1
|
Calvanese AL, Cecconi V, Stäheli S, Schnepf D, Nater M, Pereira P, Gschwend J, Heikenwälder M, Schneider C, Ludewig B, Silina K, van den Broek M. Sustained innate interferon is an essential inducer of tertiary lymphoid structures. Eur J Immunol 2024; 54:e2451207. [PMID: 38980268 DOI: 10.1002/eji.202451207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Tertiary lymphoid structures (TLS) resemble follicles of secondary lymphoid organs and develop in nonlymphoid tissues during inflammation and cancer. Which cell types and signals drive the development of TLS is largely unknown. To investigate early events of TLS development in the lungs, we repeatedly instilled p(I:C) plus ovalbumin (Ova) intranasally. This induced TLS ranging from lymphocytic aggregates to organized and functional structures containing germinal centers. We found that TLS development is independent of FAP+ fibroblasts, alveolar macrophages, or CCL19 but crucially depends on type I interferon (IFN-I). Mechanistically, IFN-I initiates two synergistic pathways that culminate in the development of TLS. On the one hand, IFN-I induces lymphotoxin (LT)α in lymphoid cells, which stimulate stromal cells to produce the B-cell-attracting chemokine CXCL13 through LTβR-signaling. On the other hand, IFN-I is sensed by stromal cells that produce the T-cell-attracting chemokines CXCL9, CXCL10 as well as CCL19 and CCL21 independently of LTβR. Consequently, B-cell aggregates develop within a week, whereas follicular dendritic cells and germinal centers appear after 3 weeks. Thus, sustained production of IFN-I together with an antigen is essential for the induction of functional TLS in the lungs.
Collapse
Affiliation(s)
| | - Virginia Cecconi
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Severin Stäheli
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, Freiburg im Breisgau, Germany
| | - Marc Nater
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Paulo Pereira
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Julia Gschwend
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
- M3 Research Institute, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Karina Silina
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
2
|
Ma L, Li R, Liu X, Yu W, Tang Z, Shen Y, Tian H. Prognostic and clinicopathological significance of tertiary lymphoid structure in non-small cell lung cancer: a systematic review and meta-analysis. BMC Cancer 2024; 24:815. [PMID: 38977962 PMCID: PMC11229181 DOI: 10.1186/s12885-024-12587-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the primary reason for cancer-related deaths globally. Tertiary lymphoid structure (TLS) is an organized collection of immune cells acquired in non-physiological, non-lymphoid tissues. High expression of TLS in tumor tissues is generally associated with better prognosis. This research aimed to investigate the prognostic and clinicopathological significance of TLS in patients with NSCLC. METHODS A comprehensive literature search was conducted based on Pubmed, EMBASE, and Cochrane Library databases to identify eligible studies published up to December 8, 2023. The prognostic significance and clinicopathological value of TLS in NSCLC were evaluated by calculating the combined hazard ratios (HRs) and odds ratios (ORs) and their 95% confidence intervals (CIs). Following that, additional analyses, including subgroup analysis and sensitivity analysis, were conducted. RESULTS This meta-analysis evaluated the prognostic and clinicopathological significance of TLS in 10 studies involving 1,451 patients with NSCLC. The results revealed that the high levels of TLS were strongly associated with better overall survival (OS) (HR = 0.48, 95% CI: 0.35-0.66, p < 0.001), disease-free survival (DFS)/recurrence-free survival (RFS) (HR = 0.37, 95% CI: 0.24-0.54, p < 0.001), and disease-specific survival (DSS) (HR = 0.45, 95% CI: 0.30-0.68, p < 0.001) in NSCLC patients. In addition, the increased expression of TLS was closely related to the Tumor Node Metastasis (TNM) stage of tumors (OR = 0.71, 95% CI: 0.51-1.00, p < 0.05) and neutrophil-lymphocyte ratio (NLR) (OR = 0.33, 95% CI: 0.17-0.62, p < 0.001). CONCLUSIONS The results revealed that highly expressed TLS is closely associated with a better prognosis in NSCLC patients. TLS may serve as a novel biomarker to predict the prognosis of NSCLC patients and guide the clinical treatment decisions.
Collapse
Affiliation(s)
- Luyuan Ma
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Rongyang Li
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Xiaomeng Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Wenhao Yu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Zhanpeng Tang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yi Shen
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
3
|
Zhang G, Feizi N, Zhao D, Halesha L, Williams AL, Randhawa PS, Abou-Daya KI, Oberbarnscheidt MH. Lymphotoxin β receptor and tertiary lymphoid organs shape acute and chronic allograft rejection. JCI Insight 2024; 9:e177555. [PMID: 38954463 PMCID: PMC11383591 DOI: 10.1172/jci.insight.177555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Solid organ transplantation remains the life-saving treatment for end-stage organ failure, but chronic rejection remains a major obstacle to long-term allograft outcomes and has not improved substantially. Tertiary lymphoid organs (TLOs) are ectopic lymphoid structures that form under conditions of chronic inflammation, and evidence from human transplantation suggests that TLOs regularly form in allografts undergoing chronic rejection. In this study, we utilized a mouse renal transplantation model and manipulation of the lymphotoxin αβ/lymphotoxin β receptor (LTαβ/LTβR) pathway, which is essential for TLO formation, to define the role of TLOs in transplantation. We showed that intragraft TLOs are sufficient to activate the alloimmune response and mediate graft rejection in a model where the only lymphoid organs are TLOs in the allograft. When transplanted to recipients with a normal set of secondary lymphoid organs, the presence of graft TLOs or LTα overexpression accelerated rejection. If the LTβR pathway was disrupted in the donor graft, TLO formation was abrogated, and graft survival was prolonged. Intravital microscopy of renal TLOs demonstrated that local T and B cell activation in TLOs is similar to that observed in secondary lymphoid organs. In summary, we demonstrated that immune activation in TLOs contributes to local immune responses, leading to earlier allograft failure. TLOs and the LTαβ/LTβR pathway are therefore prime targets to limit local immune responses and prevent allograft rejection. These findings are applicable to other diseases, such as autoimmune diseases or tumors, where either limiting or boosting local immune responses is beneficial and improves disease outcomes.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
- Center of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Neda Feizi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
| | - Daqiang Zhao
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
| | - Latha Halesha
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
| | - Amanda L Williams
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
| | - Parmjeet S Randhawa
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
- Division of Transplant Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Khodor I Abou-Daya
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
| | - Martin H Oberbarnscheidt
- Department of Surgery, Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Ruddle NH. Posttransplant Tertiary Lymphoid Organs. Transplantation 2024; 108:1090-1099. [PMID: 37917987 PMCID: PMC11042531 DOI: 10.1097/tp.0000000000004812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 11/04/2023]
Abstract
Tertiary lymphoid organs (TLOs), also known as tertiary or ectopic lymphoid structures or tissues, are accumulations of lymphoid cells in sites other than canonical lymphoid organs, that arise through lymphoid neogenesis during chronic inflammation in autoimmunity, microbial infection, cancer, aging, and transplantation, the focus of this review. Lymph nodes and TLOs are compared regarding their cellular composition, organization, vascular components, and migratory signal regulation. These characteristics of posttransplant TLOs (PT-TLOs) are described with individual examples in a wide range of organs including heart, kidney, trachea, lung, artery, skin, leg, hand, and face, in many species including human, mouse, rat, and monkey. The requirements for induction and maintenance of TLOs include sustained exposure to autoantigens, alloantigens, tumor antigens, ischemic reperfusion, nephrotoxic agents, and aging. Several staging schemes have been put forth regarding their function in organ rejection. PT-TLOs most often are associated with organ rejection, but in some cases contribute to tolerance. The role of PT-TLOs in cancer is considered in the case of immunosuppression. Furthermore, TLOs can be associated with development of lymphomas. Challenges for PT-TLO research are considered regarding staging, imaging, and opportunities for their therapeutic manipulation to inhibit rejection and encourage tolerance.
Collapse
Affiliation(s)
- Nancy H. Ruddle
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT
| |
Collapse
|
5
|
Budair F, Kambe N, Kogame T, Hirata M, Takimoto-Ito R, Mostafa A, Nomura T, Kabashima K. Presence of immunoglobulin E-expressing antibody-secreting cells in the dermis close to bullous pemphigoid lesions. Exp Dermatol 2024; 33:e15058. [PMID: 38590080 DOI: 10.1111/exd.15058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 04/10/2024]
Abstract
Antibody-secreting cells (ASCs) produce immunoglobulin (Ig) G and IgE autoantibodies in secondary lymphoid organs. Evidence also suggests their existence in the skin in various chronic inflammatory conditions, and in association with CXCL12 and CXCL13, they regulate the recruitment/survival of ASCs and germinal center formation to generate ASCs, respectively. However, the presence of IgG and IgE in bullous pemphigoid (BP) lesions needs to be addressed. Here, we aimed to analyse BP skin for the presence of IgG and IgE and the factors contributing to their generation, recruitment, and persistence. Skin samples from 30 patients with BP were stained to identify ASCs and the immunoglobulin type they expressed. The presence of tertiary lymphoid organ (TLO) elements, which generate ASCs in non-lymphoid tissues, and the chemokines CXCL12 and CXCL13, which regulate the migration/persistence of ASCs in lymphoid tissues and formation of TLOs, respectively, were evaluated in BP skin. BP skin harboured ASCs expressing the two types of antibodies IgG and IgE. ASCs were found in high-grade cellular aggregates containing TLO elements: T cells, B cells, CXCL12+ cells, CXCL13+ cells and high endothelial venules. IgG+ ASCs were detected among these aggregates, whereas IgE+ ASCs were dispersed throughout the dermis. CXCL12+ fibroblast-like cells were located close to ASCs. The inflammatory microenvironment of BP lesions may contribute to the antibody load characteristic of the skin of patients with BP by providing a site for the presence of ASCs. CXCL13 and CXCL12 expression may contribute to the generation and recruitment/survival of ASCs, respectively.
