1
|
Hessheimer AJ, Flores E, Vengohechea J, Fondevila C. Better liver transplant outcomes by donor interventions? Curr Opin Organ Transplant 2024; 29:219-227. [PMID: 38785132 DOI: 10.1097/mot.0000000000001153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
PURPOSE OF REVIEW Donor risk factors and events surrounding donation impact the quantity and quality of grafts generated to meet liver transplant waitlist demands. Donor interventions represent an opportunity to mitigate injury and risk factors within donors themselves. The purpose of this review is to describe issues to address among donation after brain death, donation after circulatory determination of death, and living donors directly, for the sake of optimizing relevant outcomes among donors and recipients. RECENT FINDINGS Studies on donor management practices and high-level evidence supporting specific interventions are scarce. Nonetheless, for donation after brain death (DBD), critical care principles are employed to correct cardiocirculatory compromise, impaired tissue oxygenation and perfusion, and neurohormonal deficits. As well, certain treatments as well as marginally prolonging duration of brain death among otherwise stable donors may help improve posttransplant outcomes. In donation after circulatory determination of death (DCD), interventions are performed to limit warm ischemia and reverse its adverse effects. Finally, dietary and exercise programs have improved donation outcomes for both standard as well as overweight living donor (LD) candidates, while minimally invasive surgical techniques may offer improved outcomes among LD themselves. SUMMARY Donor interventions represent means to improve liver transplant yield and outcomes of liver donors and grafts.
Collapse
Affiliation(s)
- Amelia J Hessheimer
- General & Digestive Surgery Service, Hospital Universitario La Paz, IdiPAZ, CIBERehd
| | - Eva Flores
- Transplant Coordination Unit, Hospital Universitario La Paz, Madrid, Spain
| | - Jordi Vengohechea
- General & Digestive Surgery Service, Hospital Universitario La Paz, IdiPAZ, CIBERehd
| | - Constantino Fondevila
- General & Digestive Surgery Service, Hospital Universitario La Paz, IdiPAZ, CIBERehd
| |
Collapse
|
2
|
Ko E, Kim YH, Shin HJ, Lim CH, Kim HJ, Park HY, Jang Y, Seong H. Short-Term and Long-Term Effects of Ischemic Conditioning on Liver Transplantation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Transplant Proc 2023; 55:2143-2158. [PMID: 37867003 DOI: 10.1016/j.transproceed.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/13/2023] [Accepted: 08/01/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Although liver transplantation (LT) is one of the definitive treatments for patients with end-stage liver failure, it inevitably results in ischemic reperfusion injury. It is known that prognosis is improved when temporary ischemic conditioning (IC) is applied to patients with ischemic reperfusion injury. The objective of this meta-analysis was to determine the short-term and long-term effects of IC on the clinical outcomes of LT recipients. METHODS Randomized controlled studies on IC in patients with LTs were included. Patients were compared between an IC group and a sham group. Studies were retrieved from PubMed, Embase, and Cochrane Library. The risk of bias was evaluated using RoB 2.0. Mortality, graft function, and major complications were synthesized using RevMan 5.4.1. RESULTS Among 316 papers, 17 articles (1196 patients) were included. There was an insignificant increase in short-term mortality (risk ratio [RR]: 3.00, 95% CI: 0.32-28.14, P = .34). However, long-term mortality was lower in the IC group than in the sham group, but not significantly (RR: 0.75; 95% CI: 0.47-1.20, P = .23). Short-term graft function (acute graft rejection and primary graft non-function) was not improved by IC. One-year graft loss tended to show better results in the IC group (RR: 0.53, 95% CI: 0.26-1.07, P = .08). CONCLUSION Ischemic conditioning did not have a beneficial effect on LT. Although long-term outcomes appear to be better in the IC group than in the sham group, further randomized controlled trials are needed.
Collapse
Affiliation(s)
- Eunji Ko
- Department of Anesthesiology and Pain Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Yun-Hee Kim
- Department of Anesthesiology and Pain Medicine, Changwon Hanmaeum Hospital, Changwon, South Korea.
| | - Hyeon-Ju Shin
- Department of Anesthesiology and Pain Medicine, Korea University Anam Hospital, Seoul, South Korea.
| | - Choon-Hak Lim
- Department of Anesthesiology and Pain Medicine, College of Medicine, Korea University, Seoul, South Korea
| | - Hyun-Jung Kim
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul, South Korea
| | - Ha Yeon Park
- Department of Anesthesiology and Pain Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Yookyung Jang
- Department of Anesthesiology and Pain Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Hyunyoung Seong
- Department of Anesthesiology and Pain Medicine, Korea University Anam Hospital, Seoul, South Korea
| |
Collapse
|
3
|
Lisnyy II, Zakalska KA, Burlaka AA, Lysykh SA, Efimenko OV. PREVENTION OF PATHOLOGICAL EFFECT OF ISCHEMIA-REPERFUSION IN LIVER RESECTION BY SEVOFLURANE PRECONDITIONING. Exp Oncol 2023; 45:252-262. [PMID: 37824766 DOI: 10.15407/exp-oncology.2023.02.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND The intermittent Pringle maneuver remains the major technique for controlling hemorrhage during liver surgery. Nevertheless, this procedure involves a risk of triggering a cascade of pathological changes resulting in the ischemia-reperfusion injury (I/R) effect. The pharmacological prevention of this I/R injury represents a promising approach. The aim of the study was to compare the effects of pharmacological preconditioning with sevoflurane and propofol-based intravenous anesthesia on the postoperative function of the liver as the primary end-point. MATERIALS AND METHODS A prospective cohort study includes the analysis of the data of 73 patients who underwent liver surgery. In the study group (n = 41), preconditioning with sevoflurane inhalation was provided 30 minutes prior to liver resection. In the control group (n = 32), sevoflurane preconditioning was not provided. The primary endpoints were blood lactate concentration shortly after the surgery and one day later; alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities on postoperative Days 1, 3, and 5 as markers of hepatocyte damage. RESULTS On postoperative Day 1, in patients of the study group, lactate decreased to preoperative levels, while in the control group, lactate content increased as compared to both preoperative levels and the levels immediately after liver resection. A significant difference in AST activity levels between the groups was registered on Day 5, although this difference was not clinically relevant. The decrease in the prothrombin index in the study group on Day 3 was superior to that in the control group. The multiple regression analysis demonstrated a moderate positive association between the number of resected liver segments and the markers of the functional state of the liver in the study group while in the control group, such association was not significant. CONCLUSION The protective effect of sevoflurane on the postoperative function of the liver is manifested by the lower level of blood lactate and the stable level of transaminase activity.
Collapse
Affiliation(s)
- I I Lisnyy
- National Cancer Institute, Kyiv, Ukraine
| | | | | | - S A Lysykh
- National Cancer Institute, Kyiv, Ukraine
| | | |
Collapse
|
4
|
Patrono D, De Stefano N, Vissio E, Apostu AL, Petronio N, Vitelli G, Catalano G, Rizza G, Catalano S, Colli F, Chiusa L, Romagnoli R. How to Preserve Steatotic Liver Grafts for Transplantation. J Clin Med 2023; 12:3982. [PMID: 37373676 DOI: 10.3390/jcm12123982] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Liver allograft steatosis is a significant risk factor for postoperative graft dysfunction and has been associated with inferior patient and graft survival, particularly in the case of moderate or severe macrovesicular steatosis. In recent years, the increasing incidence of obesity and fatty liver disease in the population has led to a higher proportion of steatotic liver grafts being used for transplantation, making the optimization of their preservation an urgent necessity. This review discusses the mechanisms behind the increased susceptibility of fatty livers to ischemia-reperfusion injury and provides an overview of the available strategies to improve their utilization for transplantation, with a focus on preclinical and clinical evidence supporting donor interventions, novel preservation solutions, and machine perfusion techniques.
Collapse
Affiliation(s)
- Damiano Patrono
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Nicola De Stefano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Elena Vissio
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Ana Lavinia Apostu
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Nicoletta Petronio
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giovanni Vitelli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giorgia Catalano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giorgia Rizza
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Silvia Catalano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Fabio Colli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Luigi Chiusa
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| |
Collapse
|
5
|
Parente A, Flores Carvalho M, Eden J, Dutkowski P, Schlegel A. Mitochondria and Cancer Recurrence after Liver Transplantation—What Is the Benefit of Machine Perfusion? Int J Mol Sci 2022; 23:ijms23179747. [PMID: 36077144 PMCID: PMC9456431 DOI: 10.3390/ijms23179747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor recurrence after liver transplantation has been linked to multiple factors, including the recipient’s tumor burden, donor factors, and ischemia-reperfusion injury (IRI). The increasing number of livers accepted from extended criteria donors has forced the transplant community to push the development of dynamic perfusion strategies. The reason behind this progress is the urgent need to reduce the clinical consequences of IRI. Two concepts appear most beneficial and include either the avoidance of ischemia, e.g., the replacement of cold storage by machine perfusion, or secondly, an endischemic organ improvement through perfusion in the recipient center prior to implantation. While several concepts, including normothermic perfusion, were found to reduce recipient transaminase levels and early allograft dysfunction, hypothermic oxygenated perfusion also reduced IRI-associated post-transplant complications and costs. With the impact on mitochondrial injury and subsequent less IRI-inflammation, this endischemic perfusion was also found to reduce the recurrence of hepatocellular carcinoma after liver transplantation. Firstly, this article highlights the contributing factors to tumor recurrence, including the surgical and medical tissue trauma and underlying mechanisms of IRI-associated inflammation. Secondly, it focuses on the role of mitochondria and associated interventions to reduce cancer recurrence. Finally, the role of machine perfusion technology as a delivery tool and as an individual treatment is discussed together with the currently available clinical studies.
