1
|
Elias C, Chen C, Cherukuri A. Regulatory B Cells in Solid Organ Transplantation: From Immune Monitoring to Immunotherapy. Transplantation 2024; 108:1080-1089. [PMID: 37779239 PMCID: PMC10985051 DOI: 10.1097/tp.0000000000004798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Regulatory B cells (Breg) modulate the immune response in diverse disease settings including transplantation. Despite the lack of a specific phenotypic marker or transcription factor, their significance in transplantation is underscored by their ability to prolong experimental allograft survival, the possibility for their clinical use as immune monitoring tools, and the exciting prospect for them to form the basis for cell therapy. Interleukin (IL)-10 expression remains the most widely used marker for Breg. Several Breg subsets with distinct phenotypes that express this "signature Breg cytokine" have been described in mice and humans. Although T-cell immunoglobulin and mucin family-1 is the most inclusive and functional marker that accounts for murine Breg with disparate mechanisms of action, the significance of T-cell immunoglobulin and mucin family-1 as a marker for Breg in humans still needs to be explored. Although the primary focus of this review is the role of Breg in clinical transplantation, the net modulatory effect of B cells on the immune response and clinical outcomes is the result of the balancing functions of both Breg and effector B cells. Supporting this notion, B-cell IL-10/tumor necrosis factor α ratio is shown to predict immunologic reactivity and clinical outcomes in kidney and liver transplantation. Assessment of Breg:B effector balance using their IL-10/tumor necrosis factor α ratio may identify patients that require more immunosuppression and provide mechanistic insights into potential therapies. In summary, current advances in our understanding of murine and human Breg will pave way for future definitive clinical studies aiming to test them for immune monitoring and as therapeutic targets.
Collapse
Affiliation(s)
- Charbel Elias
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chuxiao Chen
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Aravind Cherukuri
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Renal and Electrolyte Division, Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
McIntosh CM, Allocco JB, Wang P, McKeague ML, Cassano A, Wang Y, Xie SZ, Hynes G, Mora-Cartín R, Abbondanza D, Chen L, Sattar H, Yin D, Zhang ZJ, Chong AS, Alegre ML. Heterogeneity in allospecific T cell function in transplant-tolerant hosts determines susceptibility to rejection following infection. J Clin Invest 2023; 133:e168465. [PMID: 37676735 PMCID: PMC10617766 DOI: 10.1172/jci168465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023] Open
Abstract
Even when successfully induced, immunological tolerance to solid organs remains vulnerable to inflammatory insults, which can trigger rejection. In a mouse model of cardiac allograft tolerance in which infection with Listeria monocytogenes (Lm) precipitates rejection of previously accepted grafts, we showed that recipient CD4+ TCR75 cells reactive to a donor MHC class I-derived peptide become hypofunctional if the allograft is accepted for more than 3 weeks. Paradoxically, infection-induced transplant rejection was not associated with transcriptional or functional reinvigoration of TCR75 cells. We hypothesized that there is heterogeneity in the level of dysfunction of different allospecific T cells, depending on duration of their cognate antigen expression. Unlike CD4+ TCR75 cells, CD4+ TEa cells specific for a peptide derived from donor MHC class II, an alloantigen whose expression declines after transplantation but remains inducible in settings of inflammation, retained function in tolerant mice and expanded during Lm-induced rejection. Repeated injections of alloantigens drove hypofunction in TEa cells and rendered grafts resistant to Lm-dependent rejection. Our results uncover a functional heterogeneity in allospecific T cells of distinct specificities after tolerance induction and reveal a strategy to defunctionalize a greater repertoire of allospecific T cells, thereby mitigating a critical vulnerability of tolerance.
Collapse
Affiliation(s)
| | | | - Peter Wang
- Department of Medicine, Section of Rheumatology
| | | | | | - Ying Wang
- Department of Medicine, Section of Rheumatology
| | | | - Grace Hynes
- Department of Surgery, Section of Transplantation, and
| | | | | | - Luqiu Chen
- Department of Medicine, Section of Rheumatology
| | - Husain Sattar
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Dengping Yin
- Department of Surgery, Section of Transplantation, and
| | - Zheng J. Zhang
- Comprehensive Transplant Center and
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | |
Collapse
|
3
|
Rao M, Amouzgar M, Harden JT, Lapasaran MG, Trickey A, Armstrong B, Odim J, Debnam T, Esquivel CO, Bendall SC, Martinez OM, Krams SM. High-dimensional profiling of pediatric immune responses to solid organ transplantation. Cell Rep Med 2023; 4:101147. [PMID: 37552988 PMCID: PMC10439249 DOI: 10.1016/j.xcrm.2023.101147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/05/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023]
Abstract
Solid organ transplant remains a life-saving therapy for children with end-stage heart, lung, liver, or kidney disease; however, ∼33% of allograft recipients experience acute rejection within the first year after transplant. Our ability to detect early rejection is hampered by an incomplete understanding of the immune changes associated with allograft health, particularly in the pediatric population. We performed detailed, multilineage, single-cell analysis of the peripheral blood immune composition in pediatric solid organ transplant recipients, with high-dimensional mass cytometry. Supervised and unsupervised analysis methods to study cell-type proportions indicate that the allograft type strongly influences the post-transplant immune profile. Further, when organ-specific differences are considered, graft health is associated with changes in the proportion of distinct T cell subpopulations. Together, these data form the basis for mechanistic studies into the pathobiology of rejection and allow for the development of new immunosuppressive agents with greater specificity.
Collapse
Affiliation(s)
- Mahil Rao
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Transplant Immunology Lab, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Meelad Amouzgar
- Immunology Graduate Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - James T Harden
- Transplant Immunology Lab, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Immunology Graduate Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - M Gay Lapasaran
- Transplant Immunology Lab, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Amber Trickey
- Department of Surgery, Division of Abdominal Transplant Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | | | - Jonah Odim
- National Institutes of Health, Bethesda, MD, USA
| | | | - Carlos O Esquivel
- Transplant Immunology Lab, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Surgery, Division of Abdominal Transplant Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sean C Bendall
- Program in Immunology, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Olivia M Martinez
- Transplant Immunology Lab, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Surgery, Division of Abdominal Transplant Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Program in Immunology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sheri M Krams
- Transplant Immunology Lab, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Surgery, Division of Abdominal Transplant Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Program in Immunology, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| |
Collapse
|
4
|
Massart A, Danger R, Olsen C, Emond MJ, Viklicky O, Jacquemin V, Soblet J, Duerinckx S, Croes D, Perazzolo C, Hruba P, Daneels D, Caljon B, Sever MS, Pascual J, Miglinas M, Pirson I, Ghisdal L, Smits G, Giral M, Abramowicz D, Abramowicz M, Brouard S. An exome-wide study of renal operational tolerance. Front Med (Lausanne) 2023; 9:976248. [PMID: 37265662 PMCID: PMC10230038 DOI: 10.3389/fmed.2022.976248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/31/2022] [Indexed: 06/03/2023] Open
Abstract
Background Renal operational tolerance is a rare and beneficial state of prolonged renal allograft function in the absence of immunosuppression. The underlying mechanisms are unknown. We hypothesized that tolerance might be driven by inherited protein coding genetic variants with large effect, at least in some patients. Methods We set up a European survey of over 218,000 renal transplant recipients and collected DNAs from 40 transplant recipients who maintained good allograft function without immunosuppression for at least 1 year. We performed an exome-wide association study comparing the distribution of moderate to high impact variants in 36 tolerant patients, selected for genetic homogeneity using principal component analysis, and 192 controls, using an optimal sequence-kernel association test adjusted for small samples. Results We identified rare variants of HOMER2 (3/36, FDR 0.0387), IQCH (5/36, FDR 0.0362), and LCN2 (3/36, FDR 0.102) in 10 tolerant patients vs. 0 controls. One patient carried a variant in both HOMER2 and LCN2. Furthermore, the three genes showed an identical variant in two patients each. The three genes are expressed at the primary cilium, a key structure in immune responses. Conclusion Rare protein coding variants are associated with operational tolerance in a sizable portion of patients. Our findings have important implications for a better understanding of immune tolerance in transplantation and other fields of medicine.ClinicalTrials.gov, identifier: NCT05124444.
Collapse
Affiliation(s)
- Annick Massart
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Department of Nephrology, Antwerp University Hospital and Laboratory of Experimental Medicine, University of Antwerp, Antwerp, Belgium
| | - Richard Danger
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, CR2TI, UMR 1064, ITUN, Nantes, France
| | - Catharina Olsen
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), VUB-ULB, Brussels, Belgium
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
| | - Mary J. Emond
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Ondrej Viklicky
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Valérie Jacquemin
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
| | - Julie Soblet
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Sarah Duerinckx
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
| | - Didier Croes
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), VUB-ULB, Brussels, Belgium
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
- Center for Human Genetics, Clinique Universitaires Saint Luc, Brussels, Belgium
| | - Camille Perazzolo
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Petra Hruba
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Dorien Daneels
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), VUB-ULB, Brussels, Belgium
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
| | - Ben Caljon
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), VUB-ULB, Brussels, Belgium
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
| | - Mehmet Sukru Sever
- Istanbul Tip Fakültesi, Istanbul School of Medicine, Internal Medicine, Nephrology, Istanbul, Türkiye
| | - Julio Pascual
- Department of Nephrology, Hospital del Mar, Institute Mar for Medical Research, Barcelona, Spain
- Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Marius Miglinas
- Nephrology Center, Santaros Klinikos, Medical Faculty, Vilnius University, Vilnius, Lithuania
| | | | - Isabelle Pirson
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Lidia Ghisdal
- Department of Nephrology, Hospital Centre EpiCURA, Baudour, Belgium
| | - Guillaume Smits
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Magali Giral
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, CR2TI, UMR 1064, ITUN, Nantes, France
- CHU Nantes, Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Daniel Abramowicz
- Department of Nephrology, Antwerp University Hospital and Laboratory of Experimental Medicine, University of Antwerp, Antwerp, Belgium
| | - Marc Abramowicz
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Department of Genetic Medicine and Development, Faculty of Medicine, Université de Geneve, Geneva, Switzerland
| | - Sophie Brouard
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, CR2TI, UMR 1064, ITUN, Nantes, France
- CHU Nantes, Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| |
Collapse
|
5
|
Danger R, Le Berre L, Cadoux M, Kerleau C, Papuchon E, Mai HL, Nguyen TVH, Guérif P, Morelon E, Thaunat O, Legendre C, Anglicheau D, Lefaucheur C, Couzi L, Del Bello A, Kamar N, Le Quintrec M, Goutaudier V, Renaudin K, Giral M, Brouard S. Subclinical rejection-free diagnostic after kidney transplantation using blood gene expression. Kidney Int 2023; 103:1167-1179. [PMID: 36990211 DOI: 10.1016/j.kint.2023.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/16/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023]
Abstract
We previously established a six-gene-based blood score associated with operational tolerance in kidney transplantation which was decreased in patients developing anti-HLA donor-specific antibodies (DSA). Herein, we aimed to confirm that this score is associated with immunological events and risk of rejection. We measured this using quantitative PCR (qPCR) and NanoString methods from an independent multicenter cohort of 588 kidney transplant recipients with paired blood samples and biopsies at one year after transplantation validating its association with pre-existing and de novo DSA. From 441 patients with protocol biopsy, there was a significant decrease of the score of tolerance in 45 patients with biopsy-proven subclinical rejection (SCR), a major threat associated with pejorative allograft outcomes that prompted an SCR score refinement. This refinement used only two genes, AKR1C3 and TCL1A, and four clinical parameters (previous experience of rejection, previous transplantation, sex of recipient and tacrolimus uptake). This refined SCR score was able to identify patients unlikely to develop SCR with a C-statistic of 0.864 and a negative predictive value of 98.3%. The SCR score was validated in an external laboratory, with two methods (qPCR and NanoString), and on 447 patients from an independent and multicenter cohort. Moreover, this score allowed reclassifying patients with discrepancies between the DSA presence and the histological diagnosis of antibody mediated rejection unlike kidney function. Thus, our refined SCR score could improve detection of SCR for closer and noninvasive monitoring, allowing early treatment of SCR lesions notably for patients DSA-positive and during lowering of immunosuppressive treatment.