Collapse
Affiliation(s)
- Fatimah Budair
- Department of Dermatology, King Fahd University Hospital, Alkhobar, College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Naotomo Kambe
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiaki Kogame
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Riko Takimoto-Ito
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Alshimaa Mostafa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Drug Development for Intractable Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
6
|
Aggeletopoulou I, Kalafateli M, Triantos C. Chimeric Antigen Receptor T Cell Therapy for Hepatocellular Carcinoma: Where Do We Stand? Int J Mol Sci 2024; 25:2631. [PMID: 38473878 DOI: 10.3390/ijms25052631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge that urgently calls for innovative therapeutic strategies. Chimeric antigen receptor T cell (CAR T) therapy has emerged as a promising avenue for HCC treatment. However, the therapeutic efficacy of CAR T immunotherapy in HCC patients is significantly compromised by some major issues including the immunosuppressive environment within the tumor, antigen heterogeneity, CAR T cell exhaustion, and the advanced risk for on-target/off-tumor toxicity. To overcome these challenges, many ongoing preclinical and clinical trials are underway focusing on the identification of optimal target antigens and the decryption of the immunosuppressive milieu of HCC. Moreover, limited tumor infiltration constitutes a significant obstacle of CAR T cell therapy that should be addressed. The continuous effort to design molecular targets for CAR cells highlights the importance for a more practical approach for CAR-modified cell manufacturing. This review critically examines the current landscape of CAR T cell therapy for HCC, shedding light on the changes in innate and adaptive immune responses in the context of HCC, identifying potential CAR T cell targets, and exploring approaches to overcome inherent challenges. Ongoing advancements in scientific research and convergence of diverse treatment modalities offer the potential to greatly enhance HCC patients' care in the future.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece
| | - Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, 26332 Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
7
|
Zou X, Guan C, Gao J, Shi W, Cui Y, Zhong X. Tertiary lymphoid structures in pancreatic cancer: a new target for immunotherapy. Front Immunol 2023; 14:1222719. [PMID: 37529035 PMCID: PMC10388371 DOI: 10.3389/fimmu.2023.1222719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Pancreatic cancer (PC) is extremely malignant and shows limited response to available immunotherapies due to the hypoxic and immunosuppressive nature of its tumor microenvironment (TME). The aggregation of immune cells (B cells, T cells, dendritic cells, etc.), which is induced in various chronic inflammatory settings such as infection, inflammation, and tumors, is known as the tertiary lymphoid structure (TLS). Several studies have shown that TLSs can be found in both intra- and peritumor tissues of PC. The role of TLSs in peritumor tissues in tumors remains unclear, though intratumoral TLSs are known to play an active role in a variety of tumors, including PC. The formation of intratumoral TLSs in PC is associated with a good prognosis. In addition, TLSs can be used as an indicator to assess the effectiveness of treatment. Targeted induction of TLS formation may become a new avenue of immunotherapy for PC. This review summarizes the formation, characteristics, relevant clinical outcomes, and clinical applications of TLSs in the pancreatic TME. We aim to provide new ideas for future immunotherapy of PC.
Collapse
Affiliation(s)
- Xinlei Zou
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Canghai Guan
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianjun Gao
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wujiang Shi
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Jin L, Gao W, Chen P, Zhao W, Zhao Y, Li D, Zhou J, Yu B, Dong G. Murine neonatal dermal fibroblast acquires a lymphoid tissue organizer cell-like activity upon synergistic activation of TNF-α receptor and LTβ receptor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119399. [PMID: 36402207 DOI: 10.1016/j.bbamcr.2022.119399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
Tertiary lymphoid organs (TLOs) are ectopic aggregates of immune cells. As accumulating studies demonstrate TLOs as a predictor of better prognosis in certain cancers, targeting TLO formation, which is tightly regulated by the lymphoid tissue organizer cells (LTOs), has become intriguing in cancer treatment. However, the clinical outcome of these attempts is limited, because the approaches for activating tumor adjacent LTO is lack and little is known about what type of self-cell can be used as LTO to initiate TLO formation. Here we demonstrate that co-stimulation with membrane-bound ligand LTα1β2 and soluble TNF-α could induced an LTO-like activity in murine neonatal dermal fibroblast, featured by high expression of cell migration-associated chemokines and adhesion molecules that resemble typical LTO gene signature. Furthermore, the LTO-phenotypic dermal fibroblast could enhance the attachment and survival of T and B cell and proliferation of T cell. These findings suggest dermal fibroblast as a promising target for TLO induction to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Lujia Jin
- Medical School of Chinese PLA, Beijing, China; Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenxing Gao
- Medical School of Chinese PLA, Beijing, China; Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng Chen
- Medical School of Chinese PLA, Beijing, China; Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wen Zhao
- School of Medicine, Nankai University, Tianjin, China
| | - Yingjie Zhao
- Medical School of Chinese PLA, Beijing, China; Department & Institute of General Surgery, the Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dingchang Li
- Medical School of Chinese PLA, Beijing, China; Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Zhou
- Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Biyue Yu
- School of Life Sciences, Hebei University, Baoding, Hebei Province, China
| | - Guanglong Dong
- Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
9
|
Cai D, Yu H, Wang X, Mao Y, Liang M, Lu X, Shen X, Guan W. Turning Tertiary Lymphoid Structures (TLS) into Hot Spots: Values of TLS in Gastrointestinal Tumors. Cancers (Basel) 2023; 15:cancers15020367. [PMID: 36672316 PMCID: PMC9856964 DOI: 10.3390/cancers15020367] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphocyte aggregation structures found in the tumor microenvironment (TME). Emerging evidence shows that TLSs are significantly correlated with the progression of gastrointestinal tumors, patients' prognosis, and the efficacy of adjuvant therapy. Besides, there are still some immunosuppressive factors in the TLSs that may affect the anti-tumor responses of TLSs, including negative regulators of anti-tumor immune responses, the immune checkpoint molecules, and inappropriate tumor metabolism. Therefore, a more comprehensive understanding of TLSs' responses in gastrointestinal tumors is essential to fully understand how TLSs can fully exert their anti-tumor responses. In addition, targeting TLSs with immune checkpoint inhibitors and vaccines to establish mature TLSs is currently being developed to reprogram the TME, further benefiting cancer immunotherapies. This review summarizes recent findings on the formation of TLSs, the mechanisms of their anti-tumor immune responses, and the association between therapeutic strategies and TLSs, providing a novel perspective on tumor-associated TLSs in gastrointestinal tumors.
Collapse
Affiliation(s)
- Daming Cai
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Heng Yu
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Xingzhou Wang
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Yonghuan Mao
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Mengjie Liang
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Xiaofeng Lu
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, China
- Correspondence: (X.S.); (W.G.)
| | - Wenxian Guan
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
- Correspondence: (X.S.); (W.G.)
| |
Collapse
|
10
|
Maz MP, Martens JWS, Hannoudi A, Reddy AL, Hile GA, Kahlenberg JM. Recent advances in cutaneous lupus. J Autoimmun 2022; 132:102865. [PMID: 35858957 PMCID: PMC10082587 DOI: 10.1016/j.jaut.2022.102865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is an inflammatory and autoimmune skin condition that affects patients with systemic lupus erythematosus (SLE) and exists as an isolated entity without associated SLE. Flares of CLE, often triggered by exposure to ultraviolet (UV) light result in lost productivity and poor quality of life for patients and can be associated with trigger of systemic inflammation. In the past 10 years, the knowledge of CLE etiopathogenesis has grown, leading to promising targets for better therapies. Development of lesions likely begins in a pro-inflammatory epidermis, conditioned by excess type I interferon (IFN) production to undergo increased cell death and inflammatory cytokine production after UV light exposure. The reasons for this inflammatory predisposition are not well-understood, but may be an early event, as ANA + patients without criteria for autoimmune disease exhibit similar (although less robust) findings. Non-lesional skin of SLE patients also exhibits increased innate immune cell infiltration, conditioned by excess IFNs to release pro-inflammatory cytokines, and potentially increase activation of the adaptive immune system. Plasmacytoid dendritic cells are also found in non-lesional skin and may contribute to type I IFN production, although this finding is now being questioned by new data. Once the inflammatory cycle begins, lesional infiltration by numerous other cell populations ensues, including IFN-educated T cells. The heterogeneity amongst lesional CLE subtypes isn't fully understood, but B cells appear to discriminate discoid lupus erythematosus from other subtypes. Continued discovery will provide novel targets for additional therapeutic pursuits. This review will comprehensively discuss the contributions of tissue-specific and immune cell populations to the initiation and propagation of disease.
Collapse
Affiliation(s)
- Mitra P Maz
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob W S Martens
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew Hannoudi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alayka L Reddy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Grace A Hile
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
11
|
Lee YH, Sato Y, Saito M, Fukuma S, Saito M, Yamamoto S, Komatsuda A, Fujiyama N, Satoh S, Lee SH, Boor P, Habuchi T, Floege J, Yanagita M. Advanced Tertiary Lymphoid Tissues in Protocol Biopsies are Associated with Progressive Graft Dysfunction in Kidney Transplant Recipients. J Am Soc Nephrol 2022; 33:186-200. [PMID: 34725107 PMCID: PMC8763171 DOI: 10.1681/asn.2021050715] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/13/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Tertiary lymphoid tissues (TLTs) are ectopic lymphoid tissues found in chronically inflamed organs. Although studies have documented TLT formation in transplanted kidneys, the clinical relevance of these TLTs remains controversial. We examined the effects of TLTs on future graft function using our histologic TLT maturity stages and the association between TLTs and Banff pathologic scores. We also analyzed the risk factors for the development of TLTs. METHODS Serial protocol biopsy samples (0 hour, 1, 6, and 12 months) without rejection were retrospectively analyzed from 214 patients who underwent living donor kidney transplantation. TLTs were defined as lymphocyte aggregates with signs of proliferation and their stages were determined by the absence (stage I) or presence (stage II) of follicular dendritic cells. RESULTS Only 4% of patients exhibited TLTs at the 0-hour biopsy. Prevalence increased to almost 50% at the 1-month biopsy, and then slightly further for 12 months. The proportion of advanced stage II TLTs increased gradually, reaching 19% at the 12-month biopsy. Presence of stage II TLTs was associated with higher risk of renal function decline after transplantation compared with patients with no TLT or stage I TLTs. Stage II TLTs were associated with more severe tubulitis and interstitial fibrosis/tubular atrophy at 12 months and predicted poorer graft function independently from the degree of interstitial inflammation. Pretransplantation rituximab treatment dramatically attenuated the development of stage II TLTs. CONCLUSIONS TLTs are commonly found in clinically stable transplanted kidneys. Advanced stage II TLTs are associated with progressive graft dysfunction, independent of interstitial inflammation.
Collapse
Affiliation(s)
- Yu Ho Lee
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan,Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Yuki Sato
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan,Medical Innovation Center TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuru Saito
- Department of Urology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Shingo Fukuma
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaya Saito
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Shigenori Yamamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan,Medical Innovation Center TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Komatsuda
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Nobuhiro Fujiyama
- Center for Kidney Disease and Transplantation, Akita University Hospital, Akita, Japan
| | - Shigeru Satoh
- Center for Kidney Disease and Transplantation, Akita University Hospital, Akita, Japan
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Peter Boor
- Institute of Pathology, RWTH University of Aachen, Germany, Aachen, Germany,Division of Nephrology, RWTH University of Aachen, Germany, Aachen, Germany,Electron Microscopy Facility, RWTH University of Aachen, Aachen, Germany
| | - Tomonori Habuchi
- Department of Urology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Jürgen Floege
- Division of Nephrology, RWTH University of Aachen, Germany, Aachen, Germany
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Rossi AP, Alloway RR, Hildeman D, Woodle ES. Plasma cell biology: Foundations for targeted therapeutic development in transplantation. Immunol Rev 2021; 303:168-186. [PMID: 34254320 DOI: 10.1111/imr.13011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022]
Abstract
Solid organ transplantation is a life-saving procedure for patients with end-stage organ disease. Over the past 70 years, tremendous progress has been made in solid organ transplantation, particularly in T-cell-targeted immunosuppression and organ allocation systems. However, humoral alloimmune responses remain a major challenge to progress. Patients with preexisting antibodies to human leukocyte antigen (HLA) are at significant disadvantages in regard to receiving a well-matched organ, moreover, those who develop anti-HLA antibodies after transplantation face a significant foreshortening of renal allograft survival. Historical therapies to desensitize patients prior to transplantation or to treat posttransplant AMR have had limited effectiveness, likely because they do not significantly reduce antibody levels, as plasma cells, the source of antibody production, remain largely unaffected. Herein, we will discuss the significance of plasma cells in transplantation, aspects of their biology as potential therapeutic targets, clinical challenges in developing strategies to target plasma cells in transplantation, and lastly, novel approaches that have potential to advance the field.
