1
|
Sasaki H, Tanabe T, Tsuji T, Hotta K. Mechanism and treatment for chronic antibody-mediated rejection in kidney transplant recipients. Int J Urol 2023; 30:624-633. [PMID: 37306194 DOI: 10.1111/iju.15197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/11/2023] [Indexed: 06/13/2023]
Abstract
Chronic antibody-mediated rejection of kidney transplantation is a major cause of late-stage graft loss. Donor-specific antibodies are the main cause of antibody-mediated rejection; in particular, de novo donor-specific antibodies are a risk factor for chronic active antibody-mediated rejection. The level of de novo donor-specific antibodies tends to increase with time throughout long-term graft survival. Donor-specific antibodies induce humoral rejection through complement activation, which results in tissue injury and coagulation. Additionally, complement activation promotes the migration of inflammatory cells through the innate immune response, causing endothelial injury. This inflammatory response may cause persistent glomerulitis and peritubular capillaritis, leading to fixed pathological lesions that impair graft function. No treatment has been established for chronic antibody-mediated rejection, a condition in which antibody-mediated rejection becomes irreversible. Thus, antibody-mediated rejection must be detected and treated while it is still reversible. In this review, we discuss the development of de novo donor-specific antibodies and the mechanisms leading to chronic antibody-mediated rejection and summarize the current treatment options and the latest biomarkers for detecting chronic antibody-mediated rejection at an earlier stage.
Collapse
Affiliation(s)
- Hajime Sasaki
- Division of Renal Surgery and Transplantation, Department of Urology, Jichi Medical University Hospital, Shimotsuke, Japan
- Department of Kidney Transplant Surgery, Sapporo City General Hospital, Sapporo, Japan
| | - Tatsu Tanabe
- Department of Kidney Transplant Surgery, Sapporo City General Hospital, Sapporo, Japan
| | - Takahiro Tsuji
- Department of Pathology, Sapporo City General Hospital, Sapporo, Japan
| | - Kiyohiko Hotta
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
2
|
van den Broek DAJ, Meziyerh S, Budde K, Lefaucheur C, Cozzi E, Bertrand D, López del Moral C, Dorling A, Emonds MP, Naesens M, de Vries APJ. The Clinical Utility of Post-Transplant Monitoring of Donor-Specific Antibodies in Stable Renal Transplant Recipients: A Consensus Report With Guideline Statements for Clinical Practice. Transpl Int 2023; 36:11321. [PMID: 37560072 PMCID: PMC10408721 DOI: 10.3389/ti.2023.11321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/22/2023] [Indexed: 08/11/2023]
Abstract
Solid phase immunoassays improved the detection and determination of the antigen-specificity of donor-specific antibodies (DSA) to human leukocyte antigens (HLA). The widespread use of SPI in kidney transplantation also introduced new clinical dilemmas, such as whether patients should be monitored for DSA pre- or post-transplantation. Pretransplant screening through SPI has become standard practice and DSA are readily determined in case of suspected rejection. However, DSA monitoring in recipients with stable graft function has not been universally established as standard of care. This may be related to uncertainty regarding the clinical utility of DSA monitoring as a screening tool. This consensus report aims to appraise the clinical utility of DSA monitoring in recipients without overt signs of graft dysfunction, using the Wilson & Junger criteria for assessing the validity of a screening practice. To assess the evidence on DSA monitoring, the European Society for Organ Transplantation (ESOT) convened a dedicated workgroup, comprised of experts in transplantation nephrology and immunology, to review relevant literature. Guidelines and statements were developed during a consensus conference by Delphi methodology that took place in person in November 2022 in Prague. The findings and recommendations of the workgroup on subclinical DSA monitoring are presented in this article.
Collapse
Affiliation(s)
- Dennis A. J. van den Broek
- Division of Nephrology, Department of Medicine, Leiden Transplant Center, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Soufian Meziyerh
- Division of Nephrology, Department of Medicine, Leiden Transplant Center, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Lefaucheur
- Paris Translational Research Center for Organ Transplantation, Kidney Transplant Department, Saint Louis Hospital, Université de Paris Cité, Paris, France
| | - Emanuele Cozzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| | - Dominique Bertrand
- Department of Nephrology, Transplantation and Hemodialysis, Rouen University Hospital, Rouen, France
| | - Covadonga López del Moral
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
- Valdecilla Biomedical Research Institute (IDIVAL), Santander, Spain
| | - Anthony Dorling
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology & Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Marie-Paule Emonds
- Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross-Flanders, Mechelen, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Aiko P. J. de Vries
- Division of Nephrology, Department of Medicine, Leiden Transplant Center, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | | |
Collapse
|
3
|
Haas M, Mirocha J, Huang E, Najjar R, Peng A, Sethi S, Vo A, Anglicheau D, Jordan SC, Rabant M. A Banff-based histologic chronicity index is associated with graft loss in patients with a kidney transplant and antibody-mediated rejection. Kidney Int 2023; 103:187-195. [PMID: 36332728 PMCID: PMC11466365 DOI: 10.1016/j.kint.2022.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 09/16/2022] [Indexed: 11/15/2022]
Abstract
Antibody-mediated rejection (AMR) is the major cause of graft loss in kidney transplant recipients. The Banff classification defines two classes of AMR, active and chronic active but over time this classification has become increasingly complex. To simplify the approach to AMR, we developed activity and chronicity indices based on kidney transplant biopsy findings and examined their association with graft survival in 147 patients with active or chronic active AMR, all of whom had donor-specific antibodies and were treated for AMR. The activity index was determined as the sum of Banff glomerulitis (g), peritubular capillaritis (ptc), arteritis (v) and C4d scores, with a maximum score of 12. The chronicity index was the sum of interstitial fibrosis (ci), tubular atrophy (ct), chronic vasculopathy (cv), and chronic glomerulopathy (cg) scores, the latter doubled, with a maximum score of 15. While the activity index was generally not associated with graft loss, the chronicity index was significantly associated with graft loss with an optimal threshold value of 4 or greater for predicting graft loss. The association of the chronicity index of 4 or greater with graft loss was independent of other parameters associated with graft loss, including the estimated glomerular filtration rate at the time of biopsy, chronic active (versus active) AMR, AMR with de novo (versus persistent/rebound) donor-specific antibodies, Banff (g+ptc) scores, concurrent T cell-mediated rejection and donor-specific antibody reduction post-biopsy. The association of the chronicity index of 4 or greater with graft loss was confirmed in an independent cohort of 61 patients from Necker Hospital, Paris. Thus, our findings suggest that the chronicity index may be valuable as a simplified approach to decision-making in patients with AMR.
Collapse
Affiliation(s)
- Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | - James Mirocha
- General Clinical Research Center, Clinical & Translational Science Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Edmund Huang
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Reiad Najjar
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alice Peng
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Supreet Sethi
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ashley Vo
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dany Anglicheau
- Deparment of Nephrology and Kidney Transplantation, Necker-Enfants Malades Hospital, AP-HP, INSERM U1151, Université Paris Cite, Paris, France
| | - Stanley C Jordan
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Marion Rabant
- Department of Pathology, Necker-Enfants Malades Hospital, AP-HP, Université Paris Cite, Paris, France
| |
Collapse
|
4
|
Coemans M, Senev A, Van Loon E, Lerut E, Sprangers B, Kuypers D, Emonds MP, Verbeke G, Naesens M. The evolution of histological changes suggestive of antibody-mediated injury, in the presence and absence of donor-specific anti-HLA antibodies. Transpl Int 2021; 34:1824-1836. [PMID: 34197662 DOI: 10.1111/tri.13964] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/01/2021] [Accepted: 06/27/2021] [Indexed: 11/26/2022]
Abstract
The interplay between donor-specific anti-HLA antibodies (HLA-DSA), histology of active antibody-mediated rejection (aABMRh ), transplant glomerulopathy (cg) and graft failure in kidney transplantation remains insufficiently understood. We performed a single-center cohort study (n=1000) including 2761 protocol and 833 indication biopsies. Patients with pre-transplant HLA-DSA were more prone to develop aABMRh (OR 22.7, 95% CI, 11.8 - 43.7, p<0.001), cg (OR 5.76, 95% CI, 1.67 - 19.8, p=0.006) and aABMRh/cg (OR 19.5, 95% CI, 10.6 - 35.9, p<0.001). The negative impact of pre-transplant HLA-DSA on graft survival (HR 2.12, 95% CI, 1.41 - 3.20, p<0.001) was partially mediated through aABMRh and cg occurrence. When adjusted for time-dependent HLA-DSA (HR 4.03, 95% CI, 2.21 - 7.15, p=0.002), graft failure was only affected by aABMRh when cg was evident. In HLA-DSA negative patients, aABMRh was associated with impaired graft outcome only when evolving to cg (HR 1.32, 95% CI, 1.07 - 1.61, p=0.008). We conclude that the kinetics of HLA-DSA are important to estimate the rate of graft failure, and that histological follow-up is necessary to discover, often subclinical, ABMR and cg. In the absence of HLA-DSA, patients experience similar histological lesions and the evolution to transplant glomerulopathy associates with impaired graft outcome.
Collapse
Affiliation(s)
- Maarten Coemans
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Leuven Biostatistics and Statistical Bioinformatics Centre (L-BioStat), Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Aleksandar Senev
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Histocompatibility and Immunogenetics Laboratory, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Elisabet Van Loon
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Evelyne Lerut
- Department of Imaging & Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Ben Sprangers
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Kuypers
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Marie-Paule Emonds
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Histocompatibility and Immunogenetics Laboratory, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Geert Verbeke
- Leuven Biostatistics and Statistical Bioinformatics Centre (L-BioStat), Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Reese SR, Wilson NA, Huang Y, Ptak L, Degner KR, Xiang D, Redfield RR, Zhong W, Panzer SE. B-cell Deficiency Attenuates Transplant Glomerulopathy in a Rat Model of Chronic Active Antibody-mediated Rejection. Transplantation 2021; 105:1516-1529. [PMID: 33273321 PMCID: PMC8106694 DOI: 10.1097/tp.0000000000003530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Transplant glomerulopathy (TG) is a pathological feature of chronic active antibody-mediated rejection (cAMR) and is associated with renal allograft failure. The specific role of B cells in the pathogenesis of TG is unclear. METHODS We used a minor mismatched rat kidney transplant model with B cell-deficient recipients, generated by clustered regularly interspaced short palindromic repeats/Cas9 technology, to investigate the impact of B-cell depletion on the pathogenesis of TG. We hypothesized that B-cell deficiency would prevent TG in the rat kidney transplant model of cAMR. Treatment groups included syngeneic, allogeneic, sensitized allogeneic, and B cell-deficient allogeneic transplant recipients. RESULTS B cell-deficient recipients demonstrated reduced TG lesions, decreased microvascular inflammation, reduced allograft infiltrating macrophages, and reduced interferon gamma transcripts within the allograft. Allograft transcript levels of interferon gamma, monocyte chemoattractant protein-1, and interleukin-1β correlated with numbers of intragraft macrophages. B cell-deficient recipients lacked circulating donor-specific antibodies and had an increased splenic regulatory T-cell population. CONCLUSIONS In this model of cAMR, B-cell depletion attenuated the development of TG with effects on T cell and innate immunity.
