/sperm quality, which may help in understanding the mechanisms underlying oogenesis and spermatogenesis and potential genetic causes of infertility. SEARCH METHODS The PubMed database was searched for articles published between 1991 and 2020 using the following terms: 'RAB', 'RAB oocyte', 'RAB sperm' and 'RAB meiosis'. OUTCOMES An analysis of 126 relevant articles indicated that RAB GTPases are present in all eukaryotes, and ten subfamilies (almost 70 members) are expressed in human cells. The roles of 25 RAB proteins and orthologues in female meiosis and 12 in male meiosis have been reported. RAB proteins are essential for the accurate continuity of genetic material, successful fertilization and the normal growth of offspring. Distinct and crucial functions of RAB GTPases in meiosis have been reported. In oocytes, RAB GTPases are involved in spindle organization, kinetochore-microtubule attachment, chromosome alignment, actin filament-mediated spindle migration, cytokinesis, cell cycle and oocyte-embryo transition. RAB GTPases function in mitochondrial processes and Golgi-mediated vesicular transport during female meiosis, and are critical for cortical granule transport during fertilization and oocyte-embryo transition. In sperm, RAB GTPases are vital for cytoskeletal organization and successful cytokinesis, and are associated with Golgi-mediated acrosome formation, membrane trafficking and morphological changes of sperm cells, as well as the exocytosis-related acrosome reaction and zona reaction during fertilization. WIDER IMPLICATIONS Abnormal expression of RAB GTPases disrupts intracellular systems, which may induce diverse diseases. The roles of RAB proteins in female and male reproductive systems, thus, need to be considered. The mechanisms underlying the function of RAB GTPases and the binding specificity of their effectors during oogenesis, spermatogenesis and fertilization remain to be studied. This review should contribute to our understanding of the molecular mechanisms of oogenesis and spermatogenesis and potential genetic causes of infertility.
Collapse
Affiliation(s)
- Meng-Meng Shan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
20
|
Avdonin PP, Tsvetaeva NV, Goncharov NV, Rybakova EY, Trufanov SK, Tsitrina AA, Avdonin PV. Von Willebrand Factor in Health and Disease. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2021. [DOI: 10.1134/s1990747821040036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract—
Von Willebrand factor (vWF), the key component of hemostasis, is synthesized in endothelial cells and megakaryocytes and released into the blood as high molecular weight multimeric glycoproteins weighing up to 20 million Daltons. Blood plasma metalloprotease ADAMTS13 cleaves ultra-large vWF multimers to smaller multimeric and oligomeric molecules. The vWF molecules attach to the sites of damage at the surface of arterioles and capillaries and unfold under conditions of shear stress. On the unfolded vWF molecule, the regions interacting with receptors on the platelet membrane are exposed. After binding to the vWF filaments, platelets are activated; platelets circulating in the vessels are additionally attached to them, leading to thrombus formation, blocking of microvessels, and cessation of bleeding. This review describes the history of the discovery of vWF, presents data on the mechanisms of vWF secretion and its structure, and characterizes the processes of vWF metabolism in the body under normal and pathological conditions.
Collapse
|
21
|
Sharda AV, Barr AM, Harrison JA, Wilkie AR, Fang C, Mendez LM, Ghiran IC, Italiano JE, Flaumenhaft R. VWF maturation and release are controlled by 2 regulators of Weibel-Palade body biogenesis: exocyst and BLOC-2. Blood 2020; 136:2824-2837. [PMID: 32614949 PMCID: PMC7731791 DOI: 10.1182/blood.2020005300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023] Open
Abstract
von Willebrand factor (VWF) is an essential hemostatic protein that is synthesized in endothelial cells and stored in Weibel-Palade bodies (WPBs). Understanding the mechanisms underlying WPB biogenesis and exocytosis could enable therapeutic modulation of endogenous VWF, yet optimal targets for modulating VWF release have not been established. Because biogenesis of lysosomal related organelle-2 (BLOC-2) functions in the biogenesis of platelet dense granules and melanosomes, which like WPBs are lysosome-related organelles, we hypothesized that BLOC-2-dependent endolysosomal trafficking is essential for WPB biogenesis and sought to identify BLOC-2-interacting proteins. Depletion of BLOC-2 caused misdirection of cargo-carrying transport tubules from endosomes, resulting in immature WPBs that lack endosomal input. Immunoprecipitation of BLOC-2 identified the exocyst complex as a binding partner. Depletion of the exocyst complex phenocopied BLOC-2 depletion, resulting in immature WPBs. Furthermore, releasates of immature WPBs from either BLOC-2 or exocyst-depleted endothelial cells lacked high-molecular weight (HMW) forms of VWF, demonstrating the importance of BLOC-2/exocyst-mediated endosomal input during VWF maturation. However, BLOC-2 and exocyst showed very different effects on VWF release. Although BLOC-2 depletion impaired exocytosis, exocyst depletion augmented WPB exocytosis, indicating that it acts as a clamp. Exposure of endothelial cells to a small molecule inhibitor of exocyst, Endosidin2, reversibly augmented secretion of mature WPBs containing HMW forms of VWF. These studies show that, although BLOC-2 and exocyst cooperate in WPB formation, only exocyst serves to clamp WPB release. Exocyst function in VWF maturation and release are separable, a feature that can be exploited to enhance VWF release.
Collapse
Affiliation(s)
- Anish V Sharda
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center
| | - Alexandra M Barr
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center
| | - Joshua A Harrison
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center
| | | | - Chao Fang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center
| | | | - Ionita C Ghiran
- Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, and
| | - Joseph E Italiano
- Division of Hematology, Brigham and Women's Hospital
- Vascular Biology Program, Department of Surgery, Children's Hospital, Harvard Medical School, Boston, MA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center
| |
Collapse
|
22
|
Emerging mechanisms to modulate VWF release from endothelial cells. Int J Biochem Cell Biol 2020; 131:105900. [PMID: 33301925 DOI: 10.1016/j.biocel.2020.105900] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
Agonist-mediated exocytosis of Weibel-Palade bodies underpins the endothelium's ability to respond to injury or infection. Much of this important response is mediated by the major constituent of Weibel-Palade bodies: the ultra-large glycoprotein von Willebrand factor. Upon regulated WPB exocytosis, von Willebrand factor multimers unfurl into long, platelet-catching 'strings' which instigate the pro-haemostatic response. Accordingly, excessive levels of VWF are associated with thrombotic pathologies, including myocardial infarction and ischaemic stroke. Failure to appropriately cleave von Willebrand Factor strings results in thrombotic thrombocytopenic purpura, a life-threatening pathology characterised by tissue ischaemia and multiple microvascular occlusions. Historically, treatment of thrombotic thrombocytopenic purpura has relied heavily on plasma exchange therapy. However, the demonstrated efficacy of Rituximab and Caplacizumab in the treatment of acquired thrombotic thrombocytopenic purpura highlights how insights into pathophysiology can improve treatment options for von Willebrand factor-related disease. Directly limiting von Willebrand factor release from Weibel-Palade bodies has the potential as a therapeutic for cardiovascular disease. Cell biologists aim to map the WPB biogenesis and secretory pathways in order to find novel ways to control von Willebrand factor release. Emerging paradigms include the modulation of Weibel-Palade body size, trafficking and mechanism of fusion. This review focuses on the promise, progress and challenges of targeting Weibel-Palade bodies as a means to inhibit von Willebrand factor release from endothelial cells.