Collapse
Affiliation(s)
- Amy P Rossi
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rita R Alloway
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - David Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - E Steve Woodle
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
13
|
Arai H, Sato Y, Yanagita M. Fibroblast heterogeneity and tertiary lymphoid tissues in the kidney. Immunol Rev 2021; 302:196-210. [PMID: 33951198 PMCID: PMC8360208 DOI: 10.1111/imr.12969] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023]
Abstract
Fibroblasts reside in various organs and support tissue structure and homeostasis under physiological conditions. Phenotypic alterations of fibroblasts underlie the development of diverse pathological conditions, including organ fibrosis. Recent advances in single‐cell biology have revealed that fibroblasts comprise heterogeneous subpopulations with distinct phenotypes, which exert both beneficial and detrimental effects on the host organs in a context‐dependent manner. In the kidney, phenotypic alterations of resident fibroblasts provoke common pathological conditions of chronic kidney disease (CKD), such as renal anemia and peritubular capillary loss. Additionally, in aged injured kidneys, fibroblasts provide functional and structural supports for tertiary lymphoid tissues (TLTs), which serve as the ectopic site of acquired immune reactions in various clinical contexts. TLTs are closely associated with aging and CKD progression, and the developmental stages of TLTs reflect the severity of renal injury. In this review, we describe the current understanding of fibroblast heterogeneity both under physiological and pathological conditions, with special emphasis on fibroblast contribution to TLT formation in the kidney. Dissecting the heterogeneous characteristics of fibroblasts will provide a promising therapeutic option for fibroblast‐related pathological conditions, including TLT formation.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Sato
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Medical Innovation Center, TMK Project, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Haese NN, Burg JM, Andoh TF, Jones IK, Kreklywich CN, Smith PP, Orloff SL, Streblow DN. Macrophage depletion of CMV latently infected donor hearts ameliorates recipient accelerated chronic rejection. Transpl Infect Dis 2021; 23:e13514. [PMID: 33205500 PMCID: PMC8068575 DOI: 10.1111/tid.13514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 11/08/2020] [Indexed: 12/21/2022]
Abstract
Cytomegalovirus (CMV) infection is linked to acceleration of solid organ transplant vascular sclerosis (TVS) and chronic rejection (CR). Donor latent CMV infection increases cardiac-resident macrophages and T cells leading to increased inflammation, promoting allograft rejection. To investigate the role of cardiac-resident passenger macrophages in CMV-mediated TVS/CR, macrophages were depleted from latently ratCMV (RCMV)-infected donor allografts prior to transplantation. Latently RCMV-infected donor F344 rats were treated with clodronate, PBS, or control liposomes 3 days prior to cardiac transplant into RCMV-naïve Lewis recipients. Clodronate treatment significantly increased graft survival from post-operative day (POD)61 to POD84 and decreased TVS at rejection. To determine the kinetics of the effect of clodronate treatment's effect, a time study revealed that clodronate treatment significantly decreased macrophage infiltration into allograft tissues as early as POD14; altered allograft cytokine/chemokine protein levels, fibrosis development, and inflammatory gene expression profiles. These findings support our hypothesis that increased graft survival as a result of allograft passenger macrophage depletion was in part a result of altered immune response kinetics. Depletion of donor macrophages prior to transplant is a strategy to modulate allograft rejection and reduce TVS in the setting of CMV + donors transplanted into CMV naïve recipients.
Collapse
Affiliation(s)
- Nicole N. Haese
- Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Beaverton, OR 97006
| | - Jennifer M. Burg
- Department of Surgery, Oregon Health Sciences University, Portland, OR 97239
| | - Takeshi F. Andoh
- Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Beaverton, OR 97006
| | - Iris K.A. Jones
- Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Beaverton, OR 97006
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Beaverton, OR 97006
| | - Patricia P. Smith
- Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Beaverton, OR 97006
| | - Susan L. Orloff
- Department of Surgery, Oregon Health Sciences University, Portland, OR 97239
- Department of Molecular Microbiology & Immunology, Oregon Health Sciences University, Portland, OR, USA
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Beaverton, OR 97006
| |
Collapse
|
15
|
Li W, Gauthier JM, Tong AY, Terada Y, Higashikubo R, Frye CC, Harrison MS, Hashimoto K, Bery AI, Ritter JH, Nava RG, Puri V, Wong BW, Lavine KJ, Bharat A, Krupnick AS, Gelman AE, Kreisel D. Lymphatic drainage from bronchus-associated lymphoid tissue in tolerant lung allografts promotes peripheral tolerance. J Clin Invest 2021; 130:6718-6727. [PMID: 33196461 DOI: 10.1172/jci136057] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Tertiary lymphoid organs are aggregates of immune and stromal cells including high endothelial venules and lymphatic vessels that resemble secondary lymphoid organs and can be induced at nonlymphoid sites during inflammation. The function of lymphatic vessels within tertiary lymphoid organs remains poorly understood. During lung transplant tolerance, Foxp3+ cells accumulate in tertiary lymphoid organs that are induced within the pulmonary grafts and are critical for the local downregulation of alloimmune responses. Here, we showed that tolerant lung allografts could induce and maintain tolerance of heterotopic donor-matched hearts through pathways that were dependent on the continued presence of the transplanted lung. Using lung retransplantation, we showed that Foxp3+ cells egressed from tolerant lung allografts via lymphatics and were recruited into donor-matched heart allografts. Indeed, survival of the heart allografts was dependent on lymphatic drainage from the tolerant lung allograft to the periphery. Thus, our work indicates that cellular trafficking from tertiary lymphoid organs regulates immune responses in the periphery. We propose that these findings have important implications for a variety of disease processes that are associated with the induction of tertiary lymphoid organs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jon H Ritter
- Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | | | | | - Ankit Bharat
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | | | - Andrew E Gelman
- Departments of Surgery.,Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Daniel Kreisel
- Departments of Surgery.,Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
16
|
Abstract
The majority of cells comprising the inflammatory infiltrates in kidney allografts undergoing acute and/or chronic rejection are typically T cells and monocyte/macrophages with B cells, plasma cells, and eosinophils accounting for <5%. In a significant minority of biopsies, B lineage cells (B cells and/or plasma cells) may be found more abundantly. Although plasma cell infiltrates tend to be more diffuse, B cells tend to aggregate into nodules that may mature into tertiary lymphoid organs. Given the ability to target B cells with anti-CD20 monoclonal antibodies and plasma cells with proteasome inhibitors and anti-CD38 monoclonal antibodies, it is increasingly important to determine the significance of such infiltrates. Both cell types are potential effectors of rejection, but both also have a tolerizing potential. B cell infiltrates have been associated with steroid resistance and reduced graft survival in some studies but not in others, and their presence should not prompt automatic depletional therapy. Plasma cell-rich infiltrates tend to occur later, may be associated with cell-mediated and/or antibody-mediated rejection, and portend an adverse outcome. Viral infection and malignancy must be ruled out. Randomized controlled trials are needed to determine the appropriateness of specific therapy when B cells and/or plasma cells are found. No strong therapeutic recommendations can be made at this time.
Collapse
|
17
|
Dudreuilh C, Basu S, Scottà C, Dorling A, Lombardi G. Potential Application of T-Follicular Regulatory Cell Therapy in Transplantation. Front Immunol 2021; 11:612848. [PMID: 33603742 PMCID: PMC7884443 DOI: 10.3389/fimmu.2020.612848] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
Regulatory T cells (Tregs) constitute a small proportion of circulating CD4+ T cells that function to maintain homeostasis and prevent autoimmunity. In light of their powerful immunosuppressive and tolerance-promoting properties, Tregs have become an interesting potential candidate for therapeutic use in conditions such as solid organ transplant or to treat autoimmune and inflammatory conditions. Clinical studies have demonstrated the safety of polyclonally expanded Tregs in graft-versus-host disease, type 1 diabetes, and more recently in renal and liver transplantation. However, Tregs are heterogenous. Recent insights indicate that only a small proportion of Tregs, called T follicular regulatory cells (Tfr) regulate interactions between B cells and T follicular helper (Tfh) cells within the germinal center. Tfr have been mainly described in mouse models due to the challenges of sampling secondary lymphoid organs in humans. However, emerging human studies, characterize Tfr as being CD4+CD25+FOXP3+CXCR5+ cells with different levels of PD-1 and ICOS expression depending on their localization, in the blood or the germinal center. The exact role they play in transplantation remains to be elucidated. However, given the potential ability of these cells to modulate antibody responses to allo-antigens, there is great interest in exploring translational applications in situations where B cell responses need to be regulated. Here, we review the current knowledge of Tfr and the role they play focusing on human diseases and transplantation. We also discuss the potential future applications of Tfr therapy in transplantation and examine the evidence for a role of Tfr in antibody production, acute and chronic rejection and tertiary lymphoid organs. Furthermore, the potential impact of immunosuppression on Tfr will be explored. Based on preclinical research, we will analyse the rationale of Tfr therapy in solid organ transplantation and summarize the different challenges to be overcome before Tfr therapy can be implemented into clinical practice.
Collapse
Affiliation(s)
- Caroline Dudreuilh
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Sumoyee Basu
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Cristiano Scottà
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Anthony Dorling
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Giovanna Lombardi
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| |
Collapse
|
18
|
Bucher K, Rodríguez-Bocanegra E, Dauletbekov D, Fischer MD. Immune responses to retinal gene therapy using adeno-associated viral vectors - Implications for treatment success and safety. Prog Retin Eye Res 2020; 83:100915. [PMID: 33069860 DOI: 10.1016/j.preteyeres.2020.100915] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
Abstract
Recombinant adeno-associated virus (AAV) is the leading vector for gene therapy in the retina. As non-pathogenic, non-integrating, replication deficient vector, the recombinant virus efficiently transduces all key retinal cell populations. Successful testing of AAV vectors in clinical trials of inherited retinal diseases led to the recent approval of voretigene neparvovec (Luxturna) for the treatment of RPE65 mutation-associated retinal dystrophies. However, studies applying AAV-mediated retinal gene therapy independently reported intraocular inflammation and/or loss of efficacy after initial functional improvements. Both observations might be explained by targeted removal of transduced cells via anti-viral defence mechanisms. AAV has been shown to activate innate pattern recognition receptors (PRRs) such as toll-like receptor (TLR)-2 and TLR-9 resulting in the release of inflammatory cytokines and type I interferons. The vector can also induce capsid-specific and transgene-specific T cell responses and neutralizing anti-AAV antibodies which both limit the therapeutic effect. However, the target organ of retinal gene therapy, the eye, is known as an immune-privileged site. It is characterized by suppression of inflammation and promotion of immune tolerance which might prevent AAV-induced immune responses. This review evaluates AAV-related immune responses, toxicity and inflammation in studies of retinal gene therapy, identifies influencing variables of these responses and discusses potential strategies to modulate immune reactions to AAV vectors to increase the safety and efficacy of ocular gene therapy.