Collapse
Affiliation(s)
- Shannon R. Reese
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, WI, United States
| | - Nancy A. Wilson
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, WI, United States
| | - Yabing Huang
- Department of Pathology, Renmin Hospital of Wuhan University, China
| | - Lucille Ptak
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, WI, United States
| | - Kenna R. Degner
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, WI, United States
| | - Ding Xiang
- Department of Organ Transplantation, Xiangya Hospital, Central South University, China
| | - Robert R. Redfield
- Department of Surgery, Division of Transplant Surgery, University of Wisconsin, Madison, WI, United States
| | - Weixiong Zhong
- Department of Pathology, University of Wisconsin, Madison, WI, United States
| | - Sarah E. Panzer
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
6
|
Hamada S, Dubois V, Koenig A, Thaunat O. Allograft recognition by recipient's natural killer cells: Molecular mechanisms and role in transplant rejection. HLA 2021; 98:191-199. [PMID: 34050618 DOI: 10.1111/tan.14332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022]
Abstract
The current transplant immunology dogma defends that allograft rejection is initiated by recipient's adaptive immune system. In this prevalent model, innate immune cells in general, and natural killer (NK) cells in particular, are merely considered as downstream effectors which participate in the destruction of the graft only upon recruitment by adaptive effectors: alloreactive T cells or donor-specific antibodies (DSA). Challenging this vision, recent data demonstrated that recipients' NK cells are capable of a form of allorecognition because they can sense the absence of self HLA class I molecules on the surface of graft endothelial cells. Missing-self triggers mTORC1-dependent activation of NK cells, which in turn promote the development of graft microvascular inflammation and detrimentally impact graft survival. The fact that some patients develop chronic vascular rejection in absence of DSA or genetically-predicted missing self suggests that other molecular mechanisms could underly NK cell allorecognition. This review provides an overview of these proven and putative molecular mechanisms and discusses future research directions in this emerging field in organ transplant immunology.
Collapse
Affiliation(s)
- Sarah Hamada
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Valérie Dubois
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, Lyon, France.,HLA Laboratory, French National Blood Service (EFS), Décines-Charpieu, France
| | - Alice Koenig
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Olivier Thaunat
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| |
Collapse
|
7
|
Gibson IW. Transplant Glomerulopathy: Importance of Ultrastructural Examination. GLOMERULAR DISEASES 2021; 1:68-81. [PMID: 36751426 PMCID: PMC9677739 DOI: 10.1159/000513522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/29/2020] [Indexed: 11/19/2022]
Abstract
Background Transplant glomerulopathy (TG) is a morphologic alteration in glomeruli of renal allografts, characterized by glomerular basement membrane reduplications. Summary TG is associated with progressive chronic allograft dysfunction and proteinuria and is a diagnostic feature of chronic antibody-mediated rejection (ABMR) in patients positive for donor-specific antibodies, according to the Banff schema for renal allograft pathology. It is a definitive endpoint in clinical trials and interventional studies for ABMR, but the lesion can also occur in the absence of definitive alloimmune injury, as a consequence of chronic thrombotic microangiopathy, and in some cases in association with hepatitis C infection. This review discusses the pathophysiology and clinical presentation of TG, the diagnostic features by light microscopy, and focuses on the sequential ultrastructural stages of the lesion. The differential diagnosis of TG, and Banff grading of the lesion, are reviewed. Clinicopathological indications for performing routine ultrastructural examination of renal allograft biopsies are discussed. Key Messages TG can be diagnosed at an early stage by electron microscopy, before histological features are apparent, emphasizing the importance of ultrastructural examination of renal allograft biopsies for an early diagnosis, when therapeutic intervention may be beneficial.
Collapse
Affiliation(s)
- Ian W. Gibson
- *Ian W. Gibson, Department of Pathology, MS-336C Electron Microscopy Lab, Health Sciences Centre, University of Manitoba, 820 Sherbrook Street, Winnipeg, MB R3A1R9 (Canada),
| |
Collapse
|
8
|
Gokhale A, Chancay J, Shapiro R, Randhawa P, Menon MC. Chronic transplant glomerulopathy: New insights into pathogenesis. Clin Transplant 2021; 35:e14214. [PMID: 33389755 DOI: 10.1111/ctr.14214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 01/20/2023]
Abstract
There have been recent significant advances in short-term outcomes in renal transplantation, however, long-term allograft survival remains a challenge. With reported incidences as high of 74.5% of chronic graft loss in patients with biopsies showing transplant glomerulopathy (TG), this syndrome represents an important factor for chronic allograft complications. In this review we show an overview of the novel mechanistic insights into pathogenesis of TG, as well as a brief description of the pathology, diagnosis and newer prognostic indices within TG diagnosis. These data raise intriguing roles for cell-mediated immunity and podocyte stress in TG as well as reinforce previous associations of TG with ABMR. We also delve into management strategies for TG and report the paucity of existing clinical trial data for this prevalent condition in renal transplants.
Collapse
Affiliation(s)
- Avantee Gokhale
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jorge Chancay
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ron Shapiro
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Parmjeet Randhawa
- The Thomas E. Starzl Transplantation Institute, Division of Transplantation Pathology at University of Pittsburgh, Pittsburgh, PA, USA
| | - Madhav C Menon
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Matsuda Y, Hiramitsu T, Li XK, Watanabe T. Characteristics of Immunoglobulin M Type Antibodies of Different Origins from the Immunologic and Clinical Viewpoints and Their Application in Controlling Antibody-Mediated Allograft Rejection. Pathogens 2020; 10:pathogens10010004. [PMID: 33374617 PMCID: PMC7822424 DOI: 10.3390/pathogens10010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 12/25/2022] Open
Abstract
Antibody-mediated allograft rejection (AMR) hinders patient prognosis after organ transplantation. Current studies concerning AMR have mainly focused on the diagnostic value of immunoglobulin G (IgG)-type donor-specific antihuman leukocyte antigen antibodies (DSAs), primarily because of their antigen specificity, whereas the clinical significance of immunoglobulin M (IgM)-type DSAs has not been thoroughly investigated in the context of organ transplantation because of their nonspecificity against antigens. Although consensus regarding the clinical significance and role of IgM antibodies is not clear, as discussed in this review, recent findings strongly suggest that they also have a huge potential in novel diagnostic as well as therapeutic application for the prevention of AMR. Most serum IgM antibodies are known to comprise natural antibodies with low affinity toward antigens, and this is derived from B-1 cells (innate B cells). However, some of the serum IgM-type antibodies reportedly also produced by B-2 cells (conventional B cells). The latter are known to have a high affinity for donor-specific antigens. In this review, we initially discuss how IgM-type antibodies of different origins participate in the pathology of various diseases, directly or through cell surface receptors, complement activation, or cytokine production. Then, we discuss the clinical applicability of B-1 and B-2 cell-derived IgM-type antibodies for controlling AMR with reference to the involvement of IgM antibodies in various pathological conditions.
Collapse
Affiliation(s)
- Yoshiko Matsuda
- Division of Transplant Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Correspondence:
| | - Takahisa Hiramitsu
- Department of Transplant and Endocrine Surgery, Nagoya Daini Red Cross-Hospital, Aichi 466-8650, Japan;
| | - Xiao-kang Li
- Division of Transplant Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
| | - Takeshi Watanabe
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan;
| |
Collapse
|
10
|
Kwun J, Knechtle S. Experimental modeling of desensitization: What have we learned about preventing AMR? Am J Transplant 2020; 20 Suppl 4:2-11. [PMID: 32538533 PMCID: PMC7522789 DOI: 10.1111/ajt.15873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 01/25/2023]
Abstract
During the past 5 decades, short-term outcomes in kidney transplant have significantly improved, in large part due to reduced rates and severity of acute rejection. Development of better immunosuppressive maintenance agents, as well as new induction therapies, helped make these advances. Nonhuman primate models provided a rigorous testing platform to evaluate candidate biologics during this process. However, antibody-mediated rejection remains a major cause of late failure of kidney allografts despite advances made in pharmacologic immunosuppression and strategies developed to facilitate improved donor-recipient matching. Our laboratory has been actively working to develop strategies to prevent and treat antibody-mediated rejection and immunologic sensitization in organ transplant, relying largely on a nonhuman primate model of kidney transplant. In this review, we will cover outcomes achieved by managing antibody-mediated rejection or sensitization in nonhuman primate models and discuss promises, limitations, and future directions for this model.