Collapse
Affiliation(s)
- Alessandro Parente
- The Liver Unit, Queen Elizabeth University Hospital Birmingham, Birmingham B15 2GW, UK
| | - Mauricio Flores Carvalho
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, 20122 Milan, Italy
| | - Janina Eden
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Andrea Schlegel
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, 20122 Milan, Italy
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
6
|
Jakubauskiene L, Jakubauskas M, Stiegler P, Leber B, Schemmer P, Strupas K. Ischemic Preconditioning for Liver Transplantation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Visc Med 2021; 37:329-337. [PMID: 34722716 DOI: 10.1159/000516608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/08/2021] [Indexed: 01/01/2023] Open
Abstract
Background In recent decades, liver transplantation (LTx) has increased the survival and quality of life of patients with end-stage organ failure. Unfortunately, LTx is limited due to the shortage of donors. A lot of effort is put into finding new ways to reduce ischemia-reperfusion injury (IRI) in liver grafts to increase the number of suitable organs procured from expanded-criteria donors (ECD). The aim of this study was to systematically review the literature reporting LTx outcomes when using ischemic preconditioning (IPC) or remote ischemic preconditioning (RIPC) to reduce IRI in liver grafts. Methods A literature search was performed in the MEDLINE, Web of Science, and EMBASE databases. The following combination was used: "Liver" OR "Liver Transplantation" AND "Ischemic preconditioning" OR "occlusion" OR "clamping" OR "Pringle." The following outcome data were retrieved: the rates of graft primary nonfunction (PNF), retransplantation, graft loss, and mortality; stay in hospital and the intensive care unit; and postoperative serum liver damage parameters. Results The initial search retrieved 4,522 potentially relevant studies. After evaluating 17 full-text articles, a total of 9 randomized controlled trials (RCTs) were included (7 IPC and 2 RIPC studies) in the qualitative synthesis; the meta-analysis was only performed on the data from the IPC studies. RIPC studies had considerable methodological differences. The meta-analysis revealed the beneficial effect of IPC when comparing postoperative aspartate aminotransferase (AST) corresponding to a statistically lower mortality rate in the IPC group (odds ratio [OR] 0.51; 95% confidence interval [CI] 0.27-0.98; p = 0.04). Conclusion IPC lowers postoperative AST levels and reduces the mortality rate; however, data on the benefits of RIPC are lacking.
Collapse
Affiliation(s)
- Lina Jakubauskiene
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria.,Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Matas Jakubauskas
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria.,Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
7
|
Methods of Attenuating Ischemia-Reperfusion Injury in Liver Transplantation for Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22158229. [PMID: 34360995 PMCID: PMC8347959 DOI: 10.3390/ijms22158229] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/18/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent indications for liver transplantation. However, the transplantation is ultimately associated with the occurrence of ischemia-reperfusion injury (IRI). It affects not only the function of the graft but also significantly worsens the oncological results. Various methods have been used so far to manage IRI. These include the non-invasive approach (pharmacotherapy) and more advanced options encompassing various types of liver conditioning and machine perfusion. Strategies aimed at shortening ischemic times and better organ allocation pathways are still under development as well. This article presents the mechanisms responsible for IRI, its impact on treatment outcomes, and strategies to mitigate it. An extensive review of the relevant literature using MEDLINE (PubMed) and Scopus databases until September 2020 was conducted. Only full-text articles written in English were included. The following search terms were used: “ischemia reperfusion injury”, “liver transplantation”, “hepatocellular carcinoma”, “preconditioning”, “machine perfusion”.
Collapse
|
8
|
Oltean M. Ischemic Preconditioning in Liver Transplantation: Lost in Translation? J INVEST SURG 2021; 35:910-911. [PMID: 34212818 DOI: 10.1080/08941939.2021.1943574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mihai Oltean
- Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute for Clinical Sciences, Department of Surgery, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Belon AR, Tannuri ACA, de Albuquerque Rangel Moreira D, Figueiredo JL, da Silva AM, Serafini S, Guimarães RR, Faria CS, de Alexandre AS, Gonçalves JO, Paes VR, Tannuri U. Impact of Three Methods of Ischemic Preconditioning on Ischemia-Reperfusion Injury in a Pig Model of Liver Transplantation. J INVEST SURG 2021; 35:900-909. [PMID: 34180750 DOI: 10.1080/08941939.2021.1933274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Ischemic preconditioning (IPC), either direct (DIPC) or remote (RIPC), is a procedure aimed at reducing the harmful effects of ischemia-reperfusion (I/R) injury. OBJECTIVES To assess the local and systemic effects of DIPC, RIPC, and both combined, in the pig liver transplant model. MATERIALS AND METHODS Twenty-four pigs underwent orthotopic liver transplantation and were divided into 4 groups: control, direct donor preconditioning, indirect preconditioning at the recipient, and direct donor with indirect recipient preconditioning. The recorded parameters were: donor and recipient weight, graft-to-recipient weight ratio (GRWR), surgery time, warm and cold ischemia time, and intraoperative hemodynamic values. Blood samples were collected before native liver removal (BL) and at 0 h, 1 h, 3 h, 6 h, 12 h, 18 h, and 24 h post-reperfusion for the biochemical tests: aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), creatinine, BUN (blood urea nitrogen), lactate, total and direct bilirubin. Histopathological examination of liver, gut, kidney, and lung fragments were performed, as well as molecular analyses for expression of the apoptosis-related BAX (pro-apoptotic) and Bcl-XL (anti-apoptotic) genes, eNOS (endothelial nitric oxide synthase) gene, and IL-6 gene related to inflammatory ischemia-reperfusion injury, using real-time polymerase chain reaction (RT-PCR). RESULTS There were no differences between the groups regarding biochemical and histopathological parameters. We found a reduced ratio between the expression of the BAX gene and Bcl-XL in the livers of animals with IPC versus the control group. CONCLUSIONS DIPC, RIPC or a combination of both, produce beneficial effects at the molecular level without biochemical or histological changes.
Collapse
Affiliation(s)
- Alessandro Rodrigo Belon
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Ana Cristina Aoun Tannuri
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Daniel de Albuquerque Rangel Moreira
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Jose Luiz Figueiredo
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Alessandra Matheus da Silva
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Suellen Serafini
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Raimundo Renato Guimarães
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Caroline Silverio Faria
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Alcione Sanches de Alexandre
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Josiane Oliveira Gonçalves
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Vitor Ribeiro Paes
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Uenis Tannuri
- Laboratory of Experimental Surgery (LIM26), Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
10
|
Stankiewicz R, Grąt M. Direct, remote and combined ischemic conditioning in liver surgery. World J Hepatol 2021; 13:533-542. [PMID: 34131468 PMCID: PMC8173344 DOI: 10.4254/wjh.v13.i5.533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/28/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Liver ischemia-reperfusion injury is a major cause of postoperative liver dysfunction, morbidity and mortality following liver resection and transplantation. Ischemic conditioning has been shown to ameliorate ischemia-reperfusion injury in small animal models. It can be applied directly or remotely when cycles of ischemia and reperfusion are applied to a distant site or organ. Considering timing of the procedure, different protocols are available. Ischemic preconditioning refers to that performed before the duration of ischemia of the target organ. Ischemic perconditioning is performed over the duration of ischemia of the target organ. Ischemic postconditioning applies brief episodes of ischemia at the onset of reperfusion following a prolonged ischemia. Animal studies pointed towards suppressing cytokine release, enhancing the production of hepatoprotective adenosine and reducing liver apoptotic response as the potential mechanisms responsible for the protective effect of direct tissue conditioning. Interactions between neural, humoral and systemic pathways all lead to the protective effect of remote ischemic preconditioning. Despite promising animal studies, none of the aforementioned protocols proved to be clinically effective in liver surgery with the exception of morbidity reduction in cirrhotic patients undergoing liver resection. Further human clinical trials with application of novel conditioning protocols and combination of methods are warranted before implementation of ischemic conditioning in day-to-day clinical practice.