Collapse
|
23
|
Miklavc P, Frick M. Actin and Myosin in Non-Neuronal Exocytosis. Cells 2020; 9:cells9061455. [PMID: 32545391 PMCID: PMC7348895 DOI: 10.3390/cells9061455] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022] Open
Abstract
Cellular secretion depends on exocytosis of secretory vesicles and discharge of vesicle contents. Actin and myosin are essential for pre-fusion and post-fusion stages of exocytosis. Secretory vesicles depend on actin for transport to and attachment at the cell cortex during the pre-fusion phase. Actin coats on fused vesicles contribute to stabilization of large vesicles, active vesicle contraction and/or retrieval of excess membrane during the post-fusion phase. Myosin molecular motors complement the role of actin. Myosin V is required for vesicle trafficking and attachment to cortical actin. Myosin I and II members engage in local remodeling of cortical actin to allow vesicles to get access to the plasma membrane for membrane fusion. Myosins stabilize open fusion pores and contribute to anchoring and contraction of actin coats to facilitate vesicle content release. Actin and myosin function in secretion is regulated by a plethora of interacting regulatory lipids and proteins. Some of these processes have been first described in non-neuronal cells and reflect adaptations to exocytosis of large secretory vesicles and/or secretion of bulky vesicle cargoes. Here we collate the current knowledge and highlight the role of actomyosin during distinct phases of exocytosis in an attempt to identify unifying molecular mechanisms in non-neuronal secretory cells.
Collapse
Affiliation(s)
- Pika Miklavc
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, UK
- Correspondence: (P.M.); (M.F.); Tel.: +44-0161-295-3395 (P.M.); +49-731-500-23115 (M.F.); Fax: +49-731-500-23242 (M.F.)
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Correspondence: (P.M.); (M.F.); Tel.: +44-0161-295-3395 (P.M.); +49-731-500-23115 (M.F.); Fax: +49-731-500-23242 (M.F.)
| |
Collapse
|
24
|
Rapamycin Re-Directs Lysosome Network, Stimulates ER-Remodeling, Involving Membrane CD317 and Affecting Exocytosis, in Campylobacter Jejuni-Lysate-Infected U937 Cells. Int J Mol Sci 2020; 21:ijms21062207. [PMID: 32210050 PMCID: PMC7139683 DOI: 10.3390/ijms21062207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
The Gram-negative Campylobacter jejuni is a major cause of foodborne gastroenteritis in humans worldwide. The cytotoxic effects of Campylobacter have been mainly ascribed to the actions of the cytolethal distending toxin (CDT): it is mandatory to put in evidence risk factors for sequela development, such as reactive arthritis (ReA) and Guillain–Barré syndrome (GBS). Several researches are directed to managing symptom severity and the possible onset of sequelae. We found for the first time that rapamycin (RM) is able to largely inhibit the action of C. jejuni lysate CDT in U937 cells, and to partially avoid the activation of specific sub-lethal effects. In fact, we observed that the ability of this drug to redirect lysosomal compartment, stimulate ER-remodeling (highlighted by ER–lysosome and ER–mitochondria contacts), protect mitochondria network, and downregulate CD317/tetherin, is an important component of membrane microdomains. In particular, lysosomes are involved in the process of the reduction of intoxication, until the final step of lysosome exocytosis. Our results indicate that rapamycin confers protection against C. jejuni bacterial lysate insults to myeloid cells.
Collapse
|
25
|
Abstract
Von Willebrand factor (VWF) and coagulation factor VIII (FVIII) circulate as a complex in plasma and have a major role in the hemostatic system. VWF has a dual role in hemostasis. It promotes platelet adhesion by anchoring the platelets to the subendothelial matrix of damaged vessels and it protects FVIII from proteolytic degradation. Moreover, VWF is an acute phase protein that has multiple roles in vascular inflammation and is massively secreted from Weibel-Palade bodies upon endothelial cell activation. Activated FVIII on the other hand, together with coagulation factor IX forms the tenase complex, an essential feature of the propagation phase of coagulation on the surface of activated platelets. VWF deficiency, either quantitative or qualitative, results in von Willebrand disease (VWD), the most common bleeding disorder. The deficiency of FVIII is responsible for Hemophilia A, an X-linked bleeding disorder. Here, we provide an overview on the role of the VWF-FVIII interaction in vascular physiology.
Collapse
Affiliation(s)
- Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstrasse 1, Building 708, 55131, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstrasse 1, Building 708, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany.
| |
Collapse
|
26
|
Interaction networks of Weibel-Palade body regulators syntaxin-3 and syntaxin binding protein 5 in endothelial cells. J Proteomics 2019; 205:103417. [PMID: 31201948 DOI: 10.1016/j.jprot.2019.103417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/17/2019] [Accepted: 06/11/2019] [Indexed: 12/27/2022]
Abstract
The endothelium stores the hemostatic protein Von Willebrand factor (VWF) in endothelial storage organelles called Weibel-Palade bodies (WPBs). During maturation, WPBs recruit a complex of Rab GTPases and effectors that associate with components of the SNARE machinery that control WPB exocytosis. Recent genome wide association studies have found links between genetic variations in the SNAREs syntaxin-2 (STX2) and syntaxin binding protein 5 (STXBP5) and VWF plasma levels, suggesting a role for SNARE proteins in regulating VWF release. Moreover, we have previously identified the SNARE proteins syntaxin-3 and STXBP1 as regulators of WPB release. In this study we used an unbiased iterative interactomic approach to identify new components of the WPB exocytotic machinery. An interactome screen of syntaxin-3 identifies a number of SNAREs and SNARE associated proteins (STXBP2, STXBP5, SNAP23, NAPA and NSF). We show that the VAMP-like domain (VLD) of STXBP5 is indispensable for the interaction with SNARE proteins and this capacity of the VLD could be exploited to identify an extended set of novel endothelial SNARE interactors of STXBP5. In addition, an STXBP5 variant with an N436S substitution, which is linked to lower VWF plasma levels, does not show a difference in interactome when compared with WT STXBP5. SIGNIFICANCE: The hemostatic protein Von Willebrand factor plays a pivotal role in vascular health: quantitative or qualitative deficiencies of VWF can lead to bleeding, while elevated levels of VWF are associated with increased risk of thrombosis. Tight regulation of VWF secretion from WPBs is therefore essential to maintain vascular homeostasis. We used an unbiased proteomic screen to identify new components of the regulatory machinery that controls WPB exocytosis. Our data expand the endothelial SNARE protein network and provide a set of novel candidate WPB regulators that may contribute to regulation of VWF plasma levels and vascular health.
Collapse
|
27
|
Proximity proteomics of endothelial Weibel-Palade bodies identifies novel regulator of von Willebrand factor secretion. Blood 2019; 134:979-982. [PMID: 31262780 PMCID: PMC8270391 DOI: 10.1182/blood.2019000786] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022] Open
Abstract
Weibel-Palade bodies (WPB) are unique secretory organelles of endothelial cells that store factors regulating vascular hemostasis and local inflammation. Endothelial activation triggers rapid exocytosis of WPB, leading to the surface presentation of adhesion molecules relevant for leukocyte rolling (P-selectin) and platelet capture (von Willebrand factor [VWF]). Despite its role as an important secretory organelle, a comprehensive compilation of factors associated with WPB has not been carried out. We addressed this via a proximity proteomics approach employing the peroxidase APEX2 coupled with 2 known WPB-associated proteins: the Rab GTPases Rab3b and Rab27a. We show that APEX2-Rab3b/27a fusion constructs are correctly targeted to WPB of primary endothelial cells, and that proteins in their close proximity can be biotinylated through the WPB-recruited APEX2. Mass spectrometry analysis of the biotinylated proteins identified 183 WPB-associated proteins. Whereas these include factors reported before to localize to WPB, the majority comprises proteins not previously associated with WPB biology. Among them, the SNARE-interacting protein Munc13-2 was shown here to specifically localize to WPB and to serve as a novel factor promoting histamine-evoked WPB exocytosis and VWF secretion. Thus, APEX2-based proximity proteomics can be used to specifically identify novel organelle-associated factors in primary endothelial cells.