Collapse
Affiliation(s)
- Jean Kwun
- Address all correspondence and requests for reprints to: Jean Kwun, PhD, 207 Research Drive, Jones 362, DUMC Box 2645, Durham, NC 27710, USA Phone: 919-668-6792; Fax: 919-684-8716;
| | | |
Collapse
|
11
|
Koenig A, Chen CC, Marçais A, Barba T, Mathias V, Sicard A, Rabeyrin M, Racapé M, Duong-Van-Huyen JP, Bruneval P, Loupy A, Dussurgey S, Ducreux S, Meas-Yedid V, Olivo-Marin JC, Paidassi H, Guillemain R, Taupin JL, Callemeyn J, Morelon E, Nicoletti A, Charreau B, Dubois V, Naesens M, Walzer T, Defrance T, Thaunat O. Missing self triggers NK cell-mediated chronic vascular rejection of solid organ transplants. Nat Commun 2019; 10:5350. [PMID: 31767837 PMCID: PMC6877588 DOI: 10.1038/s41467-019-13113-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
Current doctrine is that microvascular inflammation (MVI) triggered by a transplant -recipient antibody response against alloantigens (antibody-mediated rejection) is the main cause of graft failure. Here, we show that histological lesions are not mediated by antibodies in approximately half the participants in a cohort of 129 renal recipients with MVI on graft biopsy. Genetic analysis of these patients shows a higher prevalence of mismatches between donor HLA I and recipient inhibitory killer cell immunoglobulin-like receptors (KIRs). Human in vitro models and transplantation of β2-microglobulin-deficient hearts into wild-type mice demonstrates that the inability of graft endothelial cells to provide HLA I-mediated inhibitory signals to recipient circulating NK cells triggers their activation, which in turn promotes endothelial damage. Missing self-induced NK cell activation is mTORC1-dependent and the mTOR inhibitor rapamycin can prevent the development of this type of chronic vascular rejection. ‘Missing self’ is a mode of natural killer (NK) cell activation aimed to detect the lack of HLA-I molecules on infected or neoplastic cells. Here, the authors show that mismatch between donor HLA-I and cognate receptors on recipient NK cells mediates microvascular inflammation-associated graft rejection, a pathology that is preventable by mTOR inhibition.
Collapse
Affiliation(s)
- Alice Koenig
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France.,Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, 5, place d'Arsonval, 69003, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 8, avenue Rockfeller, 69373, Lyon, France
| | - Chien-Chia Chen
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France
| | - Antoine Marçais
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France
| | - Thomas Barba
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France.,Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, 5, place d'Arsonval, 69003, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 8, avenue Rockfeller, 69373, Lyon, France
| | - Virginie Mathias
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France.,French National Blood Service (EFS), HLA Laboratory, 111, rue Elisée-Reclus, 69153, Décines-Charpieu, France
| | - Antoine Sicard
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France.,Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, 5, place d'Arsonval, 69003, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 8, avenue Rockfeller, 69373, Lyon, France
| | - Maud Rabeyrin
- Hospices Civils de Lyon, Department of Pathology, 59, boulevard Pinel, 69500, Bron, France
| | - Maud Racapé
- Paris Translational Research Centre for Organ Transplantation, Paris Descartes University, 12, rue de l'Ecole de Médecine, 75006, Paris, France
| | - Jean-Paul Duong-Van-Huyen
- Paris Translational Research Centre for Organ Transplantation, Paris Descartes University, 12, rue de l'Ecole de Médecine, 75006, Paris, France
| | - Patrick Bruneval
- Paris Translational Research Centre for Organ Transplantation, Paris Descartes University, 12, rue de l'Ecole de Médecine, 75006, Paris, France
| | - Alexandre Loupy
- Paris Translational Research Centre for Organ Transplantation, Paris Descartes University, 12, rue de l'Ecole de Médecine, 75006, Paris, France
| | - Sébastien Dussurgey
- SFR Biosciences (UMS3444/CNRS, US8/Inserm, ENS de Lyon, UCBL), 50, avenue Tony-Garnier, 69007, Lyon, France
| | - Stéphanie Ducreux
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France.,French National Blood Service (EFS), HLA Laboratory, 111, rue Elisée-Reclus, 69153, Décines-Charpieu, France
| | - Vannary Meas-Yedid
- Unité d'Analyse d'Images Biologiques, Pasteur Institut, 25-28, rue du Docteur-Roux, 75015, Paris, France
| | | | - Héléna Paidassi
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France
| | - Romain Guillemain
- Assistance Publique - Hôpitaux de Paris, Georges Pompidou Hospital, Cardiology and Heart Transplant Department, 20, rue Leblanc, 75015, Paris, France
| | - Jean-Luc Taupin
- Assistance Publique - Hôpitaux de Paris, Immunology and HLA Laboratory, Saint-Louis Hospital, 1, avenue Claude-Vellefaux, 75010, Paris, France.,French National Institute of Health and Medical Research (Inserm) Unit 1160, 1, avenue Claude-Vellefaux, 75010, Paris, France.,Paris Diderot University, 5, rue Thomas-Mann, 75013, Paris, France
| | - Jasper Callemeyn
- Department of Microbiology and Immunology, KU Leuven, University of Leuven, Herestraat 49, Box 7003, 3000, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Emmanuel Morelon
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France.,Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, 5, place d'Arsonval, 69003, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 8, avenue Rockfeller, 69373, Lyon, France
| | - Antonino Nicoletti
- Paris Diderot University, 5, rue Thomas-Mann, 75013, Paris, France.,French National Institute of Health and Medical Research (Inserm) Unit 1148, Laboratory of Vascular Translational Science, 46, rue Henri-Huchard, 75018, Paris, France
| | - Béatrice Charreau
- French National Institute of Health and Medical Research (Inserm) UMR1064, 30, boulevard Jean-Monnet, 44093, Nantes Cedex 01, France
| | - Valérie Dubois
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France.,French National Blood Service (EFS), HLA Laboratory, 111, rue Elisée-Reclus, 69153, Décines-Charpieu, France
| | - Maarten Naesens
- Department of Microbiology and Immunology, KU Leuven, University of Leuven, Herestraat 49, Box 7003, 3000, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Thierry Walzer
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France
| | - Thierry Defrance
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France
| | - Olivier Thaunat
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21, avenue Tony Garnier, 69007, Lyon, France. .,Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, 5, place d'Arsonval, 69003, Lyon, France. .,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 8, avenue Rockfeller, 69373, Lyon, France.
| |
Collapse
|
12
|
Knechtle SJ, Shaw JM, Hering BJ, Kraemer K, Madsen JC. Translational impact of NIH-funded nonhuman primate research in transplantation. Sci Transl Med 2019; 11:eaau0143. [PMID: 31292263 PMCID: PMC7197021 DOI: 10.1126/scitranslmed.aau0143] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/13/2018] [Indexed: 12/23/2022]
Abstract
The National Institutes of Health (NIH) has long supported using nonhuman primate (NHP) models for research on kidney, pancreatic islet, heart, and lung transplantation. The primary purpose of this research has been to develop new treatments for down-modulating or preventing deleterious immune responses after transplantation in human patients. Here, we discuss NIH-funded NHP studies of immune cell depletion, costimulation blockade, regulatory cell therapy, desensitization, and mixed hematopoietic chimerism that either preceded clinical trials or prevented the human application of therapies that were toxic or ineffective.
Collapse
Affiliation(s)
- Stuart J Knechtle
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Julia M Shaw
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Bernhard J Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kristy Kraemer
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Joren C Madsen
- Center for Transplantation Sciences and Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
13
|
Fitch Z, Schmitz R, Kwun J, Hering B, Madsen J, Knechtle SJ. Transplant research in nonhuman primates to evaluate clinically relevant immune strategies in organ transplantation. Transplant Rev (Orlando) 2019; 33:115-129. [PMID: 31027947 PMCID: PMC6599548 DOI: 10.1016/j.trre.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022]
Abstract
Research in transplant immunology using non-human primate (NHP) species to evaluate immunologic strategies to prevent rejection and prolong allograft survival has yielded results that have translated successfully into human organ transplant patient management. Other therapies have not proceeded to human translation due to failure in NHP testing, arguably sparing humans the futility and risk of such testing. The NHP transplant models are ethically necessary for drug development in this field and provide the closest analogue to human transplant patients available. The refinement of this resource with respect to colony MHC typing, reagent and assay development, and availability to the research community has greatly enhanced knowledge about transplant immunology and drug development.
Collapse
Affiliation(s)
- Zachary Fitch
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA; Center for Transplantation Sciences, Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, White 510c, 55 Fruit Street, Boston, MA, USA
| | - Robin Schmitz
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA
| | - Jean Kwun
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA
| | - Bernhard Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Joren Madsen
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA
| | - Stuart J Knechtle
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA.
| |
Collapse
|
14
|
Liao T, Zhang Y, Ren J, Zheng H, Zhang H, Li X, Liu X, Yin T, Sun Q. Noninvasive quantification of intrarenal allograft C4d deposition with targeted ultrasound imaging. Am J Transplant 2019; 19:259-268. [PMID: 30171802 DOI: 10.1111/ajt.15105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 01/25/2023]
Abstract
Antibody-mediated rejection (AMR) has emerged as a major cause of renal allograft dysfunction. C4d, a specific marker for AMR diagnosis, was strongly recommended for routine surveillance; however, currently, C4d detection is dependent upon tissue biopsy, which is invasive and provides only local semi-quantitative data. Targeted ultrasound imaging has been used extensively for noninvasive and real-time molecular detection with advantages of high specificity and sensitivity. In this study, we designed C4d-targeted microbubbles (MBC4d ) using a streptavidin-biotin conjugated method and detected C4d deposition in vivo in a rat model of AMR by enhanced ultrasound imaging. This noninvasive procedure allowed successful acquisition of the first qualitative image of C4d deposition in a wide renal allograft section, which reflected real-time C4d distribution in grafts. Moreover, we introduced normal intensity difference for quantitative analysis, which exhibited a nearly linear correlation with the grade of C4d deposition according to pathologic analysis. In addition, this approach showed no influence on survival rates and pathologic features in the microbubble injection groups, thereby demonstrating its safety. These findings demonstrated a simple, noninvasive, quantitative, and safe evaluation method for C4d, with the utility of this approach potentially preventing patients from having to undergo an invasive biopsy.
Collapse
Affiliation(s)
- Tao Liao
- Organ Transplantation Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yannan Zhang
- Organ Transplantation Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Ren
- Department of Medical Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haofeng Zheng
- Organ Transplantation Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongjun Zhang
- Department of Medical Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiujie Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaonan Liu
- Organ Transplantation Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tinghui Yin
- Department of Medical Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiquan Sun
- Organ Transplantation Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Haas M. The relationship between pathologic lesions of active and chronic antibody-mediated rejection in renal allografts. Am J Transplant 2018; 18:2849-2856. [PMID: 30133953 DOI: 10.1111/ajt.15088] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 01/25/2023]
Abstract
The Banff classification of renal allograft pathology defines specific morphologic lesions that are used in the diagnosis of active (glomerulitis, peritubular capillaritis, endarteritis) and chronic (transplant glomerulopathy, peritubular capillary basement membrane multilayering, transplant arteriopathy) antibody-mediated rejection (ABMR). However, none of these individual lesions are specific for ABMR, and for this reason Banff requires 1 or more additional findings, including C4d deposition in peritubular capillaries, presence of circulating donor-specific antibodies (DSAs), and/or expression in the tissue of transcripts strongly associated with ABMR, for a definitive diagnosis of ABMR to be made. In addition, while animal studies examining serial biopsies have established the progression of morphologic lesions of active to chronic ABMR as well as intermediate forms (chronic active ABMR) exhibiting features of both, clear documentation that lesions of chronic ABMR require the earlier presence of corresponding active and intermediate lesions is less well established in human renal allografts. This review examines temporal relationships between key morphologic lesions of active and chronic ABMR in biopsies of human grafts, likely intermediate forms, and findings for and possibly against direct and potentially interruptible progression from active to chronic lesions.