Collapse
Affiliation(s)
- Richard Danger
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France.
| | - Ludmilla Le Berre
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Marion Cadoux
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Clarisse Kerleau
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Emmanuelle Papuchon
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France; Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), CHU Nantes, Nantes, France
| | - Hoa Le Mai
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Thi-Van-Ha Nguyen
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Pierrick Guérif
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Emmanuel Morelon
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, INSERM Unit 1111, Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Olivier Thaunat
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, INSERM Unit 1111, Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Christophe Legendre
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Necker-Enfants Malades Institute, INSERM, Paris University, Paris, France
| | - Dany Anglicheau
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Necker-Enfants Malades Institute, INSERM, Paris University, Paris, France
| | - Carmen Lefaucheur
- Paris Translational Research Center for Organ Transplantation, INSERM UMR S970, Université Paris Cité, Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lionel Couzi
- Department of Nephrology, Transplantation, Dialysis, and Apheresis, CHU Bordeaux, Bordeaux, France
| | - Arnaud Del Bello
- Department of Nephrology and Organ Transplantation, Centre Hospitalier Universitaire de Toulouse, INSERM UMR1291 - Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Toulouse, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Nassim Kamar
- Department of Nephrology and Organ Transplantation, Centre Hospitalier Universitaire de Toulouse, INSERM UMR1291 - Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Toulouse, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Moglie Le Quintrec
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospital of Lapeyronie, Montpellier, France
| | - Valentin Goutaudier
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Necker-Enfants Malades Institute, INSERM, Paris University, Paris, France; Université Paris Cité, INSERM U970, Paris Institute for Transplantation and Organ Regeneration, Paris, France
| | - Karine Renaudin
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France; CHU Nantes, Service d'Anatomie et Cytologie Pathologiques, Nantes, France
| | - Magali Giral
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France; Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes Université, Nantes, France
| | - Sophie Brouard
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France; Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes Université, Nantes, France.
| |
Collapse
|
6
|
Masset C, Dantal J, Soulillou JP, Walencik A, Delbos F, Brouard S, Giral M. Case Report: Long-term observations from the tacrolimus weaning randomized clinical trial depicts the challenging aspects for determination of low-immunological risk patients. Front Immunol 2022; 13:1021481. [PMID: 36518770 PMCID: PMC9744190 DOI: 10.3389/fimmu.2022.1021481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022] Open
Abstract
Whilst calcineurin inhibitors (CNI) are the cornerstone of immunosuppressive maintenance therapy in kidney transplantation, several studies have investigated the safety of CNI withdrawal in order to avoid their numerous side effects. In this context, we performed several years ago a clinical randomized trial evaluating CNI weaning in stable kidney transplant recipients without anti-HLA immunization. The trial was interrupted prematurely due to a high number of de novo DSA (dnDSA) and biopsy proven acute rejection (BPAR) in patients who underwent tacrolimus weaning, resulting in treatment for rejection and resumption of tacrolimus. We report here the long-term outcomes of patients included in this clinical trial. Ten years after randomization, all patients are alive with a functional allograft. They all receive tacrolimus therapy except one with recurrent cutaneous neoplasia issues. Long-term eGFR was comparable between patients of the two randomized groups (46.4 ml/min vs 42.8 ml/min). All dnDSA that occurred during the study period became non-detectable and all rejections episodes were reversed. The retrospective assessment of HLA DQ single molecule epitope mismatching determined that a majority of patients who developed dnDSA after tacrolimus withdrawal would have been considered at high immunological risk. Minimization of immunosuppression remains a challenging objective, mainly because of the issues to properly select very low immunological risk patients. Valuable improvements have been made the last decade regarding evaluation of the allograft rejection notably through the determination of numerous at-risk biomarkers. However, even if the impact of such tools still need to be clarify in clinical routine, they may permit an improvement in patients' selection for immunosuppression minimization without increasing the risk of allograft rejection.
Collapse
Affiliation(s)
- Christophe Masset
- Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalo-Universitaire (CHU) Nantes, Nantes, France,Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Jacques Dantal
- Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalo-Universitaire (CHU) Nantes, Nantes, France,Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Jean-Paul Soulillou
- Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalo-Universitaire (CHU) Nantes, Nantes, France,Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Alexandre Walencik
- Laboratoire d’immunologie et HLA Etablissement Français du Sang, Nantes, France
| | - Florent Delbos
- Laboratoire d’immunologie et HLA Etablissement Français du Sang, Nantes, France
| | - Sophie Brouard
- Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalo-Universitaire (CHU) Nantes, Nantes, France,Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France,*Correspondence: Magali Giral, ; Sophie Brouard,
| | - Magali Giral
- Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalo-Universitaire (CHU) Nantes, Nantes, France,Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France,*Correspondence: Magali Giral, ; Sophie Brouard,
| | | |
Collapse
|
7
|
Cheung J, Zahorowska B, Suranyi M, Wong JKW, Diep J, Spicer ST, Verma ND, Hodgkinson SJ, Hall BM. CD4 +CD25 + T regulatory cells in renal transplantation. Front Immunol 2022; 13:1017683. [PMID: 36426347 PMCID: PMC9681496 DOI: 10.3389/fimmu.2022.1017683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/13/2022] [Indexed: 09/14/2023] Open
Abstract
The immune response to an allograft activates lymphocytes with the capacity to cause rejection. Activation of CD4+CD25+Foxp3+T regulatory cells (Treg) can down-regulate allograft rejection and can induce immune tolerance to the allograft. Treg represent <10% of peripheral CD4+T cells and do not markedly increase in tolerant hosts. CD4+CD25+Foxp3+T cells include both resting and activated Treg that can be distinguished by several markers, many of which are also expressed by effector T cells. More detailed characterization of Treg to identify increased activated antigen-specific Treg may allow reduction of non-specific immunosuppression. Natural thymus derived resting Treg (tTreg) are CD4+CD25+Foxp3+T cells and only partially inhibit alloantigen presenting cell activation of effector cells. Cytokines produced by activated effector cells activate these tTreg to more potent alloantigen-activated Treg that may promote a state of operational tolerance. Activated Treg can be distinguished by several molecules they are induced to express, or whose expression they have suppressed. These include CD45RA/RO, cytokine receptors, chemokine receptors that alter pathways of migration and transcription factors, cytokines and suppression mediating molecules. As the total Treg population does not increase in operational tolerance, it is the activated Treg which may be the most informative to monitor. Here we review the methods used to monitor peripheral Treg, the effect of immunosuppressive regimens on Treg, and correlations with clinical outcomes such as graft survival and rejection. Experimental therapies involving ex vivo Treg expansion and administration in renal transplantation are not reviewed.
Collapse
Affiliation(s)
- Jason Cheung
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
| | | | - Michael Suranyi
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | | | - Jason Diep
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Stephen T. Spicer
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Nirupama D. Verma
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Suzanne J. Hodgkinson
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Bruce M. Hall
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| |
Collapse
|
8
|
Gupta PK, Allocco JB, Fraipont JM, McKeague ML, Wang P, Andrade MS, McIntosh C, Chen L, Wang Y, Li Y, Andrade J, Conejo-Garcia JR, Chong AS, Alegre ML. Reduced Satb1 expression predisposes CD4 + T conventional cells to Treg suppression and promotes transplant survival. Proc Natl Acad Sci U S A 2022; 119:e2205062119. [PMID: 36161903 PMCID: PMC9546564 DOI: 10.1073/pnas.2205062119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Limiting CD4+ T cell responses is important to prevent solid organ transplant rejection. In a mouse model of costimulation blockade-dependent cardiac allograft tolerance, we previously reported that alloreactive CD4+ conventional T cells (Tconvs) develop dysfunction, losing proliferative capacity. In parallel, induction of transplantation tolerance is dependent on the presence of regulatory T cells (Tregs). Whether susceptibility of CD4+ Tconvs to Treg suppression is modulated during tolerance induction is unknown. We found that alloreactive Tconvs from transplant tolerant mice had augmented sensitivity to Treg suppression when compared with memory T cells from rejector mice and expressed a transcriptional profile distinct from these memory T cells, including down-regulated expression of the transcription factor Special AT-rich sequence-binding protein 1 (Satb1). Mechanistically, Satb1 deficiency in CD4+ T cells limited their expression of CD25 and IL-2, and addition of Tregs, which express higher levels of CD25 than Satb1-deficient Tconvs and successfully competed for IL-2, resulted in greater suppression of Satb1-deficient than wild-type Tconvs in vitro. In vivo, Satb1-deficient Tconvs were more susceptible to Treg suppression, resulting in significantly prolonged skin allograft survival. Overall, our study reveals that transplantation tolerance is associated with Tconvs' susceptibility to Treg suppression, via modulated expression of Tconv-intrinsic Satb1. Targeting Satb1 in the context of Treg-sparing immunosuppressive therapies might be exploited to improve transplant outcomes.
Collapse
Affiliation(s)
- Pawan K. Gupta
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Jennifer B. Allocco
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Jane M. Fraipont
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Michelle L. McKeague
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Peter Wang
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Michael S. Andrade
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL 60637
| | - Christine McIntosh
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Luqiu Chen
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Ying Wang
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Yan Li
- Center for Research Informatics, University of Chicago, Chicago, IL 60637
| | - Jorge Andrade
- Center for Research Informatics, University of Chicago, Chicago, IL 60637
| | - José R. Conejo-Garcia
- Department of Immunology, Moffitt Cancer Center & Research Institute, University of South Florida, Tampa, FL 33612
| | - Anita S. Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL 60637
| | - Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| |
Collapse
|
9
|
Huang H, Shen Q, Zhou J, Yang X, Cai Q, Shen J, Feng S, Xie W, Jiang H, Chen J. Immune tolerance induced by hematopoietic stem cell infusion after HLA identical sibling kidney transplantation. Front Immunol 2022; 13:995243. [PMID: 36081515 PMCID: PMC9447861 DOI: 10.3389/fimmu.2022.995243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
After the first attempt to induce operational tolerance, it has taken decades to implement it in clinical practice. Recipients with Human leukocyte antigen (HLA) identical sibling donors were enrolled. Hematopoietic stem cells (HSCs) infusion was done after HLA identical sibling kidney transplantation (KTx). Three cases included were followed up for over 8 years. The perioperative conditioning protocol included anti-CD20, rabbit anti-thymocyte globulin (ATG), total lymphoid irradiation (TLI), and cyclophosphamide. Infusion of CD3+ cells and CD34+ cells was conducted. The withdrawal of immunosuppression was determined by mixed lymphocyte reaction (MLR) and graft biopsy. Case 1 and Case 2 showed persistent chimerism, while chimerism was not detected in Case 3. All three recipients showed a low-level response to donor-specific stimulation. Case 1 and Case 3 met the withdrawal rules at 16 and 32 months after transplantation, respectively. Graft function was stable, and no rejection signs were observed in routine biopsies until 94 and 61 months after transplantation. Case 2 was diagnosed with graft-versus-host disease (GVHD) 9 months after transplantation and recovered after an enhanced immunosuppression therapy. Steroids were withdrawn after 1 year, and 0.5 mg tacrolimus twice a day is currently the only immunosuppression at 8 years and 8 months. In conclusion, our clinical experience indicated the efficacy of non-myeloablative conditioning protocol for tolerance induction in HLA identical patients. Complete chimerism might be a risk factor for GVHD.