Collapse
Affiliation(s)
- Rafał Stankiewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw 02-097, Poland
| |
Collapse
|
11
|
Remote organ ischaemic preconditioning in human recipients suppresses systemic inflammation and prevents glycocalyx degradation in living-donor liver transplantation: A randomised controlled trial. Eur J Anaesthesiol 2021; 38:667-669. [PMID: 33967259 DOI: 10.1097/eja.0000000000001493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Hemorheological and Microcirculatory Factors in Liver Ischemia-Reperfusion Injury-An Update on Pathophysiology, Molecular Mechanisms and Protective Strategies. Int J Mol Sci 2021; 22:ijms22041864. [PMID: 33668478 PMCID: PMC7918617 DOI: 10.3390/ijms22041864] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a multifactorial phenomenon which has been associated with adverse clinical outcomes. IRI related tissue damage is characterized by various chronological events depending on the experimental model or clinical setting. Despite the fact that IRI research has been in the spotlight of scientific interest for over three decades with a significant and continuous increase in publication activity over the years and the large number of pharmacological and surgical therapeutic attempts introduced, not many of these strategies have made their way into everyday clinical practice. Furthermore, the pathomechanism of hepatic IRI has not been fully elucidated yet. In the complex process of the IRI, flow properties of blood are not neglectable. Hemorheological factors play an important role in determining tissue perfusion and orchestrating mechanical shear stress-dependent endothelial functions. Antioxidant and anti-inflammatory agents, ischemic conditioning protocols, dynamic organ preservation techniques may improve rheological properties of the post-reperfusion hepatic blood flow and target endothelial cells, exerting a potent protection against hepatic IRI. In this review paper we give a comprehensive overview of microcirculatory, rheological and molecular–pathophysiological aspects of hepatic circulation in the context of IRI and hepatoprotective approaches.
Collapse
|
13
|
Qi B, Wang XQ, Pan ST, Li PY, Chen LK, Xia Q, Yang LQ, Yu WF. Effect of remote ischemic preconditioning among donors and recipients following pediatric liver transplantation: A randomized clinical trial. World J Gastroenterol 2021; 27:345-357. [PMID: 33584067 PMCID: PMC7852587 DOI: 10.3748/wjg.v27.i4.345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/09/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Studies suggested that remote ischemic preconditioning (RIPC) may effectively lessen the harmful effects of ischemia reperfusion injury during organ transplantation surgery.
AIM To investigate the protective effects of RIPC on living liver donors and recipients following pediatric liver transplantation.
METHODS From January 2016 to January 2019 at Renji Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, 208 donors were recruited and randomly assigned to four groups: S-RIPC group (no intervention; n = 55), D-RIPC group (donors received RIPC; n = 51), R-RIPC group (recipients received RIPC, n = 51) and DR-RIPC group (both donors and recipients received RIPC; n = 51). We primarily evaluated postoperative liver function among donors and recipients and incidences of early allograft dysfunction, primary nonfunction and postoperative complications among recipients.
RESULTS RIPC did not significantly improve alanine transaminase and aspartate aminotransferase levels among donors and recipients or decrease the incidences of early allograft dysfunction, primary nonfunction, and postoperative complications among recipients. Limited protective effects were observed, including a lower creatinine level in the D-RIPC group than in the S-RIPC group on postoperative day 0 (P < 0.05). However, no significant improvements were found in donors who received RIPC. Furthermore, RIPC had no effects on the overall survival of recipients.
CONCLUSION The protective effects of RIPC were limited for recipients who received living liver transplantation, and no significant improvement of the prognosis was observed in recipients.
Collapse
Affiliation(s)
- Bo Qi
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiao-Qiang Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shu-Ting Pan
- Clinical Center for Investigation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ling-Ke Chen
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qiang Xia
- Department of Transplantation and Hepatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Li-Qun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
14
|
Uutela A, Helanterä I, Lemström K, Passov A, Syrjälä S, Åberg F, Mäkisalo H, Nordin A, Lempinen M, Sallinen V. Randomised sham-controlled double-blind trial evaluating remote ischaemic preconditioning in solid organ transplantation: a study protocol for the RIPTRANS trial. BMJ Open 2020; 10:e038340. [PMID: 33199419 PMCID: PMC7670950 DOI: 10.1136/bmjopen-2020-038340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Remote ischaemic preconditioning (RIPC) using a non-invasive pneumatic tourniquet is a potential method for reducing ischaemia-reperfusion injury. RIPC has been extensively studied in animal models and cardiac surgery, but scarcely in solid organ transplantation. RIPC could be an inexpensive and simple method to improve function of transplanted organs. Accordingly, we aim to study whether RIPC performed in brain-dead organ donors improves function and longevity of transplanted organs. METHODS AND ANALYSES RIPTRANS is a multicentre, sham-controlled, parallel group, randomised superiority trial comparing RIPC intervention versus sham-intervention in brain-dead organ donors scheduled to donate at least one kidney. Recipients of the organs (kidney, liver, pancreas, heart, lungs) from a randomised donor will be included provided that they give written informed consent. The RIPC intervention is performed by inflating a thigh tourniquet to 300 mm Hg 4 times for 5 min. The intervention is done two times: first right after the declaration of brain death and second immediately before transferring the donor to the operating theatre. The sham group receives the tourniquet, but it is not inflated. The primary endpoint is delayed graft function (DGF) in kidney allografts. Secondary endpoints include short-term functional outcomes of transplanted organs, rejections and graft survival in various time points up to 20 years. We aim to show that RIPC reduces the incidence of DGF from 25% to 15%. According to this, the sample size is set to 500 kidney transplant recipients. ETHICS AND DISSEMINATION This study has been approved by Helsinki University Hospital Ethics Committee and Helsinki University Hospital's Institutional Review Board. The study protocol was be presented at the European Society of Organ Transplantation congress in Copenhagen 14-15 September 2019. The study results will be submitted to an international peer-reviewed scientific journal for publication. TRIAL REGISTRATION NUMBER NCT03855722.
Collapse
Affiliation(s)
- Aki Uutela
- Department of Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ilkka Helanterä
- Department of Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Karl Lemström
- Department of Cardiothoracic Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Arie Passov
- Department of Perioperative, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Simo Syrjälä
- Department of Cardiothoracic Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Fredrik Åberg
- Department of Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Heikki Mäkisalo
- Department of Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Arno Nordin
- Department of Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Marko Lempinen
- Department of Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ville Sallinen
- Department of Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Baidya R, Crawford DHG, Gautheron J, Wang H, Bridle KR. Necroptosis in Hepatosteatotic Ischaemia-Reperfusion Injury. Int J Mol Sci 2020; 21:ijms21165931. [PMID: 32824744 PMCID: PMC7460692 DOI: 10.3390/ijms21165931] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
While liver transplantation remains the sole treatment option for patients with end-stage liver disease, there are numerous limitations to liver transplantation including the scarcity of donor livers and a rise in livers that are unsuitable to transplant such as those with excess steatosis. Fatty livers are susceptible to ischaemia-reperfusion (IR) injury during transplantation and IR injury results in primary graft non-function, graft failure and mortality. Recent studies have described new cell death pathways which differ from the traditional apoptotic pathway. Necroptosis, a regulated form of cell death, has been associated with hepatic IR injury. Receptor-interacting protein kinase 3 (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL) are thought to be instrumental in the execution of necroptosis. The study of hepatic necroptosis and potential therapeutic approaches to attenuate IR injury will be a key factor in improving our knowledge regarding liver transplantation with fatty donor livers. In this review, we focus on the effect of hepatic steatosis during liver transplantation as well as molecular mechanisms of necroptosis and its involvement during liver IR injury. We also discuss the immune responses triggered during necroptosis and examine the utility of necroptosis inhibitors as potential therapeutic approaches to alleviate IR injury.
Collapse
Affiliation(s)
- Raji Baidya
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
| | - Darrell H. G. Crawford
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
| | - Jérémie Gautheron
- Sorbonne University, Inserm, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France;
- Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France
| | - Haolu Wang
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
- Diamantina Institute, The University of Queensland, Brisbane, Queensland QLD 4102, Australia
| | - Kim R. Bridle
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
- Correspondence: ; Tel.: +61-7-3346-0698
| |
Collapse
|
16
|
Jiménez-Castro MB, Cornide-Petronio ME, Gracia-Sancho J, Casillas-Ramírez A, Peralta C. Mitogen Activated Protein Kinases in Steatotic and Non-Steatotic Livers Submitted to Ischemia-Reperfusion. Int J Mol Sci 2019; 20:ijms20071785. [PMID: 30974915 PMCID: PMC6479363 DOI: 10.3390/ijms20071785] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
We analyzed the participation of mitogen-activated protein kinases (MAPKs), namely p38, JNK and ERK 1/2 in steatotic and non-steatotic livers undergoing ischemia-reperfusion (I-R), an unresolved problem in clinical practice. Hepatic steatosis is a major risk factor in liver surgery because these types of liver tolerate poorly to I-R injury. Also, a further increase in the prevalence of steatosis in liver surgery is to be expected. The possible therapies based on MAPK regulation aimed at reducing hepatic I-R injury will be discussed. Moreover, we reviewed the relevance of MAPK in ischemic preconditioning (PC) and evaluated whether MAPK regulators could mimic its benefits. Clinical studies indicated that this surgical strategy could be appropriate for liver surgery in both steatotic and non-steatotic livers undergoing I-R. The data presented herein suggest that further investigations are required to elucidate more extensively the mechanisms by which these kinases work in hepatic I-R. Also, further researchers based in the development of drugs that regulate MAPKs selectively are required before such approaches can be translated into clinical liver surgery.
