1
|
Cleenders E, Coemans M, Mineeva-Sangwo O, Koshy P, Kuypers D, Verbeke G, Naesens M. An observational cohort study of kidney function evolution following increased BK viral replication. Kidney Int 2025; 107:180-187. [PMID: 39461558 DOI: 10.1016/j.kint.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Affiliation(s)
- Evert Cleenders
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Leuven Biostatistics and Statistical Bioinformatics Centre, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Maarten Coemans
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Leuven Biostatistics and Statistical Bioinformatics Centre, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Olga Mineeva-Sangwo
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Priyanka Koshy
- Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Kuypers
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Geert Verbeke
- Leuven Biostatistics and Statistical Bioinformatics Centre, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Maarten Naesens
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Maung Myint T, Chong CH, von Huben A, Attia J, Webster AC, Blosser CD, Craig JC, Teixeira-Pinto A, Wong G. Serum and urine nucleic acid screening tests for BK polyomavirus-associated nephropathy in kidney and kidney-pancreas transplant recipients. Cochrane Database Syst Rev 2024; 11:CD014839. [PMID: 39606952 PMCID: PMC11603539 DOI: 10.1002/14651858.cd014839.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
BACKGROUND BK polyomavirus-associated nephropathy (BKPyVAN) occurs when BK polyomavirus (BKPyV) affects a transplanted kidney, leading to an initial injury characterised by cytopathic damage, inflammation, and fibrosis. BKPyVAN may cause permanent loss of graft function and premature graft loss. Early detection gives clinicians an opportunity to intervene by timely reduction in immunosuppression to reduce adverse graft outcomes. Quantitative nucleic acid testing (QNAT) for detection of BKPyV DNA in blood and urine is increasingly used as a screening test as diagnosis of BKPyVAN by kidney biopsy is invasive and associated with procedural risks. In this review, we assessed the sensitivity and specificity of QNAT tests in patients with BKPyVAN. OBJECTIVES We assessed the diagnostic test accuracy of blood/plasma/serum BKPyV QNAT and urine BKPyV QNAT for the diagnosis of BKPyVAN after transplantation. We also investigated the following sources of heterogeneity: types and quality of studies, era of publication, various thresholds of BKPyV-DNAemia/BKPyV viruria and variability between assays as secondary objectives. SEARCH METHODS We searched MEDLINE (OvidSP), EMBASE (OvidSP), and BIOSIS, and requested a search of the Cochrane Register of diagnostic test accuracy studies from inception to 13 June 2023. We also searched ClinicalTrials.com and the WHO International Clinical Trials Registry Platform for ongoing trials. SELECTION CRITERIA We included cross-sectional or cohort studies assessing the diagnostic accuracy of two index tests (blood/plasma/serum BKPyV QNAT or urine BKPyV QNAT) for the diagnosis of BKPyVAN, as verified by the reference standard (histopathology). Both retrospective and prospective cohort studies were included. We did not include case reports and case control studies. DATA COLLECTION AND ANALYSIS Two authors independently carried out data extraction from each study. We assessed the methodological quality of the included studies by using Quality Assessment of Diagnostic-Accuracy Studies (QUADAS-2) assessment criteria. We used the bivariate random-effects model to obtain summary estimates of sensitivity and specificity for the QNAT test with one positivity threshold. In cases where meta-analyses were not possible due to the small number of studies available, we detailed the descriptive evidence and used a summative approach. We explored possible sources of heterogeneity by adding covariates to meta-regression models. MAIN RESULTS We included 31 relevant studies with a total of 6559 participants in this review. Twenty-six studies included kidney transplant recipients, four studies included kidney and kidney-pancreas transplant recipients, and one study included kidney, kidney-pancreas and kidney-liver transplant recipients. Studies were carried out in South Asia and the Asia-Pacific region (12 studies), North America (9 studies), Europe (8 studies), and South America (2 studies). INDEX TEST blood/serum/plasma BKPyV QNAT The diagnostic performance of blood BKPyV QNAT using a common viral load threshold of 10,000 copies/mL was reported in 18 studies (3434 participants). Summary estimates at 10,000 copies/mL as a cut-off indicated that the pooled sensitivity was 0.86 (95% confidence interval (CI) 0.78 to 0.93) while the pooled specificity was 0.95 (95% CI 0.91 to 0.97). A limited number of studies were available to analyse the summary estimates for individual viral load thresholds other than 10,000 copies/mL. Indirect comparison of thresholds of the three different cut-off values of 1000 copies/mL (9 studies), 5000 copies/mL (6 studies), and 10,000 copies/mL (18 studies), the higher cut-off value at 10,000 copies/mL corresponded to higher specificity with lower sensitivity. The summary estimates of indirect comparison of thresholds above 10,000 copies/mL were uncertain, primarily due to a limited number of studies with wide CIs contributed to the analysis. Nonetheless, these indirect comparisons should be interpreted cautiously since differences in study design, patient populations, and methodological variations among the included studies can introduce biases. Analysis of all blood BKPyV QNAT studies, including various blood viral load thresholds (30 studies, 5658 participants, 7 thresholds), indicated that test performance remains robust, pooled sensitivity 0.90 (95% CI 0.85 to 0.94) and specificity 0.93 (95% CI 0.91 to 0.95). In the multiple cut-off model, including the various thresholds generating a single curve, the optimal cut-off was around 2000 copies/mL, sensitivity of 0.89 (95% CI 0.66 to 0.97) and specificity of 0.88 (95% CI 0.80 to 0.93). However, as most of the included studies were retrospective, and not all participants underwent the reference standard tests, this may result in a high risk of selection and verification bias. INDEX TEST urine BKPyV QNAT There was insufficient data to thoroughly investigate both accuracy and thresholds of urine BKPyV QNAT resulting in an imprecise estimation of its accuracy based on the available evidence. AUTHORS' CONCLUSIONS There is insufficient evidence to suggest the use of urine BKPyV QNAT as the primary screening tool for BKPyVAN. The summary estimates of the test sensitivity and specificity of blood/serum/plasma BKPyV QNAT test at a threshold of 10,000 copies/mL for BKPyVAN were 0.86 (95% CI 0.78 to 0.93) and 0.95 (95% CI 0.91 to 0.97), respectively. The multiple cut-off model showed that the optimal cut-off was around 2000 copies/mL, with test sensitivity of 0.89 (95% CI 0.66 to 0.97) and specificity of 0.88 (95% CI 0.80 to 0.93). While 10,000 copies/mL is the most commonly used cut-off, with good test performance characteristics and supports the current recommendations, it is important to interpret the results with caution because of low-certainty evidence.
Collapse
Affiliation(s)
- Thida Maung Myint
- John Hunter Hospital, Newcastle, Australia
- Sydney School of Public Health, University of Sydney, Sydney, Australia
| | - Chanel H Chong
- Sydney School of Public Health, University of Sydney, Sydney, Australia
| | - Amy von Huben
- Sydney School of Public Health, University of Sydney, Sydney, Australia
| | - John Attia
- University of Newcastle, Newcastle, Australia
| | - Angela C Webster
- Sydney School of Public Health, University of Sydney, Sydney, Australia
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Westmead Applied Research Centre, The University of Sydney at Westmead, Westmead, Australia
- Centre for Transplant and Renal Research, Westmead Hospital, Westmead, Australia
| | - Christopher D Blosser
- Department of Medicine, Nephrology, University of Washington & Seattle Children's Hospital, Seattle, WA, USA
| | - Jonathan C Craig
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | | | - Germaine Wong
- Sydney School of Public Health, University of Sydney, Sydney, Australia
- Centre for Transplant and Renal Research, Westmead Hospital, Westmead, Australia
| |
Collapse
|
3
|
Tang Y, Wang Z, Du D. Challenges and opportunities in research on BK virus infection after renal transplantation. Int Immunopharmacol 2024; 141:112793. [PMID: 39146777 DOI: 10.1016/j.intimp.2024.112793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
Renal transplantation is one of the primary approaches for curing end-stage kidney disease. With advancements in immunosuppressive agents, the short-term and long-term survival rates of transplanted kidneys have significantly improved. However, infections associated with potent immunosuppression have remained a persistent challenge. Among them, BK virus (BKV) reactivation following renal transplantation leading to BK virus-associated nephropathy (BKVAN) is a major cause of graft dysfunction. However, we still face significant challenges in understanding the pathogenesis, prevention, diagnosis, and treatment of BKVAN. These challenges include: 1. The mechanism of BKV reactivation under immunosuppressive conditions has not been well elucidated, leading to difficulties in breakthroughs in clinical research on prevention, diagnosis, and treatment. 2. Lack of proper identification of high-risk individuals, and effective personalized clinical management strategies. 3.Lack of early and sensitive diagnostic markers. 4. Lack of direct and effective treatment options due to the absence of specific antiviral drugs. The purpose of this review is to summarize the current status and cutting-edge advancements in BKV-related research, providing new methods and perspectives to address future research challenges.
Collapse
Affiliation(s)
- Yukun Tang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zipei Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Dunfeng Du
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
4
|
Nakamura Y, Chikaraishi T, Marui Y, Miki K, Yokoyama T, Kamiyama M, Ishii Y. BK Virus Nephropathy After Kidney Transplantation and Its Diagnosis Using Urinary Micro RNA. Transplant Proc 2024; 56:1967-1975. [PMID: 39477729 DOI: 10.1016/j.transproceed.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/04/2024] [Indexed: 12/10/2024]
Abstract
BK virus-associated nephritis (BKVAN) is an important cause of graft loss in renal transplant recipients B K viremia occurs in up to 30% of renal transplant recipients. Since the discovery of BKV in 1971, effective prophylaxis and treatment have not been established, and it is not uncommon for a transplant kidney to be lost without cure of BKVAN. BK virus infection is reactivated when cellular immunity is suppressed, which is often during the first year after kidney transplantation when cellular immunity is most suppressed. Clinically, it is caused by reactivation of latent infection or new infection from the donor kidney, leading to viremia, viremia, and transplant nephropathy. BK virus nephropathy is currently diagnosed definitively by measuring the amount of BK virus DNA in the blood and proving SV40-positive cells in transplant kidney tissue obtained by transplant kidney biopsy, but the time required for diagnosis and the low sensitivity of immunohistochemistry using antibodies are problematic. Therefore, we investigated whether the diagnosis of BK virus nephropathy could be made earlier by searching for miRNAs in the urine of renal transplant recipients.
Collapse
Affiliation(s)
- Yuki Nakamura
- Department of Surgery Nephrology Center, Toranomon Hospital, Tokyo Japan.
| | | | - Yuhji Marui
- Department of Renal Surgery, Himonya Hospital, Tokyo Japan
| | - Katsuyuki Miki
- Department of Surgery Nephrology Center, Toranomon Hospital, Tokyo Japan
| | - Takayoshi Yokoyama
- Department of Surgery Nephrology Center, Toranomon Hospital, Tokyo Japan
| | - Manabu Kamiyama
- Urology Department, Toranomon Hospital Kajigaya, Tokyo Japan
| | - Yasuo Ishii
- Department of Surgery Nephrology Center, Toranomon Hospital, Tokyo Japan
| |
Collapse
|
5
|
Iwasaki Y, Seguchi O, Ikura M, Arisato T, Hada T, Mochizuki H, Kuroda K, Nakajima S, Watanabe T, Tsukamoto Y, Yanase M, Yoshihara F, Ikeda Y, Hatakeyama K, Fukushima S, Fujita T, Fukushima N. BK polyomavirus nephropathy after heart transplantation: A case report. J Cardiol Cases 2024; 30:143-146. [PMID: 39534308 PMCID: PMC11551456 DOI: 10.1016/j.jccase.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 11/16/2024] Open
Abstract
We present a case of BK polyomavirus (BKV) nephropathy (BKVN) after heart transplantation (HTx). The patient was a male with non-ischemic cardiomyopathy who received HTx at the age of 56 years [serum creatinine (sCre) at the time of HTx: 0.89 mg/dl]. Following 3 months of standard triple immunosuppression using tacrolimus, mycophenolate, and corticosteroid, everolimus with reduced tacrolimus therapy was introduced because of cardiac allograft vasculopathy. However, renal function gradually deteriorated. BKVN was diagnosed via positive simian virus 40 antigen staining of renal biopsy specimens 46 months after HTx (sCre: 2.48 mg/dl). Decoy cells and elevated serum BKV load were also observed. After reduction of immunosuppression and monthly low-dose intravenous immunoglobulin administration, the serum BKV load decreased and sCre plateaued while on uneventful clinical course. Since renal function is an important prognostic factor after HTx, early diagnosis and intervention are crucial for successful BKVN treatment. Urine cytology should be performed during post-transplant screening for renal dysfunction. Learning objective BK polyomavirus nephropathy (BKVN) is a critical issue following solid organ transplantation. However, reports regarding BKVN after heart transplantation (HTx) are sparse, possibly underestimating the significance of BKVN in HTx recipients, therefore case studies are crucial for the understanding of BKVN in HTx recipients. This case clearly demonstrated the clinical course of BKVN and highlights the important clinical implications for the diagnosis and management of BKVN in HTx recipients.
