1
|
Mursalin MH, Coburn PS, Livingston E, Miller FC, Astley R, Flores-Mireles AL, Callegan MC. Bacillus S-Layer-Mediated Innate Interactions During Endophthalmitis. Front Immunol 2020; 11:215. [PMID: 32117322 PMCID: PMC7028758 DOI: 10.3389/fimmu.2020.00215] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Bacillus endophthalmitis is a severe intraocular infection. Hallmarks of Bacillus endophthalmitis include robust inflammation and rapid loss of vision. We reported that the absence of Bacillus surface layer protein (SLP) significantly blunted endophthalmitis severity. Here, we further investigated SLP in the context of Bacillus-retinal cell interactions and innate immune pathways to explore the mechanisms by which SLP contributes to intraocular inflammation. We compared phenotypes of Wild-type (WT) and SLP deficient (ΔslpA) Bacillus thuringiensis by analyzing bacterial adherence to and phagocytosis by human retinal Muller cells and phagocytosis by mouse neutrophils. Innate immune receptor activation by the Bacillus envelope and purified SLP was analyzed using TLR2/4 reporter cell lines. A synthetic TLR2/4 inhibitor was used as a control for this receptor activation. To induce endophthalmitis, mouse eyes were injected intravitreally with 100 CFU WT or ΔslpA B. thuringiensis. A group of WT infected mice was treated intravitreally with a TLR2/4 inhibitor at 4 h postinfection. At 10 h postinfection, infected eyes were analyzed for viable bacteria, inflammation, and retinal function. We observed that B. thuringiensis SLPs contributed to retinal Muller cell adherence, and protected this pathogen from Muller cell- and neutrophil-mediated phagocytosis. We found that B. thuringiensis envelope activated TLR2 and, surprisingly, TLR4, suggesting the presence of a surface-associated TLR4 agonist in Bacillus. Further investigation showed that purified SLP from B. thuringiensis activated TLR4, as well as TLR2 in vitro. Growth of WT B. thuringiensis was significantly higher and caused greater inflammation in untreated eyes than in eyes treated with the TLR2/4 inhibitor. Retinal function analysis also showed greater retention of A-wave and B-wave function in infected eyes treated with the TLR2/4 inhibitor. The TLR2/4 inhibitor was not antibacterial in vitro, and did not cause inflammation when injected into uninfected eyes. Taken together, these results suggest a potential role for Bacillus SLP in host-bacterial interactions, as well as in endophthalmitis pathogenesis via TLR2- and TLR4-mediated pathways.
Collapse
Affiliation(s)
- Md Huzzatul Mursalin
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Phillip S. Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Dean McGee Eye Institute, Oklahoma City, OK, United States
| | - Erin Livingston
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Frederick C. Miller
- Department of Cell Biology and Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Roger Astley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Dean McGee Eye Institute, Oklahoma City, OK, United States
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, United States
| | - Michelle C. Callegan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Dean McGee Eye Institute, Oklahoma City, OK, United States
| |
Collapse
|
2
|
Liu F, Ma R, Wang Y, Zhang L. The Clinical Importance of Campylobacter concisus and Other Human Hosted Campylobacter Species. Front Cell Infect Microbiol 2018; 8:243. [PMID: 30087857 PMCID: PMC6066527 DOI: 10.3389/fcimb.2018.00243] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022] Open
Abstract
Historically, Campylobacteriosis has been considered to be zoonotic; the Campylobacter species that cause human acute intestinal disease such as Campylobacter jejuni and Campylobacter coli originate from animals. Over the past decade, studies on human hosted Campylobacter species strongly suggest that Campylobacter concisus plays a role in the development of inflammatory bowel disease (IBD). C. concisus primarily colonizes the human oral cavity and some strains can be translocated to the intestinal tract. Genome analysis of C. concisus strains isolated from saliva samples has identified a bacterial marker that is associated with active Crohn's disease (one major form of IBD). In addition to C. concisus, humans are also colonized by a number of other Campylobacter species, most of which are in the oral cavity. Here we review the most recent advancements on C. concisus and other human hosted Campylobacter species including their clinical relevance, transmission, virulence factors, disease associated genes, interactions with the human immune system and pathogenic mechanisms.