Collapse
Affiliation(s)
| | | | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory IDIBAPS, 08036 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain.
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Vitoria, Ciudad Victoria 87087, Mexico.
- Facultad de Medicina e ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, México.
| | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona 08036, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain.
| |
Collapse
|
17
|
Liu A, Fang H. Ischemic Preconditioning on Liver Ischemia Reperfusion Injury: How Far is the Bedside from the Bench? J INVEST SURG 2019; 33:884-885. [PMID: 30885026 DOI: 10.1080/08941939.2019.1578443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoshu Fang
- Department of Pathophysiology, Anhui Medical University, Hefei, China.,Laboratory Animal Research Center, College of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
18
|
Rampes S, Ma D. Hepatic ischemia-reperfusion injury in liver transplant setting: mechanisms and protective strategies. J Biomed Res 2019; 33:221-234. [PMID: 32383437 DOI: 10.7555/jbr.32.20180087] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatic ischemia-reperfusion injury is a major cause of liver transplant failure, and is of increasing significance due to increased use of expanded criteria livers for transplantation. This review summarizes the mechanisms and protective strategies for hepatic ischemia-reperfusion injury in the context of liver transplantation. Pharmacological therapies, the use of pre-and post-conditioning and machine perfusion are discussed as protective strategies. The use of machine perfusion offers significant potential in the reconditioning of liver grafts and the prevention of hepatic ischemia-reperfusion injury, and is an exciting and active area of research, which needs more study clinically.
Collapse
Affiliation(s)
- Sanketh Rampes
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1U, UK
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, UK
| |
Collapse
|
19
|
Li DY, Liu WT, Wang GY, Shi XJ. Impact of combined ischemic preconditioning and remote ischemic perconditioning on ischemia-reperfusion injury after liver transplantation. Sci Rep 2018; 8:17979. [PMID: 30568237 PMCID: PMC6299280 DOI: 10.1038/s41598-018-36365-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
Ischemic preconditioning (IPC) and remote ischemic perconditioning (RIPer) confer protective effects against liver ischemia-reperfusion injury (IRI), but data about RIPer applying in liver transplantation is lacking. The study aimed to evaluate whether the combination of IPC and RIPer provides reinforced protective effects. C57BL/6 mice (160 pairs) were allocated into four groups: control, subjected to liver transplantation only; IPC, donor hilar was clamped for 10 min followed by 15 min of reperfusion; RIPer, three cycles of occlusion (5 min) and opening (5 min) of femoral vascular bundle were performed before reperfusion; IPC + RIPer, donors and recipients were subjected to IPC and RIPer respectively. Liver tissues were obtained for histological evaluation, TUNEL staining, malondialdehyde assays, GSH-Px assays, and NF-κB p65 protein and Bcl-2/Bax mRNA analyses. Blood samples were used to evaluate ALT, AST, TNF-α, NOx levels and flow cytometry. We found that protective efficacy of RIPer is less than IPC in terms of ALT, TNF-α, GSH-Px and NOx at 2 h postoperation, but almost equivalent at 24 h and 72 h postoperation. Except for Suzuki scores, ALT, Bcl-2/Bax mRNA ratio, other indices showed that combined treatment brought enhanced attenuation in IRI, compared with single treatment, through additive effects on antioxidation, anti-apoptosis, modulation of microcirculation disturbance, and inhibition of innate immune response. This study suggested a combined strategy that could enhance protection against IRI in clinical liver transplantation, otherwise, provided a hint that RIPer's mechanism might be partly or totally different from IPC in humoral pathway.
Collapse
Affiliation(s)
- Ding-Yang Li
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan Province, China
| | - Wen-Tao Liu
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan Province, China
| | - Guang-Yi Wang
- Department of Hepatobiliary & Pancreatic Surgery, The First Norman Bethune Hospital Affiliated to Jilin University, Changchun, 130021, Jilin Province, China
| | - Xiao-Ju Shi
- Department of Hepatobiliary & Pancreatic Surgery, The First Norman Bethune Hospital Affiliated to Jilin University, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
20
|
State of the Science in Deceased Organ Donor Management. CURRENT TRANSPLANTATION REPORTS 2018. [DOI: 10.1007/s40472-018-0207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Mangus RS, Schroering JR, Fridell JA, Kubal CA. Impact of Donor Pre-Procurement Cardiac Arrest (PPCA) on Clinical Outcomes in Liver Transplantation. Ann Transplant 2018; 23:808-814. [PMID: 30455411 PMCID: PMC6259573 DOI: 10.12659/aot.910387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Transplantation of liver grafts from deceased donors who experienced cardiac arrest prior to liver procurement is now common. This single-center study analyzed the impact of pre-donation arrest time on clinical outcomes in liver transplantation. Material/Methods Records of all orthotopic liver transplants performed at a single center over a 15-year period were reviewed. Donor records were reviewed and total arrest time was calculated as cumulative minutes. Post-transplant liver graft function was assessed using laboratory values. Graft survival was assessed with Cox regression analysis. Results Records for 1830 deceased donor transplants were reviewed, and 521 donors experienced pre-procurement cardiac arrest (28%). Median arrest time was 21 min (mean 25 min, range 1–120 min). After transplant, the peak alanine aminotransferase and bilirubin levels for liver grafts from donors with arrest were lower compared to those for donors without arrest (p<0.001). Early allograft dysfunction occurred in 25% (arrest) and 28% (no arrest) of patients (p=0.22). There were no differences in risk of early graft loss (3% vs. 3%, p=0.84), length of hospital stay (10 vs. 10 days, p=0.76), and 1-year graft survival (89% vs. 89%, p=0.94). Cox regression analysis comparing 4 groups (no arrest, <20 min, 20–40 min, and >40 min arrest) demonstrated no statistically significant difference in survival at 10 years. Subgroup analysis of 93 donation after cardiac death grafts showed no significant difference for these same outcomes. Conclusions These results support the use of select deceased liver donors who experience pre-donation cardiac arrest. Pre-donation arrest may be associated with less early allograft dysfunction, but had no impact on long-term clinical outcomes. The results for donation after cardiac death donors were similar.
Collapse
Affiliation(s)
- Richard S Mangus
- Transplant Division, Department of Surgery, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Joel R Schroering
- Transplant Division, Department of Surgery, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Jonathan A Fridell
- Transplant Division, Department of Surgery, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Chandrashekhar A Kubal
- Transplant Division, Department of Surgery, Indiana University, School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
22
|
Kahn J, Schemmer P. Control of Ischemia-Reperfusion Injury in Liver Transplantation: Potentials for Increasing the Donor Pool. Visc Med 2018; 34:444-448. [PMID: 30675491 DOI: 10.1159/000493889] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Organ shortage is a growing problem, with a rising number of organs being harvested from extended criteria donors, and this trend will further continue to increase as organ donors are getting older and have more comorbidities. Since this fact is immutable, efforts have been made to reduce the extent of ischemia-reperfusion injury (IRI) as well as of direct and indirect harvest-related graft injury which affects all organs in a more or less distinct way. Methods In liver transplantation (LT), the activation of Kupffer cells during organ reperfusion, thus provoking microcirculatory disturbances, hypoxia, and endothelial cell injury, is one of the key mechanisms causing graft dysfunction. Multiple approaches have been taken in order to find efficient preconditioning methods by pharmacological pretreatment, controlled induction of ischemia, controlled denervation of donor organs, and reconditioning with machine perfusion to prevent IRI, whereas marginal organs (i.e. steatotic grafts) are especially vulnerable. Results The above-mentioned approaches have been pursued in experimental and clinical settings. At this time point, however, there is not yet enough clinical evidence available to recommend any particular drug pretreatment or any other intervention for organ preconditioning prior to transplantation. Conclusion The multifactorial pathophysiology in the setting of IRI in LT requires a multimodal therapeutic approach with the integration of pharmacological and technical means being applied to the donor, the organ per se, and the recipient. Currently, there is no consensus on standardized pretreatment of donor organs in order to improve the transplant outcome.