Collapse
Affiliation(s)
- Hongfeng Huang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Qixia Shen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Jingyi Zhou
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Xiuyan Yang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Qiuqin Cai
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Jia Shen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Shi Feng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Wenqing Xie
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- *Correspondence: Jianghua Chen, ; Hong Jiang,
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- *Correspondence: Jianghua Chen, ; Hong Jiang,
| |
Collapse
|
10
|
Fitch ZW, Kang L, Li J, Knechtle SJ, Turek JW, Kirk AD, Markert ML, Kwun J. Introducing thymus for promoting transplantation tolerance. J Allergy Clin Immunol 2022; 150:549-556. [PMID: 35690492 DOI: 10.1016/j.jaci.2022.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Establishing tolerance remains a central, if elusive, goal of transplantation. In solid-organ transplantation, one strategy for inducing tolerance has been cotransplantation of various forms of thymic tissue along with another organ. As one of the biological foundations of central tolerance, thymic tissue carries with it the ability to induce tolerance to any other organ or tissue from the same donor (or another donor tissue-matched to the thymic tissue) if successfully transplanted. In this review, we outline the history of this approach as well as work to date on its application in organ transplantation, concluding with future directions. We also review our experience with allogeneic processed thymus tissue for the treatment of congenital athymia, encompassing complete DiGeorge syndrome and other rare genetic disorders, and consider whether allogeneic processed thymic tissue implantation may offer a novel method for future experimentation with tolerance induction in organ transplantation.
Collapse
Affiliation(s)
- Zachary W Fitch
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Lillian Kang
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Jie Li
- Department of Surgery, Duke University Medical Center, Durham, NC; Department of Pediatrics, Duke University Medical Center, Durham, NC
| | | | - Joseph W Turek
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Allan D Kirk
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - M Louise Markert
- Department of Pediatrics, Duke University Medical Center, Durham, NC; Department of Immunology, Duke University Medical Center, Durham, NC
| | - Jean Kwun
- Department of Surgery, Duke University Medical Center, Durham, NC.
| |
Collapse
|
11
|
Andrade MS, Young JS, Pollard JM, Yin D, Alegre ML, Chong AS. Linked sensitization by memory CD4+ T cells prevents costimulation blockade–induced transplantation tolerance. JCI Insight 2022; 7:159205. [PMID: 35674134 PMCID: PMC9220839 DOI: 10.1172/jci.insight.159205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
Dominant infectious tolerance explains how brief tolerance-inducing therapies result in lifelong tolerance to donor antigens and “linked” third-party antigens, while recipient sensitization and ensuing immunological memory prevent the successful induction of transplant tolerance. In this study, we juxtapose these 2 concepts to test whether mechanisms of dominant infectious tolerance can control a limited repertoire of memory T and B cells. We show that sensitization to a single donor antigen is sufficient to prevent stable transplant tolerance, rendering it unstable. Mechanistic studies revealed that recall antibody responses and memory CD8+ T cell expansion were initially controlled, but memory CD4+Foxp3– T cell (Tconv) responses were not. Remarkably, naive donor-specific Tconvs at tolerance induction also acquired a resistance to tolerance, proliferating and acquiring a phenotype similar to memory Tconvs. This phenomenon of “linked sensitization” underscores the challenges of reprogramming a primed immune response toward tolerance and identifies a potential therapeutic checkpoint for synergizing with costimulation blockade to achieve transplant tolerance in the clinic.
Collapse
|
12
|
Yeo WS, Ng QX. Biomarkers of immune tolerance in kidney transplantation: an overview. Pediatr Nephrol 2022; 37:489-498. [PMID: 33712863 DOI: 10.1007/s00467-021-05023-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 11/30/2022]
Abstract
Kidney failure, one of the most prevalent diseases in the world and with increasing incidence, is associated with substantial morbidity and mortality. Currently available modes of kidney replacement therapy include dialysis and kidney transplantation. Though kidney transplantation is the preferred and ideal mode of kidney replacement therapy, this modality, however, is not without its risks. Kidney transplant recipients are constantly at risk of complications associated with immunosuppression, namely, opportunistic infections (e.g., Epstein-Barr virus and cytomegalovirus infections), post-transplant lymphoproliferative disorder, and complications associated with immunosuppressants (e.g., calcineurin inhibitor- and corticosteroid-associated new onset diabetes after transplantation and calcineurin inhibitor-associated nephrotoxicity). Transplantation tolerance, an acquired state in which immunocompetent recipients have developed donor-specific unresponsiveness, may be the Holy Grail in enabling optimal allograft survival and obviating the risks associated with immunosuppression in kidney transplant recipients. This review aims to discuss the biomarkers available to predict, identify, and define the transplant immune tolerant state and various tolerance induction strategies. Regrettably, pediatric patients have not been included in any tolerance studies and this should be the focus of future studies.
Collapse
Affiliation(s)
- Wee-Song Yeo
- Mount Elizabeth Hospital, 3 Mount Elizabeth, Singapore, 228510, Singapore.
| | - Qin Xiang Ng
- MOH Holdings Pte Ltd, 1 Maritime Square, Singapore, 099253, Singapore
| |
Collapse
|
13
|
Mooney N. Urinary metabolites give new clues to kidney transplant tolerance. EBioMedicine 2022; 77:103935. [PMID: 35290824 PMCID: PMC8921521 DOI: 10.1016/j.ebiom.2022.103935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
|
14
|
Dubouchet L, Todorov H, Seurinck R, Vallet N, Van Gassen S, Corneau A, Blanc C, Zouali H, Boland A, Deleuze JF, Ingram B, de Latour RP, Saeys Y, Socié G, Michonneau D. Operational tolerance after hematopoietic stem cell transplantation is characterized by distinct transcriptional, phenotypic, and metabolic signatures. Sci Transl Med 2022; 14:eabg3083. [PMID: 35196024 DOI: 10.1126/scitranslmed.abg3083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The mechanisms underlying operational tolerance after hematopoietic stem cell transplantation in humans are poorly understood. We studied two independent cohorts of patients who underwent allogeneic hematopoietic stem cell transplantation from human leukocyte antigen-identical siblings. Primary tolerance was associated with long-lasting reshaping of the recipients' immune system compared to their healthy donors with an increased proportion of regulatory T cell subsets and decreased T cell activation, proliferation, and migration. Transcriptomics profiles also identified a role for nicotinamide adenine dinucleotide biosynthesis in the regulation of immune cell functions. We then compared individuals with operational tolerance and nontolerant recipients at the phenotypic, transcriptomic, and metabolomic level. We observed alterations centered on CD38+-activated T and B cells in nontolerant patients. In tolerant patients, cell subsets with regulatory functions were prominent. RNA sequencing analyses highlighted modifications in the tolerant patients' transcriptomic profiles, particularly with overexpression of the ectoenzyme NT5E (encoding CD73), which could counterbalance CD38 enzymatic functions by producing adenosine. Further, metabolomic analyses suggested a central role of androgens in establishing operational tolerance. These data were confirmed using an integrative approach to evaluating the immune landscape associated with operational tolerance. Thus, balance between a CD38-activated immune state and CD73-related production of adenosine may be a key regulator of operational tolerance.
Collapse
Affiliation(s)
| | - Helena Todorov
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9052 Ghent, Belgium
| | - Ruth Seurinck
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9052 Ghent, Belgium
| | | | - Sofie Van Gassen
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9052 Ghent, Belgium
| | - Aurélien Corneau
- Plateforme de Cytométrie de la Pitié-Salpétrière (CyPS), UMS037-PASS, Sorbonne Université-Faculté de Médecine, F-75013 Paris, France
| | - Catherine Blanc
- Plateforme de Cytométrie de la Pitié-Salpétrière (CyPS), UMS037-PASS, Sorbonne Université-Faculté de Médecine, F-75013 Paris, France
| | - Habib Zouali
- Centre d'étude du polymorphisme humain, 75010 Paris, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Jean-François Deleuze
- Centre d'étude du polymorphisme humain, 75010 Paris, France.,Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | | | - Regis Peffault de Latour
- Hematology Transplantation, Saint Louis Hospital, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9052 Ghent, Belgium
| | - Gérard Socié
- Université de Paris, INSERM U976, F-75010 Paris, France.,Hematology Transplantation, Saint Louis Hospital, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - David Michonneau
- Université de Paris, INSERM U976, F-75010 Paris, France.,Hematology Transplantation, Saint Louis Hospital, 1 Avenue Claude Vellefaux, 75010 Paris, France
| |
Collapse
|
15
|
Chong AS, Sage PT, Alegre ML. Regulation of Alloantibody Responses. Front Cell Dev Biol 2021; 9:706171. [PMID: 34307385 PMCID: PMC8297544 DOI: 10.3389/fcell.2021.706171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
The control of alloimmunity is essential to the success of organ transplantation. Upon alloantigen encounter, naïve alloreactive T cells not only differentiate into effector cells that can reject the graft, but also into T follicular helper (Tfh) cells that promote the differentiation of alloreactive B cells that produce donor-specific antibodies (DSA). B cells can exacerbate the rejection process through antibody effector functions and/or B cell antigen-presenting functions. These responses can be limited by immune suppressive mechanisms mediated by T regulatory (Treg) cells, T follicular regulatory (Tfr) cells, B regulatory (Breg) cells and a newly described tolerance-induced B (TIB) cell population that has the ability to suppress de novo B cells in an antigen-specific manner. Transplantation tolerance following costimulation blockade has revealed mechanisms of tolerance that control alloreactive T cells through intrinsic and extrinsic mechanisms, but also inhibit alloreactive B cells. Thus, the control of both arms of adaptive immunity might result in more robust tolerance, one that may withstand more severe inflammatory challenges. Here, we review new findings on the control of B cells and alloantibody production in the context of transplant rejection and tolerance.
Collapse
Affiliation(s)
- Anita S. Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Peter T. Sage
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
16
|
Pacaud M, Colas L, Brouard S. Microbiota and immunoregulation: A focus on regulatory B lymphocytes and transplantation. Am J Transplant 2021; 21:2341-2347. [PMID: 33559282 DOI: 10.1111/ajt.16522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/29/2020] [Indexed: 01/25/2023]
Abstract
The microbiota plays a major role in the regulation of the host immune functions thus establishing a symbiotic relationship that maintains immune homeostasis. Among immune cells, regulatory B cells (Bregs), which can inhibit effector T cell responses, may be involved in the intestinal homeostasis. Recent works suggest that the interaction between the microbiota and Bregs appears to be important to limit autoimmune diseases and help to maintain tolerance in transplantation. Short-chain fatty acids (SCFAs), recognized as major metabolites of the microbiota, seem to be involved in the generation of a pro-tolerogenic environment in the gut, particularly through the regulation of B cell differentiation, limiting mature B cells and promoting the function of Bregs. In this review, we show that this B cells-microbiota interaction may open a path toward new potential therapeutic applications not only for patients with autoimmune diseases but also in transplantation.