Collapse
Affiliation(s)
- Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Rena Ma
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Yiming Wang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
3
|
Ebersole JL, Dawson D, Emecen-Huja P, Nagarajan R, Howard K, Grady ME, Thompson K, Peyyala R, Al-Attar A, Lethbridge K, Kirakodu S, Gonzalez OA. The periodontal war: microbes and immunity. Periodontol 2000 2017; 75:52-115. [DOI: 10.1111/prd.12222] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Lewis VG, Ween MP, McDevitt CA. The role of ATP-binding cassette transporters in bacterial pathogenicity. PROTOPLASMA 2012; 249:919-942. [PMID: 22246051 DOI: 10.1007/s00709-011-0360-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
The ATP-binding cassette transporter superfamily is present in all three domains of life. This ubiquitous class of integral membrane proteins have diverse biological functions, but their fundamental role involves the unidirectional translocation of compounds across cellular membranes in an ATP coupled process. The importance of this class of proteins in eukaryotic systems is well established as typified by their association with genetic diseases and roles in the multi-drug resistance of cancer. In stark contrast, the ABC transporters of prokaryotes have not been exhaustively investigated due to the sheer number of different roles and organisms in which they function. In this review, we examine the breadth of functions associated with microbial ABC transporters in the context of their contribution to bacterial pathogenicity and virulence.
Collapse
Affiliation(s)
- Victoria G Lewis
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | | |
Collapse
|
5
|
The repeat-in-toxin family member TosA mediates adherence of uropathogenic Escherichia coli and survival during bacteremia. Infect Immun 2011; 80:493-505. [PMID: 22083710 DOI: 10.1128/iai.05713-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is responsible for the majority of uncomplicated urinary tract infections (UTI) and represents the most common bacterial infection in adults. UPEC utilizes a wide range of virulence factors to colonize the host, including the novel repeat-in-toxin (RTX) protein TosA, which is specifically expressed in the host urinary tract and contributes significantly to the virulence and survival of UPEC. tosA, found in strains within the B2 phylogenetic subgroup of E. coli, serves as a marker for strains that also contain a large number of well-characterized UPEC virulence factors. The presence of tosA in an E. coli isolate predicts successful colonization of the murine model of ascending UTI, regardless of the source of the isolate. Here, a detailed analysis of the function of tosA revealed that this gene is transcriptionally linked to genes encoding a conserved type 1 secretion system similar to other RTX family members. TosA localized to the cell surface and was found to mediate (i) adherence to host cells derived from the upper urinary tract and (ii) survival in disseminated infections and (iii) to enhance lethality during sepsis (as assessed in two different animal models of infection). An experimental vaccine, using purified TosA, protected vaccinated animals against urosepsis. From this work, it was concluded that TosA belongs to a novel group of RTX proteins that mediate adherence and host damage during UTI and urosepsis and could be a novel target for the development of therapeutics to treat ascending UTIs.
Collapse
|
6
|
Abstract
A growing number of Campylobacter species other than C. jejuni and C. coli have been recognized as emerging human and animal pathogens. Although C. jejuni continues to be the leading cause of bacterial gastroenteritis in humans worldwide, advances in molecular biology and development of innovative culture methodologies have led to the detection and isolation of a range of under-recognized and nutritionally fastidious Campylobacter spp., including C. concisus, C. upsaliensis and C. ureolyticus. These emerging Campylobacter spp. have been associated with a range of gastrointestinal diseases, particularly gastroenteritis, IBD and periodontitis. In some instances, infection of the gastrointestinal tract by these bacteria can progress to life-threatening extragastrointestinal diseases. Studies have shown that several emerging Campylobacter spp. have the ability to attach to and invade human intestinal epithelial cells and macrophages, damage intestinal barrier integrity, secrete toxins and strategically evade host immune responses. Members of the Campylobacter genus naturally colonize a wide range of hosts (including pets, farm animals and wild animals) and are frequently found in contaminated food products, which indicates that these bacteria are at risk of zoonotic transmission to humans. This Review presents the latest information on the role and clinical importance of emerging Campylobacter spp. in gastrointestinal health and disease.
Collapse
Affiliation(s)
- Si Ming Man
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| |
Collapse
|
7
|
Linhartová I, Bumba L, Mašín J, Basler M, Osička R, Kamanová J, Procházková K, Adkins I, Hejnová-Holubová J, Sadílková L, Morová J, Sebo P. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 2011; 34:1076-112. [PMID: 20528947 PMCID: PMC3034196 DOI: 10.1111/j.1574-6976.2010.00231.x] [Citation(s) in RCA: 360] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Repeats-in-toxin (RTX) exoproteins of Gram-negative bacteria form a steadily growing family of proteins with diverse biological functions. Their common feature is the unique mode of export across the bacterial envelope via the type I secretion system and the characteristic, typically nonapeptide, glycine- and aspartate-rich repeats binding Ca2+ ions. In this review, we summarize the current state of knowledge on the organization of rtx loci and on the biological and biochemical activities of therein encoded proteins. Applying several types of bioinformatic screens on the steadily growing set of sequenced bacterial genomes, over 1000 RTX family members were detected, with the biological functions of most of them remaining to be characterized. Activities of the so far characterized RTX family members are then discussed and classified according to functional categories, ranging from the historically first characterized pore-forming RTX leukotoxins, through the large multifunctional enzymatic toxins, bacteriocins, nodulation proteins, surface layer proteins, up to secreted hydrolytic enzymes exhibiting metalloprotease or lipase activities of industrial interest.