Collapse
Affiliation(s)
- Judith Kahn
- Department of General, Visceral and Transplant Surgery, University Hospital, Medical University of Graz, Graz, Austria.,Transplant Center Graz, Medical University of Graz, Graz, Austria
| | - Peter Schemmer
- Department of General, Visceral and Transplant Surgery, University Hospital, Medical University of Graz, Graz, Austria.,Transplant Center Graz, Medical University of Graz, Graz, Austria
| |
Collapse
|
23
|
Vinaixa C, Selzner N, Berenguer M. Fat and liver transplantation: clinical implications. Transpl Int 2018; 31:828-837. [DOI: 10.1111/tri.13288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/14/2018] [Accepted: 06/01/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Carmen Vinaixa
- Hepatology and Liver Transplantation Unit; Hospital Universitario y Politécnico La Fe; Valencia Spain
| | - Nazia Selzner
- Multi Organ Transplant Program; Liver Transplant Unit; University Health Network; University of Toronto; Toronto ON Canada
| | - Marina Berenguer
- Hepatology and Liver Transplantation Unit; Hospital Universitario y Politécnico La Fe; Valencia Spain
- CIBERehd; Instituto Carlos III; Madrid Spain
- Faculty of Medicine; University of Valencia; Valencia Spain
| |
Collapse
|
24
|
van Erp AC, van Dullemen LFA, Ploeg RJ, Leuvenink HGD. Systematic review on the treatment of deceased organ donors. Transplant Rev (Orlando) 2018; 32:194-206. [PMID: 30049604 DOI: 10.1016/j.trre.2018.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/04/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Currently, there is no consensus on which treatments should be a part of standard deceased-donor management to improve graft quality and transplantation outcomes. The objective of this systematic review was to evaluate the effects of treatments of the deceased, solid-organ donor on graft function and survival after transplantation. METHODS Pubmed, Embase, Cochrane, and Clinicaltrials.gov were systematically searched for randomized controlled trials that compared deceased-donor treatment versus placebo or no treatment. RESULTS A total of 33 studies were selected for this systematic review. Eleven studies were included for meta-analyses on three different treatment strategies. The meta-analysis on methylprednisolone treatment in liver donors (two studies, 183 participants) showed no effect of the treatment on rates of acute rejection. The meta-analysis on antidiuretic hormone treatment in kidney donors (two studies, 222 participants) indicates no benefit in the prevention of delayed graft function. The remaining meta-analyses (seven studies, 334 participants) compared the effects of 10 min of ischaemic preconditioning on outcomes after liver transplantation and showed that ischaemic preconditioning improved short-term liver function, but not long-term transplant outcomes. CONCLUSIONS There is currently insufficient evidence to conclude that any particular drug treatment or any intervention in the deceased donor improves long-term graft or patient survival after transplantation.
Collapse
Affiliation(s)
- Anne C van Erp
- Department of Surgery, University Medical Centre Groningen, the Netherlands.
| | | | - Rutger J Ploeg
- Nuffield Department of Surgical Sciences, University of Oxford, United Kingdom.
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Centre Groningen, the Netherlands.
| |
Collapse
|
25
|
Mangus R, Kinsella S, Farar D, Fridell J, Woolf L, Kubal C. Impact of Volatile Anesthetic Agents on Early Clinical Outcomes in Liver Transplantation. Transplant Proc 2018; 50:1372-1377. [DOI: 10.1016/j.transproceed.2018.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/01/2018] [Indexed: 12/19/2022]
|
26
|
DCD Liver Transplant: a Meta-review of the Evidence and Current Optimization Strategies. CURRENT TRANSPLANTATION REPORTS 2018. [DOI: 10.1007/s40472-018-0193-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
|
28
|
Hamar M, Selzner M. Steatotic donor livers: Where is the risk-benefit maximized? Liver Transpl 2017; 23:S34-S39. [PMID: 28734124 DOI: 10.1002/lt.24826] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Matyas Hamar
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, Toronto, Ontario, Canada
| | - Markus Selzner
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Robertson FP, Fuller BJ, Davidson BR. An Evaluation of Ischaemic Preconditioning as a Method of Reducing Ischaemia Reperfusion Injury in Liver Surgery and Transplantation. J Clin Med 2017; 6:jcm6070069. [PMID: 28708111 PMCID: PMC5532577 DOI: 10.3390/jcm6070069] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/22/2017] [Accepted: 07/04/2017] [Indexed: 12/16/2022] Open
Abstract
Liver Ischaemia Reperfusion (IR) injury is a major cause of post-operative liver dysfunction, morbidity and mortality following liver resection surgery and transplantation. There are no proven therapies for IR injury in clinical practice and new approaches are required. Ischaemic Preconditioning (IPC) can be applied in both a direct and remote fashion and has been shown to ameliorate IR injury in small animal models. Its translation into clinical practice has been difficult, primarily by a lack of knowledge regarding the dominant protective mechanisms that it employs. A review of all current studies would suggest that IPC/RIPC relies on creating a small tissue injury resulting in the release of adenosine and l-arginine which act through the Adenosine receptors and the haem-oxygenase and endothelial nitric oxide synthase systems to reduce hepatocyte necrosis and improve the hepatic microcirculation post reperfusion. The next key step is to determine how long the stimulus requires to precondition humans to allow sufficient injury to occur to release the potential mediators. This would open the door to a new therapeutic chapter in this field.
Collapse
Affiliation(s)
- Francis P Robertson
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| | - Barry J Fuller
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| | - Brian R Davidson
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
- Department of Hepaticopancreatobiliary Surgery and Liver Transplantation, Royal Free Foundation Trust, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| |
Collapse
|
30
|
Nickkholgh A, Maluf D. Emerging graft protective strategies in clinical liver transplantation. Expert Rev Gastroenterol Hepatol 2017; 11:623-631. [PMID: 28438069 DOI: 10.1080/17474124.2017.1322901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There have been remarkable efforts to characterize the key responsible pathophysiologic mechanisms, as well as to ameliorate the organ preservation and ischemia reperfusion injury with the ultimate goal of expanding the donor pool and further improvement of the outcomes of liver transplantation. Attempts to translate the experimental results from bench to bedside have yielded no valid protective concepts in the field of clinical liver transplantation yet. Nonetheless, there has been a considerable amount of ongoing clinical research to develop clinically relevant graft protective strategies. Areas covered: This review focuses on the most recent evidence based findings and ongoing clinical trials that might lead to emerging graft protective strategies in the field of clinical liver transplantation. New evidence-based findings in the donor preconditioning, organ preservation, and perioperative pharmacologic graft protection strategies in the recipient are reviewed. Expert commentary: Few strategies have been shown to exert some graft protective effects against ischemia reperfusion injury in recent clinical trials in liver transplantation. Among others, 'dynamic graft preservation' techniques have been emerging as more promising graft optimization strategies.
Collapse
Affiliation(s)
- Arash Nickkholgh
- a Department of Surgery , University of Virginia , Charlottesville , VA , USA
| | - Daniel Maluf
- a Department of Surgery , University of Virginia , Charlottesville , VA , USA
| |
Collapse
|
31
|
Selvaraj UM, Poinsatte K, Torres V, Ortega SB, Stowe AM. Heterogeneity of B Cell Functions in Stroke-Related Risk, Prevention, Injury, and Repair. Neurotherapeutics 2016; 13:729-747. [PMID: 27492770 PMCID: PMC5081124 DOI: 10.1007/s13311-016-0460-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is well established that post-stroke inflammation contributes to neurovascular injury, blood-brain barrier disruption, and poor functional recovery in both animal and clinical studies. However, recent studies also suggest that several leukocyte subsets, activated during the post-stroke immune response, can exhibit both pro-injury and pro-recovery phenotypes. In accordance with these findings, B lymphocytes, or B cells, play a heterogeneous role in the adaptive immune response to stroke. This review highlights what is currently understood about the various roles of B cells, with an emphasis on stroke risk factors, as well as post-stroke injury and repair. This includes an overview of B cell functions, such as antibody production, cytokine secretion, and contribution to the immune response as antigen presenting cells. Next, evidence for B cell-mediated mechanisms in stroke-related risk factors, including hypertension, diabetes, and atherosclerosis, is outlined, followed by studies that focus on B cells during endogenous protection from stroke. Subsequently, animal studies that investigate the role of B cells in post-stroke injury and repair are summarized, and the final section describes current B cell-related clinical trials for stroke, as well as other central nervous system diseases. This review reveals the complex role of B cells in stroke, with a focus on areas for potential clinical intervention for a disease that affects millions of people globally each year.
Collapse
Affiliation(s)
- Uma Maheswari Selvaraj
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Katherine Poinsatte
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Vanessa Torres
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Sterling B Ortega
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA.
| |
Collapse
|
32
|
Robertson FP, Magill LJ, Wright GP, Fuller B, Davidson BR. A systematic review and meta-analysis of donor ischaemic preconditioning in liver transplantation. Transpl Int 2016; 29:1147-1154. [PMID: 27564598 DOI: 10.1111/tri.12849] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/09/2016] [Accepted: 08/17/2016] [Indexed: 12/29/2022]
Abstract
Ischaemic preconditioning (IPC) is a strategy to reduce ischaemia-reperfusion (IR) injury. Its benefit in human liver transplantation is unclear. The aim of this study was to analyse the current evidence for donor IPC in liver transplantation. Systematic review and meta-analysis of studies involving IPC of liver transplant donors. Ovid Medline, Embase and Cochrane CENTRAL were searched up until January 2015. Data retrieved included the primary outcomes of 1-year mortality, incidence of primary graft non-function (PGNF) and retransplantation. Secondary outcomes included aspartate aminotransferase (AST) levels on day 3 post-op. Pooled odds ratios (ORs) were calculated for dichotomous data and mean weighted ratios for continuous data. Ten studies included 593 patients (286 IPC; 307 control). IPC was associated with a reduction in mortality at 1 year (6% vs. 11%) although this was not statistically significant (OR 0.54, 95% C.I. 0.28-1.04, P = 0.06). The IPC group had a significantly lower day 3 AST level (WMD -66.41iU, P = 0.04). This meta-analysis demonstrates that IPC reduces liver injury following transplantation and produces a large reduction in 1-year mortality which was not statistically significant. Confirmation of clinical benefit from IPC requires an adequately powered prospective RCT.