Collapse
Affiliation(s)
- Yoichi Iwasaki
- Department of Transplant Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Osamu Seguchi
- Department of Transplant Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
- Department of Cardiology, Nagaya Internal Medicine, Osaka, Japan
| | - Megumi Ikura
- Department of Pharmacy, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tetsuya Arisato
- Department of Hypertension and Nephrology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tasuku Hada
- Department of Transplant Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hiroki Mochizuki
- Department of Transplant Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kensuke Kuroda
- Department of Transplant Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Seiko Nakajima
- Department of Transplant Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Takuya Watanabe
- Department of Transplant Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yasumasa Tsukamoto
- Department of Transplant Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masanobu Yanase
- Department of Transplant Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Fumiki Yoshihara
- Department of Hypertension and Nephrology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yoshihiko Ikeda
- Department of Pathology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kinta Hatakeyama
- Department of Pathology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Satsuki Fukushima
- Department of Cardiac Surgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tomoyuki Fujita
- Department of Cardiac Surgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Norihide Fukushima
- Department of Transplant Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
6
|
Alkan B, Tuncer MA, İnkaya AÇ. Advances in virus-specific T-cell therapy for polyomavirus infections: A comprehensive review. Int J Antimicrob Agents 2024; 64:107333. [PMID: 39245328 DOI: 10.1016/j.ijantimicag.2024.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Polyomaviruses are a group of small, non-enveloped, double-stranded DNA viruses that can infect various hosts, including humans. BKPyV causes conditions such as human polyomavirus-associated nephropathy (HPyVAN), human polyomavirus-associated haemorrhagic cystitis (HPyVHC), and human polyomavirus-associated urothelial cancer (HPyVUC). JC polyomavirus (JCPyV), on the other hand, is the causative agent of progressive multifocal leukoencephalopathy (PML), a severe demyelinating disease of the central nervous system. PML primarily affects immunocompromised individuals, including those with HIV, recipients of certain immunosuppressive therapies, and transplant patients. The treatment options for HPyV infections have been limited, but recent developments in virus-specific T cell (VST) therapy have shown promise. Although VST therapy has shown potential in treating both BKPyV and JCPyV infections, several challenges remain. These include the time-consuming and costly preparation of VSTs, the need for sophisticated production facilities, and uncertainties regarding the optimal cell type and infusion frequency. To the best of our knowledge, 85 patients with haemorrhagic cystitis, 27 patients with BKPyV viremia, 2 patients with BKPyV nephritis, 14 patients with haemorrhagic cystitis and BKPyV viremia, and 32 patients with PML have been treated with VST in the literature. The overall response results were 82 complete response, 33 partial response, 35 no response, and 10 no-outcome-reported. This review underscores the importance of VST therapy as a promising treatment approach for polyomavirus infections, emphasising the need for continued research and clinical trials to refine and expand this innovative immunotherapeutic strategy.
Collapse
Affiliation(s)
- Baran Alkan
- Hacettepe University, Faculty of Medicine, Ankara
| | - M Asli Tuncer
- Hacettepe University, Faculty of Medicine, Department of Neurology, Ankara
| | - A Çağkan İnkaya
- Hacettepe University, Faculty of Medicine, Department of Infectious Diseases, Ankara.
| |
Collapse
|
7
|
Caillard S, Meyer N, Solis M, Bertrand D, Jaureguy M, Anglicheau D, Ecotiere L, Buchler M, Bouvier N, Schvartz B, Rerolle JP, Heng AE, Couzi L, Duveau A, Morelon E, LeMeur Y, Golbin L, Thervet E, Benotmane I, Fafi-Kremer S. Insights from the BKEVER Trial comparing everolimus versus mycophenolate mofetil for BK Polyomavirus infection in kidney transplant recipients. Kidney Int 2024:S0085-2538(24)00730-0. [PMID: 39490986 DOI: 10.1016/j.kint.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/12/2024] [Accepted: 09/06/2024] [Indexed: 11/05/2024]
Abstract
The MTOR inhibitors have demonstrated antiviral properties, and prior non-randomized studies have suggested they may have a suppressive effect on BKPyV replication. Here, in this randomized, multicenter, controlled trial (BKEVER study), we sought to evaluate the impact of everolimus (EVR) in facilitating the clearance of BKPyV compared to simply reducing immunosuppression among kidney transplant recipients (KTRs). All together, 130 KTRs presenting with BKPyV DNAemia were randomized 1:1 into two groups. The EVR group, in which mycophenolate mofetil (MMF) was replaced by EVR along with a decrease in calcineurin inhibitor trough levels and secondly the MMF group, in which the MMF dose was decreased by half along with a similar lowering of calcineurin inhibitor levels. The primary endpoint was the proportion of patients achieving viral clearance at six months. Secondary endpoints included the kinetics of BKPyV replication over time, the incidence of BKPyV-associated nephropathy, kidney graft function, the incidence of kidney graft rejection, and medication tolerability over two years. Significantly, BKPyV clearance was achieved in 55.7% of patients in the EVR group compared to 81.3% of patients in the MMF group at six months. The reduction in BKPyV DNA load was significantly more rapid in the MMF group. Calcineurin inhibitor trough levels were within expected target ranges and did not differ meaningfully between the two groups from randomization through month six. Two grafts were lost, and four patients died. Eleven patients in the EVR group and six patients in the MMF group developed biopsy-proven BKPyV nephropathy. Thus, in KTRs with BKPyV DNAemia, replacing MMF with EVR along with lowering calcineurin inhibitor levels did not lead to more frequent or faster clearance of BKPyV.
Collapse
Affiliation(s)
- Sophie Caillard
- Department of Nephrology, Dialysis and Transplantation, Institut National de la Santé et de la Recherche Médicale (INSERM), Immuno-Rhumatologie Moléculaire (IRM) Unité Mixte de Recherche (UMR)-S 1109, Strasbourg University Hospital, Strasbourg, France.
| | - Nicolas Meyer
- Department of Public Health, Strasbourg University Hospital, Strasbourg, France
| | - Morgane Solis
- Department of Virology, INSERM, Immuno-Rhumatologie Moléculaire (IRM) Unité Mixte de Recherche (UMR)-S 1109, Strasbourg University Hospital, Strasbourg, France
| | - Dominique Bertrand
- Department of Nephrology and Transplantation, University of Rouen, Rouen, France
| | - Maite Jaureguy
- Department of Nephrology and Transplantation, University of Amiens, Amiens, France
| | - Dany Anglicheau
- Department of Nephrology and Transplantation, Necker University Hospital-Assistance Publique Hôpitaux de Paris (APHP), Institut Necker Enfants Malades (INEM) INSERM U 1151-Centre National de Recherche Scientifique (CNRS) UMR 8253, Paris Cité University, Paris, France
| | - Laure Ecotiere
- Department of Nephrology and Transplantation, University of Poitiers, Poitiers, France
| | - Matthias Buchler
- Department of Nephrology and Transplantation, University of Tours, Tours, France
| | - Nicolas Bouvier
- Department of Nephrology and Transplantation, University of Caen, Caen, France
| | - Betoul Schvartz
- Department of Nephrology and Transplantation, University of Reims, Reims, France
| | - Jean Philippe Rerolle
- Department of Nephrology and Transplantation, University of Limoges, Limoges, France
| | - Anne Elisabeth Heng
- Department of Nephrology and Transplantation, University of Clermont Ferrand, Clermont Ferrand, France
| | - Lionel Couzi
- Department of Nephrology Dialysis, Transplantation and Apheresis, Bordeaux Pellegrin University Hospital, Research Unit ImmunoConcEpT Centre National de Recherche Scientifique (CNRS) 5164, University of Bordeaux, Bordeaux, France
| | - Agnes Duveau
- Department of Nephrology and Transplantation, University of Angers, Angers, France
| | - Emmanuel Morelon
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, University Claude Bernard-Lyon 1, Lyon, France
| | - Yann LeMeur
- Department of Nephrology and Transplantation, Brest University Hospital, INSERM Unité Mixte de Recherche (UMR) 1227, University of Brest, Labex IGO Brest, France
| | - Léonard Golbin
- Department of Nephrology and Transplantation, Rennes University Hospital, Rennes, France
| | - Eric Thervet
- Department of Nephrology and Transplantation, Hôpital Européen Georges Pompidou (HEGP)-Assistance Publique Hôpitaux de Paris (APHP), Paris University, Paris, France
| | - Ilies Benotmane
- Department of Nephrology, Dialysis and Transplantation, Institut National de la Santé et de la Recherche Médicale (INSERM), Immuno-Rhumatologie Moléculaire (IRM) Unité Mixte de Recherche (UMR)-S 1109, Strasbourg University Hospital, Strasbourg, France
| | - Samira Fafi-Kremer
- Department of Virology, INSERM, Immuno-Rhumatologie Moléculaire (IRM) Unité Mixte de Recherche (UMR)-S 1109, Strasbourg University Hospital, Strasbourg, France
| |
Collapse
|
8
|
Wajih Z, Karpe KM, Walters GD. Interventions for BK virus infection in kidney transplant recipients. Cochrane Database Syst Rev 2024; 10:CD013344. [PMID: 39382091 PMCID: PMC11462636 DOI: 10.1002/14651858.cd013344.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
BACKGROUND BK virus-associated nephropathy (BKVAN), caused by infection with or reactivation of BK virus, remains a challenge in kidney transplantation. Screening is recommended for all kidney transplant recipients. For those with clinically significant infection, reduction of immunosuppression is the cornerstone of management. There is no specific antiviral or immunomodulatory therapy sufficiently effective for routine use. OBJECTIVES This review aimed to examine the benefits and harms of interventions for BK virus infection in kidney transplant recipients. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 5 September 2024 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA All randomised controlled trials (RCTs) and cohort studies investigating any intervention for the treatment or prevention of BKVAN for kidney transplant recipients. DATA COLLECTION AND ANALYSIS Two authors independently assessed the study quality and extracted data. Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes and mean difference (MD) and 95% CI for continuous outcomes. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS Twelve RCTs (2669 randomised participants) were included. Six studies were undertaken in single centres, and six were multicentre studies; two of these were international studies. The ages of those participating ranged from 44 to 57 years. The length of follow-up ranged from three months to five years. All studies included people with a kidney transplant, and three studies included people with signs of BK viraemia. Studies were heterogeneous in terms of the type of interventions and outcomes assessed. The overall risk of bias was low or unclear. Intensive screening for the early detection of BK viraemia or BK viruria prevents graft loss (1 study, 908 participants: RR 0.00, 95% CI 0.00 to 0.05) and decreases the presence of decoy cells and viraemia at 12 months (1 study, 908 participants: RR 0.06, 95% CI 0.03 to 0.11) compared to routine care (high certainty evidence). No other outcomes were reported. Compared to placebo, fluoroquinolones may slightly reduce the risk of graft loss (3 studies, 393 participants: RR 0.37, CI 0.09 to 1.57; I2 = 0%; low certainty evidence), probably makes little or no difference to donor-specific antibodies (DSA), may make little or no difference to BK viraemia and death, had uncertain effects on BKVAN and malignancy, but may increase the risk of tendonitis (2 studies, 193 participants: RR 5.66, CI 1.02 to 31.32; I2 = 0%; low certainty evidence). Compared to tacrolimus (TAC), cyclosporin (CSA) probably makes little or no difference to graft loss and death, may make little or no difference to BKVAN and malignancy, but probably decreases BK viraemia (2 studies, 263 participants: RR 0.61, 95% CI 0.26 to 1.41; I2 = 38%) and probably reduces the risk of new-onset diabetes after transplantation (1 study, 200 participants: RR 0.41, 95% CI 0.12 to 1.35) (both moderate certainty evidence). Compared to azathioprine, mycophenolate mofetil (MMF) probably makes little or no difference to graft loss and BK viraemia but probably reduces the risk of death (1 study, 133 participants: RR 0.43, 95% CI 0.16 to 1.16) and malignancy (1 study, 199 participants: RR 0.43, 95% CI 0.16 to 1.16) (both moderate certainty evidence). Compared to mycophenolate sodium (MPS), CSA has uncertain effects on graft loss and death, may make little or no difference to BK viraemia, but may reduce BKVAN (1 study, 224 participants: RR 0.06, 95% CI 0.00 to 1.20; low certainty evidence). Compared to immunosuppression dose reduction, MMF or TAC conversion to everolimus or sirolimus may make little or no difference to graft loss, BK viraemia or BKVAN (low certainty evidence). TAC conversion to sirolimus probably results in more people having a reduced BK viral load (< 600 copies/mL) than immunosuppression reduction (1 study, 30 participants: RR 1.31, 95% CI 0.90 to 1.89; moderate certainty evidence). Compared to MPS, everolimus had uncertain effects on graft loss and BK viraemia, may reduce BKVAN (1 study, 135 participants: 0.06, 95% CI 0.00 to 1.11) and may increase the risk of death (1 study, 135 participants: RR 3.71, 95% CI 0.20 to 67.35) (both low certainty evidence). Compared to CSA, everolimus may make little or no difference to BK viraemia, has uncertain effects on graft loss and BKVAN, but may increase the risk of death (1 study, 185 participants: RR 3.71, 95% CI 0.42 to 32.55; low certainty evidence). Compared to immunosuppression reduction, the leflunomide derivative FK778 may make little or no difference to graft loss, probably results in a greater reduction in plasma BK viral load (1 study, 44 participants: -0.60 copies/µL, 95% CI -1.22 to 0.02; moderate certainty evidence), but had uncertain effects on BKVAN and malignancy. Aggravated hypertension may be increased with KF778 (1 study, 46 participants: RR 8.23, 95% CI 0.50 to 135.40; low certainty evidence). There were no deaths in either group. AUTHORS' CONCLUSIONS Intense monitoring early after transplantation for BK viruria and BK viraemia is effective in improving BK virus infection outcomes as it helps with early detection of the infection and allows for a timely reduction in immunosuppression reduction. There is insufficient evidence to support any other intervention for BK virus infection in kidney transplant recipients.