Collapse
Affiliation(s)
- Kirsten Bucher
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Eduardo Rodríguez-Bocanegra
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Daniyar Dauletbekov
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
19
|
Lim JH, Han MH, Kim YJ, Jeon Y, Jung HY, Choi JY, Cho JH, Kim CD, Kim YL, Lee H, Kim DK, Moon KC, Park SH. Novel histopathologic predictors for renal outcomes in crescentic glomerulonephritis. PLoS One 2020; 15:e0236051. [PMID: 32716952 PMCID: PMC7384637 DOI: 10.1371/journal.pone.0236051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/27/2020] [Indexed: 01/11/2023] Open
Abstract
Introduction Crescentic glomerulonephritis (CrGN) is a histologic feature of severe glomerular injury, clinically characterized by a rapid decline of renal function when not treated in a timely fashion. Factors associated with CrGN prognosis have not been thoroughly investigated. This study investigated the prognostic predictors of renal outcomes associated with CrGN, such as the histopathologic classification of anti-neutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis, arteriosclerosis, and tertiary lymphoid organ (TLO) formation. Methods A total of 114 patients diagnosed with CrGN between 2010 and 2018 at two university-based hospitals has been retrospectively analyzed. Relationships between potential predictors and renal outcomes were analyzed using Cox proportional hazards model and linear regression analysis. Results The mean age was 61.0 ± 15.3 years, and 49.1% were male. Among them, 92 (80.7%) and 11 (9.6%) patients were positive for ANCA and for anti-glomerular basement membrane antibody, respectively. During the median follow-up of 458.0 days, 55 patients (48.2%) had advanced to end-stage renal disease (ESRD). Cox proportional hazards analysis revealed that patients under the mixed and sclerotic classes had worse renal survival compared to those in the focal class (mixed: hazard ratio [HR], 3.74; 95% confidence interval [CI], 1.18 to 11.82; P = 0.025; sclerotic: HR, 4.84; 95% CI, 1.44 to 16.32; P = 0.011). Severe arteriosclerosis was also associated with poor renal survival (HR, 2.44; 95% CI, 1.04 to 5.77; P = 0.042). TLOs were observed in 41 patients (36.0%). Moreover, TLO formation was also a prognostic factor for ESRD (HR, 1.82; 95% CI, 1.03 to 3.21; P = 0.040). In the multivariate linear regression analysis, age and sclerotic class were independent predictors for the change in estimated glomerular filtration rate during 1 year after biopsy. Conclusions Specific histopathologic findings, histopathologic classification, severity of arteriosclerosis, and TLO formation provide helpful information in predicting renal outcomes associated with CrGN.
Collapse
Affiliation(s)
- Jeong-Hoon Lim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Man-Hoon Han
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Yong-Jin Kim
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Yena Jeon
- Department of Statistics, Kyungpook National University, Daegu, South Korea
| | - Hee-Yeon Jung
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Ji-Young Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Jang-Hee Cho
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Chan-Duck Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Yong-Lim Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Sun-Hee Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
- * E-mail:
| |
Collapse
|
20
|
Tanaka S, Gauthier JM, Fuchs A, Li W, Tong AY, Harrison MS, Higashikubo R, Terada Y, Hachem RR, Ruiz-Perez D, Ritter JH, Cella M, Colonna M, Turnbull IR, Krupnick AS, Gelman AE, Kreisel D. IL-22 is required for the induction of bronchus-associated lymphoid tissue in tolerant lung allografts. Am J Transplant 2020; 20:1251-1261. [PMID: 31721409 PMCID: PMC7183893 DOI: 10.1111/ajt.15701] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/28/2019] [Accepted: 11/11/2019] [Indexed: 01/25/2023]
Abstract
Long-term survival after lung transplantation remains profoundly limited by graft rejection. Recent work has shown that bronchus-associated lymphoid tissue (BALT), characterized by the development of peripheral nodal addressin (PNAd)-expressing high endothelial venules and enriched in B and Foxp3+ T cells, is important for the maintenance of allograft tolerance. Mechanisms underlying BALT induction in tolerant pulmonary allografts, however, remain poorly understood. Here, we show that the development of PNAd-expressing high endothelial venules within intragraft lymphoid follicles and the recruitment of B cells, but not Foxp3+ cells depends on IL-22. We identify graft-infiltrating gamma-delta (γδ) T cells and Type 3 innate lymphoid cells (ILC3s) as important producers of IL-22. Reconstitution of IL-22 at late time points through retransplantation into wildtype hosts mediates B cell recruitment into lymphoid follicles within the allograft, resulting in a significant increase in their size, but does not induce PNAd expression. Our work has identified cellular and molecular requirements for the induction of BALT in pulmonary allografts during tolerance induction and may provide a platform for the development of new therapies for lung transplant patients.
Collapse
Affiliation(s)
- Satona Tanaka
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
| | - Jason M. Gauthier
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
| | - Anja Fuchs
- Section of Acute and Critical Care Surgery, Department of Surgery, Washington University, Saint Louis, Missouri
| | - Wenjun Li
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
| | - Alice Y. Tong
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
| | - M. Shea Harrison
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
| | - Ryuji Higashikubo
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
| | - Yuriko Terada
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
| | - Ramsey R. Hachem
- Department of Medicine, Washington University, Saint Louis, Missouri
| | - Daniel Ruiz-Perez
- Department of Pathology & Immunology, Washington University, Saint Louis, Missouri
| | - Jon H. Ritter
- Division of Experimental Surgery, La Paz University Hospital, Madrid, Spain
| | - Marina Cella
- Division of Experimental Surgery, La Paz University Hospital, Madrid, Spain
| | - Marco Colonna
- Division of Experimental Surgery, La Paz University Hospital, Madrid, Spain
| | - Isaiah R. Turnbull
- Section of Acute and Critical Care Surgery, Department of Surgery, Washington University, Saint Louis, Missouri
| | - Alexander S. Krupnick
- Division of Thoracic Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia
| | - Andrew E. Gelman
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
- Division of Experimental Surgery, La Paz University Hospital, Madrid, Spain
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
- Division of Experimental Surgery, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
21
|
Yamakoshi Y, Tanaka H, Sakimura C, Deguchi S, Mori T, Tamura T, Toyokawa T, Muguruma K, Hirakawa K, Ohira M. Immunological potential of tertiary lymphoid structures surrounding the primary tumor in gastric cancer. Int J Oncol 2020; 57:171-182. [PMID: 32319601 PMCID: PMC7252463 DOI: 10.3892/ijo.2020.5042] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/05/2020] [Indexed: 12/26/2022] Open
Abstract
Tertiary lymphoid structures (TLSs), which consist of B cells, T cells, follicular dendritic cells and high endothelial venules, have recently been found to be associated with effective antitumor immune responses in patients with cancer. Tumor-infiltrating T cells and B cells have each been demonstrated to be associated with survival in patients with cancer. We hypothesized that TLSs, an assembly of immune cells, may be important for the initiation and/or maintenance of T cell and B cell responses against tumors. The aim of the present study was to examine the cellular mechanism of B cells in TLSs within gastric cancer and to understand the antitumor immune response of TLSs. Each B cell subset in a tumor was examined using flow cytometry to evaluate B cell differentiation and the functional status of B cells. In addition, B cell clonality was investigated by analyzing the B cell antigen receptor gene using PCR, and the function and formation/maintenance of TLSs were evaluated using reverse transcription-quantitative PCR. Tumor-infiltrating B cells were more differentiated compared with that in distant non-tumor tissues and tumor-draining lymph nodes. The PCR results revealed specific BCR gene expression in tumor-infiltrating B cells. The expression of co-stimulatory factors, CD80 and CD86, was observed, in addition to the constantly expressed major histocompatibility complex molecules (HLA-ABC and HLA-DR). CD70 was expressed in addition to CD27 in both CD20+ B cells and CD8+ T cells, indicating that these factors are activated together through their interaction. The mRNA expression levels of CCL21, CXCL13, PD-L1, perforin and granzyme B in TLSs was significantly higher compared with that in non-TLSs. The majority of tumor-infiltrating B cells in gastric cancer exist in the form of TLSs around the tumor and have been antigen-sensitized and differentiated, and proliferated in TLSs but not in the lymph nodes. In addition, B cells in TLSs might primarily function as antigen-presenting cells and be associated with the induction of cytotoxic T cells.
Collapse
Affiliation(s)
- Yoshihito Yamakoshi
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno‑ku, Osaka 545‑8585, Japan
| | - Hiroaki Tanaka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno‑ku, Osaka 545‑8585, Japan
| | - Chie Sakimura
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno‑ku, Osaka 545‑8585, Japan
| | - Sota Deguchi
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno‑ku, Osaka 545‑8585, Japan
| | - Takuya Mori
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno‑ku, Osaka 545‑8585, Japan
| | - Tatsuro Tamura
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno‑ku, Osaka 545‑8585, Japan
| | - Takahiro Toyokawa
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno‑ku, Osaka 545‑8585, Japan
| | - Kazuya Muguruma
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno‑ku, Osaka 545‑8585, Japan
| | - Kosei Hirakawa
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno‑ku, Osaka 545‑8585, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno‑ku, Osaka 545‑8585, Japan
| |
Collapse
|
22
|
Abstract
Tertiary lymphoid organs (TLOs), also known as inducible lymphoid organs, tertiary lymphoid structures, tertiary lymphoid tissues, or ectopic lymphoid organs are accumulations of cells in chronic inflammation that have been observed in most tissues in autoimmunity, infection, and cancer in mouse and man. They share many properties with secondary lymphoid organs (SLOs), particularly lymph nodes, with regard to cellular composition, function, and regulation. TLOs include T and B cells, dendritic cells, follicular dendritic cells, and many other stromal cells, and high endothelial venules (HEVs) and lymphatic vessels. They serve as sites of antigen presentation and tolerance induction; they are harmful in autoimmunity and can be both harmful and beneficial in cancer. SLO induction in ontogeny is mediated by interactions of several cell types, including CD4+ CD3- lymphoid tissue inducer (LTi) RORγt+ cells that express LTαβ and interact with mesenchymal lymphoid tissue organizer (LTo) FAP+ cells in the presence of lymphatic and blood vessels. A variety of inducer cells initiate TLOs, including bona fide LTi cells, T cells, B cells, and NK cells. The mesenchymal organizer cells are less well characterized but can include FAP+ cells. Current challenges include identification of methods to inhibit TLOs in autoimmunity without affecting SLOs, and enhancement of TLOs for defense against tumors.