Collapse
Affiliation(s)
- Francis P Robertson
- Department of Surgery and Interventional Science, Royal Free Campus, University College London, London, UK.
| | - Louise J Magill
- Department of Surgery and Interventional Science, Royal Free Campus, University College London, London, UK
| | - Graham P Wright
- Department of Immunology, Craiglockhart Campus, Edinburgh Napier University, Edinburgh, UK
| | - Barry Fuller
- Department of Surgery and Interventional Science, Royal Free Campus, University College London, London, UK
| | - Brian R Davidson
- Department of Surgery and Interventional Science, Royal Free Campus, University College London, London, UK.,Department of HPB and Liver Transplantation, Royal Free Hospital, London, UK
| |
Collapse
|
33
|
Longo L, Sinigaglia-Fratta LX, Weber GR, Janz-Moreira A, Kretzmann NA, Grezzana-Filho TDJM, Possa-Marroni N, Corso CO, Schmidt-Cerski CT, Reverbel-da-Silveira T, Álvares-da-Silva MR, dos-Santos JL. Hypothermia is better than ischemic preconditioning for preventing early hepatic ischemia/reperfusion in rats. Ann Hepatol 2016; 15:110-20. [PMID: 26626646 DOI: 10.5604/16652681.1184285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Topical hypothermia (TH) and ischemic preconditioning (IPC) are used to decrease I/R injury. The efficacy of isolated or combined use of TH and IPC in the liver regarding inflammation and cytoprotection in early ischemia/reperfusion (I/R) injury needs to be evaluated. MATERIAL AND METHODS Wistar rats underwent 70% liver ischemia for 90 min followed by 120 min of reperfusion. Livers of animals allocated in the sham, normothermic ischemia (NI), IPC, TH, and TH+IPC groups were collected for molecular analyses by ELISA and Western blot, aiming to compare proinflammatory, anti-inflammatory, and antioxidant profiles. RESULTS Compared with NI, TH presented decreased tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-12 concentrations and increased IL-10 levels. TH animals displayed lower inducible nitric oxide synthase (iNOS) and higher endothelial nitric oxide synthase (eNOS) expressions. NAD(P)H-quinone oxidoreductase-1(NQO1) expression was also lower with TH. Isolated IPC and NI were similar regarding all these markers. TH+IPC was associated with decreased IL-12 concentration and reduced iNOS and NQO1 expressions, similarly to isolated TH. Expression of Kelch-like ECH-associated protein (Keap)-1 was increased and expression of nuclear and cytosolic nuclear erythroid 2-related factor 2 (Nrf2) was decreased with TH+IPC vs. NI. CONCLUSION TH was the most effective method of protection against early I/R injury. Isolated IPC entailed triggering of second-line antioxidant defense enzymes. Combined TH+IPC seemed to confer no additional advantage over isolated TH in relation to the inflammatory process, but had the advantage of completely avoid second-line antioxidant defense enzymes.
Collapse
Affiliation(s)
- Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Leila Xavier Sinigaglia-Fratta
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Giovana R Weber
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Andrea Janz-Moreira
- Experimental Laboratory of Hepatology and Gastroenterology,Porto Alegre, Brazil
| | | | | | - Norma Possa-Marroni
- Experimental Laboratory of Hepatology and Gastroenterology,Porto Alegre, Brazil
| | | | | | | | - Mário R Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Jorge L dos-Santos
- Experimental Laboratory of Hepatology and Gastroenterology,Porto Alegre, Brazil
| |
Collapse
|
34
|
Robertson FP, Goswami R, Wright GP, Fuller B, Davidson BR. Protocol for a prospective randomized controlled trial of recipient remote ischaemic preconditioning in orthotopic liver transplantation (RIPCOLT trial). Transplant Res 2016; 5:4. [PMID: 27054029 PMCID: PMC4822296 DOI: 10.1186/s13737-016-0033-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/31/2016] [Indexed: 12/12/2022] Open
Abstract
Abstract Ischaemic reperfusion (IR) injury is a major cause of graft loss, morbidity and mortality following orthotopic liver transplantation (OLT). Demand for liver transplantation has resulted in increasing use of marginal grafts that are more prone to IR injury. Remote ischaemic preconditioning (RIPC) reduces IR injury in experimental models, but recipient RIPC has not been evaluated clinically. Methods A single-centre double-blind randomized controlled trial (RCT) is planned to test the hypothesis that recipient RIPC will reduce IR injury. RIPC will be performed following recipient anaesthetic induction but prior to skin incision. The protocol involves 3 cycles of 5 min of lower limb occlusion with a pneumatic tourniquet inflated to 200 mmHg alternating with 5 min of reperfusion. In the control group, the sham will involve the cuff being placed on the thigh but without being inflated. The primary endpoint is ability to recruit patients to the trial and safety of RIPC. The key secondary endpoint is a reduction in serum aspartate transferase levels on the third post-operative day. Discussion RIPC is a promising strategy to reduce IR injury in liver transplant recipients as there is a clear experimental basis, and the intervention is both inexpensive and easy to perform. This is the first trial to investigate RIPC in liver transplant recipients. Trial registration Clinicaltrials.gov NCT00796588 Electronic supplementary material The online version of this article (doi:10.1186/s13737-016-0033-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francis P Robertson
- Department of Surgery and Interventional Science, Royal Free Campus, Royal Free Hospital, University College London, 9th Floor, Pond Street, London, NW3 2QG UK
| | - Rup Goswami
- Department of Surgery and Interventional Science, Royal Free Campus, Royal Free Hospital, University College London, 9th Floor, Pond Street, London, NW3 2QG UK
| | | | - Barry Fuller
- Department of Surgery and Interventional Science, Royal Free Campus, Royal Free Hospital, University College London, 9th Floor, Pond Street, London, NW3 2QG UK
| | - Brian R Davidson
- Department of Surgery and Interventional Science, Royal Free Campus, Royal Free Hospital, University College London, 9th Floor, Pond Street, London, NW3 2QG UK ; HPB and Liver Transplant Unit, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG UK
| |
Collapse
|
35
|
Cornide-Petronio ME, Negrete-Sánchez E, Mendes-Braz M, Casillas-Ramírez A, Bujaldon E, Meroño N, Martínez-Carreres L, Gracia-Sancho J, Rodés J, Jiménez-Castro MB, Peralta C. The Effect of High-Mobility Group Box 1 in Rat Steatotic and Nonsteatotic Liver Transplantation From Donors After Brain Death. Am J Transplant 2016; 16:1148-59. [PMID: 26704922 DOI: 10.1111/ajt.13560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 01/25/2023]
Abstract
High-mobility group box 1 (HMGB1) has been described in different inflammatory disorders, and the deleterious effects of brain death (BD) may counteract the protection conferred by ischemic preconditioning (IP), the only surgical strategy that is being applied in clinical liver transplantation. Our study examined how HMGB1 may affect preconditioned and unpreconditioned steatotic and nonsteatotic liver grafts from donors after BD (DBDs) for transplantation. HMGB1 was pharmacologically modulated in liver grafts from DBDs, and HMGB1-underlying mechanisms were characterized. We found that BD decreased HMGB1 in preconditioned and unpreconditioned livers and was associated with inflammation and damage. Exogenous HMGB1 in DBDs activates phosphoinositide-3-kinase and Akt and reduces hepatic inflammation and damage, increasing the survival of recipients. Combination of IP and exogenous HMGB1 shows additional benefits compared with HMGB1 alone. This study provides new mechanistic insights into the pathophysiology of BD-derived liver graft damage and contributes to the development of novel and efficient strategies to ultimately improve liver graft quality.