Collapse
Affiliation(s)
- Zainab Wajih
- Renal and General Medicine, Bathurst Hospital (WNSWLHD), Bathurst, NSW, Australia
| | - Krishna M Karpe
- Department of Renal Medicine, The Canberra Hospital, Canberra, Australia
| | - Giles D Walters
- Department of Renal Medicine, The Canberra Hospital, Canberra, Australia
| |
Collapse
|
9
|
Kotton CN, Kamar N, Wojciechowski D, Eder M, Hopfer H, Randhawa P, Sester M, Comoli P, Tedesco Silva H, Knoll G, Brennan DC, Trofe-Clark J, Pape L, Axelrod D, Kiberd B, Wong G, Hirsch HH. The Second International Consensus Guidelines on the Management of BK Polyomavirus in Kidney Transplantation. Transplantation 2024; 108:1834-1866. [PMID: 38605438 PMCID: PMC11335089 DOI: 10.1097/tp.0000000000004976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 04/13/2024]
Abstract
BK polyomavirus (BKPyV) remains a significant challenge after kidney transplantation. International experts reviewed current evidence and updated recommendations according to Grading of Recommendations, Assessment, Development, and Evaluations (GRADE). Risk factors for BKPyV-DNAemia and biopsy-proven BKPyV-nephropathy include recipient older age, male sex, donor BKPyV-viruria, BKPyV-seropositive donor/-seronegative recipient, tacrolimus, acute rejection, and higher steroid exposure. To facilitate early intervention with limited allograft damage, all kidney transplant recipients should be screened monthly for plasma BKPyV-DNAemia loads until month 9, then every 3 mo until 2 y posttransplant (3 y for children). In resource-limited settings, urine cytology screening at similar time points can exclude BKPyV-nephropathy, and testing for plasma BKPyV-DNAemia when decoy cells are detectable. For patients with BKPyV-DNAemia loads persisting >1000 copies/mL, or exceeding 10 000 copies/mL (or equivalent), or with biopsy-proven BKPyV-nephropathy, immunosuppression should be reduced according to predefined steps targeting antiproliferative drugs, calcineurin inhibitors, or both. In adults without graft dysfunction, kidney allograft biopsy is not required unless the immunological risk is high. For children with persisting BKPyV-DNAemia, allograft biopsy may be considered even without graft dysfunction. Allograft biopsies should be interpreted in the context of all clinical and laboratory findings, including plasma BKPyV-DNAemia. Immunohistochemistry is preferred for diagnosing biopsy-proven BKPyV-nephropathy. Routine screening using the proposed strategies is cost-effective, improves clinical outcomes and quality of life. Kidney retransplantation subsequent to BKPyV-nephropathy is feasible in otherwise eligible recipients if BKPyV-DNAemia is undetectable; routine graft nephrectomy is not recommended. Current studies do not support the usage of leflunomide, cidofovir, quinolones, or IVIGs. Patients considered for experimental treatments (antivirals, vaccines, neutralizing antibodies, and adoptive T cells) should be enrolled in clinical trials.
Collapse
Affiliation(s)
- Camille N. Kotton
- Transplant and Immunocompromised Host Infectious Diseases Unit, Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Nassim Kamar
- Department of Nephrology and Organ Transplantation, Toulouse Rangueil University Hospital, INSERM UMR 1291, Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University Paul Sabatier, Toulouse, France
| | - David Wojciechowski
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michael Eder
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Helmut Hopfer
- Division of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Parmjeet Randhawa
- Division of Transplantation Pathology, The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Patrizia Comoli
- Cell Factory and Pediatric Hematology/Oncology Unit, Department of Mother and Child Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Helio Tedesco Silva
- Division of Nephrology, Hospital do Rim, Fundação Oswaldo Ramos, Paulista School of Medicine, Federal University of São Paulo, Brazil
| | - Greg Knoll
- Department of Medicine (Nephrology), University of Ottawa and The Ottawa Hospital, Ottawa, ON, Canada
| | | | - Jennifer Trofe-Clark
- Renal-Electrolyte Hypertension Division, Associated Faculty of the Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA
- Transplantation Division, Associated Faculty of the Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA
| | - Lars Pape
- Pediatrics II, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - David Axelrod
- Kidney, Pancreas, and Living Donor Transplant Programs at University of Iowa, Iowa City, IA
| | - Bryce Kiberd
- Division of Nephrology, Dalhousie University, Halifax, NS, Canada
| | - Germaine Wong
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
- Centre for Kidney Research, The Children’s Hospital at Westmead, Sydney, NSW, Australia
- Centre for Transplant and Renal Research, Westmead Hospital, Sydney, NSW, Australia
| | - Hans H. Hirsch
- Division of Transplantation and Clinical Virology, Department of Biomedicine, Faculty of Medicine, University of Basel, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
10
|
Nast CC. Polyomavirus nephropathy: diagnosis, histologic features, and differentiation from acute rejection. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:71-89. [PMID: 38725187 PMCID: PMC11228385 DOI: 10.4285/ctr.24.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 06/29/2024]
Abstract
Polyomaviruses, particularly BK virus, are ubiquitous latent infections that may reactivate with immunosuppression during kidney transplantation, resulting in polyomavirus nephropathy (PVN). The levels of viruria and viremia serve as tools for screening and making a presumptive diagnosis of PVN, respectively, while a definitive diagnosis requires a kidney biopsy. There are histologic classifications of PVN based on the extent of tubular cell viral infection, interstitial fibrosis, and interstitial inflammation. These classifications correlate to some degree with graft function and loss, aiding in determining treatment efficacy and prognostication. PVN has histologic overlap with acute cell-mediated rejection, making the differential diagnosis challenging, although there are suggestive features for these different causes of graft dysfunction. This article reviews the diagnosis, histologic findings, and classifications of PVN, and discusses how to differentiate viral nephropathy from acute rejection.
Collapse
Affiliation(s)
- Cynthia C Nast
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
11
|
Cho A, Park S, Han A, Ha J, Park JB, Lee KW, Min S. A comparative analysis of clinical outcomes between conversion to mTOR inhibitor and calcineurin inhibitor reduction in managing BK viremia among kidney transplant patients. Sci Rep 2024; 14:12855. [PMID: 38834615 PMCID: PMC11150265 DOI: 10.1038/s41598-024-60695-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/26/2024] [Indexed: 06/06/2024] Open
Abstract
BK virus-associated nephropathy (BKVAN) exerts a substantial impact on allograft survival, however, the absence of robust clinical evidence regarding treatment protocols adds to the complexity of managing this condition. This study aimed to compare the two treatment approaches. The study population consisted of patients who underwent kidney transplantation between January 2016 and June 2020 at two tertiary hospitals in Korea. Patients diagnosed with BK viremia were evaluated based on their initial viral load and the treatment methods. The 'Reduction group' involved dose reduction of tacrolimus while the 'Conversion group' included tacrolimus discontinuation and conversion to sirolimus. A total of 175 patients with an initial viral load (iVL) ≥ 3 on the log10 scale were evaluated within two iVL intervals (3-4 and 4-5). In the iVL 4-5 interval, the Reduction group showed potential effectiveness in terms of viral clearance without statistically significant differences. However, within the iVL 3-4 interval, the Reduction group demonstrated superior viral clearance and a lower incidence of biopsy-proven acute rejection (BPAR) than the Conversion group. The renal function over 12 months after BKV diagnosis showed no statistically significant difference. Reducing tacrolimus compared to converting to mTORi would be a more appropriate treatment approach for BK viral clearance in kidney transplantation. Further research is warranted in a large cohort of patients.
Collapse
Affiliation(s)
- Ara Cho
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Sunghae Park
- Department of Surgery, Samsung Medical Center, Seoul, South Korea
| | - Ahram Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Jongwon Ha
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Seoul, South Korea
| | - Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Seoul, South Korea
| | - Sangil Min
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
12
|
Seifert ME, Mannon RB, Nellore A, Young J, Wiseman AC, Cohen DJ, Peddi VR, Brennan DC, Morgan CJ, Peri K, Aban I, Whitley RJ, Gnann JW. A multicenter prospective study to define the natural history of BK viral infections in kidney transplantation. Transpl Infect Dis 2024; 26:e14237. [PMID: 38341645 PMCID: PMC11285626 DOI: 10.1111/tid.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND BK polyomavirus (BKV) can cause permanent loss of allograft function due to BKV-associated nephropathy (BKVN) in kidney transplant recipients. Besides immunosuppression reduction, there are no consistently effective interventions for BKV infection. Study purpose was to define natural history of BKV infection, identify risk factors for BKV reactivation and BKVN in kidney transplant recipients, and inform the design/conduct of future clinical trials of BKV-targeted therapeutics. METHODS We conducted a multicenter prospective observational study of incident kidney transplant recipients at six U.S. transplant centers. Participants were monitored every 4 weeks for BKV reactivation and followed for up to 24 months post-transplant. We used regression models (logistic, survival, mixed models) to study relationships between BK viremia/BKVN, clinical characteristics, and allograft function. RESULTS We enrolled 335 participants. Fifty-eight (17%) developed BK viremia, 6 (2%) developed biopsy-proven BKVN, and 29 (9%) developed suspected/presumed BKVN (defined as BKV viral load > 10,000 copies/mL without biopsy). Male donor sex was associated with lower odds for BK viremia, whereas recipient Black race was associated with two-fold increased odds for BK viremia. Recipient female sex was associated with more rapid clearance of BK viremia. Persistent BK viremia/BKVN was associated with poorer allograft function by 24 months post-transplant. CONCLUSIONS We identified multiple donor and recipient demographic factors associated with risk for BKV infection and poorer allograft function by 24 months post-transplant. This may help design future clinical trials of therapies to prevent or mitigate the deleterious impact of BKV reactivation on kidney transplant outcomes.
Collapse
Affiliation(s)
- Michael E. Seifert
- Heersink School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Roslyn B. Mannon
- Heersink School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Anoma Nellore
- Heersink School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - JoAnne Young
- School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - David J. Cohen
- Columbia University Medical Center, New York, New York, USA
| | - V. Ram Peddi
- California Pacific Medical Center, San Francisco, California, USA
| | | | - Charity J. Morgan
- Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kalyani Peri
- Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Inmaculada Aban
- Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Richard J. Whitley
- Heersink School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - John W. Gnann
- Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
13
|
Parajuli S, Aziz F, Zhong W, Djamali A. BK polyomavirus infection: more than 50 years and still a threat to kidney transplant recipients. FRONTIERS IN TRANSPLANTATION 2024; 3:1309927. [PMID: 38993764 PMCID: PMC11235301 DOI: 10.3389/frtra.2024.1309927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/08/2024] [Indexed: 07/13/2024]
Abstract
BK polyomavirus (BKPyV) is a ubiquitous human polyomavirus and a major infection after kidney transplantation, primarily due to immunosuppression. BKPyV reactivation can manifest as viruria in 30%-40%, viremia in 10%-20%, and BK polyomavirus-associated nephropathy (BKPyVAN) in 1%-10% of recipients. BKPyVAN is an important cause of kidney graft failure. Although the first case of BKPyV was identified in 1971, progress in its management has been limited. Specifically, there is no safe and effective antiviral agent or vaccine to treat or prevent the infection. Even in the current era, the mainstay approach to BKPyV is a reduction in immunosuppression, which is also limited by safety (risk of de novo donor specific antibody and rejection) and efficacy (graft failure). However, recently BKPyV has been getting more attention in the field, and some new treatment strategies including the utilization of viral-specific T-cell therapy are emerging. Given all these challenges, the primary focus of this article is complications associated with BKPyV, as well as strategies to mitigate negative outcomes.
Collapse
Affiliation(s)
- Sandesh Parajuli
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Fahad Aziz
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Weixiong Zhong
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Arjang Djamali
- Department of Medicine, Maine Medical Center Maine Health, Portland, ME, United States
| |
Collapse
|
14
|
Yuan J, Fei S, Gui Z, Wang Z, Chen H, Sun L, Tao J, Han Z, Ju X, Tan R, Gu M, Huang Z. Association of UGT1A Gene Polymorphisms with BKV Infection in Renal Transplantation Recipients. Curr Drug Metab 2024; 25:188-196. [PMID: 38509677 DOI: 10.2174/0113892002282727240307072255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND BK virus (BKV) infection is an opportunistic infectious complication and constitutes a risk factor for premature graft failure in kidney transplantation. Our research aimed to identify associations and assess the impact of single-nucleotide polymorphisms (SNPs) on metabolism-related genes in patients who have undergone kidney transplantation with BKV infection. MATERIAL/METHODS The DNA samples of 200 eligible kidney transplant recipients from our center, meeting the inclusion criteria, have been collected and extracted. Next-generation sequencing was used to genotype SNPs on metabolism-associated genes (CYP3A4/5/7, UGT1A4/7/8/9, UGT2B7). A general linear model (GLM) was used to identify and eliminate confounding factors that may influence the outcome events. Multiple inheritance models and haplotype analyses were utilized to identify variation loci associated with infection caused by BKV and ascertain haplotypes, respectively. RESULTS A total of 141 SNPs located on metabolism-related genes were identified. After Hardy-Weinberg equilibrium (HWE) and minor allele frequency (MAF) analysis, 21 tagger SNPs were selected for further association analysis. Based on GLM results, no confounding factor was significant in predicting the incidence of BK polyomavirus-associated infection. Then, multiple inheritance model analyses revealed that the risk of BKV infection was significantly associated with rs3732218 and rs4556969. Finally, we detect significant associations between haplotype T-A-C of block 2 (rs4556969, rs3732218, rs12468274) and infection caused by BKV (P = 0.0004). CONCLUSION We found that genetic variants in the UGT1A gene confer BKV infection susceptibility after kidney transplantation.
Collapse
Affiliation(s)
- Jingwen Yuan
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Shuang Fei
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Zeping Gui
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Hao Chen
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Li Sun
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Zhijian Han
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Xiaobing Ju
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Min Gu
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
- Department of Urology, The Second Affiliated Hospital with Nanjing Medical University, Nanjing, 210011, China
| | - Zhengkai Huang
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
15
|
Zhong C, Chen J, Yan Z, Xia R, Zeng W, Deng W, Xu J, Wang Y, Miao Y. Therapeutic strategies against BK polyomavirus infection in kidney transplant recipients: Systematic review and meta-analysis. Transpl Immunol 2023; 81:101953. [PMID: 37931665 DOI: 10.1016/j.trim.2023.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The selection of antiviral therapy for BK polyomavirus (BKPyV) infection has been extensively debated. Our study aimed to assess the efficacy and safety of various treatments for BKPyV infection. METHODS We searched PubMed, EMBASE, and Web of Science databases for relevant studies regarding drug treatments for BKPyV viremia/DNAemia published between January 1, 1970 and September 30, 2022. Two independent authors screened the published studies, extracted pertinent data, and evaluated their methodological quality. A meta-analysis was performed using the RevMan software version 4.2.2. RESULTS A total of 33 published studies involving 986 patients were included in the meta-analysis. Overall, therapeutic interventions comprised immunosuppression reduction alone or in combination with leflunomide, intravenous immunoglobulin (IVIG), cidofovir, or mTOR inhibitor (mTORi) therapy. The meta-analysis revealed that the efficacy of immunosuppression reduction alone for serum BKPyV clearance was 68% (95% confidence interval [CI]: 0.58-0.77; I2 = 78%). Moreover, the efficacy of immunosuppression reduction in combination with leflunomide, cidofovir, IVIG, or mTORi therapy for serum BKPyV clearance was 61% (95% CI: 0.47-0.74; I2 = 83%), 71% (95% CI: 0.63-0.78; I2 = 0), 87% (95% CI: 0.82-0.93; I2 = 45%), and 80% (95% CI: 0.59-1.00; I2 = 58%), respectively. Compared to immunosuppression reduction alone, immunosuppression reduction combined with IVIG therapy offered a statistically significant benefit in serum BKPyV clearance (P < 0.01) with minimal adverse reactions, whereas other adjunctive drug treatments did not demonstrate considerable effects. CONCLUSIONS Reducing immunosuppression remains the primary approach for treating BKPyV infection. Although the combination treatment with IVIG proved to be most effective, other agents might offer varied antiviral advantages of high heterogeneity, which should be substantiated in future long-term randomized controlled trials.