Collapse
|
28
|
|
29
|
Schillemans M, Karampini E, Kat M, Bierings R. Exocytosis of Weibel-Palade bodies: how to unpack a vascular emergency kit. J Thromb Haemost 2019; 17:6-18. [PMID: 30375718 PMCID: PMC7379738 DOI: 10.1111/jth.14322] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Indexed: 01/17/2023]
Abstract
The blood vessel wall has a number of self-healing properties, enabling it to minimize blood loss and prevent or overcome infections in the event of vascular trauma. Endothelial cells prepackage a cocktail of hemostatic, inflammatory and angiogenic mediators in their unique secretory organelles, the Weibel-Palade bodies (WPBs), which can be immediately released on demand. Secretion of their contents into the vascular lumen through a process called exocytosis enables the endothelium to actively participate in the arrest of bleeding and to slow down and direct leukocytes to areas of inflammation. Owing to their remarkable elongated morphology and their secretory contents, which span the entire size spectrum of small chemokines all the way up to ultralarge von Willebrand factor multimers, WPBs constitute an ideal model system for studying the molecular mechanisms of secretory organelle biogenesis, exocytosis, and content expulsion. Recent studies have now shown that, during exocytosis, WPBs can undergo several distinct modes of fusion, and can utilize fundamentally different mechanisms to expel their contents. In this article, we discuss recent advances in our understanding of the composition of the WPB exocytotic machinery and how, because of its configuration, it is able to support WPB release in its various forms.
Collapse
Affiliation(s)
- M. Schillemans
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - E. Karampini
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - M. Kat
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - R. Bierings
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- HematologyErasmus University Medical CenterRotterdamthe Netherlands
| |
Collapse
|
30
|
Mietkowska M, Schuberth C, Wedlich-Söldner R, Gerke V. Actin dynamics during Ca 2+-dependent exocytosis of endothelial Weibel-Palade bodies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:1218-1229. [PMID: 30465794 DOI: 10.1016/j.bbamcr.2018.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 01/24/2023]
Abstract
Weibel-Palade bodies (WPBs) are specialized secretory organelles of endothelial cells that serve important functions in the response to inflammation and vascular injury. WPBs actively respond to different stimuli by regulated exocytosis leading to full or selective release of their contents. Cellular conditions and mechanisms that distinguish between these possibilities are only beginning to emerge. To address this we analyzed dynamic rearrangements of the actin cytoskeleton during histamine-stimulated, Ca2+-dependent WPB exocytosis. We show that most WPB fusion events are followed by a rapid release of von-Willebrand factor (VWF), the large WPB cargo, and that this occurs concomitant with a softening of the actin cortex by the recently described Ca2+-dependent actin reset (CaAR). However, a considerable fraction of WPB fusion events is characterized by a delayed release of VWF and observed after the CaAR reaction peak. These delayed VWF secretions are accompanied by an assembly of actin rings or coats around the WPB post-fusion structures and are also seen following direct elevation of intracellular Ca2+ by plasma membrane wounding. Actin ring/coat assembly at WPB post-fusion structures requires Rho GTPase activity and is significantly reduced upon expression of a dominant-active mutant of the formin INF2 that triggers a permanent CaAR peak-like sequestration of actin to the endoplasmic reticulum. These findings suggest that a rigid actin cortex correlates with a higher proportion of fused WPB which assemble actin rings/coats most likely required for efficient VWF expulsion and/or stabilization of a WPB post-fusion structure. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Magdalena Mietkowska
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation and Cells-in-Motion Cluster of Excellence, University of Münster, Germany
| | - Christian Schuberth
- Institute of Cell Dynamics and Imaging, Centre for Molecular Biology of Inflammation and Cells-in-Motion Cluster of Excellence, University of Münster, Germany
| | - Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging, Centre for Molecular Biology of Inflammation and Cells-in-Motion Cluster of Excellence, University of Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation and Cells-in-Motion Cluster of Excellence, University of Münster, Germany.
| |
Collapse
|
31
|
Kjos I, Vestre K, Guadagno NA, Borg Distefano M, Progida C. Rab and Arf proteins at the crossroad between membrane transport and cytoskeleton dynamics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:1397-1409. [PMID: 30021127 DOI: 10.1016/j.bbamcr.2018.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/05/2018] [Accepted: 07/13/2018] [Indexed: 01/04/2023]
Abstract
The intracellular movement and positioning of organelles and vesicles is mediated by the cytoskeleton and molecular motors. Small GTPases like Rab and Arf proteins are main regulators of intracellular transport by connecting membranes to cytoskeleton motors or adaptors. However, it is becoming clear that interactions between these small GTPases and the cytoskeleton are important not only for the regulation of membrane transport. In this review, we will cover our current understanding of the mechanisms underlying the connection between Rab and Arf GTPases and the cytoskeleton, with special emphasis on the double role of these interactions, not only in membrane trafficking but also in membrane and cytoskeleton remodeling. Furthermore, we will highlight the most recent findings about the fine control mechanisms of crosstalk between different members of Rab, Arf, and Rho families of small GTPases in the regulation of cytoskeleton organization.
Collapse
Affiliation(s)
- Ingrid Kjos
- Department of Biosciences, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
32
|
Holthenrich A, Gerke V. Regulation of von-Willebrand Factor Secretion from Endothelial Cells by the Annexin A2-S100A10 Complex. Int J Mol Sci 2018; 19:ijms19061752. [PMID: 29899263 PMCID: PMC6032327 DOI: 10.3390/ijms19061752] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 12/17/2022] Open
Abstract
Endothelial cells serve as gatekeepers of vascular hemostasis and local inflammatory reactions. They can rapidly respond to changes in the environment, caused, for example, by blood vessel injury, tissue damage or infection, by secreting in a strictly regulated manner factors regulating these processes. These factors include adhesion receptors for circulating leukocytes and platelets, P-selectin and von-Willebrand factor (VWF) that are stored in specialized secretory granules of endothelial cells, the Weibel-Palade bodies (WPB). Acute exposure of these adhesion molecules converts the endothelial cell surface from an anti-adhesive state enabling unrestricted flow of circulating blood cells to an adhesive one capable of capturing leukocytes (through P-selectin) and platelets (through VWF). While these are important (patho)physiological responses, compromised or dysregulated WPB secretion can cause pathologies such as excessive bleeding or vascular occlusion. Several factors are involved in regulating the exocytosis of WPB and thus represent potential targets for therapeutic interventions in these pathologies. Among them, the annexin A2 (AnxA2)-S100A10 complex has been shown to participate in the tethering/docking of secretion-competent WPB at the plasma membrane, and interference with AnxA2/S100A10 expression or complex formation significantly reduces acute WPB exocytosis and VWF release. Thus, developing specific means to efficiently block AnxA2-S100A10 complex formation in endothelial cells could lead to novel avenues towards interfering with acute vascular thrombosis.