Collapse
Affiliation(s)
- Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
16
|
Smith RN, Matsunami M, Adam BA, Rosales IA, Oura T, Cosimi AB, Kawai T, Mengel M, Colvin RB. RNA expression profiling of nonhuman primate renal allograft rejection identifies tolerance. Am J Transplant 2018; 18:1328-1339. [PMID: 29288556 PMCID: PMC6021122 DOI: 10.1111/ajt.14637] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/01/2017] [Accepted: 12/01/2017] [Indexed: 01/25/2023]
Abstract
Tolerance induction to prevent allograft rejection is a long-standing clinical goal. However, convincing and dependable tolerance identification remains elusive. Hypothesizing that intragraft RNA expression is informative in both rejection and tolerance, we profile intrarenal allograft RNA expression in a mixed chimerism renal allograft model of cynomolgus monkeys and identify biologically significant tolerance. Analysis of 67 genes identified 3 dominant factors, each with a different pattern of gene expressions, relating to T cell-mediated rejection (TCMR), chronic antibody-mediated rejection (CAMR), or Tolerance. Clustering these 3 factors created 9 groups. One of the 9 clustered groups, the Tolerance cluster, showed the lowest probability of terminal rejection, the longest duration of allograft survival, and the lowest relative risk of terminal rejection. The Tolerance factor consists of a novel set of gene expressions including cytokine and immunoregulatory genes adding mechanistic insights into tolerance. The Tolerance factor could not be identified within current pathologic diagnostic categories. The TCMR and CAMR factors are dominant to the Tolerance factor, causing rejection even if the Tolerance factor is present. These 3 factors determine the probability of terminal rejection or tolerance. This novel a posteriori approach permits identification of pathways of rejection, including tolerance.
Collapse
Affiliation(s)
- R. N. Smith
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - M. Matsunami
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - B. A. Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - I. A. Rosales
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - T. Oura
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - A. B. Cosimi
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - T. Kawai
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - M. Mengel
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - R. B. Colvin
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
17
|
Smith R, Adam B, Rosales I, Matsunami M, Oura T, Cosimi A, Kawai T, Mengel M, Colvin R. RNA expression profiling of renal allografts in a nonhuman primate identifies variation in NK and endothelial gene expression. Am J Transplant 2018; 18:1340-1350. [PMID: 29286578 PMCID: PMC5992005 DOI: 10.1111/ajt.14639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/01/2017] [Accepted: 12/12/2017] [Indexed: 01/25/2023]
Abstract
RNA transcript expression estimates are a promising method to study the mechanisms and classification of renal allograft rejections. Here we use the Nanostring platform to profile RNA expression in renal allografts in a nonhuman primate (NHP), the Cynomolgus monkey. We analyzed protocol and indication 278 archival renal allograft samples, both protocol and indication from 76 animals with diagnoses of chronic antibody-mediated rejection (CAMR), acute cellular rejection (TCMR), and MIXED (both CAMR and TCMR), plus normals and samples with no pathological rejection using a Cynomolgus-specific probe set of 67 genes. Analysis identified RNA expression heterogeneity of endothelial and NK genes within CAMR and TCMR, including the stages of CAMR. Three factors were partitioned into additional groups. One group with the longest allograft survival time is pure CAMR without NK or CD3. Three mixed groups show variation in NK and CD3. TCMR was split into 2 groups with variation in NK genes. Additional validation of the complete gene-set correlated many of the genes with diagnoses of CAMR, MIXED, and TCMR rejections and with Banff histologic criteria defined in human subjects. These NHP data demonstrate the utility of RNA expression profiling to identify additional heterogeneity of endothelial and NK RNA gene expressions.
Collapse
Affiliation(s)
- R.N. Smith
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, USA
| | - B.A. Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - I.A. Rosales
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, USA
| | - M. Matsunami
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, USA
| | - T. Oura
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, USA
| | - A.B. Cosimi
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, USA
| | - T. Kawai
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, USA
| | - M. Mengel
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - R.B. Colvin
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, USA
| |
Collapse
|
18
|
Transplant glomerulopathy. Mod Pathol 2018; 31:235-252. [PMID: 29027535 DOI: 10.1038/modpathol.2017.123] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/28/2017] [Accepted: 08/10/2017] [Indexed: 12/13/2022]
Abstract
In the renal allograft, transplant glomerulopathy represents a morphologic lesion and not a specific diagnosis. The hallmark pathologic feature is glomerular basement membrane reduplication by light microscopy or electron microscopy in the absence of immune complex deposits. Transplant glomerulopathy results from chronic, recurring endothelial cell injury that can be mediated by HLA alloantibodies (donor-specific antibodies), various autoantibodies, cell-mediated immune injury, thrombotic microangiopathy, or chronic hepatitis C. Clinically, transplant glomerulopathy may be silent, detectable on protocol biopsy, or present with overt manifestations, including up to nephrotic range proteinuria, hypertension, and declining glomerular filtration rate. In either case, transplant glomerulopathy is associated with reduced graft survival. This review details the morphologic features of transplant glomerulopathy found on light microscopy, immunofluorescence microscopy, and electron microscopy. The pathophysiology of the causes and risk factors are discussed. Clinical manifestations are emphasized and potential therapeutic modalities are examined.
Collapse
|
19
|
Adam B, Smith R, Rosales I, Matsunami M, Afzali B, Oura T, Cosimi A, Kawai T, Colvin R, Mengel M. Chronic Antibody-Mediated Rejection in Nonhuman Primate Renal Allografts: Validation of Human Histological and Molecular Phenotypes. Am J Transplant 2017; 17:2841-2850. [PMID: 28444814 PMCID: PMC5658276 DOI: 10.1111/ajt.14327] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/19/2017] [Accepted: 04/19/2017] [Indexed: 01/25/2023]
Abstract
Molecular testing represents a promising adjunct for the diagnosis of antibody-mediated rejection (AMR). Here, we apply a novel gene expression platform in sequential formalin-fixed paraffin-embedded samples from nonhuman primate (NHP) renal transplants. We analyzed 34 previously described gene transcripts related to AMR in humans in 197 archival NHP samples, including 102 from recipients that developed chronic AMR, 80 from recipients without AMR, and 15 normal native nephrectomies. Three endothelial genes (VWF, DARC, and CAV1), derived from 10-fold cross-validation receiver operating characteristic curve analysis, demonstrated excellent discrimination between AMR and non-AMR samples (area under the curve = 0.92). This three-gene set correlated with classic features of AMR, including glomerulitis, capillaritis, glomerulopathy, C4d deposition, and DSAs (r = 0.39-0.63, p < 0.001). Principal component analysis confirmed the association between three-gene set expression and AMR and highlighted the ambiguity of v lesions and ptc lesions between AMR and T cell-mediated rejection (TCMR). Elevated three-gene set expression corresponded with the development of immunopathological evidence of rejection and often preceded it. Many recipients demonstrated mixed AMR and TCMR, suggesting that this represents the natural pattern of rejection. These data provide NHP animal model validation of recent updates to the Banff classification including the assessment of molecular markers for diagnosing AMR.
Collapse
Affiliation(s)
- B.A. Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - R.N. Smith
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, USA
| | - I.A. Rosales
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, USA
| | - M. Matsunami
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, USA
| | - B. Afzali
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - T. Oura
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, USA
| | - A.B. Cosimi
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, USA
| | - T. Kawai
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, USA
| | - R.B. Colvin
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, USA
| | - M. Mengel
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| |
Collapse
|
20
|
Gosset C, Viglietti D, Rabant M, Vérine J, Aubert O, Glotz D, Legendre C, Taupin JL, Duong Van-Huyen JP, Loupy A, Lefaucheur C. Circulating donor-specific anti-HLA antibodies are a major factor in premature and accelerated allograft fibrosis. Kidney Int 2017; 92:729-742. [DOI: 10.1016/j.kint.2017.03.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/21/2017] [Accepted: 03/16/2017] [Indexed: 11/24/2022]
|
21
|
Sicard A, Meas-Yedid V, Rabeyrin M, Koenig A, Ducreux S, Dijoud F, Hervieu V, Badet L, Morelon E, Olivo-Marin JC, Dubois V, Thaunat O. Computer-assisted topological analysis of renal allograft inflammation adds to risk evaluation at diagnosis of humoral rejection. Kidney Int 2017; 92:214-226. [DOI: 10.1016/j.kint.2017.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 12/30/2016] [Accepted: 01/05/2017] [Indexed: 11/15/2022]
|
22
|
Diagnostic Contribution of Donor-Specific Antibody Characteristics to Uncover Late Silent Antibody-Mediated Rejection-Results of a Cross-Sectional Screening Study. Transplantation 2017; 101:631-641. [PMID: 27120452 DOI: 10.1097/tp.0000000000001195] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Circulating donor-specific antibodies (DSA) detected on bead arrays may not inevitably indicate ongoing antibody-mediated rejection (AMR). Here, we investigated whether detection of complement-fixation, in parallel to IgG mean fluorescence intensity (MFI), allows for improved prediction of AMR. METHODS Our study included 86 DSA+ kidney transplant recipients subjected to protocol biopsy, who were identified upon cross-sectional antibody screening of 741 recipients with stable graft function at 6 months or longer after transplantation. IgG MFI was analyzed after elimination of prozone effect, and complement-fixation was determined using C1q, C4d, or C3d assays. RESULTS Among DSA+ study patients, 44 recipients (51%) had AMR, 24 of them showing C4d-positive rejection. Although DSA number or HLA class specificity were not different, patients with AMR or C4d + AMR showed significantly higher IgG, C1q, and C3d DSA MFI than nonrejecting or C4d-negative patients, respectively. Overall, the predictive value of DSA characteristics was moderate, whereby the highest accuracy was computed for peak IgG MFI (AMR, 0.73; C4d + AMR, 0.71). Combined analysis of antibody characteristics in multivariate models did not improve AMR prediction. CONCLUSIONS We estimate a 50% prevalence of silent AMR in DSA+ long-term recipients and conclude that assessment of IgG MFI may add predictive accuracy, without an independent diagnostic advantage of detecting complement-fixation.