Collapse
Affiliation(s)
- Margaux Pacaud
- Centre De Recherche En Transplantation Et Immunologie, UMR1064, INSERM, Université De Nantes, Nantes, France
| | - Luc Colas
- Centre De Recherche En Transplantation Et Immunologie, UMR1064, INSERM, Université De Nantes, Nantes, France.,Plateforme Transversale d'Allergologie et d'Immunologie Clinique, Institut du Thorax, CHU de Nantes, Nantes, France
| | - Sophie Brouard
- Centre De Recherche En Transplantation Et Immunologie, UMR1064, INSERM, Université De Nantes, Nantes, France.,Institut De Transplantation Urologie Néphrologie (ITUN, CHU Nantes, Nantes, France.,Laboratoire d'Immunologie, CHU Nantes, Nantes, France
| |
Collapse
|
17
|
TCL1A, B Cell Regulation and Tolerance in Renal Transplantation. Cells 2021; 10:cells10061367. [PMID: 34206047 PMCID: PMC8230170 DOI: 10.3390/cells10061367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/31/2022] Open
Abstract
Despite much progress in the management of kidney transplantation, the need for life-long immunosuppressive therapies remains a major issue representing many risks for patients. Operational tolerance, defined as allograft acceptance without immunosuppression, has logically been subject to many investigations with the aim of a better understanding of post-transplantation mechanisms and potentially how it would be induced in patients. Among proposed biomarkers, T-cell Leukemia/Lymphoma protein 1A (TCL1A) has been observed as overexpressed in the peripheral blood of operational tolerant patients in several studies. TCL1A expression is restricted to early B cells, also increased in the blood of tolerant patients, and showing regulatory properties, notably through IL-10 secretion for some subsets. TCL1A has first been identified as an oncogene, overexpression of which is associated to the development of T and B cell cancer. TCL1A acts as a coactivator of the serine threonine kinase Akt and through other interactions favoring cell survival, growth, and proliferation. It has also been identified as interacting with others major actors involved in B cells differentiation and regulation, including IL-10 production. Herein, we reviewed known interactions and functions of TCL1A in B cells which could involve its potential role in the set up and maintenance of renal allograft tolerance.
Collapse
|
18
|
Yu J, Liu Z, Li C, Wei Q, Zheng S, Saeb-Parsy K, Xu X. Regulatory T Cell Therapy Following Liver Transplantation. Liver Transpl 2021; 27:264-280. [PMID: 37160016 DOI: 10.1002/lt.25948] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/25/2020] [Accepted: 10/31/2020] [Indexed: 12/17/2022]
Abstract
Liver transplantation (LT) is considered the gold standard of curative treatment for patients with end-stage liver disease or nonresectable hepatic malignant tumors. Rejection after LT is the main nontechnical factor affecting the prognosis of recipients. Medical and surgical advances, combined with improved immunosuppression with drugs such as calcineurin inhibitors (CNIs), have contributed to an increase in 1-year graft survival to around 80%. However, medium- and long-term improvements in LT outcomes have lagged behind. Importantly, CNIs and other classical immunosuppressive drugs are associated with significant adverse effects, including malignancies, cardiovascular disease, and severe renal dysfunction. Immunomodulation using regulatory T cells (Tregs) is emerging as a promising alternative to classical immunosuppression. Since their discovery, the immunomodulatory effects of Tregs have been demonstrated in a range of diseases. This has rejuvenated the interest in using Tregs as a therapeutic strategy to induce immune tolerance after LT. In this review, we first summarize the discovery and development of Tregs. We then review the preclinical data supporting their production, mechanism of action, and therapeutic efficacy followed by a summary of relevant clinical trials. Finally, we discuss the outstanding challenges of Treg therapy and its future prospects for routine use in LT.
Collapse
Affiliation(s)
- Jiongjie Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Zhikun Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Changbiao Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Qiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK.,Cambridge National Institute of Health Research Biomedical Research Centre, Cambridge, UK
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| |
Collapse
|
19
|
Cherukuri A, Mohib K, Rothstein DM. Regulatory B cells: TIM-1, transplant tolerance, and rejection. Immunol Rev 2021; 299:31-44. [PMID: 33484008 PMCID: PMC7968891 DOI: 10.1111/imr.12933] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Regulatory B cells (Bregs) ameliorate autoimmune disease and prevent allograft rejection. Conversely, they hinder effective clearance of pathogens and malignancies. Breg activity is mainly attributed to IL-10 expression, but also utilizes additional regulatory mechanisms such as TGF-β, FasL, IL-35, and TIGIT. Although Bregs are present in various subsets defined by phenotypic markers (including canonical B cell subsets), our understanding of Bregs has been limited by the lack of a broadly inclusive and specific phenotypic or transcriptional marker. TIM-1, a broad marker for Bregs first identified in transplant models, plays a major role in Breg maintenance and induction. Here, we expand on the role of TIM-1+ Bregs in immune tolerance and propose TIM-1 as a unifying marker for Bregs that utilize various inhibitory mechanisms in addition to IL-10. Further, this review provides an in-depth assessment of our understanding of Bregs in transplantation as elucidated in murine models and clinical studies. These studies highlight the major contribution of Bregs in preventing allograft rejection, and their ability to serve as highly predictive biomarkers for clinical transplant outcomes.
Collapse
Affiliation(s)
- Aravind Cherukuri
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kanishka Mohib
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David M Rothstein
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Braun WE, Herlitz L, Li J, Schold J, Poggio E, Stephany B, Fatica R, Nally J, Brown K, Fairchild R, Baldwin W, Goldfarb D, Kiser W, Augustine J, Avery R, Tomford JW, Nakamoto S. Continuous function of 80 primary renal allografts for 30-47 years with maintenance prednisone and azathioprine/mycophenolate mofetil therapy: A clinical mosaic of long-term successes. Clin Transplant 2020; 35:e14131. [PMID: 33112428 DOI: 10.1111/ctr.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022]
Abstract
Eighty primary renal allograft recipients, 61 living-related and 19 deceased donor, transplanted from 1963 through 1984 had continuous graft function for 30-47 years. They were treated with three different early immunosuppression programs (1963-1970: thymectomy, splenectomy, high oral prednisone; 1971-1979: divided-dose intravenous methylprednisolone; and 1980-1984: antilymphocyte globulin) each with maintenance prednisone and azathioprine, and no calcineurin inhibitor. Long-term treatment often included the anti-platelet medication, dipyridamole. Although both recipient and donor ages were young (27.2 ± 9.5 and 33.1 ± 12.0 years, respectively), six recipients with a parent donor had >40-year success. At 35 years, death-censored graft survival was 85.3% and death with a functioning graft 84.2%; overall graft survival was 69.5% (Kaplan-Meier estimate). Biopsy-documented early acute cellular and highly probable antibody-mediated rejections were reversed with divided-dose intravenous methylprednisolone. Complications are detailed in an integrated timeline. Hypogammaglobulinemia identified after 20 years doubled the infection rate. An association between a monoclonal gammopathy of undetermined significance and non-plasma-cell malignancies was identified. Twenty-seven azathioprine-treated patients tested after 37 years had extremely low levels of T1/T2 B lymphocytes representing a "low immunosuppression state of allograft acceptance (LISAA)". The lifetime achievements of these patients following a single renal allograft and low-dose maintenance immunosuppression are remarkable. Their success evolved as a clinical mosaic.
Collapse
Affiliation(s)
- William E Braun
- Department of Nephrology & Hypertension, Cleveland Clinic, Cleveland, OH, USA
| | - Leal Herlitz
- Department of Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Jianbo Li
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Jesse Schold
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Emilio Poggio
- Department of Nephrology & Hypertension, Cleveland Clinic, Cleveland, OH, USA
| | - Brian Stephany
- Department of Nephrology & Hypertension, Cleveland Clinic, Cleveland, OH, USA
| | - Richard Fatica
- Department of Nephrology & Hypertension, Cleveland Clinic, Cleveland, OH, USA
| | - Joseph Nally
- Department of Nephrology & Hypertension, Cleveland Clinic, Cleveland, OH, USA
| | - Kathleen Brown
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Robert Fairchild
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - William Baldwin
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - David Goldfarb
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - William Kiser
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Joshua Augustine
- Department of Nephrology & Hypertension, Cleveland Clinic, Cleveland, OH, USA
| | - Robin Avery
- Division of Infectious Disease (Transplant/Oncology), Johns Hopkins, Baltimore, MD, USA
| | - J Walton Tomford
- Department of Infectious Disease, Cleveland Clinic, Cleveland, OH, USA
| | - Satoru Nakamoto
- Department of Nephrology & Hypertension, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
21
|
Why some organ allografts are tolerated better than others: new insights for an old question. Curr Opin Organ Transplant 2020; 24:49-57. [PMID: 30516578 DOI: 10.1097/mot.0000000000000594] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW There is great variability in how different organ allografts respond to the same tolerance induction protocol. Well known examples of this phenomenon include the protolerogenic nature of kidney and liver allografts as opposed to the tolerance-resistance of heart and lung allografts. This suggests there are organ-specific factors which differentially drive the immune response following transplantation. RECENT FINDINGS The specific cells or cell products that make one organ allograft more likely to be accepted off immunosuppression than another are largely unknown. However, new insights have been made in this area recently. SUMMARY The current review will focus on the organ-intrinsic factors that contribute to the organ-specific differences observed in tolerance induction with a view to developing therapeutic strategies to better prevent organ rejection and promote tolerance induction of all organs.
Collapse
|
22
|
Colas L, Mongodin EF, Montassier E, Chesneau M, Guerif P, Hittle L, Giral M, Bromberg JS, Brouard S. Unique and specific Proteobacteria diversity in urinary microbiota of tolerant kidney transplanted recipients. Am J Transplant 2020; 20:145-158. [PMID: 31374143 DOI: 10.1111/ajt.15549] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 01/25/2023]
Abstract
Host-microbiota interactions can modulate the immune system both at local and systemic levels, with potential consequences for organ transplantation outcomes. In this study, we hypothesized that differences in the urinary microbiome following kidney transplantation would be associated with posttransplantation status: stable, minimally immunosuppressed, or tolerant. One hundred thirteen urine samples from stable (n = 51), minimally immunosuppressed (n = 19), and spontaneously tolerant (n = 16) patients, paired with age-matched controls (n = 27) were profiled and compared to each other at a taxonomic level with special interest in the immunosuppressive regimen. All comparisons and correlations were adjusted on sex and time posttransplantation. Our results highlighted a unique and specific urinary microbiota associated with spontaneous tolerance characterized by a high diversity and a clear Proteobacteria profile. Finally, we report that this profile is (1) impacted by gender, (2) inversely correlated with immunosuppressive drugs (calcineurin inhibitors and mammalian target of rapamycin inhibitors), and (3) stable in time.
Collapse
Affiliation(s)
- Luc Colas
- Plateforme Transversale d'Allergologie et d'Immunologie Clinique, Institut du Thorax, CHU de Nantes, Nantes, France
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Mélanie Chesneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Pierrick Guerif
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Lauren Hittle
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Magali Giral
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Jonathan S Bromberg
- Departments of Surgery and Microbiology and Immunology, and the Center for Vascular and Inflammatory Diseases, University of Maryland, School of Medicine, Baltimore, Maryland
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
23
|
Carmona P, Medina-Armenteros Y, Cabral A, Monteiro SM, Gonçalves Fonseca S, Faria AC, Lemos F, Saitovitch D, Noronha IL, Kalil J, Coelho V. Regulatory/inflammatory cellular response discrimination in operational tolerance. Nephrol Dial Transplant 2019; 34:2143-2154. [PMID: 31280312 DOI: 10.1093/ndt/gfz114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 05/03/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Antigen-specific cellular response is essential in immune tolerance. We tested whether antigen-specific cellular response is differentially modulated in operational tolerance (OT) in renal transplantation with respect to critical antigenic challenges in allotransplantation-donor antigens, pathogenic antigens and self-antigens. METHODS We analysed the profile of immunoregulatory (REG) and pro-inflammatory (INFLAMMA) cytokines for the antigen-specific response directed to these three antigen groups, by Luminex. RESULTS We showed that, in contrast to chronic rejection and healthy individuals, OT gives rise to an immunoregulatory deviation in the cellular response to donor human leucocyte antigen DR isotype peptides, while preserving the pro-inflammatory response to pathogenic peptides. Cellular autoreactivity to the N6 heat shock protein 60 (Hsp60) peptide also showed a REG profile in OT, increasing IL4, IL-5, IL-10 and IL-13. CONCLUSIONS The REG shift of donor indirect alloreactivity in OT, with inhibition of interleukin (IL)-1B, IL-8, IL-12, IL-17, granulocyte colony-stimulating factor, Interferon-γ and monocyte chemoattractant protein-1, indicates that this may be an important mechanism in OT. In addition, the differential REG profile of cellular response to the Hsp60 peptide in OT suggests that REG autoimmunity may also play a role in human transplantation tolerance. Despite cross-reactivity of antigen-specific T cell responses, a systemic functional antigen-specific discrimination takes place in OT.