Collapse
Affiliation(s)
- Cuiyu Zhong
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiayi Chen
- Department of Biostatistics, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou 510515, China
| | - Ziyan Yan
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Renfei Xia
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenli Zeng
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenfeng Deng
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jian Xu
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuchen Wang
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yun Miao
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
16
|
Cleenders E, Koshy P, Van Loon E, Lagrou K, Beuselinck K, Andrei G, Crespo M, De Vusser K, Kuypers D, Lerut E, Mertens K, Mineeva-Sangwo O, Randhawa P, Senev A, Snoeck R, Sprangers B, Tinel C, Van Craenenbroeck A, van den Brand J, Van Ranst M, Verbeke G, Coemans M, Naesens M. An observational cohort study of histological screening for BK polyomavirus nephropathy following viral replication in plasma. Kidney Int 2023; 104:1018-1034. [PMID: 37598855 DOI: 10.1016/j.kint.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023]
Abstract
Systematic screening for BKPyV-DNAemia has been advocated to aid prevention and treatment of polyomavirus associated nephropathy (PyVAN), an important cause of kidney graft failure. The added value of performing a biopsy at time of BKPyV-DNAemia, to distinguish presumptive PyVAN (negative SV40 immunohistochemistry) and proven PyVAN (positive SV40) has not been established. Therefore, we studied an unselected cohort of 950 transplantations, performed between 2008-2017. BKPyV-DNAemia was detected in 250 (26.3%) transplant recipients, and positive SV40 in 91 cases (9.6%). Among 209 patients with a concurrent biopsy at time of first BKPyV-DNAemia, 60 (28.7%) biopsies were SV40 positive. Plasma viral load showed high diagnostic value for concurrent SV40 positivity (ROC-AUC 0.950, 95% confidence interval 0.916-0.978) and the semiquantitatively scored percentage of tubules with evidence of polyomavirus replication (pvl score) (0.979, 0.968-0.988). SV40 positivity was highly unlikely when plasma viral load is below 4 log10 copies/ml (negative predictive value 0.989, 0.979-0.994). In SV40 positive patients, higher plasma BKPyV-DNA load and higher pvl scores were associated with slower viral clearance from the blood (hazard ratio 0.712, 95% confidence interval 0.604-0.839, and 0.327, 0.161-0.668, respectively), whereas the dichotomy positivity/negativity of SV40 immunohistochemistry did not predict viral clearance. Although the pvl score offers some prognostic value for viral clearance on top of plasma viral load, the latter provided good guidance for when a biopsy was unnecessary to exclude PyVAN. Thus, the distinction between presumptive and proven PyVAN, based on SV40 immunohistochemistry, has limited clinical value. Hence, management of BKPyV-DNAemia and immunosuppression reduction should be weighed against the risk of occurrence of rejection, or exacerbation of rejection observed concomitantly.
Collapse
Affiliation(s)
- Evert Cleenders
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Public Health and Primary Care, Leuven Biostatistics and Statistical Bioinformatics Centre, KU Leuven, Leuven, Belgium
| | - Priyanka Koshy
- Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Elisabet Van Loon
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KU Leuven, Leuven, Belgium
| | - Kurt Beuselinck
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Graciela Andrei
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Marta Crespo
- Department of Nephrology, Hospital del Mar Medical Research Institute (IMIM), Hospital del Mar, Barcelona, Spain
| | - Katrien De Vusser
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Kuypers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Evelyne Lerut
- Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Kris Mertens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Olga Mineeva-Sangwo
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Parmjeet Randhawa
- Division of Transplantation Pathology, the Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center-Montefiore Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aleksandar Senev
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium; Histocompatibility and Immunogenetics Laboratory, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Robert Snoeck
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Ben Sprangers
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Molecular Immunology, KU Leuven, Leuven, Belgium
| | - Claire Tinel
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Amaryllis Van Craenenbroeck
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Jan van den Brand
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Marc Van Ranst
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Geert Verbeke
- Department of Public Health and Primary Care, Leuven Biostatistics and Statistical Bioinformatics Centre, KU Leuven, Leuven, Belgium
| | - Maarten Coemans
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Public Health and Primary Care, Leuven Biostatistics and Statistical Bioinformatics Centre, KU Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
Song J, Kim S, Kwak E, Park Y. Evaluating the Efficiency of the Cobas 6800 System for BK Virus Detection in Plasma and Urine Samples. Diagnostics (Basel) 2023; 13:2860. [PMID: 37685397 PMCID: PMC10487002 DOI: 10.3390/diagnostics13172860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
We evaluated the overall performance of the Cobas 6800 BKV test in detecting BK virus (BKV). We examined the imprecision of the Cobas 6800 BKV test and compared the qualitative and quantitative results obtained from the Cobas 6800 BKV test and the Real-Q BKV quantification assay. We assessed 88 plasma and 26 urine samples collected between September and November 2022 from patients with BKV infection using the Real-Q BKV quantitative assay. The lognormal coefficient of variation indicated that the inter-assay precision of the Cobas 6800 BKV test ranged from 13.86 to 33.83%. A strong correlation was observed between the quantitative results obtained using the Cobas 6800 BKV test and the Real-Q BKV quantification assay for plasma samples. The Spearman's rank correlation coefficients (ρ) for plasma, polymerase chain reaction (PCR) media-stabilized urine, and raw urine samples were 0.939, 0.874, and 0.888, respectively. Our analyses suggest that the Cobas 6800 BKV test is suitable for clinical applications owing to the strong correlation between the results obtained using this test and the Real-Q BKV quantification assay in plasma and urine samples. Furthermore, utilizing fresh raw urine samples can be a viable approach for the Cobas 6800 BKV test as it is less labor- and time-intensive.
Collapse
Affiliation(s)
| | | | | | - Younhee Park
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
18
|
Pajenda S, Hevesi Z, Eder M, Gerges D, Aiad M, Koldyka O, Winnicki W, Wagner L, Eskandary F, Schmidt A. Lessons from Polyomavirus Immunofluorescence Staining of Urinary Decoy Cells. Life (Basel) 2023; 13:1526. [PMID: 37511901 PMCID: PMC10381542 DOI: 10.3390/life13071526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Decoy cells that can be detected in the urine sediment of immunosuppressed patients are often caused by the uncontrolled replication of polyomaviruses, such as BK-Virus (BKV) and John Cunningham (JC)-Virus (JCV), within the upper urinary tract. Due to the wide availability of highly sensitive BKV and JCV PCR, the diagnostic utility of screening for decoy cells in urine as an indicator of polyomavirus-associated nephropathy (PyVAN) has been questioned by some institutions. We hypothesize that specific staining of different infection time-dependent BKV-specific antigens in urine sediment could allow cell-specific mapping of antigen expression during decoy cell development. Urine sediment cells from six kidney transplant recipients (five males, one female) were stained for the presence of the early BKV gene transcript lTag and the major viral capsid protein VP1 using monospecific antibodies, monoclonal antibodies and confocal microscopy. For this purpose, cyto-preparations were prepared and the BK polyoma genotype was determined by sequencing the PCR-amplified coding region of the VP1 protein. lTag staining began at specific sites in the nucleus and spread across the nucleus in a cobweb-like pattern as the size of the nucleus increased. It spread into the cytosol as soon as the nuclear membrane was fragmented or dissolved, as in apoptosis or in the metaphase of the cell cycle. In comparison, we observed that VP1 staining started in the nuclear region and accumulated at the nuclear edge in 6-32% of VP1+ cells. The staining traveled through the cytosol of the proximal tubule cell and reached high intensities at the cytosol before spreading to the surrounding area in the form of exosome-like particles. The spreading virus-containing particles adhered to surrounding cells, including erythrocytes. VP1-positive proximal tubule cells contain apoptotic bodies, with 68-94% of them losing parts of their DNA and exhibiting membrane damage, appearing as "ghost cells" but still VP1+. Specific polyoma staining of urine sediment cells can help determine and enumerate exfoliation of BKV-positive cells based on VP1 staining, which exceeds single-face decoy staining in terms of accuracy. Furthermore, our staining approaches might serve as an early readout in primary diagnostics and for the evaluation of treatment responses in the setting of reduced immunosuppression.
Collapse
Affiliation(s)
- Sahra Pajenda
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Zsofia Hevesi
- Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Eder
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Gerges
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Monika Aiad
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver Koldyka
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Winnicki
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Ludwig Wagner
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Alice Schmidt
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
19
|
Elalouf A. Infections after organ transplantation and immune response. Transpl Immunol 2023; 77:101798. [PMID: 36731780 DOI: 10.1016/j.trim.2023.101798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/08/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Organ transplantation has provided another chance of survival for end-stage organ failure patients. Yet, transplant rejection is still a main challenging factor. Immunosuppressive drugs have been used to avoid rejection and suppress the immune response against allografts. Thus, immunosuppressants increase the risk of infection in immunocompromised organ transplant recipients. The infection risk reflects the relationship between the nature and severity of immunosuppression and infectious diseases. Furthermore, immunosuppressants show an immunological impact on the genetics of innate and adaptive immune responses. This effect usually reactivates the post-transplant infection in the donor and recipient tissues since T-cell activation has a substantial role in allograft rejection. Meanwhile, different infections have been found to activate the T-cells into CD4+ helper T-cell subset and CD8+ cytotoxic T-lymphocyte that affect the infection and the allograft. Therefore, the best management and preventive strategies of immunosuppression, antimicrobial prophylaxis, and intensive medical care are required for successful organ transplantation. This review addresses the activation of immune responses against different infections in immunocompromised individuals after organ transplantation.
Collapse
Affiliation(s)
- Amir Elalouf
- Bar-Ilan University, Department of Management, Ramat Gan 5290002, Israel.
| |
Collapse
|
20
|
Mosca M, Bacchetta J, Chamouard V, Rascle P, Dubois V, Paul S, Mekki Y, Picard C, Bertholet-Thomas A, Ranchin B, Sellier-Leclerc AL. IVIg therapy in the management of BK virus infections in pediatric kidney transplant patients. Arch Pediatr 2023; 30:165-171. [PMID: 36907728 DOI: 10.1016/j.arcped.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/23/2022] [Accepted: 01/15/2023] [Indexed: 03/12/2023]
Abstract
BK virus-associated nephropathy (BKPyVAN) induces kidney allograft dysfunction. Although decreasing immunosuppression is the standard for managing BK virus (BKPyV) infection, this strategy is not always effective. The use of polyvalent immunoglobulins (IVIg) may be of interest in this setting. We performed a retrospective single-center evaluation of the management of BKPyV infection in pediatric kidney transplant patients. Among the 171 patients who underwent transplantation between January 2010 and December 2019, 54 patients were excluded (combined transplant n = 15, follow-up in another center n = 35, early postoperative graft loss n= 4). Thus, 117 patients (120 transplants) were included. Overall, 34 (28%) and 15 (13%) transplant recipients displayed positive BKPyV viruria and viremia, respectively. Three had biopsy-confirmed BKPyVAN. The pre-transplant prevalence of CAKUT and HLA antibodies was higher among BKPyV-positive patients compared to non-infected patients. After the detection of BKPyV replication and/or BKPyVAN, the immunosuppressive regimen was modified in 13 (87%) patients: either by decreasing or changing the calcineurin inhibitors (n = 13) and/or switching from mycophenolate mofetil to mTor inhibitors (n = 10). Starting IVIg therapy was based on graft dysfunction or an increase in the viral load despite reduced immunosuppressive regimen. Seven of 15(46%) patients received IVIg. These patients had a higher viral load (5.4 [5.0-6.8]log vs. 3.5 [3.3-3.8]log). In total, 13 of 15 (86%) achieved viral load reduction, five of seven after IVIg therapy. As long as specific antivirals are not available for the management of BKPyV infections in pediatric kidney transplant patients, polyvalent IVIg may be discussed for the management of severe BKPyV viremia, in combination with decreased immunosuppression.