Collapse
Affiliation(s)
- M E Cornide-Petronio
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - E Negrete-Sánchez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - M Mendes-Braz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - A Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria, Ciudad Victoria, México
| | - E Bujaldon
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - N Meroño
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - L Martínez-Carreres
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - J Gracia-Sancho
- Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - J Rodés
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain.,Liver Unit, Hospital Clínic, Barcelona, Spain
| | - M B Jiménez-Castro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - C Peralta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| |
Collapse
|
36
|
Tashiro H, Kuroda S, Mikuriya Y, Ohdan H. Ischemia–reperfusion injury in patients with fatty liver and the clinical impact of steatotic liver on hepatic surgery. Surg Today 2015; 44:1611-25. [PMID: 24078000 DOI: 10.1007/s00595-013-0736-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/22/2013] [Indexed: 12/15/2022]
Abstract
Hepatic steatosis is one of the most common hepatic disorders in developed countries. The epidemic of obesity in developed countries has increased with its attendant complications, including metabolic syndrome and non-alcoholic fatty liver disease. Steatotic livers are particularly vulnerable to ischemia/reperfusion injury, resulting in an increased risk of postoperative morbidity and mortality after liver surgery, including liver transplantation. There is growing understanding of the molecular and cellular mechanisms and therapeutic approaches for treating ischemia/reperfusion injury in patients with steatotic livers. This review discusses the mechanisms underlying the susceptibility of steatotic livers to ischemia/reperfusion injuries, such as mitochondrial dysfunction and signal transduction alterations, and summarizes the clinical impact of steatotic livers in the setting of hepatic resection and liver transplantation. This review also describes potential therapeutic approaches, such as ischemic and pharmacological preconditioning, to prevent ischemia/reperfusion injury in patients with steatotic livers. Other approaches, including machine perfusion, are also under clinical investigation; however, many pharmacological approaches developed through basic research are not yet suitable for clinical application.
Collapse
|
37
|
|
38
|
Is Ischemic Preconditioning a Useful Therapeutic Strategy in Liver Transplantation? Results from the First Pilot Study in Mexico. Arch Med Res 2015; 46:296-302. [DOI: 10.1016/j.arcmed.2015.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/04/2015] [Indexed: 12/11/2022]
|
39
|
Impact of ischemic preconditioning on outcome in clinical liver surgery: a systematic review. BIOMED RESEARCH INTERNATIONAL 2015; 2015:370451. [PMID: 25756045 PMCID: PMC4338382 DOI: 10.1155/2015/370451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/30/2015] [Accepted: 01/31/2015] [Indexed: 12/17/2022]
Abstract
Background. Ischemia-reperfusion injury is a major cause of post-liver-surgery complications. Ischemic preconditioning (IPC) has been demonstrated to protect against ischemia-reperfusion injury. Clinical studies have examined IPC in liver surgery but with conflicting results. This systematic review aimed to evaluate the effects of IPC on outcome in clinical liver surgery. Methods. An electronic search of OVID Medline and Embase databases was performed to identify studies that reported outcomes in patients undergoing liver surgery subjected to IPC. Basic descriptive statistics were used to summarise data from individual clinical studies. Results. 1093 articles were identified, of which 24 met the inclusion criteria. Seven topics were selected and analysed by subgroup. There were 10 studies in cadaveric liver transplantation, 2 in living-related liver transplantation, and 12 in liver resection. IPC decreases hepatocellular damage in liver surgery as determined by transaminases but does not translate to any significant clinical benefit in orthotopic liver transplant or liver resection. Conclusions. Available clinical evidence does not support routine use of IPC in liver surgery as it does not offer any apparent benefit in perioperative outcome. Further clinical studies will need to be carried out to determine the subset of patients that will benefit from IPC.
Collapse
|
40
|
Ischemic preconditioning protects against liver ischemia/reperfusion injury via heme oxygenase-1-mediated autophagy. Crit Care Med 2015; 42:e762-71. [PMID: 25402296 DOI: 10.1097/ccm.0000000000000659] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Ischemic preconditioning exerts a protective effect in hepatic ischemia/reperfusion injury. The exact mechanism of ischemic preconditioning action remains largely unknown. Recent studies suggest that autophagy plays an important role in protecting against ischemia/reperfusion injury. However, the role of autophagy in ischemic preconditioning-afforded protection and its regulatory mechanisms in liver ischemia/reperfusion injury remain poorly understood. This study was designed to determine whether ischemic preconditioning could protect against liver ischemia/reperfusion injury via heme oxygenase-1-mediated autophagy. DESIGN Laboratory investigation. SETTING University animal research laboratory. SUBJECTS Male inbred Lewis rats and C57BL/6 mice. INTERVENTIONS Ischemic preconditioning was produced by 10 minutes of ischemia followed by 10 minutes of reperfusion prior to 60 minutes of ischemia. In a rat model of hepatic ischemia/reperfusion injury, rats were pretreated with wortmannin or rapamycin to evaluate the contribution of autophagy to the protective effects of ischemic preconditioning. Heme oxygenase-1 was inhibited with tin protoporphyrin IX. In a mouse model of hepatic ischemia/reperfusion injury, autophagy or heme oxygenase-1 was inhibited with vacuolar protein sorting 34 small interfering RNA or heme oxygenase-1 small interfering RNA, respectively. MEASUREMENTS AND MAIN RESULTS Ischemic preconditioning ameliorated liver ischemia/reperfusion injury, as indicated by lower serum aminotransferase levels, lower hepatic inflammatory cytokines, and less severe ischemia/reperfusion-associated histopathologic changes. Ischemic preconditioning treatment induced autophagy activation, as indicated by an increase of LC3-II, degradation of p62, and accumulation of autophagic vacuoles in response to ischemia/reperfusion injury. When ischemic preconditioning-induced autophagy was inhibited with wortmannin in rats or vacuolar protein sorting 34-specific small interfering RNA in mice, liver ischemia/reperfusion injury was worsened, whereas rapamycin treatment increased autophagy and mimicked the protective effects of ischemic preconditioning. Furthermore, ischemic preconditioning increased heme oxygenase-1 expression. The inhibition of heme oxygenase-1 with tin protoporphyrin IX in rats or heme oxygenase-1-specific small interfering RNA in mice decreased ischemic preconditioning-induced autophagy and diminished the protective effects of ischemic preconditioning against ischemia/reperfusion injury. CONCLUSIONS Ischemic preconditioning protects against liver ischemia/reperfusion injury, at least in part, via heme oxygenase-1-mediated autophagy.
Collapse
|
41
|
Chu MJJ, Vather R, Hickey AJR, Phillips ARJ, Bartlett ASJR. Impact of ischaemic preconditioning on experimental steatotic livers following hepatic ischaemia-reperfusion injury: a systematic review. HPB (Oxford) 2015; 17:1-10. [PMID: 24712641 PMCID: PMC4266433 DOI: 10.1111/hpb.12258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/14/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Steatotic livers are vulnerable to the deleterious effects of ischaemia-reperfusion injury (IRI) that occur after hepatic surgery. Ischaemic preconditioning (IPC) has been shown to abrogate the effects of IRI in patients undergoing hepatic surgery. Experimental studies have suggested that IPC may be beneficial in steatotic livers subjected to IRI. OBJECTIVE The aim of this systematic review was to evaluate the effects of IPC on steatotic livers following hepatic IRI in experimental models. METHODS An electronic search of the OVID Medline and EMBASE databases was performed to identify studies that reported clinically relevant outcomes in animal models of hepatic steatosis subjected to IPC and IRI. RESULTS A total of 1093 articles were identified, of which 18 met the inclusion criteria. There was considerable heterogeneity in the type of animal model, and duration and type of IRI. Increased macrovesicular steatosis (> 30%) was associated with a poor outcome following IRI. Ischaemic preconditioning was found to be beneficial in > 30% steatotic livers and provided for decreased histological damage, improved liver function findings and increased survival. CONCLUSIONS Experimental evidence supports the use of IPC in steatotic livers undergoing IRI. These findings may be applicable to patients undergoing liver surgery. However, clinical studies are required to validate the efficacy of IPC in this setting.
Collapse
Affiliation(s)
- Michael J J Chu
- Department of Surgery, University of AucklandAuckland, New Zealand,Correspondence, Michael J. J. Chu, Department of Surgery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand. Tel: + 64 2134 5320. Fax: + 64 9 377 9656. E-mail:
| | - Ryash Vather
- Department of Surgery, University of AucklandAuckland, New Zealand
| | - Anthony J R Hickey
- Maurice Wilkins Centre for Biodiscovery, University of AucklandAuckland, New Zealand,School of Biological Sciences, University of AucklandAuckland, New Zealand
| | - Anthony R J Phillips
- Department of Surgery, University of AucklandAuckland, New Zealand,Maurice Wilkins Centre for Biodiscovery, University of AucklandAuckland, New Zealand,School of Biological Sciences, University of AucklandAuckland, New Zealand,New Zealand Liver Transplant Unit, Auckland City HospitalAuckland, New Zealand
| | - Adam S J R Bartlett
- Department of Surgery, University of AucklandAuckland, New Zealand,School of Biological Sciences, University of AucklandAuckland, New Zealand,New Zealand Liver Transplant Unit, Auckland City HospitalAuckland, New Zealand
| |
Collapse
|
42
|
Jiménez-Castro MB, Meroño N, Mendes-Braz M, Gracia-Sancho J, Martínez-Carreres L, Cornide-Petronio ME, Casillas-Ramirez A, Rodés J, Peralta C. The effect of brain death in rat steatotic and non-steatotic liver transplantation with previous ischemic preconditioning. J Hepatol 2015; 62:83-91. [PMID: 25111175 DOI: 10.1016/j.jhep.2014.07.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/09/2014] [Accepted: 07/28/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Most liver grafts undergoing transplantation derive from brain dead donors, which may also show hepatic steatosis, being both characteristic risk factors in liver transplantation. Ischemic preconditioning shows benefits when applied in non-brain dead clinical situations like hepatectomies, whereas it has been less promising in the transplantation from brain dead patients. This study examined how brain death affects preconditioned steatotic and non-steatotic liver grafts undergoing transplantation. METHODS Steatotic and non-steatotic grafts from non-brain dead and brain dead-donors were cold stored for 6h and then transplanted. After 2, 4, and 16 h of reperfusion, hepatic damage was analysed. In addition, two therapeutic strategies, ischemic preconditioning and/or acetylcholine pre-treatment, and their underlying mechanisms were characterized. RESULTS Preconditioning benefits in non-brain dead donors were associated with nitric oxide and acetylcholine generation. In brain dead donors, preconditioning generated nitric oxide but did not promote acetylcholine upregulation, and this resulted in inflammation and damage. Acetylcholine treatment in brain dead donors, through PKC, increased antioxidants and reduced lipid peroxidation, nitrotyrosines and neutrophil accumulation, altogether protecting against damage. The combination of acetylcholine and preconditioning conferred stronger protection against damage, oxidative stress and neutrophil accumulation than acetylcholine treatment alone. These superior beneficial effects were due to a selective preconditioning-mediated generation of nitric oxide and regulation of PPAR and TLR4 pathways, which were not observed when acetylcholine was administered alone. CONCLUSIONS Our findings propose the combination of acetylcholine+preconditioning as a feasible and highly protective strategy to reduce the adverse effects of brain death and to ultimately improve liver graft quality.