Collapse
Affiliation(s)
- Nancy H Ruddle
- Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St., New Haven, CT, 06510, USA.
| |
Collapse
|
23
|
Abstract
The adaptive immune response is a 500-million-year-old (the "Big Bang" of Immunology) collective set of rearranged and/or selected receptors capable of recognizing soluble and cell surface molecules or shape (B cells, antibody), endogenous and extracellular peptides presented by Major Histocompatibility (MHC) molecules including Class I and Class II (conventional αβ T cells), lipid in the context of MHC-like molecules of the CD1 family (NKT cells), metabolites and B7 family molecules/butyrophilins with stress factors (γδT cells), and stress ligands and absence of MHC molecules (natural killer, NK cells). What makes tumor immunogenic is the recruitment of initially innate immune cells to sites of stress or tissue damage with release of Damage-Associated Molecular Pattern (DAMP) molecules. Subsequent maintenance of a chronic inflammatory state, representing a balance between mature, normalized blood vessels, innate and adaptive immune cells and the tumor provides a complex tumor microenvironment serving as the backdrop for Darwinian selection, tumor elimination, tumor equilibrium, and ultimately tumor escape. Effective immunotherapies are still limited, given the complexities of this highly evolved and selected tumor microenvironment. Cytokine therapies and Immune Checkpoint Blockade (ICB) enable immune effector function and are largely dependent on the shape and size of the B and T cell repertoires (the "adaptome"), now accessible by Next-Generation Sequencing (NGS) and dimer-avoidance multiplexed PCR. How immune effectors access the tumor (infiltrated, immune sequestered, and immune desserts), egress and are organized within the tumor are of contemporary interest and substantial investigation.
Collapse
|
24
|
Jeucken KCM, Koning JJ, Mebius RE, Tas SW. The Role of Endothelial Cells and TNF-Receptor Superfamily Members in Lymphoid Organogenesis and Function During Health and Inflammation. Front Immunol 2019; 10:2700. [PMID: 31824495 PMCID: PMC6879661 DOI: 10.3389/fimmu.2019.02700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/04/2019] [Indexed: 01/02/2023] Open
Abstract
Lymph nodes (LNs) are crucial for the orchestration of immune responses. LN reactions depend on interactions between incoming and local immune cells, and stromal cells. To mediate these cellular interactions an organized vascular network within the LN exists. In general, the LN vasculature can be divided into two components: blood vessels, which include the specialized high endothelial venules that recruit lymphocytes from the bloodstream, and lymphatic vessels. Signaling via TNF receptor (R) superfamily (SF) members has been implicated as crucial for the development and function of LNs and the LN vasculature. In recent years the role of cell-specific signaling of TNFRSF members in different endothelial cell (EC) subsets and their roles in development and maintenance of lymphoid organs has been elucidated. Here, we discuss recent insights into EC-specific TNFRSF member signaling and highlight its importance in different EC subsets in LN organogenesis and function during health, and in lymphocyte activation and tertiary lymphoid structure formation during inflammation.
Collapse
Affiliation(s)
- Kim C M Jeucken
- Amsterdam Rheumatology and Immunology Center (ARC), Department of Rheumatology and Clinical Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sander W Tas
- Amsterdam Rheumatology and Immunology Center (ARC), Department of Rheumatology and Clinical Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
25
|
Gonzalez Badillo FE, Zisi Tegou F, Abreu MM, Masina R, Sha D, Najjar M, Wright SH, Bayer AL, Korpos É, Pugliese A, Molano RD, Tomei AA. CCL21 Expression in β-Cells Induces Antigen-Expressing Stromal Cell Networks in the Pancreas and Prevents Autoimmune Diabetes in Mice. Diabetes 2019; 68:1990-2003. [PMID: 31371518 PMCID: PMC6754241 DOI: 10.2337/db19-0239] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/21/2019] [Indexed: 12/31/2022]
Abstract
Tumors induce tolerance toward their antigens by producing the chemokine CCL21, leading to the formation of tertiary lymphoid organs (TLOs). Ins2-CCL21 transgenic, nonobese diabetic (NOD) mice express CCL21 in pancreatic β-cells and do not develop autoimmune diabetes. We investigated by which mechanisms CCL21 expression prevented diabetes. Ins2-CCL21 mice develop TLOs by 4 weeks of age, consisting of naive CD4+ T cells compartmentalized within networks of CD45-gp38+CD31- fibroblastic reticular cell (FRC)-like cells. Importantly, 12-week-old Ins2-CCL21 TLOs contained FRC-like cells with higher contractility, regulatory, and anti-inflammatory properties and enhanced expression of β-cell autoantigens compared with nontransgenic NOD TLOs found in inflamed islets. Consistently, transgenic mice harbored fewer autoreactive T cells and a higher proportion of regulatory T cells in the islets. Using adoptive transfer and islet transplantation models, we demonstrate that TLO formation in Ins2-CCL21 transgenic islets is critical for the regulation of autoimmunity, and although the effect is systemic, the induction is mediated locally likely by lymphocyte trafficking through TLOs. Overall, our findings suggest that CCL21 promotes TLOs that differ from inflammatory TLOs found in type 1 diabetic islets in that they resemble lymph nodes, contain FRC-like cells expressing β-cell autoantigens, and are able to induce systemic and antigen-specific tolerance leading to diabetes prevention.
Collapse
Affiliation(s)
- Freddy E Gonzalez Badillo
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Biomedical Engineering, University of Miami, Miami, FL
| | - Flavia Zisi Tegou
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Biomedical Engineering, University of Miami, Miami, FL
| | - Maria M Abreu
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Riccardo Masina
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Divya Sha
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Mejdi Najjar
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Shane H Wright
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Allison L Bayer
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Éva Korpos
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion, Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Alberto Pugliese
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - R Damaris Molano
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Alice A Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Biomedical Engineering, University of Miami, Miami, FL
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
26
|
Danger R, Chesneau M, Delbos F, Le Bot S, Kerleau C, Chenouard A, Ville S, Degauque N, Conchon S, Cesbron A, Giral M, Brouard S. CXCR5 +PD1 +ICOS + Circulating T Follicular Helpers Are Associated With de novo Donor-Specific Antibodies After Renal Transplantation. Front Immunol 2019; 10:2071. [PMID: 31552030 PMCID: PMC6746839 DOI: 10.3389/fimmu.2019.02071] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
Donor-specific anti-HLA antibodies (DSAs) are a major risk factor associated with renal allograft outcomes. As a trigger of B cell antibody production, T follicular helper cells (Tfhs) promote DSA appearance. Herein, we evaluated whether circulating Tfhs (cTfhs) are associated with the genesis of antibody-mediated rejection. We measured cTfh levels on the day of transplantation and 1 year after transplantation in blood from a prospective cohort of 237 renal transplantation patients without DSA during the first year post-transplantation. Total cTfhs were characterized as CD4+CD45RA−CXCR5+, and the three following subsets of activated cTfh were analyzed: CXCR5+PD1+, CXCR5+PD1+ICOS+, an CXCR5+PD1+CXCR3−. Immunizing events (previous blood transfusion and/or pregnancy) and the presence of class II anti-HLA antibodies were associated with increased frequencies of activated CXCR5+PD1+, CXCR5+PD1+ICOS+, and CXCR5+PD1+CXCR3− cTfh subsets. In addition, ATG-depleting induction and calcineurin inhibitor treatments were associated with a relative increase of activated cTfh subsets frequencies at 1 year post-transplantation. In multivariate survival analysis, we reported that a decrease in activated CXCR5+PD1+ICOS+ at 1 year after transplantation in the blood of DSA-free patients was significantly associated with the risk of developing de novo DSA after the first year (p = 0.018, HR = 0.39), independently of HLA mismatches (p = 0.003, HR = 3.79). These results highlight the importance of monitoring activated Tfhs in patients early after transplantation and show that current treatments cannot provide early, efficient prevention of Tfh activation and migration. These findings indicate the need to develop innovative treatments to specifically target Tfhs to prevent DSA appearance in renal transplantation.
Collapse
Affiliation(s)
- Richard Danger
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Mélanie Chesneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Florent Delbos
- Laboratoire Histocompatibilité et Immunogénétique - Etablissement Français du sang, Nantes, France
| | - Sabine Le Bot
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Clarisse Kerleau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Alexis Chenouard
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Simon Ville
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Nicolas Degauque
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Sophie Conchon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Anne Cesbron
- Laboratoire Histocompatibilité et Immunogénétique - Etablissement Français du sang, Nantes, France
| | - Magali Giral
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), Labex IGO, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), Labex IGO, Nantes, France
| |
Collapse
|
27
|
Heidt S, Vergunst M, Anholts JDH, Swings GMJS, Gielis EMJ, Groeneweg KE, Witkamp MJ, de Fijter JW, Reinders MEJ, Roelen DL, Eikmans M, Claas FHJ. Presence of intragraft B cells during acute renal allograft rejection is accompanied by changes in peripheral blood B cell subsets. Clin Exp Immunol 2019; 196:403-414. [PMID: 30712266 PMCID: PMC6514375 DOI: 10.1111/cei.13269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2019] [Indexed: 01/08/2023] Open
Abstract
B cells have various functions, besides being plasma cell precursors. We determined the presence of intragraft B cells at time of acute rejection (AR) and looked for correlates of B cell involvement in peripheral blood. Renal biopsies at time of AR or stable graft function were analysed for the presence of B cells and B cell‐related gene expression, as well as C4d staining. Peripheral blood B cell subset distribution was analysed at various time‐points in patients with AR and controls, alongside serum human leucocyte antigen (HLA) antibodies. AR was accompanied by intragraft CD20+ B cells, as well as elevated CD20 (MS4A1) and CD19 gene expression compared to controls. B cell infiltrates were proportional to T cells, and accompanied by the chemokine pair C‐X‐C motif chemokine ligand 13 (CXCL13)–C‐X‐C motif chemokine receptor 5 (CXCR5) and B cell activating factor (BAFF). Peripheral blood memory B cells were decreased and naive B cells increased at AR, in contrast to controls. While 22% of patients with AR and 5% of controls showed de‐novo donor‐specific antibodies (DSA), all biopsies were C4d‐negative. These results suggest a role for B cells in AR by infiltrating the graft alongside T cells. We hypothesize that the shift in peripheral blood B cell composition is related to the graft infiltration at time of AR.
Collapse
Affiliation(s)
- S Heidt
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - M Vergunst
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - J D H Anholts
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - G M J S Swings
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - E M J Gielis
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - K E Groeneweg
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
| | - M J Witkamp
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - J W de Fijter
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
| | - M E J Reinders
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
| | - D L Roelen
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - M Eikmans
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - F H J Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Organ transplantation is a life-saving procedure and the only option for patients with end-organ failure. Immune therapeutics have been key to the success of organ transplantation. However, immune therapeutics are still unable to eliminate graft rejection and their toxicity has been implicated in poorer long-term transplant outcomes. Targeted nanodelivery has the potential to enhance not only the therapeutic index but also the bioavailability of the immune therapeutics. One of the key sites of immune therapeutics delivery is lymph node where the priming of immune cells occur. The focus of this review is on nanomedicine research to develop the targeted delivery of immune therapeutics to lymph nodes for controlling immune activation. RECENT FINDINGS As nanomedicine creates its niche in clinical care, it provides novel immunotherapy platforms for transplant recipients. Draining lymph nodes are the primary loci of immune activation and represent a formidable site for delivery of wide variety of immune therapeutics. There have been relentless efforts to improve the properties of nanomedicines, to have in-depth knowledge of antigen and drug loading, and, finally, to explore various routes of passive and active targeted delivery to lymph nodes. SUMMARY The application of nanotechnology principles in the delivery of immune therapeutics to the lymph node has created enormous excitement as a paradigm shifting approach that enables targeted delivery of a gamut of molecules to achieve a desired immune response. Therefore, innovative strategies that improve their efficacy while reducing their toxicity are among the highest unmet needs in transplantation.