Collapse
Affiliation(s)
- M Mosca
- Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Centre de Référence des Maladies Rénales Rares, Bron Cedex F-69677, France.
| | - J Bacchetta
- Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Centre de Référence des Maladies Rénales Rares, Bron Cedex F-69677, France
| | - V Chamouard
- Hospices Civils de Lyon, Hôpital Louis Pradel, Unité d'Hémostase Clinique, Université Claude Bernard Lyon 1, Bron Cedex F-69677, France
| | - P Rascle
- Hospices Civils de Lyon, OMEDIT Rhône-Alpes, Bron Cedex F-69677, France
| | - V Dubois
- EFS Auvergne Rhône Alpes, laboratoire HLA, Décines Cedex F- 69151, France
| | - S Paul
- EFS Auvergne Rhône Alpes, laboratoire HLA, Décines Cedex F- 69151, France
| | - Y Mekki
- Hospices Civils de Lyon, Groupement hospitalier Nord, Laboratoire de virologie, Lyon Cedex F-69003
| | - C Picard
- Institut de Pathologie Multisite, Site Est, Hospices Civils de Lyon, Lyon, France
| | - A Bertholet-Thomas
- Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Centre de Référence des Maladies Rénales Rares, Bron Cedex F-69677, France
| | - B Ranchin
- Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Centre de Référence des Maladies Rénales Rares, Bron Cedex F-69677, France
| | - A L Sellier-Leclerc
- Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Centre de Référence des Maladies Rénales Rares, Bron Cedex F-69677, France
| |
Collapse
|
21
|
Peretti A, Scorpio DG, Kong WP, Pang YYS, McCarthy MP, Ren K, Jackson M, Graham BS, Buck CB, McTamney PM, Pastrana DV. A multivalent polyomavirus vaccine elicits durable neutralizing antibody responses in macaques. Vaccine 2023; 41:1735-1742. [PMID: 36764908 PMCID: PMC9992340 DOI: 10.1016/j.vaccine.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
In 2019, there were about 100,000 kidney transplants globally, with more than a quarter of them performed in the United States. Unfortunately, some engrafted organs are lost to polyomavirus-associated nephropathy (PyVAN) caused by BK and JC viruses (BKPyV and JCPyV). Both viruses cause brain disease and possibly bladder cancer in immunosuppressed individuals. Transplant patients are routinely monitored for BKPyV viremia, which is an accepted hallmark of nascent nephropathy. If viremia is detected, a reduction in immunosuppressive therapy is standard care, but the intervention comes with increased risk of immune rejection of the engrafted organ. Recent reports have suggested that transplant recipients with high levels of polyomavirus-neutralizing antibodies are protected against PyVAN. Virus-like particle (VLP) vaccines, similar to approved human papillomavirus vaccines, have an excellent safety record and are known to induce high levels of neutralizing antibodies and long-lasting protection from infection. In this study, we demonstrate that VLPs representing BKPyV genotypes I, II, and IV, as well as JCPyV genotype 2 produced in insect cells elicit robust antibody titers. In rhesus macaques, all monkeys developed neutralizing antibody titers above a previously proposed protective threshold of 10,000. A second inoculation, administered 19 weeks after priming, boosted titers to a plateau of ≥ 25,000 that was maintained for almost two years. No vaccine-related adverse events were observed in any macaques. A multivalent BK/JC VLP immunogen did not show inferiority compared to the single-genotype VLP immunogens. Considering these encouraging results, we believe a clinical trial administering the multivalent VLP vaccine in patients waiting to receive a kidney transplant is warranted to evaluate its ability to reduce or eliminate PyVAN.
Collapse
Affiliation(s)
- Alberto Peretti
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, United States
| | - Diana G Scorpio
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Wing-Pui Kong
- Virology Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Yuk-Ying S Pang
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, United States
| | - Michael P McCarthy
- Department of Infectious Diseases-Vaccines, MedImmune, Gaithersburg, MD 20878, United States
| | - Kuishu Ren
- Department of Infectious Diseases-Vaccines, MedImmune, Gaithersburg, MD 20878, United States
| | - Moriah Jackson
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Barney S Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Christopher B Buck
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, United States.
| | - Patrick M McTamney
- Department of Infectious Diseases-Vaccines, MedImmune, Gaithersburg, MD 20878, United States
| | - Diana V Pastrana
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, United States
| |
Collapse
|
22
|
Gately R, Milanzi E, Lim W, Teixeira-Pinto A, Clayton P, Isbel N, Johnson DW, Hawley C, Campbell S, Wong G. Incidence, Risk Factors, and Outcomes of Kidney Transplant Recipients With BK Polyomavirus-Associated Nephropathy. Kidney Int Rep 2023; 8:531-543. [PMID: 36938086 PMCID: PMC10014440 DOI: 10.1016/j.ekir.2022.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
Introduction BK polyomavirus-associated nephropathy (BKPyVAN) is associated with graft dysfunction and loss; however, knowledge of immunosuppression reduction strategies and long-term graft, and patient outcomes across the disease spectrum is lacking. Methods This cohort study included 14,697 kidney transplant recipients in Australia and New Zealand (2005-2019), followed for 91,306 person years. Results BKPyVAN occurred in 460 recipients (3%) at a median posttransplant time of 4.8 months (interquartile range, 3.1-10.8). Graft loss (35% vs. 21%, P < 0.001), rejection (42% vs. 25%, P < 0.001), and death (18% vs. 13%, P = 0.002) were more common in the BKPyVAN group. The most frequent changes in immunosuppression after BKPyVAN were reduction (≤50%) in tacrolimus (172, 51%) and mycophenolate doses (134, 40%), followed by the conversion of mycophenolate to leflunomide (62, 19%) and tacrolimus to ciclosporin (20, 6%). Factors associated with the development of BKPyVAN included (adjusted hazard ratio [HR]; 95% confidence interval) male sex (1.66; 1.34-2.05), recipient age (≥70 vs. <20 [2.46; 1.30-4.65]), recipient blood group (A vs. B [2.00; 1.19-3.34]), donor age (≥70 vs. <20 [2.99; 1.71-5.22]), earlier era (1.74; 1.35-2.25), donor/recipient ethnic mismatch (1.52; 1.23-1.87), tacrolimus use (1.46; 1.11-1.91), and transplantation at a lower-volume transplant center (1.61; 1.24-2.09). The development of BKPyVAN was associated with an increased risk of all-cause (1.75; 1.46-2.09) and death-censored graft loss (2.49; 1.99-3.11), but not mortality (1.15; 0.91-1.45). Conclusions BKPyVAN is associated with an increased risk of all-cause and death-censored graft loss, but not death. Interventional trials are urgently needed to evaluate the efficacy of immunosuppression reduction and novel strategies to minimize the adverse outcomes associated with BKPyVAN.
Collapse
Affiliation(s)
- Ryan Gately
- Department of Nephrology, Princess Alexandra Hospital, Queensland, Australia
- Correspondence: Ryan Gately, Department of Nephrology, Princess Alexandra Hospital, 199 Ipswich Rd, Woolloongabba Queensland 4102, Australia.
| | - Elasma Milanzi
- Australasian Kidney Trials Network, University of Queensland, Brisbane, Australia
| | - Wai Lim
- Faculty of Health and Medical Science, University of Western Australia, Perth, Australia
| | - Armando Teixeira-Pinto
- Sydney School of Public Health, University of Sydney, Sydney, New South Wales, Australia
| | - Phil Clayton
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Nicole Isbel
- Department of Nephrology, Princess Alexandra Hospital, Queensland, Australia
- Australasian Kidney Trials Network, University of Queensland, Brisbane, Australia
- Translational Research Institute, Brisbane, Australia
| | - David W. Johnson
- Department of Nephrology, Princess Alexandra Hospital, Queensland, Australia
- Australasian Kidney Trials Network, University of Queensland, Brisbane, Australia
- Translational Research Institute, Brisbane, Australia
| | - Carmel Hawley
- Department of Nephrology, Princess Alexandra Hospital, Queensland, Australia
- Australasian Kidney Trials Network, University of Queensland, Brisbane, Australia
- Translational Research Institute, Brisbane, Australia
| | - Scott Campbell
- Department of Nephrology, Princess Alexandra Hospital, Queensland, Australia
- Australasian Kidney Trials Network, University of Queensland, Brisbane, Australia
| | - Germaine Wong
- Sydney School of Public Health, University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
23
|
Characteristics, risk factors and outcome of BKV nephropathy in kidney transplant recipients: a case-control study. BMC Infect Dis 2023; 23:74. [PMID: 36747162 PMCID: PMC9903532 DOI: 10.1186/s12879-023-08043-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Following kidney transplantation, BK virus associated nephropathy (BKVN) occurs in 1 to 10% of kidney transplant recipients (KTR) and represents a major cause of graft loss. We aim at identifying factors associated with biopsy proven BKVN among KTR. METHODS We conducted a retrospective case-control study including all KTR with a biopsy-proven diagnosis of BKVN between 2005 and 2019. Clinical characteristics and outcome were described. For each case, one control KTR without BKV infection was identified and matched by age, transplant date, and donor status. Factors associated with BKVN diagnosis were identified using exact conditional logistic regression. Comparative survival was described using Kaplan-Meier estimator. RESULTS Sixty-four cases of BKVN were identified among 1737 new kidney transplantation (3.7% prevalence). Clinical characteristics did not differ between groups, except for a higher c-PRA among cases. BKVN occurred in a median time of 11 (5-14.5) months after KT, and was associated with a significantly impaired graft function at diagnosis. Following BKVN, 61 (95%) of the patients had immunosuppression reduction, which led to BKV DNAemia resolution in 49% of cases. In multivariate analysis, factors associated with BKVN diagnosis were lymphopenia < 500/mm3 and a prednisone dose > 7.5 mg/day. Median duration of follow-up was 40 months for both groups. BKVN was associated with a significantly increased risk of graft rejection (P = 0.02) and return to dialysis (P = 0.01). CONCLUSIONS BKVN remains a severe complication in KTR and is associated with an increased risk for acute rejection and return to dialysis. Lymphopenia below 500/mm3 and corticosteroid maintenance therapy are significantly associated with biopsy-proven BKVN diagnosis.
Collapse
|
24
|
Hod-Dvorai R, Lee R, Muluhngwi P, Raijmakers M, Shetty A, Tambur AR, Ison MG. Development of de novo donor-specific antibodies in renal transplant recipients with BK viremia managed with immunosuppression reduction. Transpl Infect Dis 2023; 25:e13993. [PMID: 36413505 DOI: 10.1111/tid.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Reduction of immunosuppression (IS) upon detection of Polyomavirus (BK) viremia is widely used to prevent BK virus nephropathy. This retrospective case-control study assesses the frequency of de novo donor-specific antibodies (dnDSA) in renal transplant recipients with IS modulation due to BK viremia and the associated risk of antibody mediated rejection. METHODS Our cohort included recipients of kidney transplantation between 2007 and 2017 with clinical, HLA antibody, and biopsy data. BK positivity was defined as viremia >10 000 c/ml or biopsy proven BK nephropathy. A total of 190 BK cases matched our inclusion criteria, each case was matched with two controls based on gender, donor type, and transplant within 1 year (N = 396). RESULTS Despite lower number of HLA antigen mismatches (mean = 3.5 vs. 4.4, p < .001), dnDSA rates were higher in BK cases than in control group (22.1% vs. 13.9%, p = .02), with the majority detected following IS reduction for BK infection, and arising earlier posttransplant compared with no BK infection (294d vs. 434d, p < .001). Antibody mediated rejection rates were similar between cases and controls (8.9% and 8.3%, respectively), but rejection was more likely to occur earlier posttransplant in the BK cases (354d vs. 602d, p = .03). CONCLUSION Our data suggest a link between IS reduction and the generation of dnDSA and/or rejection, supporting close monitoring for DSA in patients with reduced IS due to BK infection given their increased risk to develop dnDSA.
Collapse
Affiliation(s)
- Reut Hod-Dvorai
- Department of Pathology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Ryan Lee
- Northwestern University Comprehensive Transplant Center, Chicago, Illinois, USA
| | - Penn Muluhngwi
- Northwestern University Comprehensive Transplant Center, Chicago, Illinois, USA
| | | | - Aneesha Shetty
- Northwestern University Comprehensive Transplant Center, Chicago, Illinois, USA
| | - Anat R Tambur
- Northwestern University Comprehensive Transplant Center, Chicago, Illinois, USA
| | - Michael G Ison
- Northwestern University Comprehensive Transplant Center, Chicago, Illinois, USA
| |
Collapse
|
25
|
Randhawa P. The MMDx ® diagnostic system: A critical re-appraisal of its knowledge gaps and a call for rigorous validation studies. Clin Transplant 2022; 36:e14747. [PMID: 35678044 DOI: 10.1111/ctr.14747] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 12/15/2022]
Abstract
Transcriptomics generates pathogenetic insights not obtainable by histology, but translation of these insights into diagnostic tests is not a trivial task. This opinion-piece critically appraises declarative MMDx statements, such as the infallibility of machine learning algorithms, measurements of gene expression with >99% precision, and "unambiguous reclassifications" of contentious biopsies such as those with borderline change, polyomavirus nephropathy, chronic active T-cell or mixed rejection, isolated intimal arteritis, and renal medullary pathology. It is shown that molecular diagnoses that do not agree with histology cannot be attributed primarily to pathology reading errors. Neither can all molecular calls derived from arbitrary binary thresholds be automatically accepted as the ground truth. Important other sources of discrepancies between clinico-pathologic and molecular calls include: (a) organ being studied, (b) disease definition, (c) clinical histologic, and gene expression heterogeneity within the same diagnostic label, (d) size and composition of comparator groups, (e) molecular noise, (f) variability in output of different machine learning algorithms, and (g) the nonavailability of a molecular classifier for chronic active TCMR. Carefully designed clinical trials are needed to determine which of the proposed indications of MMDx provide incremental value over existing standard of care protocols.
Collapse
Affiliation(s)
- Parmjeet Randhawa
- Division of Transplantation Pathology, Department of Pathology, The Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
26
|
Favi E, Signorini L, Villani S, Dolci M, Ticozzi R, Basile G, Ferrante P, Ferraresso M, Delbue S. In Vitro Study Evaluating the Effect of Different Immunosuppressive Agents on Human Polyomavirus BK Replication. Transplant Proc 2022; 54:2035-2041. [PMID: 35659782 DOI: 10.1016/j.transproceed.2022.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/08/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Human polyomavirus BK (BKPyV) is the etiologic agent of polyomavirus-associated nephropathy, a leading cause of kidney transplant dysfunction. Because of the lack of antiviral therapies, immunosuppression minimization is the recommended treatment. This strategy offers suboptimal outcomes and entails a significant risk of rejection. Our aim was to evaluate the effect of different immunosuppressive drugs (leflunomide, tacrolimus, mycophenolic acid, sirolimus, and everolimus) and their combinations in an in vitro model of BKPyV infection. METHODS Human renal tubular epithelial cells were infected with BKPyV and treated with leflunomide, tacrolimus, mycophenolic acid, sirolimus, and everolimus, administered alone or in some combination thereof. Viral replication was assessed every 24 hours (up to 72 hours) by BKPyV-specific quantitative real-time polymerized chain reaction for the VIRAL PROTEIN 1 sequence in cell supernatants and by western blot analysis targeting the viral protein 1 and the glyceraldehyde 3-phosphate dehydrogenase on total protein lysates. Results were described as viral copies/mL and compared between treatments at any prespecified time point of the study. RESULTS The highest inhibitory effects were observed using leflunomide or everolimus plus mycophenolic acid (mean BKPyV replication log reduction 0.28). The antiviral effect of everolimus persisted when it was used in combination with tacrolimus (mean BKPyV replication log reduction 0.27). CONCLUSIONS Our experience confirms that everolimus has anti-BKPyV properties and prompts future research to investigate possible mechanisms of action. It also provides a rational basis for targeted clinical trials evaluating alternative immunosuppressive modification strategies.