Collapse
Affiliation(s)
- Anna Holthenrich
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Strasse 56, 48149 Münster, Germany.
| | - Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Strasse 56, 48149 Münster, Germany.
| |
Collapse
|
33
|
Schillemans M, Karampini E, van den Eshof BL, Gangaev A, Hofman M, van Breevoort D, Meems H, Janssen H, Mulder AA, Jost CR, Escher JC, Adam R, Carter T, Koster AJ, van den Biggelaar M, Voorberg J, Bierings R. Weibel-Palade Body Localized Syntaxin-3 Modulates Von Willebrand Factor Secretion From Endothelial Cells. Arterioscler Thromb Vasc Biol 2018; 38:1549-1561. [PMID: 29880488 PMCID: PMC6039413 DOI: 10.1161/atvbaha.117.310701] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/17/2018] [Indexed: 01/08/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— Endothelial cells store VWF (von Willebrand factor) in rod-shaped secretory organelles, called Weibel-Palade bodies (WPBs). WPB exocytosis is coordinated by a complex network of Rab GTPases, Rab effectors, and SNARE (soluble NSF attachment protein receptor) proteins. We have previously identified STXBP1 as the link between the Rab27A-Slp4-a complex on WPBs and the SNARE proteins syntaxin-2 and -3. In this study, we investigate the function of syntaxin-3 in VWF secretion. Approach and Results— In human umbilical vein endothelial cells and in blood outgrowth endothelial cells (BOECs) from healthy controls, endogenous syntaxin-3 immunolocalized to WPBs. A detailed analysis of BOECs isolated from a patient with variant microvillus inclusion disease, carrying a homozygous mutation in STX3(STX3−/−), showed a loss of syntaxin-3 protein and absence of WPB-associated syntaxin-3 immunoreactivity. Ultrastructural analysis revealed no detectable differences in morphology or prevalence of immature or mature WPBs in control versus STX3−/− BOECs. VWF multimer analysis showed normal patterns in plasma of the microvillus inclusion disease patient, and media from STX3−/− BOECs, together indicating WPB formation and maturation are unaffected by absence of syntaxin-3. However, a defect in basal as well as Ca2+- and cAMP-mediated VWF secretion was found in the STX3−/− BOECs. We also show that syntaxin-3 interacts with the WPB-associated SNARE protein VAMP8 (vesicle-associated membrane protein-8). Conclusions— Our data reveal syntaxin-3 as a novel WPB-associated SNARE protein that controls WPB exocytosis.
Collapse
Affiliation(s)
- Maaike Schillemans
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Ellie Karampini
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Bart L van den Eshof
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Anastasia Gangaev
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Menno Hofman
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Dorothee van Breevoort
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Henriët Meems
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Hans Janssen
- Cell Biology, The Netherlands Cancer Institute, Amsterdam (H.J.)
| | - Aat A Mulder
- Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, The Netherlands (A.A.M., C.R.J., A.J.K.)
| | - Carolina R Jost
- Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, The Netherlands (A.A.M., C.R.J., A.J.K.)
| | - Johanna C Escher
- Pediatric Gastroenterology, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands (J.C.E.)
| | - Rüdiger Adam
- Pediatric Gastroenterology, University Medical Centre, Mannheim, Germany (R.A.)
| | - Tom Carter
- St George's, University of London, United Kingdom (T.C.)
| | - Abraham J Koster
- Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, The Netherlands (A.A.M., C.R.J., A.J.K.)
| | - Maartje van den Biggelaar
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Jan Voorberg
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.).,Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands (J.V.)
| | - Ruben Bierings
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| |
Collapse
|
34
|
Adam F, Kauskot A, Kurowska M, Goudin N, Munoz I, Bordet JC, Huang JD, Bryckaert M, Fischer A, Borgel D, de Saint Basile G, Christophe OD, Ménasché G. Kinesin-1 Is a New Actor Involved in Platelet Secretion and Thrombus Stability. Arterioscler Thromb Vasc Biol 2018. [PMID: 29519941 DOI: 10.1161/atvbaha.117.310373] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Platelet secretion is crucial for many physiological platelet responses. Even though several regulators of the fusion machinery for secretory granule exocytosis have been identified in platelets, the underlying mechanisms are not yet fully characterized. APPROACH AND RESULTS By studying a mouse model (cKO [conditional knockout]Kif5b) lacking Kif5b (kinesin-1 heavy chain) in its megakaryocytes and platelets, we evidenced unstable hemostasis characterized by an increase of blood loss associated to a marked tendency to rebleed in a tail-clip assay and thrombus instability in an in vivo thrombosis model. This instability was confirmed in vitro in a whole-blood perfusion assay under blood flow conditions. Aggregations induced by thrombin and collagen were also impaired in cKOKif5b platelets. Furthermore, P-selectin exposure, PF4 (platelet factor 4) secretion, and ATP release after thrombin stimulation were impaired in cKOKif5b platelets, highlighting the role of kinesin-1 in α-granule and dense granule secretion. Importantly, exogenous ADP rescued normal thrombin induced-aggregation in cKOKif5b platelets, which indicates that impaired aggregation was because of defective release of ADP and dense granules. Last, we demonstrated that kinesin-1 interacts with the molecular machinery comprising the granule-associated Rab27 (Ras-related protein Rab-27) protein and the Slp4 (synaptotagmin-like protein 4/SYTL4) adaptor protein. CONCLUSIONS Our results indicate that a kinesin-1-dependent process plays a role for platelet function by acting into the mechanism underlying α-granule and dense granule secretion.
Collapse
Affiliation(s)
- Frédéric Adam
- From the INSERM, UMR_S 1176, Paris-Sud University, Université Paris-Saclay, Le Kremlin-Bicêtre, France (F.A., A.K., M.B., D.B., O.D.C.)
| | - Alexandre Kauskot
- From the INSERM, UMR_S 1176, Paris-Sud University, Université Paris-Saclay, Le Kremlin-Bicêtre, France (F.A., A.K., M.B., D.B., O.D.C.)
| | - Mathieu Kurowska
- INSERM, UMR_S 1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, France (M.K., I.M., A.F., G.d.S.B., G.M.).,Imagine Institute (M.K., I.M., A.F., G.d.S.B., G.M.)
| | - Nicolas Goudin
- Cell Imaging Facility, Imagine Institute (N.G.), Paris Descartes University, Sorbonne Paris Cité, France
| | - Isabelle Munoz
- INSERM, UMR_S 1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, France (M.K., I.M., A.F., G.d.S.B., G.M.).,Imagine Institute (M.K., I.M., A.F., G.d.S.B., G.M.)
| | - Jean-Claude Bordet
- Laboratoire d'Hémostase, Centre de Biologie Est, Hospices Civils de Lyon, Bron, France (J.-C.B.).,Laboratoire de Recherche sur l'Hémophilie, UCBL1, Lyon, France (J.-C.B.)
| | - Jian-Dong Huang
- School of Biomedical Sciences, The University of Hong Kong, China (J.-D.H.)
| | - Marijke Bryckaert
- From the INSERM, UMR_S 1176, Paris-Sud University, Université Paris-Saclay, Le Kremlin-Bicêtre, France (F.A., A.K., M.B., D.B., O.D.C.)
| | - Alain Fischer
- INSERM, UMR_S 1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, France (M.K., I.M., A.F., G.d.S.B., G.M.).,Imagine Institute (M.K., I.M., A.F., G.d.S.B., G.M.).,Department of Immunology and Pediatric Hematology (A.F.)