Collapse
Affiliation(s)
- Priscila Carmona
- Laboratório de Imunologia, Instituto do Coração (InCor), Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brazil.,Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, Brazil
| | - Yordanka Medina-Armenteros
- Laboratório de Imunologia, Instituto do Coração (InCor), Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brazil.,Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, Brazil
| | - Amanda Cabral
- Laboratório de Imunologia, Instituto do Coração (InCor), Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brazil.,Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, Brazil
| | - Sandra Maria Monteiro
- Laboratório de Imunologia, Instituto do Coração (InCor), Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brazil.,Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, Brazil
| | - Simone Gonçalves Fonseca
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, Brazil.,Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Ana Caetano Faria
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, Brazil.,Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Francine Lemos
- Serviço de Transplante Renal, Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brazil
| | - David Saitovitch
- Divisão de Nefrologia, Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Irene L Noronha
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, Brazil.,Laboratório de Nefrologia Celular e Molecular, Divisão de Nefrologia, Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brazil
| | - Jorge Kalil
- Laboratório de Imunologia, Instituto do Coração (InCor), Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brazil.,Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, Brazil
| | - Verônica Coelho
- Laboratório de Imunologia, Instituto do Coração (InCor), Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brazil.,Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, Brazil
| |
Collapse
|
24
|
Resilience of T cell-intrinsic dysfunction in transplantation tolerance. Proc Natl Acad Sci U S A 2019; 116:23682-23690. [PMID: 31685610 DOI: 10.1073/pnas.1910298116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Following antigen stimulation, naïve T cells differentiate into memory cells that mediate antigen clearance more efficiently upon repeat encounter. Donor-specific tolerance can be achieved in a subset of transplant recipients, but some of these grafts are rejected after years of stability, often following infections. Whether T cell memory can develop from a tolerant state and whether these formerly tolerant patients develop antidonor memory is not known. Using a mouse model of cardiac transplantation in which donor-specific tolerance is induced with costimulation blockade (CoB) plus donor-specific transfusion (DST), we have previously shown that systemic infection with Listeria monocytogenes (Lm) months after transplantation can erode or transiently abrogate established tolerance. In this study, we tracked donor-reactive T cells to investigate whether memory can be induced when alloreactive T cells are activated in the setting of tolerance. We show alloreactive T cells persist after induction of cardiac transplantation tolerance, but fail to acquire a memory phenotype despite becoming antigen experienced. Instead, donor-reactive T cells develop T cell-intrinsic dysfunction evidenced when removed from the tolerant environment. Notably, Lm infection after tolerance did not rescue alloreactive T cell memory differentiation or functionality. CoB and antigen persistence were sufficient together but not separately to achieve alloreactive T cell dysfunction, and conventional immunosuppression could substitute for CoB. Antigen persistence was required, as early but not late surgical allograft removal precluded the acquisition of T cell dysfunction. Our results demonstrate transplant tolerance-associated T cell-intrinsic dysfunction that is resistant to memory development even after Lm-mediated disruption of tolerance.
Collapse
|
25
|
Gupta PK, McIntosh CM, Chong AS, Alegre ML. The pursuit of transplantation tolerance: new mechanistic insights. Cell Mol Immunol 2019; 16:324-333. [PMID: 30760917 DOI: 10.1038/s41423-019-0203-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
Donor-specific transplantation tolerance that enables weaning from immunosuppressive drugs but retains immune competence to non-graft antigens has been a lasting pursuit since the discovery of neonatal tolerance. More recently, efforts have been devoted not only to understanding how transplantation tolerance can be induced but also the mechanisms necessary to maintain it as well as how inflammatory exposure challenges its durability. This review focuses on recent advances regarding key peripheral mechanisms of T cell tolerance, with the underlying hypothesis that a combination of several of these mechanisms may afford a more robust and durable tolerance and that a better understanding of these individual pathways may permit longitudinal tracking of tolerance following clinical transplantation to serve as biomarkers. This review may enable a personalized assessment of the degree of tolerance in individual patients and the opportunity to strengthen the robustness of peripheral tolerance.
Collapse
Affiliation(s)
- Pawan K Gupta
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Anita S Chong
- Department of Surgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Maria-Luisa Alegre
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
26
|
Manzia TM, Gazia C, Baiocchi L, Lenci I, Milana M, Santopaolo F, Angelico R, Tisone G. Clinical Operational Tolerance and Immunosuppression Minimization in Kidney Transplantation: Where Do We Stand? Rev Recent Clin Trials 2019; 14:189-202. [PMID: 30868959 DOI: 10.2174/1574887114666190313170205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The 20th century represents a breakthrough in the transplantation era, since the first kidney transplantation between identical twins was performed. This was the first case of tolerance, since the recipient did not need immunosuppression. However, as transplantation became possible, an immunosuppression-free status became the ultimate goal, since the first tolerance case was a clear exception from the hard reality nowadays represented by rejection. METHODS A plethora of studies was described over the past decades to understand the molecular mechanisms responsible for rejection. This review focuses on the most relevant studies found in the literature where renal tolerance cases are claimed. Contrasting, and at the same time, encouraging outcomes are herein discussed and a glimpse on the main renal biomarkers analyzed in this field is provided. RESULTS The activation of the immune system has been shown to play a central role in organ failure, but also it seems to induce a tolerance status when an allograft is performed, despite tolerance is still rare to register. Although there are still overwhelming challenges to overcome and various immune pathways remain arcane; the immunosuppression minimization might be more attainable than previously believed. CONCLUSION . Multiple biomarkers and tolerance mechanisms suspected to be involved in renal transplantation have been investigated to understand their real role, with still no clear answers on the topic. Thus, the actual knowledge provided necessarily leads to more in-depth investigations, although many questions in the past have been answered, there are still many issues on renal tolerance that need to be addressed.
Collapse
Affiliation(s)
- Tommaso Maria Manzia
- Transplant and Hepatobiliary Unit, Department of Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Gazia
- Transplant and Hepatobiliary Unit, Department of Surgery, University of Rome Tor Vergata, Rome, Italy
- Department of Surgery, Abdominal Organ Transplant Program, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
- Wake Forest Institute for Regenerative Medicine, Department of Surgery, Winston-Salem, NC, United States
| | - Leonardo Baiocchi
- Hepatology and Liver Transplant Unit, University of Tor Vergata, Rome, Italy
| | - Ilaria Lenci
- Hepatology and Liver Transplant Unit, University of Tor Vergata, Rome, Italy
| | - Martina Milana
- Hepatology and Liver Transplant Unit, University of Tor Vergata, Rome, Italy
| | | | - Roberta Angelico
- Division of Abdominal Transplantation and Hepatobiliopancreatic Surgery, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Giuseppe Tisone
- Transplant and Hepatobiliary Unit, Department of Surgery, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
27
|
Platt JL, West LJ, Chinnock RE, Cascalho M. Toward a solution for cardiac failure in the newborn. Xenotransplantation 2018; 25:e12479. [PMID: 30537350 DOI: 10.1111/xen.12479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 01/14/2023]
Abstract
The newborn infant with severe cardiac failure owed to congenital structural heart disease or cardiomyopathy poses a daunting therapeutic challenge. The ideal solution for both might be cardiac transplantation if availability of hearts was not limiting and if tolerance could be induced, obviating toxicity of immunosuppressive therapy. If one could safely and effectively exploit neonatal tolerance for successful xenotransplantation of the heart, the challenge of severe cardiac failure in the newborn infant might be met. We discuss the need, the potential for applying neonatal tolerance in the setting of xenotransplantation and the possibility that other approaches to this problem might emerge.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Department of Surgery and Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan
| | - Lori J West
- Department of Pediatrics, Department of Surgery, Department of Immunology, Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Richard E Chinnock
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
| | - Marilia Cascalho
- Department of Surgery and Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
28
|
Cell Therapy as a Tool for Induction of Immunological Tolerance after Liver Transplantation. Bull Exp Biol Med 2018; 165:554-563. [PMID: 30121913 DOI: 10.1007/s10517-018-4213-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Indexed: 12/13/2022]
Abstract
Transplantation of solid organs, including liver, induces a number of serious complications related to immune incompatibility and requiring long-term use of immunosuppressive drugs. Finding the ways to inducing recipient immunological tolerance to the grafts is a top priority in organ transplantation and immunology. Along with the search for immunosupressive therapy, the development of alternative approaches to induction of immunological tolerance based on cell technologies is now in progress. In this regard, studies of the so-called spontaneous operational tolerance observed in ~20% patients after orthotopic liver transplantation is a promising trend. Understanding of this phenomenon can shed light on the mechanisms of immunological tolerance to allografts and will help to identify specific tolerance biomarkers and cell types with the aptitude for the induction of tolerance to liver allografts.
Collapse
|
29
|
Robinson KA, Orent W, Madsen JC, Benichou G. Maintaining T cell tolerance of alloantigens: Lessons from animal studies. Am J Transplant 2018; 18:1843-1856. [PMID: 29939471 PMCID: PMC6352985 DOI: 10.1111/ajt.14984] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/25/2023]
Abstract
Achieving host immune tolerance of allogeneic transplants represents the ultimate challenge in clinical transplantation. It has become clear that different cells and mechanisms participate in acquisition versus maintenance of allograft tolerance. Indeed, manipulations which prevent tolerance induction often fail to abrogate tolerance once it has been established. Hence, elucidation of the immunological mechanisms underlying maintenance of T cell tolerance to alloantigens is essential for the development of novel interventions that preserve a robust and long lasting state of allograft tolerance that relies on T cell deletion in addition to intra-graft suppression of inflammatory immune responses. In this review, we discuss some essential elements of the mechanisms involved in the maintenance of naturally occurring or experimentally induced allograft tolerance, including the newly described role of antigen cross-dressing mediated by extracellular vesicles.