Collapse
|
23
|
Haas M, Mirocha J, Reinsmoen NL, Vo AA, Choi J, Kahwaji JM, Peng A, Villicana R, Jordan SC. Differences in pathologic features and graft outcomes in antibody-mediated rejection of renal allografts due to persistent/recurrent versus de novo donor-specific antibodies. Kidney Int 2017; 91:729-737. [DOI: 10.1016/j.kint.2016.10.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/06/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022]
|
24
|
Zwang NA, Ho B, Kanwar YS, Lewis B, Cusick M, Friedewald JJ, Gallon L. A case of atypical hemolytic uremic syndrome in a second renal transplant. J Nephrol 2017; 31:165-172. [PMID: 28224376 DOI: 10.1007/s40620-016-0373-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/22/2016] [Indexed: 01/29/2023]
Abstract
Atypical hemolytic uremic syndrome (aHUS) has gained increased visibility over several years as an important cause of renal failure. Unfortunately, diagnosis is often difficult because individual courses can be highly variable depending the causative genetic mutations. Here we present the case of a patient with a failed renal allograft and acute failure of a second allograft who was ultimately diagnosed with aHUS. Interestingly, he developed early de novo donor specific antibodies (DSA) after the second renal transplant in context of likely recurrent aHUS. Terminal complement inhibition with eculizumab resulted in prompt improvement of renal allograft function.
Collapse
Affiliation(s)
- Nicholas A Zwang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, USA. .,McGaw Medical Center of Northwestern University, Chicago, USA. .,Northwestern Memorial Hospital/Arkes Family Pavilion Suite 1900, 676N. St. Clair, Chicago, IL, 60611, USA.
| | - Bing Ho
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Yashpal S Kanwar
- Department of Pathology, Northwestern Memorial Hospital, Chicago, USA
| | | | - Matthew Cusick
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - John J Friedewald
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, USA.,McGaw Medical Center of Northwestern University, Chicago, USA.,Department of Pathology, Northwestern Memorial Hospital, Chicago, USA.,Machaon Diagnostics, Oakland, CA, USA.,Northwestern Memorial Hospital/Arkes Family Pavilion Suite 1900, 676N. St. Clair, Chicago, IL, 60611, USA
| | - Lorenzo Gallon
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
25
|
Ramon DS, Huang Y, Zhao L, Rendulic T, Park JM, Sung RS, Samaniego M. Use of complement binding assays to assess the efficacy of antibody mediated rejection therapy and prediction of graft survival in kidney transplantation. Hum Immunol 2016; 78:57-63. [PMID: 27894836 DOI: 10.1016/j.humimm.2016.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/17/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND The Luminex® single antigen bead assay (SAB) is the method of choice for monitoring the treatment for antibody-mediated rejection (AMR). A ⩾50% reduction of the dominant donor-specific antibody (IgG-DSA) mean fluorescence intensity (MFI) has been associated with improved kidney allograft survival, and C1q-fixing DSA activity is associated with poor outcomes in patients with AMR. We aimed to investigate if C1q-DSA can be used as a reliable predictor of response to therapy and allograft survival in patients with biopsy-proven AMR. METHODS We tested pre- and post-treatment sera of 30 kidney transplant patients receiving plasmapheresis and low-dose IVIG for biopsy-proven AMR. IgG-DSA and C1q-DSA MFI were measured and correlated with graft loss or survival. Patients were classified as nonresponders (NR) when treatment resulted in <50% reduction in MFI of IgG-DSA and/or C1q-DSA was detectable following therapy. RESULTS Differences in the percentage of patients deemed NR depended upon the end-point criterion (73% by reduction in IgG-DSA MFI vs. 50% by persistent C1q-DSA activity). None of the seven patients with <50% reduction of IgG-DSA but non-detectable C1q-DSA-fixing activity after therapy experienced graft loss, suggesting that C1q-DSA activity may better correlate with response. Reduction of C1q-DSA activity predicted graft survival better than IgG-DSA in the univariate Cox analysis (20.1% vs. 5.9% in NR; log-rank P-value=0.0147). CONCLUSIONS A rapid reduction of DSA concentration below the threshold required for complement activation is associated with better graft survival, and C1q-DSA is a better predictor of outcomes than IgG-DSA MFI reduction.
Collapse
Affiliation(s)
- Daniel S Ramon
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| | - Yihung Huang
- Department of Internal Medicine, Division of Nephrology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - TrisAnn Rendulic
- Department of Pharmacy Services, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Jeong M Park
- Department of Pharmacy Services, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Randall S Sung
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Milagros Samaniego
- Department of Internal Medicine, Division of Nephrology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Thaunat O, Koenig A, Leibler C, Grimbert P. Effect of Immunosuppressive Drugs on Humoral Allosensitization after Kidney Transplant. J Am Soc Nephrol 2016; 27:1890-900. [PMID: 26872489 DOI: 10.1681/asn.2015070781] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The negative effect of donor-specific antibodies on the success of solid transplant is now clearly established. However, the lack of effective treatment to prevent the development of antibody-mediated lesions deepens the need for clinicians to focus on primary prevention of de novo humoral allosensitization. Among the factors associated with the risk of developing de novo donor-specific antibodies, therapeutic immunosuppression is the most obvious parameter in which improvement is possible. Beyond compliance and the overall depth of immunosuppression, it is likely that the nature of the drugs is also crucial. Here, we provide an overview of the molecular effect of the various immunosuppressive drugs on B cell biology. Clinical data related to the effect of these drugs on de novo humoral allosensitization are also examined, providing a platform from which clinicians can optimize immunosuppression for prevention of de novo donor-specific antibody generation at the individual level.
Collapse
Affiliation(s)
- Olivier Thaunat
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, Hospices Civils de Lyon, INSERM UMR1111, Université de Lyon, Lyon, France; and
| | - Alice Koenig
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, Hospices Civils de Lyon, INSERM UMR1111, Université de Lyon, Lyon, France; and
| | - Claire Leibler
- Service de Néphrologie et Transplantation, Hôpital Henri Mondor, Centre de référence maladie rare Syndrome Néphrotique Idiopathique, Institut Francilien de recherche en Néphrologie et Transplantation, INSERM U955, Université Paris Est Créteil, Assistance Publique-Hôpitaux de Paris, Creteil, France
| | - Philippe Grimbert
- Service de Néphrologie et Transplantation, Hôpital Henri Mondor, Centre de référence maladie rare Syndrome Néphrotique Idiopathique, Institut Francilien de recherche en Néphrologie et Transplantation, INSERM U955, Université Paris Est Créteil, Assistance Publique-Hôpitaux de Paris, Creteil, France
| |
Collapse
|
27
|
Vallin P, Désy O, Béland S, Wagner E, De Serres SA. Clinical relevance of circulating antibodies and B lymphocyte markers in allograft rejection. Clin Biochem 2016; 49:385-93. [PMID: 26721422 DOI: 10.1016/j.clinbiochem.2015.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/27/2015] [Accepted: 12/06/2015] [Indexed: 01/08/2023]
Abstract
The main challenge in solid organ transplantation remains to tackle antibody-mediated rejection. Our understanding of the antibody-mediated response and the capacity to detect it has improved in the last decade. However, the sensitivity and specificity of the current clinical tools to monitor B cell activation are perfectible. New strategies, including the refinement in the characterization of HLA and non-HLA antibodies, as well as a better understanding of the circulating B cell phenotype will hopefully help to non-invasively identify patients at risk or undergoing antibody-mediated allograft damage. The current review discusses the current knowledge of the B cell biomarkers in solid organ transplantation, with a focus on circulating antibodies and peripheral B cells.
Collapse
Affiliation(s)
- Patrice Vallin
- Transplantation Unit, Renal Division, Department of Medicine, CHU de Québec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Olivier Désy
- Transplantation Unit, Renal Division, Department of Medicine, CHU de Québec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Stéphanie Béland
- Transplantation Unit, Renal Division, Department of Medicine, CHU de Québec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Eric Wagner
- Immunology and Histocompatibility Laboratory, CHU de Québec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Sacha A De Serres
- Transplantation Unit, Renal Division, Department of Medicine, CHU de Québec, Faculty of Medicine, Laval University, Québec, QC, Canada.
| |
Collapse
|
28
|
Koo TY, Yang J. Current progress in ABO-incompatible kidney transplantation. Kidney Res Clin Pract 2015; 34:170-9. [PMID: 26484043 PMCID: PMC4608875 DOI: 10.1016/j.krcp.2015.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 02/07/2023] Open
Abstract
ABO-incompatible kidney transplantation (ABOi KT) was introduced to expand the donor pool and minimize shortage of kidneys for transplantation. Because improved outcomes of ABOi KT were reported in Japan in the early 2000s, the number of ABOi KTs has been increasing worldwide. In addition, a better understanding of immune pathogenesis and subsequent aggressive immunosuppression has helped to make effective desensitization protocols. Current strategies of ABOi KT consist of pretransplant antibody removal using plasmapheresis or immunoadsorption to prevent hyperacute rejection and potent maintenance immunosuppression, such as tacrolimus and mycophenolate mofetil, to inhibit antibody-mediated rejection. Recent outcomes of ABOi KT are comparable with ABO-compatible KT. However, there are still many problems to be resolved. Very high anti-ABO antibody producers are difficult to desensitize. In addition, ABOi KT is associated with an increased risk of infection and possibly malignancy due to aggressive immunosuppression. Optimization of desensitization and patient-tailored immunosuppression protocols are needed to achieve better outcomes of ABOi KT. This review provides an overview of the history, immune mechanism, immunosuppressive protocol, outcomes, current obstacles, and future perspectives in ABOi KT.