| | - Delphine Borgel
- From the INSERM, UMR_S 1176, Paris-Sud University, Université Paris-Saclay, Le Kremlin-Bicêtre, France (F.A., A.K., M.B., D.B., O.D.C.).,Biological Hematology Service (D.B.), Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, France; and Collège de France, Paris (A.F.)
| | - Geneviève de Saint Basile
- INSERM, UMR_S 1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, France (M.K., I.M., A.F., G.d.S.B., G.M.).,Imagine Institute (M.K., I.M., A.F., G.d.S.B., G.M.)
| | - Olivier D Christophe
- From the INSERM, UMR_S 1176, Paris-Sud University, Université Paris-Saclay, Le Kremlin-Bicêtre, France (F.A., A.K., M.B., D.B., O.D.C.)
| | - Gaël Ménasché
- INSERM, UMR_S 1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, France (M.K., I.M., A.F., G.d.S.B., G.M.).,Imagine Institute (M.K., I.M., A.F., G.d.S.B., G.M.)
| |
Collapse
|
35
|
Myosin IIa is critical for cAMP-mediated endothelial secretion of von Willebrand factor. Blood 2017; 131:686-698. [PMID: 29208598 DOI: 10.1182/blood-2017-08-802140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/14/2017] [Indexed: 01/10/2023] Open
Abstract
Nonmuscle myosin II has been implicated in regulation of von Willebrand factor (VWF) release from endothelial Weibel-Palade bodies (WPBs), but the specific role of myosin IIa isoform is poorly defined. Here, we report that myosin IIa is expressed both in primary human endothelial cells and intact mouse vessels, essential for cyclic adenosine monophosphate (cAMP)-mediated endothelial VWF secretion. Downregulation of myosin IIa by shRNAs significantly suppressed both forskolin- and epinephrine-induced VWF secretion. Endothelium-specific myosin IIa knockout mice exhibited impaired epinephrine-stimulated VWF release, prolonged bleeding time, and thrombosis. Further study showed that in resting cells, myosin IIa deficiency disrupted the peripheral localization of Rab27-positive WPBs along stress fibers; on stimulation by cAMP agonists, myosin IIa in synergy with zyxin promotes the formation of a functional actin framework, which is derived from preexisting cortical actin filaments, around WPBs, facilitating fusion and subsequent exocytosis. In summary, our findings not only identify new functions of myosin IIa in regulation of WPB positioning and the interaction between preexisting cortical actin filaments and exocytosing vesicles before fusion but also reveal myosin IIa as a physiological regulator of endothelial VWF secretion in stress-induced hemostasis and thrombosis.
Collapse
|
36
|
McCormack JJ, Lopes da Silva M, Ferraro F, Patella F, Cutler DF. Weibel-Palade bodies at a glance. J Cell Sci 2017; 130:3611-3617. [PMID: 29093059 DOI: 10.1242/jcs.208033] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The vascular environment can rapidly alter, and the speed with which responses to both physiological and pathological changes are required necessitates the existence of a highly responsive system. The endothelium can quickly deliver bioactive molecules by regulated exocytosis of its secretory granules, the Weibel-Palade bodies (WPBs). WPBs include proteins that initiate both haemostasis and inflammation, as well those that modulate blood pressure and angiogenesis. WPB formation is driven by von Willebrand factor, their most abundant protein, which controls both shape and size of WPBs. WPB are generated in a range of sizes, with the largest granules over ten times the size of the smallest. In this Cell Science at a Glance and the accompanying poster, we discuss the emerging mechanisms by which WPB size is controlled and how this affects the ability of this organelle to modulate haemostasis. We will also outline the different modes of exocytosis and their polarity that are currently being explored, and illustrate that these large secretory organelles provide a model for how elements of secretory granule biogenesis and exocytosis cooperate to support a complex and diverse set of functions.
Collapse
Affiliation(s)
- Jessica J McCormack
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E6BT, UK
| | - Mafalda Lopes da Silva
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E6BT, UK
| | - Francesco Ferraro
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E6BT, UK
| | - Francesca Patella
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E6BT, UK
| | - Daniel F Cutler
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E6BT, UK
| |
Collapse
|
37
|
Gerke V. Annexins A2 and A8 in endothelial cell exocytosis and the control of vascular homeostasis. Biol Chem 2017; 397:995-1003. [PMID: 27451994 DOI: 10.1515/hsz-2016-0207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/18/2016] [Indexed: 11/15/2022]
Abstract
Blood vessel homeostasis is controlled by a variety of regulatory circuits that involve both the vessel-lining endothelial cells as well as the circulating blood cells and products thereof. One important feature is the control exerted by endothelial cells through regulated exocytosis of factors affecting blood coagulation and local inflammatory processes. These factors include two important adhesion proteins: the leukocyte receptor P-selectin and the pro-coagulant von Willebrand factor (VWF) that binds platelets and is involved in the formation of a platelet plug at sites of blood vessel injury. Failure to correctly produce and secrete P-selectin and VWF leads to pathologies such as von Willebrand disease, the most common inherited bleeding disorder. P-selectin and VWF are stored in unique secretory granules, the Weibel-Palade bodies (WPB), that undergo a complex maturation process and are acutely secreted following endothelial stimulation, e.g. in the course of inflammation or following blood vessel injury. Two annexins have been shown to be involved in different aspects of WPB biology: annexin A8 is required for proper WPB maturation and annexin A2 participates in late steps of WPB exocytosis. Thus, by affecting the stimulated release of P-selectin and VWF from endothelial cells, annexins fulfil important functions in the control of vascular homeostasis and could be considered as targets for influencing P-selectin- and VWF-dependent processes/pathologies.
Collapse
|
38
|
Biesemann A, Gorontzi A, Barr F, Gerke V. Rab35 protein regulates evoked exocytosis of endothelial Weibel-Palade bodies. J Biol Chem 2017; 292:11631-11640. [PMID: 28566286 PMCID: PMC5512060 DOI: 10.1074/jbc.m116.773333] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/15/2017] [Indexed: 12/22/2022] Open
Abstract
Weibel–Palade bodies (WPB) are secretory organelles of endothelial cells that undergo evoked exocytosis following intracellular Ca2+ or cAMP elevation, thereby supplying the vasculature with factors controlling hemostasis. Several cytosolic and membrane-associated proteins, including the Rab family members Rab3, Rab15, and Rab27a, have been implicated in regulating the acute exocytosis of WPB. Here, we carried out a genome-wide screen to identify Rab pathways affecting WPB exocytosis. Overexpression of a specific subset of Rab GTPase–activating proteins (RabGAPs) inhibited histamine-evoked, Ca2+-dependent WPB exocytosis, presumably by inactivating the target Rab GTPases. Among these RabGAPs, we concentrated on TBC1D10A and showed that the inhibitory effect depends on its GAP activity. We confirmed that Rab35 was a target Rab of TBC1D10A in human endothelial cells; Rab35 interacted with TBC1D10A, and expression of the GAP-insensitive Rab35(Q67A) mutant rescued the inhibitory effect of TBC1D10A overexpression on WPB exocytosis. Furthermore, knockdown of Rab35 and expression of a dominant-negative Rab35 mutant both inhibited histamine-evoked secretion of the WPB cargos von Willebrand factor and P-selectin. Pulldown and co-immunoprecipitation experiments identified the ArfGAP with coiled-coil, Ank repeat, and pleckstrin homology domain–containing protein ACAP2 as an Rab35 effector in endothelial cells, and depletion as well as overexpression approaches revealed that ACAP2 acts as a negative regulator of WPB exocytosis. Interestingly, a known ACAP2 target, the small GTPase Arf6, supported histamine-evoked WPB exocytosis, as shown by knockdown and overexpression of a dominant-negative Arf6 mutant. Our data identify Rab35 as a novel regulator of WPB exocytosis, most likely acting through the downstream effectors ACAP2 and Arf6.