Collapse
Affiliation(s)
- Evaldo Favi
- Kidney Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Lucia Signorini
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Sonia Villani
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Maria Dolci
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Rosalia Ticozzi
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | | | - Pasquale Ferrante
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Mariano Ferraresso
- Kidney Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Serena Delbue
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
27
|
Identifying RBBP7 as a Promising Diagnostic Biomarker for BK Virus-Associated Nephropathy. J Immunol Res 2022; 2022:6934744. [PMID: 35958876 PMCID: PMC9357817 DOI: 10.1155/2022/6934744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/29/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
BK virus-associated nephropathy (BKVN) remains a major infectious complication due to powerful immunosuppression in kidney transplant recipients, and its histologic appearance can mimic rejection, leading to diagnostic and treatment dilemmas thus molecular diagnostic methods would be beneficial. We collected gene expression profiles of 169 kidney biopsies taken from BKVN, rejection, and stable functioning allografts, based on single sample gene set enrichment analysis and random forest algorithm, and three hallmark activities associated with DNA damage and proliferation were found to be relatively specific in BKVN. Subsequently, weighted gene co-expression network analysis and support vector machines (SVM) algorithm identified RBBP7 as a robust and promising biomarker with high accuracy in both training and validation cohorts (AUC =0.938, 0.977, respectively). Besides, potential drugs for BKVN treatment such as mepacrine were discovered, which may contribute to targeted antiviral therapy and effective patient management rather than simply reducing the doses of immunosuppressive agents in clinical practice. RBBP7 (retinoblastoma binding protein 7) serves as component of serval complexes that regulate chromatin metabolism and functions in affecting DNA replication and controlling cell proliferation. In this research, upregulation of RBBP7 was found to be associated with the higher infiltration of CD8 naïve T, iTreg, and neutrophil cells and the lower amounts of Th1, central memory T, NKT, CD8 T, and dendritic cells. Moreover, the infiltration of Th1, Th17, and NKT cells was steadily different between BKVN and rejection allografts through immune cell assessment. In conclusion, we identified and verified RBBP7 as a molecular biomarker for BKVN diagnosis, which demonstrated great distinguishing ability with allograft rejection and would support clinical decision-making.
Collapse
|
28
|
BK Virus Nephropathy in Kidney Transplantation: A State-of-the-Art Review. Viruses 2022; 14:v14081616. [PMID: 35893681 PMCID: PMC9330039 DOI: 10.3390/v14081616] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
BK virus maintains a latent infection that is ubiquitous in humans. It has a propensity for reactivation in the setting of a dysfunctional cellular immune response and is frequently encountered in kidney transplant recipients. Screening for the virus has been effective in preventing progression to nephropathy and graft loss. However, it can be a diagnostic and therapeutic challenge. In this in-depth state-of-the-art review, we will discuss the history of the virus, virology, epidemiology, cellular response, pathogenesis, methods of screening and diagnosis, evidence-based treatment strategies, and upcoming therapeutics, along with the issue of re-transplantation in patients.
Collapse
|
29
|
Demey B, Bentz M, Descamps V, Morel V, Francois C, Castelain S, Helle F, Brochot E. BK Polyomavirus bkv-miR-B1-5p: A Stable Micro-RNA to Monitor Active Viral Replication after Kidney Transplantation. Int J Mol Sci 2022; 23:ijms23137240. [PMID: 35806242 PMCID: PMC9266457 DOI: 10.3390/ijms23137240] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Bkv-miR-B1-5p is a viral micro-RNA (miRNA) specifically produced during BK polyomavirus (BKPyV) replication. Recent studies have suggested using bkv-miR-B1-5p as a biomarker to monitor viral infection and predict complications in kidney transplant patients. To identify the technical limitations of this miRNA quantification in biological samples, knowledge of its stability and distribution in the extracellular compartment is necessary. Moreover, a proof of concept for using bkv-miR-B1-5p as a biomarker of active replication in chronic infection is still missing in the published literature. Methods: The stability of bkv-miR-B1-5p was evaluated in samples derived from cell cultures and in urine from BKPyV-infected kidney transplant recipients. The miRNA was quantified in different fractions of the extracellular compartment, including exosomes, and protein binding was evaluated. Finally, we developed an in vitro model for chronic culture of BKPyV clinical isolates to observe changes in the bkv-miR-B1-5p level during persistent infections. Results: Bkv-miR-B1-5p is a stable biomarker in samples from humans and in vitro experiments. Marginally associated with the exosomes, most of the circulating bkv-miR-B1-5p is bound to proteins, especially Ago2, so the miRNA quantification does not require specific exosome isolation. The bkv-miR-B1-5p level is predictable of viral infectivity, which makes it a potential specific biomarker of active BKPyV replication after kidney transplantation.
Collapse
Affiliation(s)
- Baptiste Demey
- Laboratoire de Virologie, Centre Hospitalier Universitaire, F-80000 Amiens, France; (V.D.); (V.M.); (C.F.); (S.C.)
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
- Correspondence: (B.D.); (E.B.); Tel.: +33-322087065 (B.D.)
| | - Marine Bentz
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
| | - Véronique Descamps
- Laboratoire de Virologie, Centre Hospitalier Universitaire, F-80000 Amiens, France; (V.D.); (V.M.); (C.F.); (S.C.)
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
| | - Virginie Morel
- Laboratoire de Virologie, Centre Hospitalier Universitaire, F-80000 Amiens, France; (V.D.); (V.M.); (C.F.); (S.C.)
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
| | - Catherine Francois
- Laboratoire de Virologie, Centre Hospitalier Universitaire, F-80000 Amiens, France; (V.D.); (V.M.); (C.F.); (S.C.)
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
| | - Sandrine Castelain
- Laboratoire de Virologie, Centre Hospitalier Universitaire, F-80000 Amiens, France; (V.D.); (V.M.); (C.F.); (S.C.)
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
| | - Francois Helle
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
| | - Etienne Brochot
- Laboratoire de Virologie, Centre Hospitalier Universitaire, F-80000 Amiens, France; (V.D.); (V.M.); (C.F.); (S.C.)
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
- Correspondence: (B.D.); (E.B.); Tel.: +33-322087065 (B.D.)
| |
Collapse
|
30
|
The effect of BK polyomavirus large T antigen on CD4 and CD8 T cells in kidney transplant recipients. Transpl Immunol 2022; 74:101655. [PMID: 35777612 DOI: 10.1016/j.trim.2022.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/01/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
Abstract
Human BK polyomavirus (BKPyV) can affect the machinery of the host cell to induce optimal viral replication or transform them into tumor cells. Reactivation of BKPyV happens due to immunosuppression therapies following renal transplantation which might result in BK polyomavirus nephropathy (BKPyVAN) and allograft loss. The first protein that expresses after entering into host cells and has an important role in pathogenicity is the Large T antigen (LT-Ag). In this review tries to study the molecular and cellular inter-regulatory counteractions especially between CD4 and CD8 T cells, and BKPyV LT-Ag may have role in nephropathy after renal transplantation.
Collapse
|
31
|
Cheng F, Li Q, Wang J, Wang Z, Zeng F, Zhang Y. Retrospective Analysis of the Risk Factors of Perioperative Bacterial Infection and Correlation with Clinical Prognosis in Kidney Transplant Recipients. Infect Drug Resist 2022; 15:2271-2286. [PMID: 35510155 PMCID: PMC9059986 DOI: 10.2147/idr.s356543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background Infection remains a leading cause of morbidity and mortality in kidney transplant patients. This study aimed to investigate the risk factors of bacterial infection during the perioperative period of transplantation and the effects of infection on long-term clinical outcomes. Methods In total, 295 kidney transplantation recipients were included in this retrospective study and assigned to two groups: non-infected and infected. The tacrolimus concentration, pharmacogenomics, laboratory parameters, and clinical outcomes of both groups were evaluated. Results A relatively low incidence of urinary tract infection was observed in our cohort, and lung was identified as the most frequent site of infection. Gram-negative bacteria, such as Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae, were the most common infecting strains in kidney transplant recipients. Patients with diabetes showed greater susceptibility to infection. Compared with the non-infected group, tacrolimus concentration was significantly lower on day 7 and 14 in the infected group. White blood cell count, neutrophil count, and C-reactive protein (CRP) in the infected group were markedly higher post-transplantation, while albumin levels were lower relative to the non-infected group. ABCB1 (rs2032582) genotype showed clear associations with infection. Furthermore, the incidence of delayed graft function (DGF) and early acute rejection (AR) before infection was significantly greater in the infected group. Finally, early post-transplant infection was associated with a marked increase in the incidence of AR, post-transplant diabetes mellitus (PTDM), and secondary infection. Conclusion Pre-diabetes, longer duration of catheterization, lower albumin, higher CRP, tacrolimus concentration on the day 7 and 14, early AR before infection, and DGF were closely related to postoperative infection in kidney transplantation recipients. Moreover, bacterial infection during the perioperative period was closely associated with AR, PTDM and secondary infection.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China
| | - Qiang Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China
| | - Zhendi Wang
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Fang Zeng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China
| |
Collapse
|
32
|
Komorniczak M, Król E, Lizakowski S, Dębska-Ślizień A. Screening for Polyomavirus Viruria Like Early Detection of Human Polyomavirus Infection and Replication: The Results of a Single-Center Observation. Transplant Proc 2022; 54:989-994. [DOI: 10.1016/j.transproceed.2022.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022]
|
33
|
Nickeleit V, Singh HK, Davis VG, Seshan SV. Classifying Polyomavirus Nephropathy: The “Banff” Initiative. Transpl Int 2022; 35:10299. [PMID: 35368640 PMCID: PMC8967946 DOI: 10.3389/ti.2022.10299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Volker Nickeleit
- Department of Pathology and Laboratory Medicine, Division of Nephropathology, The University of North Carolina School of Medicine, Chapel Hill, NC, United States
- *Correspondence: Volker Nickeleit,
| | - H. K. Singh
- Department of Pathology and Laboratory Medicine, Division of Nephropathology, The University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Vicki G. Davis
- Department of Pathology and Laboratory Medicine, Division of Nephropathology, The University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Surya V. Seshan
- Department of Pathology, Weill-Cornell Medical Center/New York Presbyterian Hospital, New York, NY, United States
| |
Collapse
|
34
|
Agrawal A, Ison MG, Danziger-Isakov L. Long-Term Infectious Complications of Kidney Transplantation. Clin J Am Soc Nephrol 2022; 17:286-295. [PMID: 33879502 PMCID: PMC8823942 DOI: 10.2215/cjn.15971020] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Infections remain a common complication of solid-organ transplantation. Most infections in the first month after transplant are typically health care-associated infections, whereas late infections, beyond 6-12 months, are community-acquired infections. Opportunistic infections most frequently present in the first 12 months post-transplant and can be modulated on prior exposures and use of prophylaxis. In this review, we summarize the current epidemiology of postkidney transplant infections with a focus on key viral (BK polyomavirus, cytomegalovirus, Epstein-Barr virus, and norovirus), bacterial (urinary tract infections and Clostridioides difficile colitis), and fungal infections. Current guidelines for safe living post-transplant are also summarized. Literature supporting prophylaxis and vaccination is also provided.
Collapse
Affiliation(s)
- Akansha Agrawal
- Division of Nephrology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Michael G. Ison
- Division of Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lara Danziger-Isakov
- Division of Pediatric Infectious Diseases, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
35
|
Myint TM, Chong CHY, Wyld M, Nankivell B, Kable K, Wong G. Polyoma BK Virus in Kidney Transplant Recipients: Screening, Monitoring, and Management. Transplantation 2022; 106:e76-e89. [PMID: 33908382 DOI: 10.1097/tp.0000000000003801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Polyomavirus BK virus (BKPyV) infection is an important complication of kidney transplantation and allograft failure. The prevalence of viremia is 10%-15%, compared with BK-associated nephropathy (BKPyVAN) at 3%-5%. Given that there are no effective antiviral prophylaxis or treatment strategies for BKPyVAN, active screening to detect BKPyV viremia is recommended, particularly during the early posttransplant period. Immunosuppression reduction to allow viral clearance may avoid progression to severe and irreversible allograft damage. The frequency and duration of screening are highly variable between transplant centers because the evidence is reliant largely on observational data. While the primary treatment goals center on achieving viral clearance through immunosuppression reduction, prevention of subsequent acute rejection, premature graft loss, and return to dialysis remain as major challenges. Treatment strategies for BKPyV infection should be individualized to the recipient's underlying immunological risk and severity of the allograft infection. Efficacy data for adjuvant therapies including intravenous immunoglobulin and cidofovir are sparse. Future well-powered and high-quality randomized controlled trials are needed to inform evidence-based clinical practice for the management of BKPy infection.