Collapse
|
29
|
Liu M, Sun Q, Wang J, Wei F, Yang L, Ren X. A new perspective: Exploring future therapeutic strategies for cancer by understanding the dual role of B lymphocytes in tumor immunity. Int J Cancer 2018; 144:2909-2917. [PMID: 30183084 DOI: 10.1002/ijc.31850] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 12/16/2022]
Abstract
Our previous understanding of the role of B lymphocytes in tumor immunity is its antitumor effects. However, further evidence indicates B lymphocytes can also promote tumorigenesis by modulating immune responses. Therefore, the increasingly complex role of B lymphocytes in tumor immunity may become an important factor in tumor immunotherapy. In this review, we describe the development of B cells in tumor microenvironments. We then focus on the most controversial issues of the biological functions of B lymphocytes. Finally, we nominate B cells as therapeutic targets, which should open broad perspectives for the development of their clinical applications.
Collapse
Affiliation(s)
- Min Liu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
30
|
Affiliation(s)
- Tae Jin Kim
- Division of Immunobiology, Sungkyunkwan University School of Medicine, Suwon, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
31
|
Tertiary Lymphoid Structures Among the World of Noncanonical Ectopic Lymphoid Organizations. Methods Mol Biol 2018; 1845:1-15. [PMID: 30141004 DOI: 10.1007/978-1-4939-8709-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tertiary lymphoid structures (TLOs), also known as ectopic lymphoid structures, are associated with chronic infections and inflammatory diseases. Despite their association with pathology, these structures are actually a normal, albeit transient, component of the immune system and facilitate local immune responses that are meant to mitigate inflammation and resolve infection. Many of the mechanisms controlling the formation and function of tertiary lymphoid structures have been identified, in part by experimentally triggering their formation using defined stimuli under controlled conditions. Here, we introduce the experimental and pathological conditions in which tertiary lymphoid tissues are formed, describe the mechanisms linked to their formation, and discuss their functions in the context of both infection and inflammation.
Collapse
|
32
|
Alsughayyir J, Pettigrew GJ, Motallebzadeh R. Spoiling for a Fight: B Lymphocytes As Initiator and Effector Populations within Tertiary Lymphoid Organs in Autoimmunity and Transplantation. Front Immunol 2017; 8:1639. [PMID: 29218052 PMCID: PMC5703719 DOI: 10.3389/fimmu.2017.01639] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022] Open
Abstract
Tertiary lymphoid organs (TLOs) develop at ectopic sites within chronically inflamed tissues, such as in autoimmunity and rejecting organ allografts. TLOs differ structurally from canonical secondary lymphoid organs (SLOs), in that they lack a mantle zone and are not encapsulated, suggesting that they may provide unique immune function. A notable feature of TLOs is the frequent presence of structures typical of germinal centers (GCs). However, little is known about the role of such GCs, and in particular, it is not clear if the B cell response within is autonomous, or whether it synergizes with concurrent responses in SLOs. This review will discuss ectopic lymphoneogenesis and the role of the B cell in TLO formation and subsequent effector output in the context of autoimmunity and transplantation, with particular focus on the contribution of ectopic GCs to affinity maturation in humoral immune responses and to the potential breakdown of self-tolerance and development of humoral autoimmunity.
Collapse
Affiliation(s)
- Jawaher Alsughayyir
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gavin J Pettigrew
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Reza Motallebzadeh
- Division of Surgery and Interventional Science, University College London, London, United Kingdom.,Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Nephrology, Urology and Transplantation, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
33
|
Khairutdinov VR, Mikhailichenko AF, Belousova IE, Kuligina ES, Samtsov AV, Imyanitov EN. The role of intradermal proliferation of T-cells in the pathogenesis of psoriasis. An Bras Dermatol 2017; 92:41-44. [PMID: 28225955 PMCID: PMC5312177 DOI: 10.1590/abd1806-4841.20175765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 08/01/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Psoriasis is a common immune-mediated chronic inflammatory disease of the
skin and joints, affecting 1-3% of the population. It is generally accepted
that the pathogenesis of psoriasis involves accumulation of effector T-cells
within lymph nodes and their subsequent migration into the skin through the
blood system. Here we provide evidence that psoriatic plaque itself may
serve as a source of inflammatory T-cells. OBJECTIVE We examined the intradermal proliferation of T-cells and the number of
effector/memory (CD45RO+) T-cells in the skin of psoriatic patients at
different periods of the disease. METHODS Skin samples were obtained from 41 patients with progressive psoriatic
lesions; 18 of these patients also donated skin specimens during the
remission of the disease. The control group consisted of 16 healthy
subjects. Ki-67 immunohistochemical staining was applied to detect
proliferating cells, CD3ε served as a T-cell marker, and CD45RA and
CD45RO antibodies were utilized to discriminate between naive and
effector/memory T-cells, respectively. RESULTS Progressive psoriatic lesions demonstrated Ki67 staining both in
keratinocytes and in the CD3ε+ cells of dermal infiltrate. Median
count of CD45RO+ cells per microscopic field was 15 in healthy controls, 59
in patients in remission and 208 in progressive psoriatic plaques. The
observed differences demonstrated high level of statistical
significance. STUDY LIMITATIONS Limited number of analyzed patients. CONCLUSION Progressive phase of psoriasis is characterized by intradermal proliferation
of T-cells. Spots of regressed psoriatic lesions contain high number of
CD45RO+ cells, which are likely to render an immunological memory.
Collapse
Affiliation(s)
| | | | | | | | | | - Evgeny N Imyanitov
- N.N Petrov Institute of Oncology - St.-Petersburg, Russia.,Saint Petersburg State Pediatric Medical University - St.-Petersburg, Russia
| |
Collapse
|
34
|
Miyamoto E, Motoyama H, Sato M, Aoyama A, Menju T, Shikuma K, Sowa T, Yoshizawa A, Saito M, Takahagi A, Tanaka S, Takahashi M, Ohata K, Kondo T, Hijiya K, Chen-Yoshikawa TF, Date H. Association of Local Intrapulmonary Production of Antibodies Specific to Donor Major Histocompatibility Complex Class I With the Progression of Chronic Rejection of Lung Allografts. Transplantation 2017; 101:e156-e165. [PMID: 28207638 DOI: 10.1097/tp.0000000000001665] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Antibody-mediated rejection may lead to chronic lung allograft dysfunction, but antibody-mediated rejection may develop in the absence of detectable donor-specific antibody (DSA) in recipient serum. This study investigated whether humoral immune responses develop not only systemically but locally within rejected lung allografts, resulting in local production of DSA. METHODS Lewis rats received orthotopic left lung transplantation from Lewis (syngeneic control) or Brown-Norway (major histocompatibility complex-mismatched allogeneic) donor rats. Rats that underwent allogeneic lung transplantation were subsequently administered cyclosporine until day 14 (short immunosuppression) or day 35 (long immunosuppression). The lung grafts and spleens of recipient animals were tissue cultured for 4 days, and the titer of antibody against donor major histocompatibility complex molecules was assayed by flow cytometry. Explanted lung grafts were also evaluated pathologically. RESULTS By day 98, DSA titers in supernatants of lung graft (P = 0.0074) and spleen (P = 0.0167) cultures, but not serum, from the short immunosuppression group were significantly higher than titers in syngeneic controls. Cultures and sera from the long immunosuppression group showed no production of DSA. Microscopically, the lung grafts from the short immunosuppression group showed severe bronchiole obliteration and parenchymal fibrosis, along with lymphoid aggregates containing T and B cells, accompanying plasma cells. These findings suggestive of local humoral immune response were not observed by days 28 and 63. CONCLUSIONS DSA can be locally produced in chronically rejected lung allografts, along with intragraft immunocompetent cells. Clinical testing of DSA in serum samples alone may underestimate lung allograft dysfunction.
Collapse
Affiliation(s)
- Ei Miyamoto
- 1 Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan. 2 Department of Thoracic Surgery, The University of Tokyo Hospital, Tokyo, Japan. 3 Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
BACKGROUND Deficiency of autologous skin for reconstruction of severe wounds is a major problem in plastic surgery. Autologous substitutes can provide additional coverage, but due to the duration of production, treatment is significantly delayed. The allogeneic approach offers a potential of having an off-the-shelf solution for the immediate application. METHODS In this study, we assess the engraftment and immunogenicity of allogeneic bilayered bioengineered skin prepared by a self-assembly method. Bioengineered skin has the potential immunological advantage of lacking passenger leukocytes including antigen-presenting cells. The skin constructs were transplanted across major histocompatibility complex (MHC) barriers in a porcine animal model. Animals received a second grafting of the same skin construct 7 weeks after the first set of grafts together with MHC-matched constructs to assess for clinical sensitization. RESULTS All alloconstructs successfully engrafted with histologic evidence of neovascularization by day 4. Complete cellular rejection and tissue loss occurred by day 8 for most grafts. After the second application, accelerated rejection (<4 days) took place with the development of swine MHC-specific cytotoxic alloantibody. CONCLUSIONS These data demonstrate preclinically that self-assembled allogeneic constructs engraft and reject similar to allogeneic skin despite the absence of professional donor antigen-presenting cells.
Collapse
|
36
|
Abstract
Crosstalk between B and T cells in transplantation is increasingly recognized as being important in the alloimmune response. T cell activation of B cells occurs by a 3-stage pathway, culminating with costimulation signals. We review the distinct T cell subtypes required for B-cell activation and discuss the formation of the germinal center (GC) after transplantation, with particular reference to the repopulation of the GC after depletional induction, and the subsequent effect of immunosuppressive manipulation of T cell-B cell interactions. In addition, ectopic GCs are seen in transplantation, but their role is not fully understood. Therapeutic options to target T cell-B cell interactions are of considerable interest, both as immunosuppressive tools, and to aid in the further understanding of these important alloimmune mechanisms.
Collapse
|
37
|
Khiew SH, Yang J, Young JS, Chen J, Wang Q, Yin D, Vu V, Miller ML, Sciammas R, Alegre ML, Chong AS. CTLA4-Ig in combination with FTY720 promotes allograft survival in sensitized recipients. JCI Insight 2017; 2:92033. [PMID: 28469082 PMCID: PMC5414557 DOI: 10.1172/jci.insight.92033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/21/2017] [Indexed: 12/30/2022] Open
Abstract
Despite recent evidence of improved graft outcomes and safety, the high incidence of early acute cellular rejection with belatacept, a high-affinity CTLA4-Ig, has limited its use in clinical transplantation. Here we define how the incomplete control of endogenous donor-reactive memory T cells results in belatacept-resistant rejection in an experimental model of BALB/c.2W-OVA donor heart transplantation into C57BL/6 recipients presensitized to donor splenocytes. These sensitized mice harbored modestly elevated numbers of endogenous donor-specific memory T cells and alloantibodies compared with naive recipients. Continuous CTLA4-Ig treatment was unexpectedly efficacious at inhibiting endogenous graft-reactive T cell expansion but was unable to inhibit late CD4+ and CD8+ T cell infiltration into the allografts, and rejection was observed in 50% of recipients by day 35 after transplantation. When CTLA4-Ig was combined with the sphingosine 1-phosphate receptor-1 (S1PR1) functional antagonist FTY720, alloantibody production was inhibited and donor-specific IFN-γ-producing T cells were reduced to levels approaching nonsensitized tolerant recipients. Late T cell recruitment into the graft was also restrained, and graft survival improved with this combination therapy. These observations suggest that a rational strategy consisting of inhibiting memory T cell expansion and trafficking into the allograft with CTLA4-Ig and FTY720 can promote allograft survival in allosensitized recipients.