Collapse
Affiliation(s)
- Anja Biesemann
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, D-48149 Münster, Germany
| | - Alexandra Gorontzi
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, D-48149 Münster, Germany
| | - Francis Barr
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
39
|
Chehab T, Santos NC, Holthenrich A, Koerdt SN, Disse J, Schuberth C, Nazmi AR, Neeft M, Koch H, Man KNM, Wojcik SM, Martin TFJ, van der Sluijs P, Brose N, Gerke V. A novel Munc13-4/S100A10/annexin A2 complex promotes Weibel-Palade body exocytosis in endothelial cells. Mol Biol Cell 2017; 28:1688-1700. [PMID: 28450451 PMCID: PMC5469611 DOI: 10.1091/mbc.e17-02-0128] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 11/17/2022] Open
Abstract
The tethering factor Munc13-4 is recruited to Weibel–Palade body (WPB) fusion sites after secretagogue stimulation to promote WPB exocytosis. Annexin A2-S100A10 is a novel Munc13-4 interaction partner assisting Munc13-4 tethering at the plasma membrane. Endothelial cells respond to blood vessel injury by the acute release of the procoagulant von Willebrand factor, which is stored in unique secretory granules called Weibel–Palade bodies (WPBs). Stimulated WPB exocytosis critically depends on their proper recruitment to the plasma membrane, but factors involved in WPB–plasma membrane tethering are not known. Here we identify Munc13-4, a protein mutated in familial hemophagocytic lymphohistiocytosis 3, as a WPB-tethering factor. Munc13-4 promotes histamine-evoked WPB exocytosis and is present on WPBs, and secretagogue stimulation triggers an increased recruitment of Munc13-4 to WPBs and a clustering of Munc13-4 at sites of WPB–plasma membrane contact. We also identify the S100A10 subunit of the annexin A2 (AnxA2)-S100A10 protein complex as a novel Munc13-4 interactor and show that AnxA2-S100A10 participates in recruiting Munc13-4 to WPB fusion sites. These findings indicate that Munc13-4 supports acute WPB exocytosis by tethering WPBs to the plasma membrane via AnxA2-S100A10.
Collapse
Affiliation(s)
- Tarek Chehab
- Institute of Medical Biochemistry, University of Münster, 48149 Münster, Germany
| | - Nina Criado Santos
- Institute of Medical Biochemistry, University of Münster, 48149 Münster, Germany
| | - Anna Holthenrich
- Institute of Medical Biochemistry, University of Münster, 48149 Münster, Germany
| | - Sophia N Koerdt
- Institute of Medical Biochemistry, University of Münster, 48149 Münster, Germany
| | - Jennifer Disse
- Institute of Medical Biochemistry, University of Münster, 48149 Münster, Germany
| | - Christian Schuberth
- Institute of Cell Dynamics and Imaging, Centre for Molecular Biology of Inflammation, Cells-in-Motion Cluster of Excellence, University of Münster, 48149 Münster, Germany
| | - Ali Reza Nazmi
- Institute of Medical Biochemistry, University of Münster, 48149 Münster, Germany
| | - Maaike Neeft
- Department of Cell Biology, Center of Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Henriette Koch
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Kwun Nok M Man
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Thomas F J Martin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Peter van der Sluijs
- Department of Cell Biology, Center of Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, University of Münster, 48149 Münster, Germany
| |
Collapse
|
40
|
Jongsma MLM, Berlin I, Wijdeven RHM, Janssen L, Janssen GMC, Garstka MA, Janssen H, Mensink M, van Veelen PA, Spaapen RM, Neefjes J. An ER-Associated Pathway Defines Endosomal Architecture for Controlled Cargo Transport. Cell 2017; 166:152-66. [PMID: 27368102 PMCID: PMC4930482 DOI: 10.1016/j.cell.2016.05.078] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 03/25/2016] [Accepted: 05/25/2016] [Indexed: 12/30/2022]
Abstract
Through a network of progressively maturing vesicles, the endosomal system connects the cell's interior with extracellular space. Intriguingly, this network exhibits a bilateral architecture, comprised of a relatively immobile perinuclear vesicle "cloud" and a highly dynamic peripheral contingent. How this spatiotemporal organization is achieved and what function(s) it curates is unclear. Here, we reveal the endoplasmic reticulum (ER)-located ubiquitin ligase Ring finger protein 26 (RNF26) as the global architect of the entire endosomal system, including the trans-Golgi network (TGN). To specify perinuclear vesicle coordinates, catalytically competent RNF26 recruits and ubiquitinates the scaffold p62/sequestosome 1 (p62/SQSTM1), in turn attracting ubiquitin-binding domains (UBDs) of various vesicle adaptors. Consequently, RNF26 restrains fast transport of diverse vesicles through a common molecular mechanism operating at the ER membrane, until the deubiquitinating enzyme USP15 opposes RNF26 activity to allow vesicle release into the cell's periphery. By drawing the endosomal system's architecture, RNF26 orchestrates endosomal maturation and trafficking of cargoes, including signaling receptors, in space and time.
Collapse
Affiliation(s)
- Marlieke L M Jongsma
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory AMC/UvA, Plesmanlaan 125, 1066 CX Amsterdam, the Netherlands
| | - Ilana Berlin
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| | - Ruud H M Wijdeven
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Lennert Janssen
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - George M C Janssen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Malgorzata A Garstka
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Hans Janssen
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Mark Mensink
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Peter A van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory AMC/UvA, Plesmanlaan 125, 1066 CX Amsterdam, the Netherlands
| | - Jacques Neefjes
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Chemical Immunology, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, the Netherlands.
| |
Collapse
|
41
|
Mourik M, Eikenboom J. Lifecycle of Weibel-Palade bodies. Hamostaseologie 2016; 37:13-24. [PMID: 28004844 DOI: 10.5482/hamo-16-07-0021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/18/2016] [Indexed: 11/05/2022] Open
Abstract
Weibel-Palade bodies (WPBs) are rod or cigar-shaped secretory organelles that are formed by the vascular endothelium. They contain a diverse set of proteins that either function in haemostasis, inflammation, or angiogenesis. Biogenesis of the WPB occurs at the Golgi apparatus in a process that is dependent on the main component of the WPB, the haemostatic protein von Willebrand Factor (VWF). During this process the organelle is directed towards the regulated secretion pathway by recruiting the machinery that responds to exocytosis stimulating agonists. Upon maturation in the periphery of the cell the WPB recruits Rab27A which regulates WPB secretion. To date several signaling pathways have been found to stimulate WPB release. These signaling pathways can trigger several secretion modes including single WPB release and multigranular exocytosis. In this review we will give an overview of the WPB lifecycle from biogenesis to secretion and we will discuss several deficiencies that affect the WPB lifecycle.