Collapse
Affiliation(s)
| | - Noelia Meroño
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mariana Mendes-Braz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Gracia-Sancho
- Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS, CIBEREHD, Barcelona, Spain
| | | | | | | | - Juan Rodés
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Liver Unit, Hospital Clínic, Barcelona, Spain
| | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
43
|
Abstract
Liver transplantation is the best therapy in end-stage liver disease. Donor organ shortage and efforts to expand the donor organ pool are permanent issues given that advances in perioperative management and immunosuppressive therapy have brought the procedure into widespread clinical use. The management of organ procurement, including donor preconditioning and adequate organ storage, has a key role in transplantation. However, the organ procurement process can differ substantially between transplant centres, depending on local and national preferences. Advances in the field have come from experimental and clinical research on dynamic storage systems, such as machine perfusion devices, as an alternative to static cold storage. Determination of the clinical significance of these new systems is a topic worthy of future investigations.
Collapse
|
44
|
Desai KK, Mora-Esteves C, Holland BK, Dikdan G, Fisher A, Wilson DJ, Koneru B. Does Liver Ischemic Preconditioning in Brain Death Donors Induce Kidney Preconditioning? A Retrospective Analysis. Transplantation 2014; 97:337-43. [DOI: 10.1097/01.tp.0000436926.30897.56] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Ischemic preconditioning decreased leukotriene C4 formation by depressing leukotriene C4 synthase expression and activity during hepatic I/R injury in rats. J Surg Res 2012; 178:1015-21. [DOI: 10.1016/j.jss.2012.07.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 12/11/2022]
|
46
|
Review of Randomized Clinical Trials of Donor Management and Organ Preservation in Deceased Donors. Transplantation 2012; 94:425-41. [DOI: 10.1097/tp.0b013e3182547537] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
The Current Knowledge of the Role of PPAR in Hepatic Ischemia-Reperfusion Injury. PPAR Res 2012; 2012:802384. [PMID: 22675337 PMCID: PMC3363006 DOI: 10.1155/2012/802384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/16/2012] [Indexed: 12/15/2022] Open
Abstract
Strategies to improve the viability of steatotic livers could reduce the risk of dysfunction after surgery and increase the number of organs suitable for transplantation. Peroxisome proliferator-activated receptors (PPARs) are major regulators of lipid metabolism and inflammation. In this paper, we review the PPAR signaling pathways and present some of their lesser-known functions in liver regeneration. Potential therapies based on PPAR regulation will be discussed. The data suggest that further investigations are required to elucidate whether PPAR could be a potential therapeutic target in liver surgery and to determine the most effective therapies that selectively regulate PPAR with minor side effects.
Collapse
|
48
|
McKeown DW, Bonser RS, Kellum JA. Management of the heartbeating brain-dead organ donor. Br J Anaesth 2012; 108 Suppl 1:i96-107. [PMID: 22194439 DOI: 10.1093/bja/aer351] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The main factor limiting organ donation is the availability of suitable donors and organs. Currently, most transplants follow multiple organ retrieval from heartbeating brain-dead organ donors. However, brain death is often associated with marked physiological instability, which, if not managed, can lead to deterioration in organ function before retrieval. In some cases, this prevents successful donation. There is increasing evidence that moderation of these pathophysiological changes by active management in Intensive Care maintains organ function, thereby increasing the number and functional quality of organs available for transplantation. This strategy of active donor management requires an alteration of philosophy and therapy on the part of the intensive care unit clinicians and has significant resource implications if it is to be delivered reliably and safely. Despite increasing consensus over donor management protocols, many of their components have not yet been subjected to controlled evaluation. Hence the optimal combinations of treatment goals, monitoring, and specific therapies have not yet been fully defined. More research into the component techniques is needed.
Collapse
Affiliation(s)
- D W McKeown
- Department of Anaesthesia, Critical Care and Pain Medicine, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 5SA, UK.
| | | | | |
Collapse
|
49
|
Zeng Z, Huang HF, Chen MQ, Song F, Zhang YJ. Contributions of heme oxygenase-1 in postconditioning-protected ischemia-reperfusion injury in rat liver transplantation. Transplant Proc 2012; 43:2517-23. [PMID: 21911116 DOI: 10.1016/j.transproceed.2011.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 03/18/2011] [Accepted: 04/21/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND Heme oxygenase-1 (HO-1), an oxidative stress-response gene up-regulated by various physiological and exogenous stimuli, has cytoprotective activities. Ischemic postconditioning (Postcon) can protect an organ from ischemia-reperfusion (I/R) injury. In the present study, we investigated the potential contributions of HO-1 to Postcon-dependent protection against I/R injury in rat liver transplantation models. MATERIALS AND METHODS Adult male Sprague-Dawley rats were randomly divided into four groups: sham group with laparotomy for liver exposure; I/R group with 24-hour cold ischemia of the donor liver; Postcon group with the same treatment as the I/R group plus ischemic Postcon; and zinc protoporphyrin (ZnPP HO-1 inhibitor) + Postcon group treated the same as the Postcon cohort with donors pretreated using ZnPP 24 hours before the I/R injury. We measured liver tissue and peripheral blood samples collected at 6 hours after reperfusion and serum transaminase levels, histopathology, liver tissue malondialdehyde (MDA) content, superoxide dismutase (SOD) activity and HO-1 expression in the liver. RESULTS Postcon significantly diminished the elevation of serum transaminases levels after I/R injury when compared with I/R and ZnPP+Postcon groups. Postcon treated rats showed significantly lower MDA production and higher SOD activity. HO-1 was induced in rat livers exposed to Postcon; its levels were obviously overexpressed after 6 hours in Postcon rats. Inhibiting the expression of HO-1, negated the protective effects of Postcon. CONCLUSIONS Induction of HO-1 in the Postcon condition played a protective role against hepatic I/R injury and enhanced the early antioxidative activity. The protective effects of Postcon were significantly associated with greater intrahepatic HO-1 expression.
Collapse
Affiliation(s)
- Z Zeng
- Organ Transplant Center, The First Affiliated Hospital of Kunming Medical College, Kunming, China.
| | | | | | | | | |
Collapse
|
50
|
McNally SJ, Wigmore SJ. The Scottish Liver Transplant Unit: current and future perspectives. Scott Med J 2011; 56:223-6. [PMID: 22089045 DOI: 10.1258/smj.2011.011162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Scottish Liver Transplant Unit (SLTU) opened in 1992 and has now performed over 900 liver transplants. During this time there have been major changes in both organ donation and transplantation. Currently liver transplantation is restricted by limited organ supply. Scotland has one of the lowest rates of organ donation in Europe and one of the most rapidly increasing rates of cirrhosis. The consequent waiting list mortality has driven innovations including increasing use of marginal grafts, organs donated after cardiac death, split-liver transplants and the development of living-donor liver transplantation. To maintain liver transplantation, there is an urgent need to increase organ donation rates and to find novel treatments which optimize outcomes from marginal grafts. This review addresses the surgical aspects of liver transplantation and how these have evolved over the two past decades. Major changes are currently underway in organ donation organization, and there is continuing refinement of organ treatment and storage. A number of measures to maintain and improve organ preservation and function are currently being evaluated in clinical trials, and cell therapy holds significant potential for the future. Scotland has a rising need for liver transplantation and the SLTU continues to provide high-quality care and to be at the forefront of the latest advances in organ transplantation.
Collapse
Affiliation(s)
- S J McNally
- Scottish Liver Transplant Unit, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, Scotland, UK.
| | | |
Collapse
|