Collapse
Affiliation(s)
- Irena Linhartová
- Institute of Microbiology AS CR v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Arce RM, Diaz PI, Barros SP, Galloway P, Bobetsis Y, Threadgill D, Offenbacher S. Characterization of the invasive and inflammatory traits of oral Campylobacter rectus in a murine model of fetoplacental growth restriction and in trophoblast cultures. J Reprod Immunol 2010; 84:145-53. [PMID: 20089314 DOI: 10.1016/j.jri.2009.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 10/27/2009] [Accepted: 11/23/2009] [Indexed: 12/27/2022]
Abstract
Campylobacter species (C. jejuni, C. fetus) are enteric abortifacient bacteria in humans and ungulates. Campylobacter rectus is a periodontal pathogen associated with human fetal exposure and adverse pregnancy outcomes including preterm delivery. Experiments in pregnant mice have demonstrated that C. rectus can translocate from a distant site of infection to the placenta to induce fetal growth restriction and impair placental development. However, placental tissues from human, small-for-gestational age deliveries have not been reported to harbor C. rectus despite evidence of maternal infection and fetal exposure by fetal IgM response. This investigation examined the temporal relationship between the placental translocation of C. rectus and the effects on fetal growth in mice. BALB/c mice were infected at gestational day E7.5 to examine placental translocation of C. rectus by immunohistology. C. rectus significantly decreased fetoplacental weight at E14.5 and at E16.5. C. rectus was detected in 63% of placentas at E14.5, but not at E16.5. In in vitro trophoblast invasion assays, C. rectus was able to effectively invade human trophoblasts (BeWo) but not murine trophoblasts (SM9-1), and showed a trend for more invasiveness than C. jejuni. C. rectus challenge significantly upregulated both mRNA and protein levels of IL-6 and TNFalpha in a dose-dependent manner in human trophoblasts, but did not increase cytokine expression in murine cells, suggesting a correlation between invasion and cytokine activation. In conclusion, the trophoblast-invasive trait of C. rectus that appears limited to human trophoblasts may play a role in facilitating bacterial translocation and placental inflammation during early gestation.
Collapse
Affiliation(s)
- R M Arce
- Center for Oral and Systemic Diseases, NC Oral Health Institute, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Fukui M, Hinode D, Yokoyama M, Tanabe S, Yoshioka M. Salivary immunoglobulin A directed to oral microbial GroEL in patients with periodontitis and their potential protective role. ACTA ACUST UNITED AC 2006; 21:289-95. [PMID: 16922927 DOI: 10.1111/j.1399-302x.2006.00290.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to identify salivary immunoglobulin A (IgA) directed to oral microbial GroEL in patients with periodontitis and to demonstrate their potential protective role through a reduction of inflammatory cytokine production induced by microbial GroEL. Using five different proteins belonging to the heat-shock protein 60 family, Western immunoblot analysis of salivary IgA from 63 subjects revealed immunoreactivities with Campylobacter rectus GroEL and Porphyromonas gingivalis GroEL in subjects with periodontitis (P < 0.05) compared to control subjects. Using the BIACORE 1000 to measure the salivary IgA titers directed towards C. rectus GroEL, high resonance unit (RU) values were observed in the saliva samples from patients with periodontitis (P < 0.01). Furthermore, the number of teeth with deep pocket depth (>or=5 mm) showed a high correlation coefficient with the RU value (r = 0.50, P < 0.01). C. rectus GroEL possessed the ability to stimulate the production of interleukin-6 by gingival fibroblasts. Interestingly, salivary IgA antibody directed to C. rectus GroEL caused a partial inhibition of interleukin-6 production. This study showed a relationship between high levels of salivary IgA directed to GroEL and periodontal disease severity. Although additional investigations are required, salivary IgA to GroEL may have a protective role by reducing the inflammatory response induced by GroEL derived from periodontopathogenic bacteria.