Collapse
Affiliation(s)
| | - Jinghui Yang
- Section of Transplantation, Department of Surgery
| | | | - Jianjun Chen
- Section of Transplantation, Department of Surgery
| | - Qiang Wang
- Section of Transplantation, Department of Surgery
| | - Dengping Yin
- Section of Transplantation, Department of Surgery
| | - Vinh Vu
- Section of Transplantation, Department of Surgery
| | - Michelle L. Miller
- Section of Rheumatology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Roger Sciammas
- Center for Comparative Medicine, University of California, Davis, California, USA
| | - Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
38
|
Koenig A, Thaunat O. Lymphoid Neogenesis and Tertiary Lymphoid Organs in Transplanted Organs. Front Immunol 2016; 7:646. [PMID: 28082981 PMCID: PMC5186756 DOI: 10.3389/fimmu.2016.00646] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/13/2016] [Indexed: 01/28/2023] Open
Abstract
The progressive organization of immune effectors into functional ectopic lymphoid structures, named tertiary lymphoid organs (TLO), has been observed in many conditions in which target antigens fail to be eliminated by the immune system. Not surprisingly, TLO have been recurrently identified in chronically rejected allografts. Although significant progress has been made over the last decades in understanding the molecular mechanisms involved in TLO development (a process named lymphoid neogenesis), the role of intragraft TLO (if any) in chronic rejection remains elusive. The prevailing dogma is that TLO contribute to graft rejection by generating and propagating local humoral and cellular alloimmune responses. However, TLO have been recently observed in long-term accepting allografts, suggesting that they might also be able to regulate alloimmune responses. In this review, we discuss our current understanding of how TLO are induced and propose a unified model in which TLO can play deleterious or regulatory roles and therefore actively modulate the kinetics of chronic rejection.
Collapse
Affiliation(s)
- Alice Koenig
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France; INSERM UMR1111, Lyon, France; Université de Lyon, Lyon, France
| | - Olivier Thaunat
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France; INSERM UMR1111, Lyon, France; Université de Lyon, Lyon, France
| |
Collapse
|
39
|
Ruddle NH. High Endothelial Venules and Lymphatic Vessels in Tertiary Lymphoid Organs: Characteristics, Functions, and Regulation. Front Immunol 2016; 7:491. [PMID: 27881983 PMCID: PMC5101196 DOI: 10.3389/fimmu.2016.00491] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/25/2016] [Indexed: 12/27/2022] Open
Abstract
High endothelial venules (HEVs) and lymphatic vessels (LVs) are essential for the function of the immune system, by providing communication between the body and lymph nodes (LNs), specialized sites of antigen presentation and recognition. HEVs bring in naïve and central memory cells and LVs transport antigen, antigen-presenting cells, and lymphocytes in and out of LNs. Tertiary lymphoid organs (TLOs) are accumulations of lymphoid and stromal cells that arise and organize at ectopic sites in response to chronic inflammation in autoimmunity, microbial infection, graft rejection, and cancer. TLOs are distinguished from primary lymphoid organs – the thymus and bone marrow, and secondary lymphoid organs (SLOs) – the LNs, spleen, and Peyer’s patches, in that they arise in response to inflammatory signals, rather than in ontogeny. TLOs usually do not have a capsule but are rather contained within the confines of another organ. Their structure, cellular composition, chemokine expression, and vascular and stromal support resemble SLOs and are the defining aspects of TLOs. T and B cells, antigen-presenting cells, fibroblast reticular cells, and other stromal cells and vascular elements including HEVs and LVs are all typical components of TLOs. A key question is whether the HEVs and LVs play comparable roles and are regulated similarly to those in LNs. Data are presented that support this concept, especially with regard to TLO HEVs. Emerging data suggest that the functions and regulation of TLO LVs are also similar to those in LNs. These observations support the concept that TLOs are not merely cellular accumulations but are functional entities that provide sites to generate effector cells, and that their HEVs and LVs are crucial elements in those activities.
Collapse
Affiliation(s)
- Nancy H Ruddle
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University School of Medicine , New Haven, CT , USA
| |
Collapse
|
40
|
Hughes CE, Benson RA, Bedaj M, Maffia P. Antigen-Presenting Cells and Antigen Presentation in Tertiary Lymphoid Organs. Front Immunol 2016; 7:481. [PMID: 27872626 PMCID: PMC5097899 DOI: 10.3389/fimmu.2016.00481] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022] Open
Abstract
Tertiary lymphoid organs (TLOs) form in territorialized niches of peripheral tissues characterized by the presence of antigens; however, little is known about mechanism(s) of antigen handling by ectopic lymphoid structures. In this mini review, we will discuss the role of antigen-presenting cells and mechanisms of antigen presentation in TLOs, summarizing what is currently known about this facet of the formation and function of these tissues as well as identifying questions yet to be addressed.
Collapse
Affiliation(s)
- Catherine E Hughes
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow , UK
| | - Robert A Benson
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow , UK
| | - Marija Bedaj
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Rheumatology Research Group, Centre for Translational Inflammation Research, School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; BHF Centre of Excellence in Vascular Science and Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
41
|
Kobayashi Y, Watanabe T. Gel-Trapped Lymphorganogenic Chemokines Trigger Artificial Tertiary Lymphoid Organs and Mount Adaptive Immune Responses In Vivo. Front Immunol 2016; 7:316. [PMID: 27597851 PMCID: PMC4992816 DOI: 10.3389/fimmu.2016.00316] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022] Open
Abstract
We previously generated artificial lymph node-like tertiary lymphoid organs (artTLOs) in mice using lymphotoxin α-expressing stromal cells. Here, we show the construction of transplantable and functional artTLOs by applying soluble factors trapped in slow-releasing gels in the absence of lymphoid tissue organizer stromal cells. The resultant artTLOs were easily removable, transplantable, and were capable of attracting memory B and T cells. Importantly, artTLOs induced a powerful antigen-specific secondary immune response, which was particularly pronounced in immune-compromised hosts. Synthesis of functionally stable immune tissues/organs like those described here may be a first step to eventually develop immune system-based therapeutics. Although much needs to be learned from the precise mechanisms of action, they may offer ways in the future to reestablish immune functions to overcome hitherto untreatable diseases, including severe infection, cancer, autoimmune diseases, and various forms of immune deficiencies, including immune-senescence during aging.
Collapse
Affiliation(s)
- Yuka Kobayashi
- The Tazuke-Kofukai Medical Research Institute, Kitano Hospital, Kita-ku , Osaka , Japan
| | - Takeshi Watanabe
- The Tazuke-Kofukai Medical Research Institute, Kitano Hospital, Kita-ku , Osaka , Japan
| |
Collapse
|
42
|
Jonker M, Wubben JAM, 't Hart BA, Haanstra KG. Lymphoid-Like Structures with Distinct B Cell Areas in Kidney Allografts are not Predictive for Graft Rejection. A Non-human Primate Study. Inflammation 2016; 38:2191-202. [PMID: 26140903 DOI: 10.1007/s10753-015-0202-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Kidney allograft biopsies were analyzed for the presence of B cell clusters/aggregates using CD20 staining. Few B cells were found in the diffuse interstitial infiltrates, but clusters of B cells were found in nodular infiltrates. These nodular infiltrates were smaller shortly after transplantation, and their size increased over time. At the time of clinical rejection, the nodules often presented as tertiary lymphoid structures (TLS) with lymphoid-like follicles. The presence of small B cell clusters during the first 2 months after transplantation was not associated with early rejection. Even in animals that did not reject their allograft, TLS-like structures were present and could disappear over time. Although TLS were more often found in samples with interstitial fibrosis and tubular atrophy (IFTA), TLS were also present in samples without IFTA. The presence and density of clusters resembling tertiary lymphoid structures most likely reflect an ongoing immune response inside the graft and do not necessarily signify a poor graft outcome or IFTA.
Collapse
Affiliation(s)
- Margreet Jonker
- Biomedical Primate Research Centre, PO box 3306, 2280 GH, Rijswijk, The Netherlands.,Department of Immunohematology, LUMC, Leiden, The Netherlands
| | | | - Bert A 't Hart
- Biomedical Primate Research Centre, PO box 3306, 2280 GH, Rijswijk, The Netherlands.,Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands
| | - Krista G Haanstra
- Biomedical Primate Research Centre, PO box 3306, 2280 GH, Rijswijk, The Netherlands.
| |
Collapse
|
43
|
|
44
|
Hsao HM, Li W, Gelman AE, Krupnick AS, Kreisel D. The Role of Lymphoid Neogenesis in Allografts. Am J Transplant 2016; 16:1079-85. [PMID: 26614734 PMCID: PMC4803576 DOI: 10.1111/ajt.13645] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/22/2015] [Accepted: 11/22/2015] [Indexed: 01/25/2023]
Abstract
De novo induction of organized lymphoid aggregates at nonlymphoid sites has been observed in many chronic inflammatory conditions where foreign antigens such as infectious agents, autoantigens or alloantigens, persist. The prevailing opinion in the field of transplantation is that lymphoid neogenesis within allografts is detrimental to the establishment of immune tolerance. These structures, commonly referred to as tertiary lymphoid organs (TLOs), are thought to contribute to graft rejection by generating and propagating local alloimmune responses. However, recent studies have shown that TLOs rich in regulatory Foxp3(+) cells are present in long-term accepting allografts. The notion that TLOs can contribute to the local downregulation of immune responses has been corroborated in other chronic inflammation models. These findings suggest that contrary to previous suggestions that the induction of TLOs in allografts is necessarily harmful, the induction of "tolerogenic" TLOs may prove advantageous. In this review, we discuss our current understanding of how TLOs are induced and how they regulate immune responses with a particular focus on alloimmunity.