Collapse
Affiliation(s)
- Kortney A. Robinson
- Center for Transplant Sciences, Massachusetts General
Hospital and Harvard Medical School, Boston, MA
| | - William Orent
- Center for Transplant Sciences, Massachusetts General
Hospital and Harvard Medical School, Boston, MA
| | - Joren C. Madsen
- Center for Transplant Sciences, Massachusetts General
Hospital and Harvard Medical School, Boston, MA.,Division of Cardiac Surgery, Department of Surgery,
Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Gilles Benichou
- Center for Transplant Sciences, Massachusetts General
Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
30
|
Whitehouse GP, Hope A, Sanchez-Fueyo A. Regulatory T-cell therapy in liver transplantation. Transpl Int 2018; 30:776-784. [PMID: 28608637 DOI: 10.1111/tri.12998] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/27/2017] [Accepted: 06/07/2017] [Indexed: 12/24/2022]
Abstract
Modern immunosuppression drug regimens have produced excellent short-term survival after liver transplantation but it is generally accepted that the side effects of these medications remain a significant contributing factor for less satisfactory long term outcomes. The liver has unique tolerogenic properties as evidenced by the higher rates of operational tolerance seen in liver transplant recipients compared to other solid organ transplants, and therefore, liver transplantation offers an attractive setting in which to study tolerizing therapies. CD4+ CD25+ FOXP3+ regulatory T cells (Tregs) are crucial for maintenance of self-tolerance and prevention of autoimmune disease and are therefore an appealing potential candidate for use as a tolerizing cell therapy. In this review, we summarize the evidence from drug withdrawal trials of spontaneous operational tolerance in liver transplantation, the unique immunology of the hepatic microenvironment, the evidence for the use of CD4+ CD25+ FOXP3+ regulatory T cells as a tolerance inducing therapy in liver transplantation and the challenges in producing clinical grade Treg cell products.
Collapse
Affiliation(s)
- Gavin P Whitehouse
- Division of Transplantation Immunology and Mucosal Biology, Institute of Liver Studies, Medical Research Council Centre for Transplantation, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Andrew Hope
- CRF GMP Unit, NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Alberto Sanchez-Fueyo
- Division of Transplantation Immunology and Mucosal Biology, Institute of Liver Studies, Medical Research Council Centre for Transplantation, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
31
|
Newell KA, Adams AB, Turka LA. Biomarkers of operational tolerance following kidney transplantation - The immune tolerance network studies of spontaneously tolerant kidney transplant recipients. Hum Immunol 2018; 79:380-387. [PMID: 29448053 PMCID: PMC5924709 DOI: 10.1016/j.humimm.2018.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/29/2018] [Accepted: 02/09/2018] [Indexed: 01/08/2023]
Abstract
Studies of kidney transplant recipients who have developed spontaneous and sustained tolerance have revealed an association with B cells. Unexpectedly tolerant individuals are characterized by increased numbers and frequencies of B cells in the blood and increased expression of genes associated with B cells in the blood and urine. Comparisons of the B cell repertoires of tolerant individuals and those receiving immunosuppression reveal that not only are the B cells more numerous but developmental differences result in a repertoire comprised of more naïve and transitional B cells in the tolerant cohort. B cells isolated from tolerant individuals also display functional differences compared to those from individuals receiving immunosuppression. Many of these differences may serve to suppress alloimmunity. Lastly a significant number of transplant recipients receiving standard immunosuppression display B cell-biased patterns of gene expression predictive of tolerance or a pro-tolerogenic state. Interestingly, this pattern is associated with improved renal allograft function. While recent studies have raised the concern that immunosuppressive drugs heavily influence B cell-based "signatures of tolerance", a substantial body of work suggests that differences in B cells may be a useful tool for identifying tolerant kidney transplant recipients or guiding their immunosuppressive management.
Collapse
Affiliation(s)
- Kenneth A Newell
- Department of Surgery, Emory University School of Medicine, Emory University, United States.
| | - Andrew B Adams
- Department of Surgery, Emory University School of Medicine, Emory University, United States
| | - Laurence A Turka
- Center for Transplantation Sciences, Massachusetts General Hospital and the Immune Tolerance Network, United States
| |
Collapse
|
32
|
Abstract
Immunosuppressive therapy is arguably the most important component of medical care after lung transplantation. The goal of immunosuppression is to prevent acute and chronic rejection while maximizing patient survival and long-term allograft function. However, the benefits of immunosuppressive therapy must be balanced against the side effects and major toxicities of these medications. Immunosuppressive agents can be classified as induction agents, maintenance therapies, treatments for acute rejection and chronic rejection and antibody directed therapies. Although induction therapy remains an area of controversy in lung transplantation, it is still used in the majority of transplant centers. On the other hand, maintenance immunosuppression is less contentious; but, unfortunately, since the creation of three-drug combination therapy, including a glucocorticoid, calcineurin inhibitor and anti-metabolite, there have been relatively modest improvements in chronic maintenance immunosuppressive regimens. The presence of HLA antibodies in transplant candidates and development of de novo antibodies after transplantation remain a major therapeutic challenge before and after lung transplantation. In this chapter we review the medications used for induction and maintenance immunosuppression along with their efficacy and side effect profiles. We also review strategies and evidence for HLA desensitization prior to lung transplantation and management of de novo antibody formation after transplant. Finally, we review immune tolerance and the future of lung transplantation to limit the toxicities of conventional immunosuppressive therapy.
Collapse
Affiliation(s)
- Luke J Benvenuto
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University Medical Center, New York, USA
| | - Michaela R Anderson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University Medical Center, New York, USA
| | - Selim M Arcasoy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University Medical Center, New York, USA
| |
Collapse
|
33
|
Chesneau M, Danger R, Soulillou JP, Brouard S. B cells in operational tolerance. Hum Immunol 2018; 79:373-379. [PMID: 29458071 DOI: 10.1016/j.humimm.2018.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/02/2018] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Abstract
Transplantation is currently the therapy of choice for endstage organ failure even though it requires long-term immunosuppresive therapy, with its numerous side effects, for acceptance of the transplanted organ. In rare cases however, patients develop operational tolerance, that is, graft survival without immunosuppression. Studies conducted on these patients reveal genetic, phenotypic, and functional signatures. They provide a better understanding of the immunological mechanisms involved in operational tolerance and define biomarkers that could be used to adapt immunosuppressive treatment to the individual, safely reduce immunosuppression doses, and ideally and safely guide immunosuppression withdrawal. This review summarizes studies that suggest a role for B cells as biomarkers of operational tolerance and discusses the use of B cells as a predictive tool for immunologic risk.
Collapse
Affiliation(s)
- M Chesneau
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - R Danger
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - J-P Soulillou
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France
| | - S Brouard
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France; Centre d'Investigation Clinique (CIC) Biothérapie, CHU Nantes, Nantes, France.
| |
Collapse
|
34
|
Chan-On C, Liberto JM, Sarwal MM. Mechanisms and biomarkers of immune quiescence in kidney transplantation. Hum Immunol 2018; 79:356-361. [PMID: 29408630 DOI: 10.1016/j.humimm.2018.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 12/14/2022]
Abstract
This review discusses the current understanding of biomarkers of immune quiescence based on reviews of published literature in kidney transplant operational tolerance and mechanistic studies based on a better characterization of the stable, well-functioning renal allograft.
Collapse
Affiliation(s)
- Chitranon Chan-On
- Division of Nephrology, Faculty of Medicine, Department of Internal Medicine, Khon Kaen University, Khon Kaen, Thailand; Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Juliane M Liberto
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Minnie M Sarwal
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
35
|
Biomarkers of immune tolerance in liver transplantation. Hum Immunol 2018; 79:388-394. [PMID: 29462637 DOI: 10.1016/j.humimm.2018.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 01/01/2023]
Abstract
The liver exhibits intrinsic immune tolerogenic properties that contribute to a unique propensity toward spontaneous acceptance when transplanted, both in animal models and in humans. Thus, in contrast to what happens after transplantation of other solid organs, several years following liver transplantation a significant subset of patients are capable of maintaining normal allograft function with histological integrity in the absence of immunosuppressive drug treatment. Significant efforts have been put into identifying sensitive and specific biomarkers of tolerance in order to stratify liver transplant recipients according to their need for immunosuppressive medication and their likelihood of being able to completely discontinue it. These biomarkers are currently being validated in prospective clinical trials of immunosuppression withdrawal both in Europe and in the United States. These studies have the potential to transform the clinical management of liver transplant recipients by mitigating, at least in part, the burden of lifelong immunosuppression.
Collapse
|
36
|
Durand M, Dubois F, Dejou C, Durand E, Danger R, Chesneau M, Brosseau C, Guerif P, Soulillou JP, Degauque N, Eliaou JF, Giral M, Bonnefoy N, Brouard S. Increased degradation of ATP is driven by memory regulatory T cells in kidney transplantation tolerance. Kidney Int 2018; 93:1154-1164. [PMID: 29455908 DOI: 10.1016/j.kint.2017.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/29/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022]
Abstract
Regulatory T cells were recently proposed as the central actor in operational tolerance after renal transplantation. Tolerant patients harbor increased FoxP3hi memory Treg frequency and increased demethylation in the Foxp3 Treg-specific demethylated region when compared to stable kidney recipients and exhibit greater memory Treg suppressive capacities and higher expression of the ectonucleotidase CD39. However, in this particular and unique situation the mechanisms of action of Tregs were not identified. Thus, we analyzed the ability of memory Tregs to degrade extracellular ATP in tolerant patients, healthy volunteers, and patients with stable graft function under immunosuppression and determined the role of immunosuppressive drugs on this process. The conserved proportion of memory Tregs leads to the establishment of a pro-tolerogenic balance in operationally tolerant patients. Memory Tregs in tolerant patients display normal capacity to degrade extracellular ATP/ADP. In contrast, memory Tregs from patients with stable graft function do not have this ability. Finally, in vitro, immunosuppressive drugs may favor the lower proportion of memory Tregs in stable patients, but they have no effect on CD39-dependent ATP degradation and do not explain memory Treg lack of extracellular ATP/ADP degradation ability. Thus, intrinsic active regulatory mechanisms may act long after immunosuppressive drug arrest in operationally tolerant patients and may contribute to kidney allograft tolerance via the maintenance of CD39 Treg function.
Collapse
Affiliation(s)
- Maxim Durand
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Florian Dubois
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Cécile Dejou
- OREGA Biotech, Ecully, France; IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM, U1194; Université Montpellier; Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Eugénie Durand
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Richard Danger
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Mélanie Chesneau
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Carole Brosseau
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Pierrick Guerif
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; Centre d'Investigation Clinique (CIC) Biothérapie, CHU Nantes, Nantes, France
| | - Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Nicolas Degauque
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Jean-François Eliaou
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM, U1194; Université Montpellier; Institut Régional du Cancer de Montpellier, Montpellier, France; Département d'Immunologie, Centre Hospitalier Universitaire de Montpellier et Faculté de Médecine, Université de Montpellier, Hôpital Saint-Eloi, Montpellier, France
| | - Magali Giral
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; Centre d'Investigation Clinique (CIC) Biothérapie, CHU Nantes, Nantes, France
| | - Nathalie Bonnefoy
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM, U1194; Université Montpellier; Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France; Centre d'Investigation Clinique (CIC) Biothérapie, CHU Nantes, Nantes, France.
| |
Collapse
|
37
|
Bontha SV, Fernandez-Piñeros A, Maluf DG, Mas VR. Messengers of tolerance. Hum Immunol 2018; 79:362-372. [PMID: 29402484 DOI: 10.1016/j.humimm.2018.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/16/2018] [Accepted: 01/19/2018] [Indexed: 12/21/2022]
Abstract
The use of immunosuppressant drugs after organ transplantation has brought great success in the field of organ transplantation with respect to short-term outcome. However, major challenges (i.e., limited improvement of long-term survival, immunosuppressant toxicity, infections and carcinoma) demand alternate treatment approaches that minimizes the use of immunosuppressants. Interestingly, few studies have identified groups of transplant patients who developed operational tolerance and thereby keep their allograft without complications in absence of immunosuppressants. These rare groups of patients are of particular interest as study subjects for understanding mechanisms of graft tolerance that could be leveraged in future for inducing tolerance and for understanding mechanisms involved in improving long-term allograft outcomes. Also, biomarkers from these studies could benefit the larger transplant population by their application in immunosuppressant tailoring and identification of tolerant patients among patients with stably functioning allografts. This review compiles several gene expression studies performed in samples from tolerant patients in different solid organ transplantations to identify key genes and associated molecular pathways relevant to tolerance. This review is aimed at putting forth all this important work done thus far and to identify research gaps that need to be filled, in order to achieve the greater purpose of these studies.