Collapse
Affiliation(s)
- Tai Yeon Koo
- Transplantation Center, Seoul National University Hospital, Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jaeseok Yang
- Transplantation Center, Seoul National University Hospital, Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Ville S, Poirier N, Blancho G, Vanhove B. Co-Stimulatory Blockade of the CD28/CD80-86/CTLA-4 Balance in Transplantation: Impact on Memory T Cells? Front Immunol 2015; 6:411. [PMID: 26322044 PMCID: PMC4532816 DOI: 10.3389/fimmu.2015.00411] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/27/2015] [Indexed: 12/30/2022] Open
Abstract
CD28 and CTLA-4 are prototypal co-stimulatory and co-inhibitory cell surface signaling molecules interacting with CD80/86, known to be critical for immune response initiation and regulation, respectively. Initial “bench-to-beside” translation, two decades ago, resulted in the development of CTLA4-Ig, a biologic that targets CD80/86 and prevents T-cell costimulation. In spite of its proven effectiveness in inhibiting allo-immune responses, particularly in murine models, clinical experience in kidney transplantation with belatacept (high-affinity CTLA4-Ig molecule) reveals a high incidence of acute, cell-mediated rejection. Originally, the etiology of belatacept-resistant graft rejection was thought to be heterologous immunity, i.e., the cross-reactivity of the pool of memory T cells from pathogen-specific immune responses with alloantigens. Recently, the standard view that memory T cells arise from effector cells after clonal contraction has been challenged by a “developmental” model, in which less differentiated memory T cells generate effector cells. This review delineates how this shift in paradigm, given the differences in co-stimulatory and co-inhibitory signal depending on the maturation stage, could profoundly affect our understanding of the CD28/CD80-86/CTLA-4 blockade and highlights the potential advantages of selectively targeting CD28, instead of CD80/86, to control post-transplant immune responses.
Collapse
Affiliation(s)
- Simon Ville
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France
| | - Nicolas Poirier
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France ; Effimune SAS , Nantes , France
| | - Gilles Blancho
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France
| | - Bernard Vanhove
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France ; Effimune SAS , Nantes , France
| |
Collapse
|
30
|
Kwun J, Page E, Hong JJ, Gibby A, Yoon J, Farris AB, Villinger F, Knechtle S. Neutralizing BAFF/APRIL with atacicept prevents early DSA formation and AMR development in T cell depletion induced nonhuman primate AMR model. Am J Transplant 2015; 15:815-22. [PMID: 25675879 PMCID: PMC5504528 DOI: 10.1111/ajt.13045] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 09/24/2014] [Accepted: 09/28/2014] [Indexed: 01/25/2023]
Abstract
Depletional strategies directed toward achieving tolerance induction in organ transplantation have been associated with an increased incidence and risk of antibody-mediated rejection (AMR) and graft injury. Our clinical data suggest correlation of increased serum B cell activating factor/survival factor (BAFF) with increased risk of antibody-mediated rejection in alemtuzumab treated patients. In the present study, we tested the ability of BAFF blockade (TACI-Ig) in a nonhuman primate AMR model to prevent alloantibody production and prolong allograft survival. Three animals received the AMR inducing regimen (CD3-IT/alefacept/tacrolimus) with TACI-Ig (atacicept), compared to five control animals treated with the AMR inducing regimen only. TACI-Ig treatment lead to decreased levels of DSA in treated animals at 2 and 4 weeks posttransplantation (p < 0.05). In addition, peripheral B cell numbers were significantly lower at 6 weeks posttransplantation. However, it provided only a marginal increase in graft survival (59 ± 22 vs. 102 ± 47 days; p = 0.11). Histological analysis revealed a substantial reduction in findings typically associated with humoral rejection with atacicept treatment. More T cell rejection findings were observed with increased graft T cell infiltration in atacicept treatment, likely secondary to the graft prolongation. We show that BAFF/APRIL blockade using concomitant TACI-Ig treatment reduced the humoral portion of rejection in our depletion-induced preclinical AMR model.
Collapse
Affiliation(s)
- J. Kwun
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA
| | - E. Page
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA
| | - J. J. Hong
- Department of Pathology, Emory University School of Medicine, Atlanta, GA,Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - A. Gibby
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA
| | - J. Yoon
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA
| | - A. B. Farris
- Department of Pathology, Emory University School of Medicine, Atlanta, GA
| | - F. Villinger
- Department of Pathology, Emory University School of Medicine, Atlanta, GA,Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - S. Knechtle
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA,Corresponding author Stuart J. Knechtle,
| |
Collapse
|
31
|
Donor-Specific Antibodies, C4d and Their Relationship With the Prognosis of Transplant Glomerulopathy. Transplantation 2015; 99:69-76. [DOI: 10.1097/tp.0000000000000310] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Analysis of Predictive and Preventive Factors for De Novo DSA in Kidney Transplant Recipients. Transplantation 2014; 98:443-50. [DOI: 10.1097/tp.0000000000000071] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
High dose intravenous immunoglobulin therapy for donor-specific antibodies in kidney transplant recipients with acute and chronic graft dysfunction. Transplantation 2014; 97:1253-9. [PMID: 24937199 DOI: 10.1097/01.tp.0000443226.74584.03] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Postkidney transplant donor-specific antibodies (DSA) have been identified as important contributors to graft loss. Few therapeutic options exist and have been met with limited success. We report outcomes in patients with de novo DSA and graft damage treated with a protocol of high-dose intravenous immunoglobulin (IVIG). METHODS Retrospective analysis of 28 kidney transplant recipients with de novo DSA and graft damage in the form of either chronic graft dysfunction (group 1, n=20) or a recent previous acute antibody-mediated rejection (AMR) episode (group 2, n=8) prescribed a standard regimen of high-dose (5 g/kg) IVIG dosed over 6 months. RESULTS Mean fluorescence intensity (MFI) of 70 total DSA decreased by 12%at the end of treatment (T1, P=0.14) and by 18%at last follow up (T2, P=0.035) compared with treatment initiation (T0) MFI. The most robust effect was seen in class I DSA (37% decrease at T2 versus T0, P=0.05) and in DSA from patients in group 2 (52% decrease at T2 versus T0, P=0.008). Graft function stabilized in patients in group 2 but continued to decline in those in group 1. CONCLUSION High-dose IVIG resulted in modest DSA MFI reductions in patients with previous graft damage, with a larger effect occurring in class I DSA in patients with a previous acute AMR. There was no clinical treatment benefit in patients with ongoing chronic graft damage, whereas high-dose IVIG may reduce the risk of chronic graft dysfunction in those with an acute AMR event.
Collapse
|
34
|
Salvadori M, Bertoni E. Impact of donor-specific antibodies on the outcomes of kidney graft: Pathophysiology, clinical, therapy. World J Transplant 2014; 4:1-17. [PMID: 24669363 PMCID: PMC3964192 DOI: 10.5500/wjt.v4.i1.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 01/21/2014] [Accepted: 02/19/2014] [Indexed: 02/05/2023] Open
Abstract
Allo-antibodies, particularly when donor specific, are one of the most important factors that cause both early and late graft dysfunction. The authors review the current state of the art concerning this important issue in renal transplantation. Many antibodies have been recognized as mediators of renal injury. In particular donor-specific-Human Leukocyte Antigens antibodies appear to play a major role. New techniques, such as solid phase techniques and Luminex, have revealed these antibodies from patient sera. Other new techniques have uncovered alloantibodies and signs of complement activation in renal biopsy specimens. It has been acknowledged that the old concept of chronic renal injury caused by calcineurine inhibitors toxicity should be replaced in many cases by alloantibodies acting against the graft. In addition, the number of patients on waiting lists with preformed anti-human leukocyte antigens (HLA) antibodies is increasing, primarily from patients with a history of renal transplant failure already been sensitized. We should distinguish early and late acute antibody-mediated rejection from chronic antibody-mediated rejection. The latter often manifets late during the course of the post-transplant period and may be difficult to recognize if specific techniques are not applied. Different therapeutic strategies are used to control antibody-induced damage. These strategies may be applied prior to transplantation or, in the case of acute antibody-mediated rejection, after transplantation. Many new drugs are appearing at the horizon; however, these drugs are far from the clinic because they are in phase I-II of clinical trials. Thus the pipeline for the near future appears almost empty.
Collapse
|
35
|
Transplant glomerulopathy: the interaction of HLA antibodies and endothelium. J Immunol Res 2014; 2014:549315. [PMID: 24741606 PMCID: PMC3987972 DOI: 10.1155/2014/549315] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 01/15/2023] Open
Abstract
Transplant glomerulopathy (TG) is a major cause of chronic graft dysfunction without effective therapy. Although the histological definition of TG is well characterized, the pathophysiological pathways leading to TG development are still poorly understood. Electron microscopy suggests an earlier appearance of TG and suggests that endothelial cell injury is the first sign of the disease. The pathogenic role of human leukocyte antigen (HLA) antibodies in endothelial cells has been described in acute vascular and humoral rejection. However the mechanisms and pathways of endothelial cell injury by HLA antibodies remain unclear. Despite the description of different causes of the morphological lesion of TG (hepatitis, thrombotic microangiopathy), the strong link between TG and chronic antibody mediated rejection suggests a major role for HLA antibodies in TG formation. In this review, we describe the effect of classes I or II HLA-antibodies in TG and especially the implication of donor specific antibodies (DSA). We update recent studies about endothelial cells and try to explain the different signals and intracellular pathways involved in the progression of TG.
Collapse
|
36
|
Valenzuela NM, Reed EF. Antibodies in transplantation: the effects of HLA and non-HLA antibody binding and mechanisms of injury. Methods Mol Biol 2014; 1034:41-70. [PMID: 23775730 DOI: 10.1007/978-1-62703-493-7_2] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Until recently, allograft rejection was thought to be mediated primarily by alloreactive T cells. Consequently, immunosuppressive approaches focused on inhibition of T cell activation. While short-term graft survival has significantly improved and rejection rates have dropped, acute rejection has not been eliminated and chronic rejection remains the major threat to long-term graft survival. Increased attention to humoral immunity in experimental systems and in the clinic has revealed that donor specific antibodies (DSA) can mediate and promote acute and chronic rejection. Herein, we detail the effects of alloantibody, particularly HLA antibody, binding to graft vascular and other cells, and briefly summarize the experimental methods used to assess such outcomes.