Collapse
Affiliation(s)
| | - Jeroen Eikenboom
- Jeroen Eikenboom, Leiden University Medical Center, Department of Thrombosis and Haemostasis, C7-61, P.O. Box 9600, 2300 RC Leiden, The Netherlands, Tel: +31 71 526 4906, E-Mail:
| |
Collapse
|
42
|
Cheeseman LP, Boulanger J, Bond LM, Schuh M. Two pathways regulate cortical granule translocation to prevent polyspermy in mouse oocytes. Nat Commun 2016; 7:13726. [PMID: 27991490 PMCID: PMC5187413 DOI: 10.1038/ncomms13726] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/27/2016] [Indexed: 12/20/2022] Open
Abstract
An egg must be fertilized by a single sperm only. To prevent polyspermy, the zona pellucida, a structure that surrounds mammalian eggs, becomes impermeable upon fertilization, preventing the entry of further sperm. The structural changes in the zona upon fertilization are driven by the exocytosis of cortical granules. These translocate from the oocyte's centre to the plasma membrane during meiosis. However, very little is known about the mechanism of cortical granule translocation. Here we investigate cortical granule transport and dynamics in live mammalian oocytes by using Rab27a as a marker. We show that two separate mechanisms drive their transport: myosin Va-dependent movement along actin filaments, and an unexpected vesicle hitchhiking mechanism by which cortical granules bind to Rab11a vesicles powered by myosin Vb. Inhibiting cortical granule translocation severely impaired the block to sperm entry, suggesting that translocation defects could contribute to miscarriages that are caused by polyspermy.
Mammalian eggs release cortical granules to avoid being fertilized by more than a single sperm as polyspermy results in nonviable embryos. Here, the authors describe the mechanism driving translocation of the granules to the cortex in the mouse egg and show this process is essential to prevent polyspermy.
Collapse
Affiliation(s)
- Liam P Cheeseman
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Jérôme Boulanger
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Lisa M Bond
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Melina Schuh
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.,Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
43
|
Kittelberger N, Breunig M, Martin R, Knölker HJ, Miklavc P. The role of myosin 1c and myosin 1b in surfactant exocytosis. J Cell Sci 2016; 129:1685-96. [PMID: 26940917 PMCID: PMC4852769 DOI: 10.1242/jcs.181313] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/25/2016] [Indexed: 12/19/2022] Open
Abstract
Actin and actin-associated proteins have a pivotal effect on regulated exocytosis in secretory cells and influence pre-fusion as well as post-fusion stages of exocytosis. Actin polymerization on secretory granules during the post-fusion phase (formation of an actin coat) is especially important in cells with large secretory vesicles or poorly soluble secretions. Alveolar type II (ATII) cells secrete hydrophobic lipo-protein surfactant, which does not easily diffuse from fused vesicles. Previous work showed that compression of actin coat is necessary for surfactant extrusion. Here, we investigate the role of class 1 myosins as possible linkers between actin and membranes during exocytosis. Live-cell microscopy showed translocation of fluorescently labeled myosin 1b and myosin 1c to the secretory vesicle membrane after fusion. Myosin 1c translocation was dependent on its pleckstrin homology domain. Expression of myosin 1b and myosin 1c constructs influenced vesicle compression rate, whereas only the inhibition of myosin 1c reduced exocytosis. These findings suggest that class 1 myosins participate in several stages of ATII cell exocytosis and link actin coats to the secretory vesicle membrane to influence vesicle compression.
Collapse
Affiliation(s)
- Nadine Kittelberger
- Institute of General Physiology, Ulm University, Albert-Einstein Allee 11, Ulm 89081, Germany
| | - Markus Breunig
- Institute of General Physiology, Ulm University, Albert-Einstein Allee 11, Ulm 89081, Germany
| | - René Martin
- Department of Chemistry, Technische Universität Dresden, Bergstr. 66, Dresden 01069, Germany
| | - Hans-Joachim Knölker
- Department of Chemistry, Technische Universität Dresden, Bergstr. 66, Dresden 01069, Germany
| | - Pika Miklavc
- Institute of General Physiology, Ulm University, Albert-Einstein Allee 11, Ulm 89081, Germany
| |
Collapse
|
44
|
Conte IL, Hellen N, Bierings R, Mashanov GI, Manneville JB, Kiskin NI, Hannah MJ, Molloy JE, Carter T. Interaction between MyRIP and the actin cytoskeleton regulates Weibel-Palade body trafficking and exocytosis. J Cell Sci 2016; 129:592-603. [PMID: 26675235 PMCID: PMC4760305 DOI: 10.1242/jcs.178285] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022] Open
Abstract
Weibel-Palade body (WPB)-actin interactions are essential for the trafficking and secretion of von Willebrand factor; however, the molecular basis for this interaction remains poorly defined. Myosin Va (MyoVa or MYO5A) is recruited to WPBs by a Rab27A-MyRIP complex and is thought to be the prime mediator of actin binding, but direct MyRIP-actin interactions can also occur. To evaluate the specific contribution of MyRIP-actin and MyRIP-MyoVa binding in WPB trafficking and Ca(2+)-driven exocytosis, we used EGFP-MyRIP point mutants with disrupted MyoVa and/or actin binding and high-speed live-cell fluorescence microscopy. We now show that the ability of MyRIP to restrict WPB movement depends upon its actin-binding rather than its MyoVa-binding properties. We also show that, although the role of MyRIP in Ca(2+)-driven exocytosis requires both MyoVa- and actin-binding potential, it is the latter that plays a dominant role. In view of these results and together with the analysis of actin disruption or stabilisation experiments, we propose that the role of MyRIP in regulating WPB trafficking and exocytosis is mediated largely through its interaction with actin rather than with MyoVa.
Collapse
Affiliation(s)
- Ianina L Conte
- Cardiovascular and Cell Science Research Institute, St George's University, London SW17 0RE, UK
| | - Nicola Hellen
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Ruben Bierings
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | | | | | - Nikolai I Kiskin
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Matthew J Hannah
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Justin E Molloy
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Tom Carter
- Cardiovascular and Cell Science Research Institute, St George's University, London SW17 0RE, UK
| |
Collapse
|
45
|
Zhu Q, Yamakuchi M, Lowenstein CJ. SNAP23 Regulates Endothelial Exocytosis of von Willebrand Factor. PLoS One 2015; 10:e0118737. [PMID: 26266817 PMCID: PMC4534191 DOI: 10.1371/journal.pone.0118737] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/22/2015] [Indexed: 11/18/2022] Open
Abstract
Endothelial exocytosis regulates vascular thrombosis and inflammation. The trafficking and release of endothelial vesicles is mediated by SNARE (Soluble NSF Attachment protein REceptors) molecules, but the exact identity of endothelial SNAREs has been unclear. Three SNARE molecules form a ternary complex, including isoforms of the syntaxin (STX), vesicle-associated membrane protein (VAMP), and synaptosomal-associated protein (SNAP) families. We now identify SNAP23 as the predominant endothelial SNAP isoform that mediates endothelial exocytosis of von Willebrand Factor (VWF). SNAP23 was localized to the plasma membrane. Knockdown of SNAP23 decreased endothelial exocytosis, suggesting it is important for endothelial exocytosis. SNAP23 interacted with the endothelial exocytic machinery, and formed complexes with other known endothelial SNARE molecules. Taken together, these data suggest that SNAP23 is a key component of the endothelial SNARE machinery that mediates endothelial exocytosis.