Collapse
Affiliation(s)
- Sai Vineela Bontha
- Translational Genomics and Transplant Laboratory, Department of Surgery, University of Virginia, Charlottesville 22903, United States
| | - Angela Fernandez-Piñeros
- Translational Genomics and Transplant Laboratory, Department of Surgery, University of Virginia, Charlottesville 22903, United States
| | - Daniel G Maluf
- Translational Genomics and Transplant Laboratory, Department of Surgery, University of Virginia, Charlottesville 22903, United States; Transplant Surgery, Department of Surgery, University of Virginia, Charlottesville 22903, United States
| | - Valeria R Mas
- Translational Genomics and Transplant Laboratory, Department of Surgery, University of Virginia, Charlottesville 22903, United States.
| |
Collapse
|
38
|
|
39
|
Chu Z, Zou W, Xu Y, Sun Q, Zhao Y. The regulatory roles of B cell subsets in transplantation. Expert Rev Clin Immunol 2018; 14:115-125. [PMID: 29338551 DOI: 10.1080/1744666x.2018.1426461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhulang Chu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Department of Pathology, Beijing University of Chinese Medicine, Beijing, China
| | - Weilong Zou
- Surgery of Transplant and Hepatopancrobiliary, The General Hospital of Chinese People’s Armed Police Forces, Beijing, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiquan Sun
- Department of Renal Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Dugast E, David G, Oger R, Danger R, Judor JP, Gagne K, Chesneau M, Degauque N, Soulillou JP, Paul P, Picard C, Guerif P, Conchon S, Giral M, Gervois N, Retière C, Brouard S. Broad Impairment of Natural Killer Cells from Operationally Tolerant Kidney Transplanted Patients. Front Immunol 2017; 8:1721. [PMID: 29312288 PMCID: PMC5732263 DOI: 10.3389/fimmu.2017.01721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/21/2017] [Indexed: 01/10/2023] Open
Abstract
The role of natural killer (NK) cells in organ transplantation is controversial. This study aims to decipher their role in kidney transplant tolerance in humans. Previous studies highlighted several modulated genes involved in NK cell biology in blood from spontaneously operationally tolerant patients (TOLs; drug-free kidney-transplanted recipients with stable graft function). We performed a phenotypic, functional, and genetic characterization of NK cells from these patients compared to kidney-transplanted patients with stable graft function under immunosuppression and healthy volunteers (HVs). Both operationally TOLs and stable patients harbored defective expression of the NKp46 activator receptor and lytic molecules perforin and granzyme compared to HVs. Surprisingly, NK cells from operationally TOLs also displayed decreased expression of the CD16 activating marker (in the CD56Dim NK cell subset). This decrease was associated with impairment of their functional capacities upon stimulation, as shown by lower interferon gamma (IFNγ) production and CD107a membranous expression in a reverse antibody-dependent cellular cytotoxicity (ADCC) assay, spontaneous lysis assays, and lower target cell lysis in the 51Cr release assay compared to HVs. Conversely, despite impaired K562 cell lysis in the 51Cr release assay, patients with stable graft function harbored a normal reverse ADCC and even increased amounts of IFNγ+ NK cells in the spontaneous lysis assay. Altogether, the strong impairment of the phenotype and functional cytotoxic capacities of NK cells in operationally TOLs may accord with the establishment of a pro-tolerogenic environment, despite remaining highly activated after transplantation in patients with stable graft function.
Collapse
Affiliation(s)
- Emilie Dugast
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Gaëlle David
- Etablissement Français du sang, Nantes, France.,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Romain Oger
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Richard Danger
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Jean-Paul Judor
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Katia Gagne
- Etablissement Français du sang, Nantes, France.,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,LabEx Transplantex, Université de Strasbourg, France
| | - Mélanie Chesneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Nicolas Degauque
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | | | - Pascale Paul
- Nephrology Dialysis Renal Transplantation Center, Assistance Publique des Hôpitaux de Marseille, Hospital de la Conception, UMR 1076, Vascular Research Center of Marseille, INSERM, Aix-Marseille University, Marseille, France
| | - Christophe Picard
- Établissement Français du Sang Alpes Méditerranée, Marseille, France.,ADES UMR 7268, CNRS, EFS, Aix-Marseille Université, Marseille, France
| | - Pierrick Guerif
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,CIC Biotherapy, CHU Nantes, Nantes, France
| | - Sophie Conchon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Magali Giral
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,CIC Biotherapy, CHU Nantes, Nantes, France
| | - Nadine Gervois
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Christelle Retière
- Etablissement Français du sang, Nantes, France.,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Although elusive for many decades, transplantation tolerance can now be achieved in the clinic. This has prompted follow-up investigations into its stability and longevity, as well as into barriers to its induction, which include memory T and B cells. RECENT FINDINGS Clinical observations reveal that transplantation tolerance can be induced in adult recipients and that even episodes of acute rejection do not preclude successful weaning from immunosuppression to reveal tolerance. These observations appear to conflict with the currently accepted notion that adult transplant recipients harbor high frequencies of memory human leukocyte antigen-specific T cells that are a barrier to transplantation tolerance. We discuss how these observations may be rationalized, by proposing the generation of helpless effector CD8 T cells that cannot develop into memory, and by highlighting recent findings on the ability of transplantation tolerance to be spontaneously restored after rejection. We speculate that in individuals who develop tolerance while on immunosuppression and then experience rejection, it is this restored tolerance that is revealed upon successful weaning of immunosuppression. SUMMARY We have reviewed clinical and experimental data to explain how transplantation tolerance may be achieved in individuals who have experienced allograft rejection.
Collapse
|
42
|
Miller ML, Chong AS, Alegre ML. Fifty Shades of Tolerance: Beyond a Binary Tolerant/Non-Tolerant Paradigm. CURRENT TRANSPLANTATION REPORTS 2017; 4:262-269. [PMID: 31098340 DOI: 10.1007/s40472-017-0166-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Purpose of review It has long been considered that tolerance in a transplant recipient is a binary all-or-none state: either the graft is accepted without immunosuppression identifying the recipient as tolerant, or the recipient rejects the graft and is not tolerant. This tolerance paradigm, however, does not accurately reflect data emerging from animal models and patients and requires revision. Recent Findings It is becoming appreciated that there may be different gradations in the quality of tolerance based on underlying cellular mechanisms of immunological tolerance, and that individuals may enhance their tolerance by strengthening or combining different cellular mechanisms. Furthermore, evidence suggests that even if tolerance is lost, the loss may be only temporary, and in some circumstances tolerance can be restored. Summary Shifting our focus from an all-or-nothing tolerance paradigm to one with many shades may help us better understand how tolerance operates, and how this state may be tracked and enhanced for better patient outcomes.
Collapse
Affiliation(s)
- Michelle L Miller
- Department of Medicine, Section of Rheumatology, University of Chicago
| | - Anita S Chong
- Department of Surgery, Section of Transplantation, University of Chicago
| | | |
Collapse
|
43
|
Danger R, Sawitzki B, Brouard S. Immune monitoring in renal transplantation: The search for biomarkers. Eur J Immunol 2017; 46:2695-2704. [PMID: 27861809 DOI: 10.1002/eji.201545963] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 11/11/2022]
Abstract
It is now widely accepted that in order to improve long-term graft function and survival, a more personalized immunosuppressive treatment of transplant patients according to the individual anti-donor immune response status is needed. This applies to the identification of potentially "high-risk" patients likely to develop acute rejection episodes or display an accelerated decline of graft function, patients who might need immunosuppression intensification, and operationally tolerant patients suitable for immunosuppression minimization or weaning off. Such a patient stratification would benefit from biomarkers, which enable categorization into low and high risk or, ideally, identification of operational tolerant patients. Here, we report on recent developments regarding identification and performance analysis of noninvasive biomarkers such as mRNA and miRNA expression profiles, chemokines, or changes in immune cell subsets in either blood or urine of renal transplant patients. We will also discuss which future steps are needed to accelerate their clinical implementation.
Collapse
Affiliation(s)
- Richard Danger
- Inserm, , Center for Research in Transplantation and Immunology (CRTI) U1064, Nantes, France.,Université de Nantes, , UMR1064, Nantes, France.,CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité University Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Berlin, Germany
| | - Sophie Brouard
- Inserm, , Center for Research in Transplantation and Immunology (CRTI) U1064, Nantes, France.,Université de Nantes, , UMR1064, Nantes, France.,CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France.,CIC Biotherapy, CHU Nantes, , 30 bd Jean-Monnet, Nantes, France
| |
Collapse
|
44
|
Behnam Sani K, Sawitzki B. Immune monitoring as prerequisite for transplantation tolerance trials. Clin Exp Immunol 2017; 189:158-170. [PMID: 28518214 DOI: 10.1111/cei.12988] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2017] [Indexed: 02/06/2023] Open
Abstract
Ever since its first application in clinical medicine, scientists have been urged to induce tolerance towards foreign allogeneic transplants and thus avoid rejection by the recipient's immune system. This would circumvent chronic use of immunosuppressive drugs (IS) and thus avoid development of IS-induced side effects, which are contributing to the still unsatisfactory long-term graft and patient survival after solid organ transplantation. Although manifold strategies of tolerance induction have been described in preclinical models, only three therapeutic approaches have been utilized successfully in a still small number of patients. These approaches are based on (i) IS withdrawal in spontaneous operational tolerant (SOT) patients, (ii) induction of a mixed chimerism and (iii) adoptive transfer of regulatory cells. Results of clinical trials utilizing these approaches show that tolerance induction does not work in all patients. Thus, there is a need for reliable biomarkers, which can be used for patient selection and post-therapeutic immune monitoring of safety, success and failure. In this review, we summarize recent achievements in the identification and validation of such immunological assays and biomarkers, focusing mainly on kidney and liver transplantation. From the published findings so far, it has become clear that indicative biomarkers may vary between different therapeutic approaches applied and organs transplanted. Also, patient numbers studied so far are very small. This is the main reason why nearly all described parameters lack validation and reproducibility testing in large clinical trials, and are therefore not yet suitable for clinical practice.
Collapse
Affiliation(s)
- K Behnam Sani
- Institute of Medical Immunology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - B Sawitzki
- Institute of Medical Immunology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
45
|
Chenouard A, Chesneau M, Bui Nguyen L, Le Bot S, Cadoux M, Dugast E, Paul C, Malard-Castagnet S, Ville S, Guérif P, Soulillou JP, Degauque N, Danger R, Giral M, Brouard S. Renal Operational Tolerance Is Associated With a Defect of Blood Tfh Cells That Exhibit Impaired B Cell Help. Am J Transplant 2017; 17:1490-1501. [PMID: 27888555 DOI: 10.1111/ajt.14142] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/20/2016] [Accepted: 11/22/2016] [Indexed: 01/25/2023]
Abstract
Renal operationally tolerant patients (TOL) display a defect in B cell differentiation, with a deficiency in plasma cells. Recently described, T follicular helper (Tfh) cells play a critical role in B cell differentiation. We analyzed blood Tfh subsets in TOL and transplanted patients with stable graft function under immunosuppression (STA). We observed a reduced proportion of blood activated and highly functional Tfh subsets in TOL, without affecting Tfh absolute numbers. Functionally, Tfh cells from TOL displayed a modified gene expression profile, failed to produce interleukin-21, and were unable to induce IgG production by naive B cells. This Tfh defect is linked to a low incidence of postgraft de novo donor-specific antibody (dnDSA) immunization, suggesting that the lack of Tfh cells in TOL may induce a protolerogenic environment with reduced risk of developing dnDSA. Finally, we showed that elevated Tfh in STA precedes the occurrence of dnDSA during an alloresponse. These data provide new insights into the mechanisms of antibody response in operational tolerance. Disrupted homeostasis and impaired Tfh function in TOL could lead to a reduced risk of developing dnDSA and suggest a predictive role of blood Tfh cells on the occurrence of dnDSA in transplant recipients.