Collapse
Affiliation(s)
- Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | |
Collapse
|
37
|
Trends and characteristics in early glomerular filtration rate decline after posttransplantation alloantibody appearance. Transplantation 2014; 96:919-25. [PMID: 23912173 DOI: 10.1097/tp.0b013e3182a289ac] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Approximately 7% to 9% of patients with donor-specific anti-human leukocyte antigen (HLA) antibodies (DSA) fail within 1 year post-DSA onset. However, little is known as to how this DSA-associated failure temporally progresses. This longitudinal study investigates DSA's temporal relationship to allograft dysfunction and identifies predictors of allograft function's progressive deterioration post-DSA. METHODS A cohort of 175 non-HLA identical patients receiving their first transplant between March 1999 and March 2006 were analyzed. Protocol testing for DSA via single antigen beads was done before transplantation and at 1, 3, 6, 9, and 12 months after transplantation then annually. Estimated glomerular filtration rate (eGFR) was analyzed before and after DSA onset. RESULTS Forty-two patients developed DSA and had adequate eGFR information for analysis. Before DSA onset, the 42 patients had stable eGFR. By 1 year post-DSA, the cohort's eGFR was significantly lower (P<0.001); however, 30 of 42 had stable function. Twelve patients had failure or early allograft dysfunction (eGFR decline >25% from DSA onset). Those who failed early (by 1 year post-DSA) had more antibody-mediated rejection than stable patients (P=0.03). Late failures (after 1 year post-DSA) were predictable with evidence of early allograft dysfunction (eGFR decline >25% by 1 year post-DSA; P<0.001). Early allograft dysfunction preceded late failure by nearly 1 year. CONCLUSIONS DSA is temporally related to allograft function deterioration. However, in many cases, late allograft failures are preceded by early allograft dysfunction. Therefore, monitoring for early allograft dysfunction provides treating physicians with a window of opportunity for treatment or continued monitoring.
Collapse
|
38
|
Posttransplant monitoring of de novo human leukocyte antigen donor-specific antibodies in kidney transplantation. Curr Opin Organ Transplant 2013; 18:470-7. [PMID: 23695596 DOI: 10.1097/mot.0b013e3283626149] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To summarize the evidence supporting the negative impact of de novo donor-specific antibodies (dnDSA) in renal transplantation and to describe the natural history associated with the development of dnDSA. RECENT FINDINGS Recent studies have increased our appreciation of the risk factors that predispose to dnDSA while illuminating how these risk factors may relate to the pathophysiology underlying its development. In addition, details regarding the natural history of dnDSA are now available in the context of the different clinical pathologic phenotypes that occur in the patients in whom it develops. Common pitfalls in defining and monitoring dnDSA, when understood, may provide some explanation for the heterogeneity in published studies. SUMMARY Recognizing that dnDSA is a major cause of late graft loss, and, more importantly, is detectable in many cases long before dysfunction or graft loss occurs, identifies an opportunity to intervene and change the outcome for the patient.
Collapse
|
39
|
Everly MJ, Rebellato LM, Haisch CE, Ozawa M, Parker K, Briley KP, Catrou PG, Bolin P, Kendrick WT, Kendrick SA, Harland RC, Terasaki PI. Incidence and impact of de novo donor-specific alloantibody in primary renal allografts. Transplantation 2013; 95:410-7. [PMID: 23380861 DOI: 10.1097/tp.0b013e31827d62e3] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND To date, limited information is available describing the incidence and impact of de novo donor-specific anti-human leukocyte antigen (HLA) antibodies (dnDSA) in the primary renal transplant patient. This report details the dnDSA incidence and actual 3-year post-dnDSA graft outcomes. METHODS The study includes 189 consecutive nonsensitized, non-HLA-identical patients who received a primary kidney transplant between March 1999 and March 2006. Protocol testing for DSA via LABScreen single antigen beads (One Lambda) was done before transplantation and at 1, 3, 6, 9, and 12 months after transplantation then annually and when clinically indicated. RESULTS Of 189 patients, 47 (25%) developed dnDSA within 10 years. The 5-year posttransplantation cumulative incidence was 20%, with the largest proportion of patients developing dnDSA in the first posttransplantation year (11%). Young patients (18-35 years old at transplantation), deceased-donor transplant recipients, pretransplantation HLA (non-DSA)-positive patients, and patients with a DQ mismatch were the most likely to develop dnDSA. From DSA appearance, 9% of patients lost their graft at 1 year. Actual 3-year death-censored post-dnDSA graft loss was 24%. CONCLUSION We conclude that 11% of the patients without detectable DSA at transplantation will have detectable DSA at 1 year, and over the next 4 years, the incidence of dnDSA will increase to 20%. After dnDSA development, 24% of the patients will fail within 3 years. Given these findings, future trials are warranted to determine if treatment of dnDSA-positive patients can prevent allograft failure.
Collapse
|
40
|
Husain S, Sis B. Advances in the understanding of transplant glomerulopathy. Am J Kidney Dis 2013; 62:352-63. [PMID: 23313456 DOI: 10.1053/j.ajkd.2012.10.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 10/03/2012] [Indexed: 02/06/2023]
Abstract
Transplant glomerulopathy is a sign of chronic kidney allograft damage. It has poor survival and no effective therapies. This entity develops as a maladaptive repair/remodeling response to sustained endothelial injury and is characterized by duplication/multilamination of capillary basement membranes. This review provides up-to-date information for transplant glomerulopathy, including new insights into underlying causes and mechanisms, and highlights unmet needs in diagnostics. Transplant glomerulopathy is widely accepted as the principal manifestation of chronic antibody-mediated rejection, mostly with HLA antigen class II antibodies. However, recent data suggest that at least in some patients, there also is an association with hepatitis C virus infection, autoimmunity, and late thrombotic microangiopathy. Furthermore, intragraft molecular studies reveal nonresolving inflammation after sustained endothelial injury as a key mechanism and therapeutic target. Unfortunately, current international criteria rely heavily on light microscopy and miss patients at early stages, when they likely are treatable. Therefore, better tools, such as electron microscopy or molecular probes, are needed to detect patients when kidney injury is in an early active phase. Better understanding of causes and effector mechanisms coupled with early diagnosis can lead to the development of new therapeutics for transplant glomerulopathy and improved kidney outcomes.
Collapse
Affiliation(s)
- Sufia Husain
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
41
|
Bartel G, Wahrmann M, Schwaiger E, Kikić Ž, Winzer C, Hörl WH, Mühlbacher F, Hoke M, Zlabinger GJ, Regele H, Böhmig GA. Solid phase detection of C4d-fixing HLA antibodies to predict rejection in high immunological risk kidney transplant recipients. Transpl Int 2012; 26:121-30. [PMID: 23145861 DOI: 10.1111/tri.12000] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/21/2012] [Accepted: 09/28/2012] [Indexed: 02/06/2023]
Abstract
Protocols for recipient desensitization may allow for successful kidney transplantation across major immunological barriers. Desensitized recipients, however, still face a considerable risk of antibody-mediated rejection (AMR), which underscores the need for risk stratification tools to individually tailor treatment. Here, we investigated whether solid phase detection of complement-fixing donor-specific antibodies (DSA) has the potential to improve AMR prediction in high-risk transplants. The study included 68 sensitized recipients of deceased donor kidney allografts who underwent peritransplant immunoadsorption for alloantibody depletion (median cytotoxic panel reactivity: 73%; crossmatch conversion: n = 21). Pre and post-transplant sera were subjected to detection of DSA-triggered C4d deposition ([C4d]DSA) applying single-antigen bead (SAB) technology. While standard crossmatch and [IgG]SAB testing failed to predict outcomes in our desensitized patients, detection of preformed [C4d]DSA (n = 44) was tightly associated with C4d-positive AMR [36% vs. 8%, P = 0.01; binary logistic regression: odds ratio: 10.1 (95% confidence interval: 1.6-64.2), P = 0.01]. Moreover, long-term death-censored graft survival tended to be worse among [C4d]DSA-positive recipients (P = 0.07). There were no associations with C4d-negative AMR or cellular rejection. [C4d]DSA detected 6 months post-transplantation were not related to clinical outcomes. Our data suggest that pretransplant SAB-based detection of complement-fixing DSA may be a valuable tool for risk stratification.
Collapse
Affiliation(s)
- Gregor Bartel
- Department of Medicine III, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Page EK, Page AJ, Kwun J, Gibby AC, Leopardi F, Jenkins JB, Strobert EA, Song M, Hennigar RA, Iwakoshi N, Knechtle SJ. Enhanced de novo alloantibody and antibody-mediated injury in rhesus macaques. Am J Transplant 2012; 12:2395-405. [PMID: 22776408 PMCID: PMC4752112 DOI: 10.1111/j.1600-6143.2012.04074.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chronic allograft rejection is a major impediment to long-term transplant success. Humoral immune responses to alloantigens are a growing clinical problem in transplantation, with mounting evidence associating alloantibodies with the development of chronic rejection. Nearly a third of transplant recipients develop de novo antibodies, for which no established therapies are effective at preventing or eliminating, highlighting the need for a nonhuman primate model of antibody-mediated rejection. In this report, we demonstrate that depletion using anti-CD3 immunotoxin (IT) combined with maintenance immunosuppression that included tacrolimus with or without alefacept reliably prolonged renal allograft survival in rhesus monkeys. In these animals, a preferential skewing toward CD4 repopulation and proliferation was observed, particularly with the addition of alefacept. Furthermore, alefacept-treated animals demonstrated increased alloantibody production (100%) and morphologic features of antibody-mediated injury. In vitro, alefacept was found to enhance CD4 effector memory T cell proliferation. In conclusion, alefacept administration after depletion and with tacrolimus promotes a CD4+memory T cell and alloantibody response, with morphologic changes reflecting antibody-mediated allograft injury. Early and consistent de novo alloantibody production with associated histological changes makes this nonhuman primate model an attractive candidate for evaluating targeted therapeutics.