Collapse
Affiliation(s)
- Qiuyu Zhu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Munekazu Yamakuchi
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Charles J. Lowenstein
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
46
|
Abstract
To understand the placement of a certain protein in a physiological system and the pathogenesis of related disorders, it is not only of interest to determine its function but also important to describe the sequential steps in its life cycle, from synthesis to secretion and ultimately its clearance. von Willebrand factor (VWF) is a particularly intriguing case in this regard because of its important auxiliary roles (both intra- and extracellular) that implicate a wide range of other proteins: its presence is required for the formation and regulated release of endothelial storage organelles, the Weibel-Palade bodies (WPBs), whereas VWF is also a key determinant in the clearance of coagulation factor VIII. Thus, understanding the molecular and cellular basis of the VWF life cycle will help us gain insight into the pathogenesis of von Willebrand disease, design alternative treatment options to prolong the factor VIII half-life, and delineate the role of VWF and coresidents of the WPBs in the prothrombotic and proinflammatory response of endothelial cells. In this review, an update on our current knowledge on VWF biosynthesis, secretion, and clearance is provided and we will discuss how they can be affected by the presence of protein defects.
Collapse
|
47
|
Miklavc P, Ehinger K, Sultan A, Felder T, Paul P, Gottschalk KE, Frick M. Actin depolymerisation and crosslinking join forces with myosin II to contract actin coats on fused secretory vesicles. J Cell Sci 2015; 128:1193-203. [PMID: 25637593 PMCID: PMC4359923 DOI: 10.1242/jcs.165571] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In many secretory cells actin and myosin are specifically recruited to the surface of secretory granules following their fusion with the plasma membrane. Actomyosin-dependent compression of fused granules is essential to promote active extrusion of cargo. However, little is known about molecular mechanisms regulating actin coat formation and contraction. Here, we provide a detailed kinetic analysis of the molecules regulating actin coat contraction on fused lamellar bodies in primary alveolar type II cells. We demonstrate that ROCK1 and myosin light chain kinase 1 (MLCK1, also known as MYLK) translocate to fused lamellar bodies and activate myosin II on actin coats. However, myosin II activity is not sufficient for efficient actin coat contraction. In addition, cofilin-1 and α-actinin translocate to actin coats. ROCK1-dependent regulated actin depolymerisation by cofilin-1 in cooperation with actin crosslinking by α-actinin is essential for complete coat contraction. In summary, our data suggest a complementary role for regulated actin depolymerisation and crosslinking, and myosin II activity, to contract actin coats and drive secretion.
Collapse
Affiliation(s)
- Pika Miklavc
- Department of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Konstantin Ehinger
- Department of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Ayesha Sultan
- Department of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Tatiana Felder
- Department of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Patrick Paul
- Institute for Experimental Physics, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Kay-Eberhard Gottschalk
- Institute for Experimental Physics, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Manfred Frick
- Department of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| |
Collapse
|
48
|
Zhu Q, Yamakuchi M, Ture S, de la Luz Garcia-Hernandez M, Ko KA, Modjeski KL, LoMonaco MB, Johnson AD, O'Donnell CJ, Takai Y, Morrell CN, Lowenstein CJ. Syntaxin-binding protein STXBP5 inhibits endothelial exocytosis and promotes platelet secretion. J Clin Invest 2014; 124:4503-16. [PMID: 25244095 DOI: 10.1172/jci71245] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/24/2014] [Indexed: 01/25/2023] Open
Abstract
In humans, vWF levels predict the risk of myocardial infarction and thrombosis; however, the factors that influence vWF levels are not completely understood. Recent genome-wide association studies (GWAS) have identified syntaxin-binding protein 5 (STXBP5) as a candidate gene linked to changes in vWF plasma levels, though the functional relationship between STXBP5 and vWF is unknown. We hypothesized that STXBP5 inhibits endothelial cell exocytosis. We found that STXBP5 is expressed in human endothelial cells and colocalizes with and interacts with syntaxin 4. In human endothelial cells reduction of STXBP5 increased exocytosis of vWF and P-selectin. Mice lacking Stxbp5 had higher levels of vWF in the plasma, increased P-selectin translocation, and more platelet-endothelial interactions, which suggests that STXBP5 inhibits endothelial exocytosis. However, Stxbp5 KO mice also displayed hemostasis defects, including prolonged tail bleeding times and impaired mesenteric arteriole and carotid artery thrombosis. Furthermore, platelets from Stxbp5 KO mice had defects in platelet secretion and activation; thus, STXBP5 inhibits endothelial exocytosis but promotes platelet secretion. Our study reveals a vascular function for STXBP5, validates the functional relevance of a candidate gene identified by GWAS, and suggests that variation within STXBP5 is a genetic risk for venous thromboembolic disease.
Collapse
|
49
|
Abstract
Lysosomes were once considered the end point of endocytosis, simply used for macromolecule degradation. They are now recognized to be dynamic organelles, able to fuse with a variety of targets and to be re-formed after fusion events. They are also now known to be the site of nutrient sensing and signaling to the cell nucleus. In addition, lysosomes are secretory organelles, with specialized machinery for regulated secretion of proteins in some cell types. The biogenesis of lysosomes and lysosome-related organelles is discussed, taking into account their dynamic nature and multiple roles.
Collapse
|
50
|
Poeter M, Brandherm I, Rossaint J, Rosso G, Shahin V, Skryabin BV, Zarbock A, Gerke V, Rescher U. Annexin A8 controls leukocyte recruitment to activated endothelial cells via cell surface delivery of CD63. Nat Commun 2014; 5:3738. [PMID: 24769558 DOI: 10.1038/ncomms4738] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/27/2014] [Indexed: 12/26/2022] Open
Abstract
To enable leukocyte adhesion to activated endothelium, the leukocyte receptor P-selectin is released from Weibel-Palade bodies (WPB) to the endothelial cell surface where it is stabilized by CD63. Here we report that loss of annexin A8 (anxA8) in human umbilical vein endothelial cells (HUVEC) strongly decreases cell surface presentation of CD63 and P-selectin, with a concomitant reduction in leukocyte rolling and adhesion. We confirm the compromised leukocyte adhesiveness in inflammatory-activated endothelial venules of anxA8-deficient mice. We find that WPB of anxA8-deficient HUVEC contain less CD63, and that this is caused by improper transport of CD63 from late multivesicular endosomes to WPB, with CD63 being retained in intraluminal vesicles. Consequently, reduced CD63 cell surface levels are seen following WPB exocytosis, resulting in enhanced P-selectin re-internalization. Our data support a model in which anxA8 affects leukocyte recruitment to activated endothelial cells by supplying WPB with sufficient amounts of the P-selectin regulator CD63.
Collapse
Affiliation(s)
- Michaela Poeter
- 1] Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, von-Esmarch Strasse 56, 48149 Münster, Germany [2]
| | - Ines Brandherm
- 1] Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, von-Esmarch Strasse 56, 48149 Münster, Germany [2]
| | - Jan Rossaint
- 1] Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany [2] Department of Vascular Cell Biology, Max-Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Gonzalo Rosso
- Institute of Physiology II, University of Münster, Robert-Koch-Strasse 27b, 48149 Münster, Germany
| | - Victor Shahin
- Institute of Physiology II, University of Münster, Robert-Koch-Strasse 27b, 48149 Münster, Germany
| | - Boris V Skryabin
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, von-Esmarch Strasse 56, 48149 Münster, Germany
| | - Alexander Zarbock
- 1] Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany [2] Department of Vascular Cell Biology, Max-Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, von-Esmarch Strasse 56, 48149 Münster, Germany
| | - Ursula Rescher
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Center, University of Münster, von-Esmarch Strasse 56, 48149 Münster, Germany
| |
Collapse
|