Collapse
Affiliation(s)
- Thida Maung Myint
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
- Newcastle Transplant Unit, John Hunter Hospital, Newcastle, NSW, Australia
| | - Chanel H Y Chong
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Melanie Wyld
- Department of Renal Medicine, Centre for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, Australia
| | - Brian Nankivell
- Department of Renal Medicine, Centre for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, Australia
| | - Kathy Kable
- Department of Renal Medicine, Centre for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, Australia
| | - Germaine Wong
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
- Department of Renal Medicine, Centre for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, NSW, Australia
| |
Collapse
|
36
|
Terrec F, Jouve T, Malvezzi P, Janbon B, Naciri Bennani H, Rostaing L, Noble J. Belatacept Use after Kidney Transplantation and Its Effects on Risk of Infection and COVID-19 Vaccine Response. J Clin Med 2021; 10:jcm10215159. [PMID: 34768680 PMCID: PMC8585113 DOI: 10.3390/jcm10215159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
Introduction: Belatacept is a common immunosuppressive therapy used after kidney transplantation (KT) to avoid calcineurin-inhibitor (CNI) use and its related toxicities. It is unclear whether its use exposes KT recipients (KTx) to a greater risk of infection or a poorer response to vaccines. Areas covered: We reviewed PubMed and the Cochrane database. We then summarized the mechanisms and impacts of belatacept use on the risk of infection, particularly opportunistic, in two settings, i.e., de novo KTx and conversion from CNIs. We also focused on COVID-19 infection risk and response to SARS-CoV-2 vaccination in patients whose maintenance immunosuppression relies on belatacept. Expert opinion: When belatacept is used de novo, or after drug conversion the safety profile regarding the risk of infection remains good. However, there is an increased risk of opportunistic infections, mainly CMV disease and Pneumocystis pneumonia, particularly in those with a low eGFR, in older people, in those receiving steroid-based therapy, or those that have an early conversion from CNI to belatacept (i.e., <six months post-transplantation). Thus, we recommend, if possible, delaying conversion from CNI to belatacept until at least six months post-transplantation. Optimal timing seems to be eight months post-transplantation. In addition, KTx receiving belatacept respond poorly to SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Florian Terrec
- Service de Néphrologie, Hémodialyse, Aphérèses et Transplantation Rénale, Centre Hospitalier Universitaire Grenoble Alpes (CHU), Université Grenoble Alpes, 38043 Grenoble, France; (F.T.); (T.J.); (P.M.); (B.J.); (H.N.B.); (J.N.)
| | - Thomas Jouve
- Service de Néphrologie, Hémodialyse, Aphérèses et Transplantation Rénale, Centre Hospitalier Universitaire Grenoble Alpes (CHU), Université Grenoble Alpes, 38043 Grenoble, France; (F.T.); (T.J.); (P.M.); (B.J.); (H.N.B.); (J.N.)
- School of Medicine, Université Grenoble Alpes, 38043 Grenoble, France
| | - Paolo Malvezzi
- Service de Néphrologie, Hémodialyse, Aphérèses et Transplantation Rénale, Centre Hospitalier Universitaire Grenoble Alpes (CHU), Université Grenoble Alpes, 38043 Grenoble, France; (F.T.); (T.J.); (P.M.); (B.J.); (H.N.B.); (J.N.)
| | - Bénédicte Janbon
- Service de Néphrologie, Hémodialyse, Aphérèses et Transplantation Rénale, Centre Hospitalier Universitaire Grenoble Alpes (CHU), Université Grenoble Alpes, 38043 Grenoble, France; (F.T.); (T.J.); (P.M.); (B.J.); (H.N.B.); (J.N.)
| | - Hamza Naciri Bennani
- Service de Néphrologie, Hémodialyse, Aphérèses et Transplantation Rénale, Centre Hospitalier Universitaire Grenoble Alpes (CHU), Université Grenoble Alpes, 38043 Grenoble, France; (F.T.); (T.J.); (P.M.); (B.J.); (H.N.B.); (J.N.)
| | - Lionel Rostaing
- Service de Néphrologie, Hémodialyse, Aphérèses et Transplantation Rénale, Centre Hospitalier Universitaire Grenoble Alpes (CHU), Université Grenoble Alpes, 38043 Grenoble, France; (F.T.); (T.J.); (P.M.); (B.J.); (H.N.B.); (J.N.)
- School of Medicine, Université Grenoble Alpes, 38043 Grenoble, France
- Correspondence: ; Tel.: +33-4-76-76-54-60
| | - Johan Noble
- Service de Néphrologie, Hémodialyse, Aphérèses et Transplantation Rénale, Centre Hospitalier Universitaire Grenoble Alpes (CHU), Université Grenoble Alpes, 38043 Grenoble, France; (F.T.); (T.J.); (P.M.); (B.J.); (H.N.B.); (J.N.)
- School of Medicine, Université Grenoble Alpes, 38043 Grenoble, France
| |
Collapse
|
37
|
Handschin J, Wehmeier C, Amico P, Hopfer H, Dickenmann M, Schaub S, Hirt-Minkowski P. Urinary CXCL10 Measurement in Late Renal Allograft Biopsies Predicts Outcome Even in Histologically Quiescent Patients. Transplant Proc 2021; 53:2168-2179. [PMID: 34419254 DOI: 10.1016/j.transproceed.2021.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/27/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND CXCL10 is a promising early noninvasive diagnostic marker for allograft rejection and predictive for long-term outcomes. However, its value when measured later in the posttransplant course has not yet been accurately analyzed. METHODS We investigated urinary CXCL10 in 141 patients from a prospective, observational renal transplant cohort with 182 clinically indicated allograft biopsies performed >12 months posttransplant and corresponding urines. Urinary CXCL10 was retrospectively quantified on stored urines using the MSD V-Plex Chemokine Panel 1 sandwich immunoassay (Meso Scale Discovery). The primary outcome was a composite of allograft loss/renal function decline (>30% estimated glomerular filtration rate [eGFR]-decrease between index biopsy and last follow-up). RESULTS Seventy-two patients (51%) reached the primary outcome, and their urinary CXCL10 levels were significantly higher at the time of their biopsy compared with patients with stable allograft function (median 9.3 ng/mmol vs 3.3 ng/mmol, P < .0001). Time-to-endpoint analyses according to high/low urinary CXCL10 demonstrated that low urinary CXCL10 (≤7.0 ng/mmol) was associated with 73% 5-year event-free graft survival compared with 48% with high urinary CXCL10 (>7.0 ng/mmol; P = .0001). Even in histologically quiescent patients, high urinary CXCL10 was associated with inferior endpoint-free graft survival (P = .003), and it was an independent predictor of the primary outcome (P = .03). CONCLUSIONS This study demonstrates that urinary CXCL10 has a promising diagnostic performance for detection of late allograft rejection and is an independent predictor of long-term renal allograft outcomes, even in histologically quiescent patients.
Collapse
Affiliation(s)
- Joelle Handschin
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Caroline Wehmeier
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Patrizia Amico
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Helmut Hopfer
- lnstitute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Michael Dickenmann
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Stefan Schaub
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland; Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland; HLA-Diagnostic and lmmunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Patricia Hirt-Minkowski
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
38
|
Chk1 and the Host Cell DNA Damage Response as a Potential Antiviral Target in BK Polyomavirus Infection. Viruses 2021; 13:v13071353. [PMID: 34372559 PMCID: PMC8310304 DOI: 10.3390/v13071353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/26/2022] Open
Abstract
The human BK polyomavirus (BKPyV) is latent in the kidneys of most adults, but can be reactivated in immunosuppressed states, such as following renal transplantation. If left unchecked, BK polyomavirus nephropathy (PyVAN) and possible graft loss may result from viral destruction of tubular epithelial cells and interstitial fibrosis. When coupled with regular post-transplant screening, immunosuppression reduction has been effective in limiting BKPyV viremia and the development of PyVAN. Antiviral drugs that are safe and effective in combating BKPyV have not been identified but would be a benefit in complementing or replacing immunosuppression reduction. The present study explores inhibition of the host DNA damage response (DDR) as an antiviral strategy. Immunohistochemical and immunofluorescent analyses of PyVAN biopsies provide evidence for stimulation of a DDR in vivo. DDR pathways were also stimulated in vitro following BKPyV infection of low-passage human renal proximal tubule epithelial cells. The role of Chk1, a protein kinase known to be involved in the replication stress-induced DDR, was examined by inhibition with the small molecule LY2603618 and by siRNA-mediated knockdown. Inhibition of Chk1 resulted in decreased replication of BKPyV DNA and viral spread. Activation of mitotic pathways was associated with the reduction in BKPyV replication. Chk1 inhibitors that are found to be safe and effective in clinical trials for cancer should also be evaluated for antiviral activity against BKPyV.
Collapse
|
39
|
Naef B, Nilsson J, Wuethrich RP, Mueller TF, Schachtner T. Intravenous immunoglobulins do not prove beneficial to reduce alloimmunity among kidney transplant recipients with BKV-associated nephropathy. Transpl Int 2021; 34:1481-1493. [PMID: 33872427 DOI: 10.1111/tri.13882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/18/2021] [Accepted: 04/10/2021] [Indexed: 12/18/2022]
Abstract
Reduced immunosuppression during BKV-DNAemia has been associated with T-cell mediated rejection (TCMR), de novo donor-specific antibodies (DSA) and antibody-mediated rejection (ABMR). Intravenous immunoglobulins (IVIG) may reduce alloimmunity. We studied 860 kidney transplant recipients (KTRs) for the development of BKV-DNAuria and BKV-DNAemia (low-level <10 000 IE/ml, high-level >10 000 IE/ml). 52/131 KTRs with high-level BKV-DNAemia received IVIG. The HLA-related immunological risk was stratified by the Predicted Indirectly Recognizable HLA Epitopes (PIRCHE) algorithm. BKV-DNAuria only was observed in 86 KTRs (10.0%), low-level BKV-DNAemia in 180 KTRs (20.9%) and high-level BKV-DNAemia in 131 KTRs (15.2%). KTRs with low-level BKV-DNAemia showed significantly less TCMR compared to KTRs with high-level BKV-DNAemia (5.2% vs. 25.5%; P < 0.001) and no BKV-replication (13.2%; P = 0.014), lowest rates of de novo DSA (21.3%), ABMR (9.2%) and flattest glomerular filtration rate (GFR) slope (-0.8 ml/min). KTRs with low-level BKV-DNAemia showed significantly higher median (interquartile range) total PIRCHE if they developed TCMR [100.22 (72.6) vs. 69.52 (49.97); P = 0.020] or ABMR [128.86 (52.99) vs. 69.52 (49.96); P = 0.005]. Administration of IVIG did not shorten duration of BKV-DNAemia (P = 0.798) or reduce TCMR, de novo DSA and ABMR (P > 0.05). KTRs with low-level BKV-DNAemia showed best protection against alloimmunity, with a high number of PIRCHE co-determining the remaining risk. The administration of IVIG, however, was not beneficial in reducing alloimmunity.
Collapse
Affiliation(s)
- Bettina Naef
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Jakob Nilsson
- Division of Immunology, University Hospital Zurich, Zurich, Switzerland
| | | | - Thomas F Mueller
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Schachtner
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
BK Polyomavirus Nephropathy in Kidney Transplantation: Balancing Rejection and Infection. Viruses 2021; 13:v13030487. [PMID: 33809472 PMCID: PMC7998398 DOI: 10.3390/v13030487] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022] Open
Abstract
BK polyomavirus nephropathy (BKVN) and allograft rejection are two closely-associated diseases on opposite ends of the immune scale in kidney transplant recipients. The principle of balancing the immune system remains the mainstay of therapeutic strategy. While patient outcomes can be improved through screening, risk factors identification, and rapid reduction of immunosuppressants, a lack of standard curative therapy is the primary concern during clinical practice. Additionally, difficulty in pathological differential diagnosis and clinicopathology’s dissociation pose problems for a definite diagnosis. This article discusses the delicate evaluation needed to optimize immunosuppression and reviews recent advances in molecular diagnosis and immunological therapy for BKVN patients. New biomarkers for BKVN diagnosis are under development. For example, measurement of virus-specific T cell level may play a role in steering immunosuppressants. The development of cellular therapy may provide prevention, even a cure, for BKVN, a complex post-transplant complication.
Collapse
|
41
|
BK Polyomavirus-specific T Cells as a Diagnostic and Prognostic Marker for BK Polyomavirus Infections After Pediatric Kidney Transplantation. Transplantation 2021; 104:2393-2402. [PMID: 31985731 DOI: 10.1097/tp.0000000000003133] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND After kidney transplantation, uncontrolled BK polyomavirus (BKPyV) replication causes kidney graft failure through BKPyV-associated nephropathy (BKPyVAN), but markers predicting outcome are missing. BKPyV-specific T cells may serve as a predictive marker to identify patients at risk of persistent DNAemia and BKPyVAN. METHODS Out of a total of 114 pediatric kidney recipients transplanted between 2008 and 2018, 36 children with posttransplant BKPyV-DNAemia were identified. In a prospective noninterventional study, BKPyV-specific CD4 and CD8 T cells were measured in 32 of 36 viremic pediatric kidney recipients using intracellular cytokine staining and flow cytometry. The course of the BKPyV replication was monitored with regard to duration of BKPyV-DNAemia and need of therapeutic intervention and diagnosis of proven BKPyVAN. RESULTS Levels of BKPyV-specific T cells negatively correlated with subsequent duration of BKPyV-DNAemia. Patients with BKPyV-specific CD4 T cells ≥0.5 cells/µL and/or BKPyV-specific CD8 T cells ≥0.1 cells/µL had transient, self-limiting DNAemia (PPV 1.0, NPV 0.86). BKPyV-specific CD4 and CD8 T cells below these thresholds were found in children with persistent BKPyV-DNAemia and biopsy-proven BKPyVAN with need for therapeutic intervention. After reducing immunosuppressive therapy, levels of BKPyV-specific CD4 T cells increased while plasma BKPyV-DNAemia declined. CONCLUSIONS This study found that BKPyV-specific T cell levels may help to distinguish patients with transient, self-limiting BKPyV-DNAemia from those with persisting BKPyV-DNAemia and biopsy-proven BKPyVAN, who would benefit from individualized therapeutic interventions such as reduced immunosuppression. Thereby the risk for rejection because of unnecessary reduction of immunosuppression in case of self-limiting BKPyV-DNAemia can be minimized.
Collapse
|
42
|
BK Virus-Associated Nephropathy after Renal Transplantation. Pathogens 2021; 10:pathogens10020150. [PMID: 33540802 PMCID: PMC7913099 DOI: 10.3390/pathogens10020150] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advances in immunosuppressive therapy have reduced the incidence of acute rejection and improved renal transplantation outcomes. Meanwhile, nephropathy caused by BK virus has become an important cause of acute or chronic graft dysfunction. The usual progression of infection begins with BK viruria and progresses to BK viremia, leading to BK virus associated nephropathy. To detect early signs of BK virus proliferation before the development of nephropathy, several screening tests are used including urinary cytology and urinary and plasma PCR. A definitive diagnosis of BK virus associated nephropathy can be achieved only histologically, typically by detecting tubulointerstitial inflammation associated with basophilic intranuclear inclusions in tubular and/or Bowman’s epithelial cells, in addition to immunostaining with anti-Simian virus 40 large T-antigen. Several pathological classifications have been proposed to categorize the severity of the disease to allow treatment strategies to be determined and treatment success to be predicted. Since no specific drugs that directly suppress the proliferation of BKV are available, the main therapeutic approach is the reduction of immunosuppressive drugs. The diagnosis of subsequent acute rejection, the definition of remission, the protocol of resuming immunosuppression, and long-term follow-up remain controversial.