Collapse
Affiliation(s)
- EK Page
- Emory Transplant Center, Emory University, Atlanta, GA
| | - AJ Page
- Emory Transplant Center, Emory University, Atlanta, GA
| | - J Kwun
- Emory Transplant Center, Emory University, Atlanta, GA
| | - AC Gibby
- Emory Transplant Center, Emory University, Atlanta, GA
| | - F Leopardi
- Emory Transplant Center, Emory University, Atlanta, GA
| | - JB Jenkins
- Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - EA Strobert
- Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - M Song
- Emory Transplant Center, Emory University, Atlanta, GA
| | - RA Hennigar
- Department of Pathology, Emory University Hospital, Atlanta, GA
| | - N Iwakoshi
- Emory Transplant Center, Emory University, Atlanta, GA
| | - SJ Knechtle
- Emory Transplant Center, Emory University, Atlanta, GA
| |
Collapse
|
43
|
Smith RN, Malik F, Goes N, Farris AB, Zorn E, Saidman S, Tolkoff-Rubin N, Puri S, Wong W. Partial therapeutic response to Rituximab for the treatment of chronic alloantibody mediated rejection of kidney allografts. Transpl Immunol 2012; 27:107-13. [PMID: 22960786 DOI: 10.1016/j.trim.2012.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND OBJECTIVES Chronic rejection leads to kidney allograft failure and develops in many kidney transplant recipients. One cause of chronic rejection, chronic antibody mediated rejection (CAMR), is attributed to alloantibodies. Maintenance immunosuppression including prednisone, mycophenolate mofetil (MMF) and calcineurin inhibitors may limit alloantibody production in some patients, but many maintain or develop alloantibody production, leading to CAMR. Therefore, no efficacious therapy to treat CAMR is presently available to prevent the progression of CAMR to kidney allograft failure. DESIGN, SETTING, PARTICIPANTS, AND MEASUREMENTS We performed a retrospective review of 31 subjects with CAMR, of which 14 received Rituximab and 17 subjects did not. Response to Rituximab was defined as decline or stabilization of serum creatinine for at least one year. Data reviewed included demographic, clinical, allograft, post-transplant, and pathological variables. Pathological variables in the diagnostic allograft biopsy were scored according to Banff criteria. RESULTS The median survival time (MST) for allografts in the control group was 439 days, and for the Rituximab treated group was 685 days. The Rituximab group was dichotomous with 8 subjects showing a medial survival time of 1180 days, and 6 subjects having a median survival time of 431 days. The MST for the responders was statistically significant from the non-responders and controls. No pathological parameter distinguished any subset of subjects. CONCLUSIONS These data show that Rituximab followed by standard maintenance immunosuppression shows a therapeutic effect in the treatment of CAMR, which is confined to a subset of treated subjects, not identifiable a priori.
Collapse
Affiliation(s)
- R Neal Smith
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Akiyoshi T, Hirohashi T, Alessandrini A, Chase CM, Farkash EA, Neal Smith R, Madsen JC, Russell PS, Colvin RB. Role of complement and NK cells in antibody mediated rejection. Hum Immunol 2012; 73:1226-32. [PMID: 22850181 DOI: 10.1016/j.humimm.2012.07.330] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/07/2012] [Accepted: 07/19/2012] [Indexed: 01/26/2023]
Abstract
Despite extensive research on T cells and potent immunosuppressive regimens that target cellular mediated rejection, few regimens have been proved to be effective on antibody-mediated rejection (AMR), particularly in the chronic setting. C4d deposition in the graft has been proved to be a useful marker for AMR; however, there is an imperfect association between C4d and AMR. While complement has been considered as the main player in acute AMR, the effector mechanisms in chronic AMR are still debated. Recent studies support the role of NK cells and direct effects of antibody on endothelium cells in a mechanism suggesting the presence of a complement-independent pathway. Here, we review the history, currently available systems and progress in experimental animal research. Although there are consistent findings from human and animal research, transposing the experimental results from rodent to human has been hampered by the differences in endothelial functions between species. We briefly describe the findings from patients and compare them with results from animals, to propose a combined perspective.
Collapse
Affiliation(s)
- Takurin Akiyoshi
- Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The humoral theory states that antibodies cause the rejection of allografts. From 1917 to 1929, extensive efforts were made to produce antibodies against tumors. It was finally realized that the antibodies were produced against the transplant antigens present on transplantable tumors, not against the tumor-specific antigens. To get around this problem, inbred mouse strains were developed, leading to identification of the transplant antigens determined by the H-2 locus of mice. The antibodies were hemagglutinating and cytotoxic antibodies. The analogous human leukocyte antigen system was established by analysis of lymphocytotoxic alloantibodies that were made by pregnant women, directed against mismatched antigens of the fetus. The human leukocyte antigen antibodies were then found to cause hyperacute rejection, acute rejection, and chronic rejection of kidneys. Antibodies appeared in almost all patients after rejection of kidneys. With Luminex single antigen bead technology, donor-specific antibodies could be identified before rise in serum creatinine and graft failure. Antibodies were shown to be predictive of subsequent graft failure in kidney, heart, and lung transplants: patients without antibodies had superior 4-year graft survival compared with those who did have antibodies. New evidence that antibodies are also associated with chronic failure has appeared for liver and islet transplants. Four studies have now shown that removal or reduction of antibodies result in higher graft survival. If removal of antibodies prevents chronic graft failure, final validation of the humoral theory can be achieved.
Collapse
|
46
|
Wiebe C, Gibson IW, Blydt-Hansen TD, Karpinski M, Ho J, Storsley LJ, Goldberg A, Birk PE, Rush DN, Nickerson PW. Evolution and clinical pathologic correlations of de novo donor-specific HLA antibody post kidney transplant. Am J Transplant 2012; 12:1157-67. [PMID: 22429309 DOI: 10.1111/j.1600-6143.2012.04013.x] [Citation(s) in RCA: 735] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The natural history for patients with de novo donor-specific antibodies (dnDSA) and the risk factors for its development have not been well defined. Furthermore, clinical and histologic correlation with serologic data is limited. We studied 315 consecutive renal transplants without pretransplant DSA, with a mean follow-up of 6.2 ± 2.9 years. Protocol (n = 215) and for cause (n = 163) biopsies were analyzed. Solid phase assays were used to screen for dnDSA posttransplant. A total of 47 out of 315 (15%) patients developed dnDSA at a mean of 4.6 ± 3.0 years posttransplant. Independent predictors of dnDSA were HLA-DRβ1 MM > 0 (OR 5.66, p < 0.006); and nonadherence (OR 8.75, p < 0.001); with a strong trend toward clinical rejection episodes preceding dnDSA (OR 1.57 per rejection episode, p = 0.061). The median 10-year graft survival for those with dnDSA was lower than the No dnDSA group (57% vs. 96%, p < 0.0001). Pathology consistent with antibody-mediated injury can occur and progress in patients with dnDSA in the absence of graft dysfunction and furthermore, nonadherence and cellular rejection contribute to dnDSA development and progression to graft loss.
Collapse
Affiliation(s)
- C Wiebe
- Department of Medicine and Immunology, University of Manitoba, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Surveillance biopsies in children post-kidney transplant. Pediatr Nephrol 2012; 27:753-60. [PMID: 21792611 PMCID: PMC3315641 DOI: 10.1007/s00467-011-1969-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/29/2011] [Accepted: 07/05/2011] [Indexed: 01/05/2023]
Abstract
Surveillance biopsies are increasingly used in the post-transplant monitoring of pediatric renal allograft recipients. The main justification for this procedure is to diagnose early and presumably modifiable acute and chronic renal allograft injury. Pediatric recipients are theoretically at increased risk for subclinical renal allograft injury due to their relatively large adult-sized kidneys and their higher degree of immunological responsiveness. The safety profile of this procedure has been well investigated. Patient morbidity is low, with macroscopic hematuria being the most common adverse event. No patient deaths have been attributed to this procedure. Longitudinal surveillance biopsy studies have revealed a substantial burden of subclinical immunological and non-immunological injury, including acute cellular rejection, interstitial fibrosis and tubular atrophy, microvascular lesions and transplant glomerulopathy. The main impediment to the implementation of surveillance biopsies as the standard of care is the lack of demonstrable benefit of early histological detection on long-term outcome. The considerable debate surrounding this issue highlights the need for multicenter, prospective, and randomized studies.
Collapse
|
48
|
Abstract
Alloantibodies clearly cause acute antibody mediated rejection, and all available evidence supports their pathogenic etiology in the development of chronic alloantibody mediated rejection (CAMR). But the slow evolution of this disease, the on-going immunosuppression, the variations in titer of alloantibodies, and variation in antigenic targets all complicate identifying which dynamic factors are most important clinically and pathologically. This review highlights the pathological factors related to the diagnosis of CAMR, the time course and natural history of this disease. What is known about CAMR pathogenesis is discussed including alloantibodies, the role of complement, gene activation, and Fc effector cell function. Therapy, which is problematic for this disease, is also discussed, including on-going and potential therapies and their limitations.
Collapse
Affiliation(s)
- R. Neal Smith
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Robert B. Colvin
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
49
|
Abstract
BACKGROUND Subclinical rejection and interstitial fibrosis and tubular atrophy (IF/TA) in protocol biopsies are associated with outcome. We study the relationship between histologic lesions in early protocol biopsies and histologic diagnoses in late biopsies for cause. MATERIALS AND METHODS Renal transplants with a protocol biopsy performed within the first 6 months posttransplant between 1988 and 2006 were reviewed. Biopsies were evaluated according to Banff criteria, and C4d staining was available in biopsies for cause. RESULTS Of the 517 renal transplants with a protocol biopsy, 109 had a subsequent biopsy for cause which showed the following histological diagnoses: chronic humoral rejection (CHR) (n=44), IF/TA (n=42), recurrence of the primary disease (n=11), de novo glomerulonephritis (n=7), T-cell-mediated rejection (n=4), and polyoma virus nephropathy (n=1). The proportion of retransplants (15.9% vs. 2.3%, P=0.058) and the prevalence of subclinical rejection were higher in patients with CHR than in patients with IF/TA (52.3% vs. 28.6%, P=0.0253). Demographic donor and recipient characteristics and clinical data at the time of protocol biopsy were not different between groups. Logistic regression analysis showed that subclinical rejection (relative risk, 2.52; 95% confidence interval, 1.1-6.3; P=0.047) but not retransplantation (relative risk, 6.7; 95% confidence interval, 0.8-58.8; P=0.085) was associated with CHR. CONCLUSION Subclinical rejection in early protocol biopsies is associated with late appearance of CHR.
Collapse
|
50
|
Thaunat O. Humoral immunity in chronic allograft rejection: Puzzle pieces come together. Transpl Immunol 2012; 26:101-6. [PMID: 22108536 DOI: 10.1016/j.trim.2011.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/05/2011] [Accepted: 11/07/2011] [Indexed: 01/07/2023]
|