Collapse
Affiliation(s)
- A Chenouard
- INSERM, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,CHU de Nantes, ITUN, Nantes, France
| | - M Chesneau
- INSERM, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - L Bui Nguyen
- INSERM, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - S Le Bot
- INSERM, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - M Cadoux
- INSERM, Nantes, France.,CHU de Nantes, ITUN, Nantes, France
| | - E Dugast
- INSERM, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - C Paul
- INSERM, Nantes, France.,CHU de Nantes, ITUN, Nantes, France
| | - S Malard-Castagnet
- CHU de Nantes, ITUN, Nantes, France.,Laboratoire HLA, Etablissement Français du Sang Pays de la Loire, Nantes, France
| | - S Ville
- INSERM, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,CHU de Nantes, ITUN, Nantes, France
| | - P Guérif
- INSERM, Nantes, France.,CHU de Nantes, ITUN, Nantes, France.,CIC Biothérapie, Nantes, France
| | - J-P Soulillou
- LabEx Transplantex, Nantes, France.,EU Consortium BIO-DrIM
| | - N Degauque
- INSERM, Nantes, France.,CHU de Nantes, ITUN, Nantes, France.,EU Consortium VISICORT
| | - R Danger
- INSERM, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - M Giral
- INSERM, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,CHU de Nantes, ITUN, Nantes, France.,CIC Biothérapie, Nantes, France.,LabEx Transplantex, Nantes, France.,EU Consortium BIO-DrIM
| | - S Brouard
- INSERM, Nantes, France.,CHU de Nantes, ITUN, Nantes, France.,CIC Biothérapie, Nantes, France.,LabEx Transplantex, Nantes, France.,EU Consortium BIO-DrIM.,EU Consortium VISICORT.,Immunotherapy Graft Oncology, LabEx IGO, Nantes, France
| |
Collapse
|
46
|
Danger R, Chesneau M, Paul C, Guérif P, Durand M, Newell KA, Kanaparthi S, Turka LA, Soulillou JP, Houlgatte R, Giral M, Ramstein G, Brouard S. A composite score associated with spontaneous operational tolerance in kidney transplant recipients. Kidney Int 2017; 91:1473-1481. [PMID: 28242033 PMCID: PMC5432017 DOI: 10.1016/j.kint.2016.12.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/29/2016] [Accepted: 12/22/2016] [Indexed: 11/16/2022]
Abstract
New challenges in renal transplantation include using biological information to devise a useful clinical test for discerning high- and low-risk patients for individual therapy and ascertaining the best combination and appropriate dosages of drugs. Based on a 20-gene signature from a microarray meta-analysis performed on 46 operationally tolerant patients and 266 renal transplant recipients with stable function, we applied the sparse Bolasso methodology to identify a minimal and robust combination of six genes and two demographic parameters associated with operational tolerance. This composite score of operational tolerance discriminated operationally tolerant patients with an area under the curve of 0.97 (95% confidence interval 0.94-1.00). The score was not influenced by immunosuppressive treatment, center of origin, donor type, or post-transplant lymphoproliferative disorder history of the patients. This composite score of operational tolerance was significantly associated with both de novo anti-HLA antibodies and tolerance loss. It was validated by quantitative polymerase chain reaction using independent samples and demonstrated specificity toward a model of tolerance induction. Thus, our score would allow clinicians to improve follow-up of patients, paving the way for individual therapy.
Collapse
Affiliation(s)
- Richard Danger
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Mélanie Chesneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Chloé Paul
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Pierrick Guérif
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Maxim Durand
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | | | | | - Laurence A Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Rémi Houlgatte
- INSERM UMR 954, Nancy, France; CHU de Nancy, DRCI, Nancy, France
| | - Magali Giral
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; Université de Nantes, Faculté de Médecine, Nantes, France; CIC Biotherapy, CHU Nantes, Nantes, France
| | - Gérard Ramstein
- LINA DUKe, UMR 6241, Université de Nantes, Ecole des Mines de Nantes and CNRS, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; CIC Biotherapy, CHU Nantes, Nantes, France.
| |
Collapse
|
47
|
Massart A, Ghisdal L, Abramowicz M, Abramowicz D. Operational tolerance in kidney transplantation and associated biomarkers. Clin Exp Immunol 2017; 189:138-157. [PMID: 28449211 DOI: 10.1111/cei.12981] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2017] [Indexed: 12/30/2022] Open
Abstract
In the 1960s, our predecessors won a historical battle against acute rejection and ensured that transplantation became a common life-saving treatment. In parallel with this success, or perhaps because of it, we lost the battle for long-lived transplants, being overwhelmed with chronic immune insults and the toxicities of immunosuppression. It is likely that current powerful treatments block acute rejection, but at the same time condemn the few circulating donor cells that would have been able to elicit immunoregulatory host responses towards the allograft. Under these conditions, spontaneously tolerant kidney recipients - i.e. patients who maintain allograft function in the absence of immunosuppression - are merely accidents; they are scarce, mysterious and precious. Several teams pursue the goal of finding a biomarker that would guide us towards the 'just right' level of immunosuppression that avoids rejection while leaving some space for donor immune cells. Some cellular assays are attractive because they are antigen-specific, and provide a comprehensive view of immune responses toward the graft. These seem to closely follow patient regulatory capacities. However, these tests are cumbersome, and require abundant cellular material from both donor and recipient. The latest newcomers, non-antigen-specific recipient blood transcriptomic biomarkers, offer the promise that a practicable and simple signature may be found that overcomes the complexity of a system in which an infinite number of individual cell combinations can lead possibly to graft acceptance. Biomarker studies are as much an objective - identifying tolerant patients, enabling tolerance trials - as a means to deciphering the underlying mechanisms of one of the most important current issues in transplantation.
Collapse
Affiliation(s)
- A Massart
- Department of Nephrology, Dialysis, and Transplantation, CUB Hôpital Erasme and Institute of Interdisciplinary Research in Molecular and Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - L Ghisdal
- Department of Nephrology, Centre Hospitalier EpiCURA, Baudour, Belgium
| | - M Abramowicz
- Department of Human Genetics, CUB Hôpital Erasme and Institute of Interdisciplinary Research in Molecular and Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - D Abramowicz
- Department of Nephrology, Universitair Ziekenhuis Antwerpen and Antwerp University, Antwerp, Belgium
| |
Collapse
|
48
|
Riella LV, Bagley J, Iacomini J, Alegre ML. Impact of environmental factors on alloimmunity and transplant fate. J Clin Invest 2017; 127:2482-2491. [PMID: 28481225 DOI: 10.1172/jci90596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although gene-environment interactions have been investigated for many years to understand people's susceptibility to autoimmune diseases or cancer, a role for environmental factors in modulating alloimmune responses and transplant outcomes is only now beginning to emerge. New data suggest that diet, hyperlipidemia, pollutants, commensal microbes, and pathogenic infections can all affect T cell activation, differentiation, and the kinetics of graft rejection. These observations reveal opportunities for novel therapeutic interventions to improve graft outcomes as well as for noninvasive biomarker discovery to predict or diagnose graft deterioration before it becomes irreversible. In this Review, we will focus on the impact of these environmental factors on immune function and, when known, on alloimmune function, as well as on transplant fate.
Collapse
Affiliation(s)
- Leonardo V Riella
- Schuster Family Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jessamyn Bagley
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Boston, Massachusetts, USA
| | - John Iacomini
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Boston, Massachusetts, USA
| | | |
Collapse
|
49
|
Wortel CM, Heidt S. Regulatory B cells: Phenotype, function and role in transplantation. Transpl Immunol 2017; 41:1-9. [PMID: 28257995 DOI: 10.1016/j.trim.2017.02.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Abstract
While B cells are traditionally known for their roles in antibody production, antigen presentation and cytokine production, recent studies have highlighted the existence of B cells with regulatory properties, which have been termed Bregs, analogous to regulatory T cells (Tregs). Bregs have been found to play a role in autoimmune disease, malignancies, infections, and may also be involved in solid organ transplantation. Their main mechanism of action is by promoting the development of Tregs while suppressing effector CD4+ and CD8+ T cells, primarily by IL-10 secretion. In the field of transplantation evidence for an active role of Bregs is scarce. While the presence of Bregs has been associated with improved graft survival and operational tolerance in kidney transplant recipients, these findings are not without controversy. Since the majority of fundamental research on Bregs has been performed in the fields in autoimmunity and infectious diseases, we will first focus on what these fields taught us on basic Breg biology, after which the relevance for the transplant setting is discussed.
Collapse
Affiliation(s)
- C M Wortel
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, The Netherlands
| | - S Heidt
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, The Netherlands.
| |
Collapse
|
50
|
Young JS, Daniels MD, Miller ML, Wang T, Zhong R, Yin D, Alegre ML, Chong AS. Erosion of Transplantation Tolerance After Infection. Am J Transplant 2017; 17:81-90. [PMID: 27273890 PMCID: PMC5938732 DOI: 10.1111/ajt.13910] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 01/25/2023]
Abstract
Recent clinical studies suggest that operational allograft tolerance can be persistent, but long-term surviving allografts can be rejected in a subset of patients, sometimes after episodes of infection. In this study, we examined the impact of Listeria monocytogenes (Lm) infection on the quality of tolerance in a mouse model of heart allograft transplantation. Lm infection induced full rejection in 40% of tolerant recipients, with the remaining experiencing a rejection crisis or no palpable change in their allografts. In the surviving allografts on day 8 postinfection, graft-infiltrating cell numbers increased and exhibited a loss in the tolerance gene signature. By day 30 postinfection, the tolerance signature was broadly restored, but with a discernible reduction in the expression of a subset of 234 genes that marked tolerance and was down-regulated at day 8 post-Lm infection. We further demonstrated that the tolerant state after Lm infection was functionally eroded, as rejection of the long-term surviving graft was induced with anti-PD-L1 whereas the same treatment had no effect in noninfected tolerant mice. Collectively, these observations demonstrate that tolerance, even if initially robust, exists as a continuum that can be eroded following bystander immune responses that accompany certain infections.
Collapse
Affiliation(s)
- James S Young
- Section of Transplantation, Department of Surgery, Chicago State University, Chicago, IL 60628
| | - Melvin D Daniels
- Section of Transplantation, Department of Surgery, Chicago State University, Chicago, IL 60628
- Department of Biological Sciences, Chicago State University, Chicago, IL 60628
| | - Michelle L Miller
- Section of Rheumatology, Department of Medicine, Chicago State University, Chicago, IL 60628
| | - Tongmin Wang
- Section of Transplantation, Department of Surgery, Chicago State University, Chicago, IL 60628
| | - Rong Zhong
- Section of Transplantation, Department of Surgery, Chicago State University, Chicago, IL 60628
| | - Dengping Yin
- Section of Transplantation, Department of Surgery, Chicago State University, Chicago, IL 60628
| | - Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, Chicago State University, Chicago, IL 60628
| | - Anita S. Chong
- Section of Transplantation, Department of Surgery, Chicago State University, Chicago, IL 60628
| |
Collapse
|