Collapse
Affiliation(s)
- Hsi-Min Hsao
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Wenjun Li
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Alexander S. Krupnick
- Department of Surgery, Washington University School of Medicine, St. Louis, MO,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO,Correspondence to: Daniel Kreisel, MD PhD, Professor of Surgery, Pathology & Immunology, Campus Box 8234, 660 South Euclid Avenue, Washington University School of Medicine, St. Louis, MO 63110, Tel: (314) 362-6021, Fax: (314) 367-8459,
| |
Collapse
|
45
|
Xu X, Han Y, Wang Q, Cai M, Qian Y, Wang X, Huang H, Xu L, Xiao L, Shi B. Characterisation of Tertiary Lymphoid Organs in Explanted Rejected Donor Kidneys. Immunol Invest 2015; 45:38-51. [PMID: 26709668 DOI: 10.3109/08820139.2015.1085394] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Tertiary lymphoid organs (TLOs) have been described within organ allografts, but whether they promote destructive or beneficial alloimmune responses remains controversial. This study aimed to characterize TLO distribution in human chronically rejected renal allografts and to explore their functions. METHODS A total of 29 explanted chronically rejected and 12 acutely rejected renal allografts were analyzed by immunohistochemistry. The distribution of TLOs, T cells, follicular dendritic cells, B cells, and follicular regulatory T (Tfr) cells, as well as Ki67, peripheral lymph node addressin (PNAd), podoplanin, AID, IL-17, IL-21, IL-10, and C4d expression were detected by immunohistochemistry. Correlations between lymphoid neogenesis and the expression of IL-17, IL-21, C4d, podoplanin, IL-10, and Foxp3 were evaluated. In addition, the duration of graft function was compared between allografts that harbored or lacked TLOs. RESULTS TLOs were detected in 27.6% of chronically rejected renal grafts, but they rarely had germinal centers. Lymphoid neogenesis negatively correlated with CXCR5 expression, and almost completely correlated with IL-17 expression. Those grafts that harbored a TLO functioned for an average of 5.98 years and those without a TLO lasted only about half as long with an average of 2.91 years. However, in grafts that harbored a TLO, Foxp3(+) cells were comparitively less than those without a TLO. Foxp3(+)CXCR5(+) Tfr cells and IL-10(+) cells were rare in grafts, irrespective of the presence of a TLO. CONCLUSION TLOs in chronically rejected kidney allografts may be an epiphenomenon of the inflammatory process that is related to graft duration.
Collapse
Affiliation(s)
- Xiaoguang Xu
- a Beijing Key Laboratory of Organ Transplant and Immune Regulation , 309th Hospital of Chinese People's Liberation Army, Organ Transplantation Institute , Beijing , China
| | - Yong Han
- a Beijing Key Laboratory of Organ Transplant and Immune Regulation , 309th Hospital of Chinese People's Liberation Army, Organ Transplantation Institute , Beijing , China
| | - Qiang Wang
- a Beijing Key Laboratory of Organ Transplant and Immune Regulation , 309th Hospital of Chinese People's Liberation Army, Organ Transplantation Institute , Beijing , China
| | - Ming Cai
- a Beijing Key Laboratory of Organ Transplant and Immune Regulation , 309th Hospital of Chinese People's Liberation Army, Organ Transplantation Institute , Beijing , China
| | - Yeyong Qian
- a Beijing Key Laboratory of Organ Transplant and Immune Regulation , 309th Hospital of Chinese People's Liberation Army, Organ Transplantation Institute , Beijing , China
| | - Xinying Wang
- a Beijing Key Laboratory of Organ Transplant and Immune Regulation , 309th Hospital of Chinese People's Liberation Army, Organ Transplantation Institute , Beijing , China
| | - Haiyan Huang
- a Beijing Key Laboratory of Organ Transplant and Immune Regulation , 309th Hospital of Chinese People's Liberation Army, Organ Transplantation Institute , Beijing , China
| | - Liang Xu
- a Beijing Key Laboratory of Organ Transplant and Immune Regulation , 309th Hospital of Chinese People's Liberation Army, Organ Transplantation Institute , Beijing , China
| | - Li Xiao
- a Beijing Key Laboratory of Organ Transplant and Immune Regulation , 309th Hospital of Chinese People's Liberation Army, Organ Transplantation Institute , Beijing , China
| | - Bingyi Shi
- a Beijing Key Laboratory of Organ Transplant and Immune Regulation , 309th Hospital of Chinese People's Liberation Army, Organ Transplantation Institute , Beijing , China
| |
Collapse
|
46
|
Yamada Y, Nadazdin O, Boskovic S, Lee S, Zorn E, Smith RN, Colvin RB, Madsen JC, Cosimi AB, Kawai T, Benichou G. Repeated Injections of IL-2 Break Renal Allograft Tolerance Induced via Mixed Hematopoietic Chimerism in Monkeys. Am J Transplant 2015; 15:3055-66. [PMID: 26190648 PMCID: PMC4654979 DOI: 10.1111/ajt.13382] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/20/2015] [Accepted: 05/11/2015] [Indexed: 01/25/2023]
Abstract
Tolerance of allografts achieved in mice via stable mixed hematopoietic chimerism relies essentially on continuous elimination of developing alloreactive T cells in the thymus (central deletion). Conversely, while only transient mixed chimerism is observed in nonhuman primates and patients, it is sufficient to ensure tolerance of kidney allografts. In this setting, it is likely that tolerance depends on peripheral regulatory mechanisms rather than thymic deletion. This implies that, in primates, upsetting the balance between inflammatory and regulatory alloimmunity could abolish tolerance and trigger the rejection of previously accepted renal allografts. In this study, six monkeys that were treated with a mixed chimerism protocol and had accepted a kidney allograft for periods of 1-10 years after withdrawal of immunosuppression received subcutaneous injections of IL-2 cytokine (0.6-3 × 10(6) IU/m(2) ). This resulted in rapid rejection of previously tolerated renal transplants and was associated with an expansion and reactivation of alloreactive pro-inflammatory memory T cells in the host's lymphoid organs and in the graft. This phenomenon was prevented by anti-CD8 antibody treatment. Finally, this process was reversible in that cessation of IL-2 administration aborted the rejection process and restored normal kidney graft function.
Collapse
Affiliation(s)
- Y. Yamada
- Department of Surgery, Center for Transplantation Sciences, Harvard Medical School, Boston, MA
| | - O. Nadazdin
- Department of Surgery, Center for Transplantation Sciences, Harvard Medical School, Boston, MA
| | - S. Boskovic
- Department of Surgery, Center for Transplantation Sciences, Harvard Medical School, Boston, MA
| | - S. Lee
- Department of Surgery, Center for Transplantation Sciences, Harvard Medical School, Boston, MA
| | - E. Zorn
- Department of Surgery, Center for Transplantation Sciences, Harvard Medical School, Boston, MA
| | - R. N. Smith
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - R. B. Colvin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - J. C. Madsen
- Department of Surgery, Center for Transplantation Sciences, Harvard Medical School, Boston, MA
| | - A. B. Cosimi
- Department of Surgery, Center for Transplantation Sciences, Harvard Medical School, Boston, MA
| | - T. Kawai
- Department of Surgery, Center for Transplantation Sciences, Harvard Medical School, Boston, MA
| | - G. Benichou
- Department of Surgery, Center for Transplantation Sciences, Harvard Medical School, Boston, MA,Corresponding author: Gilles Benichou,
| |
Collapse
|
47
|
Nasr IW, Zeng Q, Lakkis FG. Tissues and organs of the immune system. Transpl Immunol 2015. [DOI: 10.1002/9781119072997.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
The composition of ectopic lymphoid structures suggests involvement of a local immune response in cardiac allograft vasculopathy. J Heart Lung Transplant 2015; 34:734-45. [DOI: 10.1016/j.healun.2014.11.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/04/2014] [Accepted: 11/19/2014] [Indexed: 12/21/2022] Open
|
49
|
Aris M, Bravo AI, Barrio MM, Mordoh J. Inoculation site from a cutaneous melanoma patient treated with an allogeneic therapeutic vaccine: a case report. Front Immunol 2015; 6:144. [PMID: 25870600 PMCID: PMC4378302 DOI: 10.3389/fimmu.2015.00144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/16/2015] [Indexed: 01/09/2023] Open
Abstract
We have developed a therapeutic vaccine consisting of a mixture of lethally-irradiated allogeneic cutaneous melanoma cell lines with BCG and GM-CSF as adjuvants. The CSF-470 vaccine is currently being assayed in a Phase II-III trial against medium-dose IFN-α2b. All vaccinated patients immunized intradermally developed large edematous erythema reactions, which then transformed into subcutaneous nodules active for several months. However, vaccine injection sites were not routinely biopsied. We describe the case of a female patient, previously classified as stage III, but who, due to the simultaneous discovery of bone metastases only received one vaccination was withdrawn from the study, and continued her treatment elsewhere. This patient developed a post-vaccination nodule which was surgically removed 7 weeks later, and allowed to analyze the reactivity and immune profiling of the inoculation site. An inflammatory reaction with zones of fibrosis, high irrigation, and brisk lymphoid infiltration, primarily composed of CD8(+) and CD20(+) lymphocytes, was observed. There were no remaining BCG bacilli, and scarce CD4(+) and Foxp3(+) T cells were determined. MART-1 Ag was found throughout the vaccination site. CD11c(+) Ag presenting cells were either dispersed or forming dense nests. Some CD11c(+) cells proliferated; most of them contained intracellular MART-1 Ag, and some interacted with CD8(+) lymphocytes. These observations suggest a potent, long-lasting local inflammatory response with recruitment of Ag-presenting cells that incorporate melanoma Ags, probably leading to Ag presentation to naïve T cells.
Collapse
Affiliation(s)
- Mariana Aris
- Centro de Investigaciones Oncológicas-Fundación Cáncer (CIO-FUCA) , Ciudad Autónoma de Buenos Aires , Argentina
| | - Alicia Inés Bravo
- Unidad de Inmunopatología, Hospital Interzonal General de Agudos Eva Perón , San Martín, Provincia de Buenos Aires , Argentina
| | - María Marcela Barrio
- Centro de Investigaciones Oncológicas-Fundación Cáncer (CIO-FUCA) , Ciudad Autónoma de Buenos Aires , Argentina
| | - José Mordoh
- Centro de Investigaciones Oncológicas-Fundación Cáncer (CIO-FUCA) , Ciudad Autónoma de Buenos Aires , Argentina ; Laboratorio de Cancerología, Fundación Instituto Leloir, IIBBA-CONICET , Ciudad Autónoma de Buenos Aires , Argentina ; Instituto Médico Especializado Alexander Fleming , Ciudad Autónoma de Buenos Aires , Argentina
| |
Collapse
|
50
|
Zhuang Q, Lakkis FG. Dendritic cells and innate immunity in kidney transplantation. Kidney Int 2015; 87:712-8. [PMID: 25629552 PMCID: PMC4382394 DOI: 10.1038/ki.2014.430] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/30/2014] [Accepted: 07/02/2014] [Indexed: 01/03/2023]
Abstract
This review summarizes emerging concepts related to the roles of dendritic cells and innate immunity in organ transplant rejection. First, it highlights the primary role that recipient, rather than donor, dendritic cells have in rejection and reviews their origin and function in the transplanted kidney. Second, it introduces the novel concept that recognition of allogeneic non-self by host monocytes (referred to here as innate allorecognition) is necessary for initiating rejection by inducing monocyte differentiation into mature, antigen-presenting dendritic cells. Both concepts provide opportunities for preventing rejection by targeting monocytes or dendritic cells.
Collapse
Affiliation(s)
- Quan Zhuang
- 1] Thomas E. Starzl Transplantation Institute and the Departments of Surgery, Immunology, and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA [2] Department of Transplantation, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute and the Departments of Surgery, Immunology, and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|