Collapse
|
43
|
Kharel A, Djamali A, Jorgenson MR, Alzoubi B, Swanson KJ, Garg N, Aziz F, Mohamed MA, Mandelbrot DA, Parajuli S. Risk factors for progression from low level BK dnaemia to unfavorable outcomes after BK management via immunosuppressive reduction. Transpl Infect Dis 2021; 23:e13561. [PMID: 33400361 DOI: 10.1111/tid.13561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUNDS Effective management of BK viremia (BKPyV-DNAemia) in kidney transplant recipients (KTRs) involves regular monitoring and adjustment of immunosuppression. With this strategy, the majority of patients will clear BK or have ongoing, but non-significant, low-level BKPyV-DNAemia. However, despite adjustments, some will develop more severe sequelae of BK including BKPyV-DNAemia >5 log10 copies/mL and BK nephropathy, and others may develop de novo DSA (dnDSA) or acute rejection (AR). METHODS This was a single-center study of KTRs transplanted at the University of Wisconsin-Madison between 01/01/2015 and 12/31/2017. In this study, we sought to elucidate characteristics associated with the progression of BKPyV-DNAemia to unfavorable outcomes after decreasing immunosuppressive medications for the management of BK viremia as described in consensus guidelines. RESULTS A total of 224 KTRs fulfilled our selection criteria; 118 (53%) resolved or had persistent low DNAemia, 64 (28%) had severe BK/nephropathy, and 42 (19%) developed dnDSA or AR. In multivariable analysis, female gender (HR: 2.05; 95% CI: 1.08-3.90; P = .02); previous rejection (HR: 2.90; 95% CI: 1.04-8.12; P = .04), and early infection (HR: 0.81; 95% CI: 0.72-0.90; P < .001) were associated with the development of severe BK/nephropathy. Conversely, non-depleting induction at transplant (HR: 2.06; 95% CI: 1.03-4.11; P = .03), HLA mismatches >3 (HR: 2.27; HR: 1.01-5.06; P = .04), and delayed graft function (HR: 4.14; 95% CI: 1.12-15.28; P = .03) were associated with development of dnDSA and/or rejection. CONCLUSION Our study suggests that almost half of KTRs with BKPyV-DNAemia managed by our immunosuppressant adjustment protocol progress unfavorably. Identification of these risk factors could assist the frontline clinician in creating an individualized immunosuppressive modification plan potentially mitigating negative outcomes.
Collapse
Affiliation(s)
- Abish Kharel
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Arjang Djamali
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Margaret R Jorgenson
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Beyann Alzoubi
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kurtis J Swanson
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Neetika Garg
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Fahad Aziz
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Maha A Mohamed
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Didier A Mandelbrot
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sandesh Parajuli
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
44
|
Nickeleit V, Davis VG, Thompson B, Singh HK. The Urinary Polyomavirus-Haufen Test: A Highly Predictive Non-Invasive Biomarker to Distinguish "Presumptive" from "Definitive" Polyomavirus Nephropathy: How to Use It-When to Use It-How Does It Compare to PCR Based Assays? Viruses 2021; 13:135. [PMID: 33477927 PMCID: PMC7833404 DOI: 10.3390/v13010135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
"Definitive" biopsy proven polyomavirus nephropathy (PyVN), usually caused by BK polyomavirus (BKPyV), remains a significant infection of kidney transplants. Diagnosis depends upon an allograft biopsy and outcome depends upon early intervention. Here, we report data on a non-invasive biomarker for PyVN, the urinary PyV-Haufen test. Test results were compared to those of conventional laboratory assays targeting PyV replication, i.e., BKPy-viremia, -viruria and urinary decoy cell shedding. Of 809 kidney transplant recipients, 228 (28%) showed PyV replication with decoy cell shedding and/or BKPy-viremia by quantitative PCR; only a subset of 81/228 (36%) showed "definitive" PyVN. Sensitivity and specificity for identifying patients with PyVN was: 100% and 98%, respectively, urinary PyV-Haufen test; 50% and 54%, respectively, urinary decoy cell shedding; 97% and 32%, respectively, BKPy-viremia with cut-off of ≥250 viral copies/mL; 66% and 80%, respectively, for BKPy-viremia ≥104 viral copies/mL. The PyV-Haufen test showed a very strong correlation with the severity of PyVN (Spearman's ρ = 0.84) and the Banff PyVN disease classes (p < 0.001). In comparison, BKPy-viremia and -viruria levels by PCR displayed modest correlations with PyVN severity (Spearman's ρ = 0.35 and 0.36, respectively) and were not significantly associated with disease classes. No association was found between decoy cell shedding and PyVN severity or disease classes. Pilot data demonstrated that PyVN resolution with decreasing Banff pvl-scores was reflected by a gradual decrease in PyV-Haufen shedding; such a tight association was not noted for BKPy-viremia. In conclusion, urinary PyV-Haufen testing is a highly specific, non-invasive method to accurately diagnose patients with "definitive" PyVN and to optimize patient management. Assay specifics are discussed.
Collapse
Affiliation(s)
| | | | | | - Harsharan K. Singh
- Division of Nephropathology, UNC-School of Medicine, Brinkhous-Bullitt Bldg., Room 409, Campus Box 7525, 160 Medical Drive, Chapel Hill, NC 27599-7525, USA; (V.N.); (V.G.D.); (B.T.)
| |
Collapse
|
45
|
Alquadan KF, Santos AH, Leghrouz M, Ozrazgat-Baslanti T, Bozorgmehri S, Gupta G, Womer KL. A pilot study of immunosuppression resumption following BK viremia resolution. Transpl Infect Dis 2020; 23:e13508. [PMID: 33176016 DOI: 10.1111/tid.13508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/23/2020] [Accepted: 10/25/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Immunosuppression reduction for BK viremia is associated with de novo humoral responses, which are a risk factor for rejection and graft loss. In this pilot project, we tested a protocol of immunosuppression resumption to standard dose after viral clearance for optimal protection against humoral immunity in patients undergoing treatment for BK viremia. METHODS Thirty-six consecutive kidney transplant recipients who developed BK viremia from 7/1/2014 to 11/18/2016 underwent immunosuppression reduction. After 4 weeks of absent viremia, mycophenolate mofetil (MMF) was increased by 500mg/day every 2 weeks up to standard dosage, followed by increase of tacrolimus trough levels to 5-7 ng/mL. If viremia recurred during the increase, immunosuppression was reduced in this same stepwise fashion, with stepwise increase again after 2 months of negative viremia. RESULTS Mean tacrolimus trough level (ng/mL) was 8.3 ± 2.7 at viremia onset, 5.3 ± 3.6 at resolution, and 5.6 ± 2.0 at study end date. Mean daily dose (mg) of MMF was 1574 ± 355 at onset, 910 ± 230 at resolution, and 1377 ± 451 at study end date. Only one patient developed low level viremia recurrence (peak 2875 copies/mL) during the period of immunosuppression resumption that ultimately resolved. CONCLUSIONS The results of our pilot project indicate that following BK viremia resolution, resumption of standard immunosuppression can be achieved safely without BK viremia recurrence. Larger trials with long-term follow up are required to determine whether such an approach improves long-term graft survival.
Collapse
Affiliation(s)
| | - Alfonso H Santos
- Medicine- Nephrology, University of Florida, Gainesville, FL, USA
| | | | | | | | - Gaurav Gupta
- Medicine-Nephrology, Virginia Commonwealth University, Richmond, VA, USA
| | - Karl L Womer
- Medicine- Nephrology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
46
|
Yamazaki T, Shirai H, Tojimbara T. Use of Leflunomide as an Antiviral Agent with Everolimus for BK Virus Nephropathy Patients After Kidney Transplantation: A Case Series. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e927367. [PMID: 33235184 PMCID: PMC7701375 DOI: 10.12659/ajcr.927367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Case series Patients: Male, 50-year-old • Male, 37-year-old • Male, 65-year-old • Male, 72-year-old Final Diagnosis: BK nephropathy Symptoms: Renal disfunction Medication: — Clinical Procedure: — Specialty: Transplantology
Collapse
Affiliation(s)
- Tomotaka Yamazaki
- Department of Transplant Surgery, Atami Hospital, International University of Health and Welfare, Atami, Shizuoka, Japan
| | - Hiroyuki Shirai
- Department of Transplant Surgery, Atami Hospital, International University of Health and Welfare, Atami, Shizuoka, Japan
| | - Tamotsu Tojimbara
- Department of Transplant Surgery, Atami Hospital, International University of Health and Welfare, Atami, Shizuoka, Japan
| |
Collapse
|
47
|
Saleh A, El Din Khedr MS, Ezzat A, Takou A, Halawa A. Update on the Management of BK Virus Infection. EXP CLIN TRANSPLANT 2020; 18:659-670. [DOI: 10.6002/ect.2019.0254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Cohen-Bucay A, Ramirez-Andrade SE, Gordon CE, Francis JM, Chitalia VC. Advances in BK Virus Complications in Organ Transplantation and Beyond. Kidney Med 2020; 2:771-786. [PMID: 33319201 PMCID: PMC7729234 DOI: 10.1016/j.xkme.2020.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Reactivation of BK virus (BKV) remains a dreaded complication in immunosuppressed states. Conventionally, BKV is known as a cause for BKV-associated nephropathy and allograft dysfunction in kidney transplant recipients. However, emerging studies have shown its negative impact on native kidney function and patient survival in other transplants and its potential role in diseases such as cancer. Because BKV-associated nephropathy is driven by immunosuppression, reduction in the latter is a convenient standard of care. However, this strategy is risk prone due to the development of donor-specific antibodies affecting long-term allograft survival. Despite its pathogenic role, there is a distinct lack of effective anti-BKV therapeutics. This limitation combined with increased morbidity and health care cost of BKV-associated diseases add to the complexity of BKV management. While summarizing recent advances in the pathogenesis of BKV-associated nephropathy and its reactivation in other organ transplants, this review illustrates the limitations of current and emerging therapeutic options and provides a compelling argument for an effective targeted anti-BKV drug.
Collapse
Affiliation(s)
- Abraham Cohen-Bucay
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
- Nephrology Department, American British Cowdray Medical Center, Mexico City, Mexico
| | - Silvia E. Ramirez-Andrade
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | | | - Jean M. Francis
- Section of Nephrology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Renal Section, Boston University Medical Center, Boston, MA
| | - Vipul C. Chitalia
- Renal Section, Boston University Medical Center, Boston, MA
- Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA
- Veteran Affairs Boston Healthcare System, Boston, MA
| |
Collapse
|
49
|
Wilhelm M, Kaur A, Wernli M, Hirsch HH. BK Polyomavirus-Specific CD8 T-Cell Expansion In Vitro Using 27mer Peptide Antigens for Developing Adoptive T-Cell Transfer and Vaccination. J Infect Dis 2020; 223:1410-1422. [PMID: 32857163 DOI: 10.1093/infdis/jiaa546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/22/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND BK polyomavirus (BKPyV) remains a significant cause of premature kidney transplant failure. In the absence of effective antivirals, current treatments rely on reducing immunosuppression to regain immune control over BKPyV replication. Increasing BKPyV-specific CD8 T cells correlate with clearance of BKPyV DNAemia in kidney transplant patients. We characterized a novel approach for expanding BKPyV-specific CD8 T cells in vitro using 27mer-long synthetic BKPyV peptides, different types of antigen-presenting cells, and CD4 T cells. METHODS Langerhans cells and immature or mature monocyte-derived dendritic cells (Mo-DCs) were generated from peripheral blood mononuclear cells of healthy blood donors, pulsed with synthetic peptide pools consisting of 36 overlapping 27mers (27mP) or 180 15mers (15mP). BKPyV-specific CD8 T-cell responses were assessed by cytokine release assays using 15mP or immunodominant 9mers. RESULTS BKPyV-specific CD8 T cells expanded using 27mP and required mature Mo-DCs (P = .0312) and CD4 T cells (P = .0156) for highest responses. The resulting BKPyV-specific CD8 T cells proliferated, secreted multiple cytokines including interferon γ and tumor necrosis factor α, and were functional (CD107a+/PD1-) and cytotoxic. CONCLUSIONS Synthetic 27mP permit expanding BKPyV-specific CD8 T-cell responses when pulsing mature Mo-DCs in presence of CD4 T cells, suggesting novel and safe approaches to vaccination and adoptive T-cell therapies for patients before and after kidney transplantation.
Collapse
Affiliation(s)
- Maud Wilhelm
- Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Amandeep Kaur
- Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marion Wernli
- Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Hans H Hirsch
- Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland.,Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland.,Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
50
|
Roberts MB, Fishman JA. Immunosuppressive Agents and Infectious Risk in Transplantation: Managing the "Net State of Immunosuppression". Clin Infect Dis 2020; 73:e1302-e1317. [PMID: 32803228 DOI: 10.1093/cid/ciaa1189] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Successful solid organ transplantation reflects meticulous attention to the details of immunosuppression, balancing risks for graft rejection against risks for infection. The 'net state of immune suppression' is a conceptual framework of all factors contributing to infectious risk. Assays which measure immune function in the immunosuppressed transplant recipient relative to infectious risk and allograft function are lacking. The best measures of integrated immune function may be quantitative viral loads to assess the individual's ability to control latent viral infections. Few studies address adjustment of immunosuppression during active infections. Thus, confronted with infection in solid organ recipients, the management of immunosuppression is based largely on clinical experience. This review examines known measures of immune function and the immunologic effects of common immunosuppressive drugs and available studies reporting modification of drug regimens for specific infections. These data provide a conceptual framework for the management of immunosuppression during infection in organ recipients.
Collapse
Affiliation(s)
- Matthew B Roberts
- Transplant Infectious Disease and Compromised Host Program and Transplant Center, Massachusetts General Hospital, Boston MA
| | - Jay A Fishman
- Transplant Infectious Disease and Compromised Host Program and Transplant Center, Massachusetts General Hospital, Boston MA.,Harvard Medical School, Boston, MA
| |
Collapse
|