Collapse
Affiliation(s)
- M Fukui
- Clinic of Preventive Dentistry, General Dentistry, The Tokushima University Hospital, Tokushima, Japan
| | | | | | | | | |
Collapse
|
10
|
Kimizuka R, Kato T, Ishihara K, Okuda K. Mixed infections with Porphyromonas gingivalis and Treponema denticola cause excessive inflammatory responses in a mouse pneumonia model compared with monoinfections. Microbes Infect 2004; 5:1357-62. [PMID: 14670448 DOI: 10.1016/j.micinf.2003.09.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Periodontopathic anaerobes such as Porphyromonas gingivalis are frequently found in aspiration pneumonia and lung abscesses. However, defense mechanisms and responses to these bacterial infections in the lung in vivo remain poorly understood. The coexistence of P. gingivalis with Treponema denticola has been found at higher levels and proportions in periodontally diseased sites. We hypothesized that mixed infections with P. gingivalis and T. denticola can cause severe respiratory disease. In the present study, inflammatory responses to mono- and mixed inoculations with P. gingivalis and T. denticola in the bronchoalveolar lavage (BAL) fluid were investigated. Acute pneumonia and lung abscesses in mice with the mixed infection resulted in a 40% mortality rate within 72 h, compared with only 10% mortality for the respective monoinfections. Pulmonary clearance of P. gingivalis was delayed in the mice with mixed infections with P. gingivalis and T. denticola. Tumor necrosis factor alpha (TNFalpha) interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) levels from BAL fluid of mice with mixed infections at 24 h after inoculation were significantly higher than those after P. gingivalis monoinfection (TNFalpha: P < 0.05, Il-1beta: P < 0.001, IL-6: P < 0.05). The chemokine KC level from BAL fluid of mice at 48 h (P < 0.05) and 72 h after mixed infection was also significantly increased when compared with that after P. gingivalis monoinfection (P < 0.001). The present study demonstrates that a mixed infection of P. gingivalis with T. denticola in mouse causes a marked bronchopneumonia and lung abscess in the mouse model.
Collapse
Affiliation(s)
- Ryuta Kimizuka
- Department of Microbiology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba City, Chiba 261-8502, Japan.
| | | | | | | |
Collapse
|
11
|
Abstract
AIM A species-specific nested polymerase chain reaction (PCR) assay was used to investigate the occurrence of Campylobacter gracilis and C. rectus in primary root canal infections. METHODOLOGY Samples were collected from 57 single-rooted teeth with carious lesions, necrotic pulps and radiographic evidence of periradicular disease. Twenty-eight cases were diagnosed as chronic asymptomatic periradicular lesions, 12 cases as acute apical periodontitis, and 17 cases as acute periradicular abscess. DNA was extracted from the samples and initially amplified using universal 16S rDNA primers. A second round of amplification using the first PCR products was performed to specifically detect C. gracilis or C. rectus in the samples. RESULTS Campylobacter gracilis and C. rectus were, respectively, detected in 21.4 (6 of 28) and 30% (6 of 20) of the root canals associated with chronic asymptomatic periradicular lesions. Campylobacter gracilis was found in 16.7% (2 of 12) of the cases diagnosed as acute apical periodontitis, whilst C. rectus was found in 33.3% (two of six cases). In the abscessed cases, C. gracilis and C. rectus were detected in 23.5 (4 of 17) and 11.8% (2 of 17) of the cases, respectively. No association of these species with clinical symptoms was observed (P > 0.01) In general, species-specific nPCR allowed the detection of C. gracilis in 21.1% (12 of 57) and C. rectus in 23.3% (10 of 43)of the samples taken from primary endodontic infections. CONCLUSIONS Findings confirmed the assertion that both C. gracilis and C. rectus participate in infections of endodontic origin and suggest a pathogenetic role with regard to periradicular diseases.
Collapse
Affiliation(s)
- J F Siqueira
- Department of Endodontics, Faculty of Dentistry, Estácio de Sá University, Rio de Janeiro, RJ, Brazil.
| | | |
Collapse
|
12
|
Abstract
Many pathogenic bacteria have evolved mechanisms for evading host immune systems. One evasion mechanism is manifest by the surface layer (S-layer), a paracrystalline protein structure composed of S-layer proteins (SLPs). The S-layer, possessed by 2 Campylobacter species (C. fetus and C. rectus), is external to the bacterial outer membrane and can have multiple functions in immune avoidance. C. fetus is a pathogen of ungulates and immunocompromised humans, in whom it causes disseminated bloodstream disease. In C. fetus, the S-layer is required for dissemination and is involved in 2 mechanisms of evasion. First, the S-layer confers resistance to complement-mediated killing in non-immune serum by preventing the binding of complement factor C3b to the C. fetus cell surface. S-layer expressing C. fetus strains remain susceptible to complement-independent killing, utilizing opsonic antibodies directed against the S-layer. However, C. fetus has also evolved a mechanism for avoiding antibody-mediated killing by high-frequency antigenic variation of SLPs. Antigenic variation is accomplished by complex DNA inversion events involving a family of multiple SLP-encoding genes and a single SLP promoter. Inversion events result in the expression of antigenically variant S-layers, which require distinct antibody responses for killing. C. rectus is implicated in the pathogenesis of periodontal disease and also possesses an S-layer that appears to be involved in evading the human system. Although studied less extensively than its C. fetus counterpart, the C. rectus S-layer appears to confer resistance to complement-mediated killing and to cause the down-regulation of proinflammatory cytokines.
Collapse
Affiliation(s)
- Stuart A Thompson
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia 30912, USA.
| |
Collapse
|
13
|
Penn CW. Surface components of Campylobacter and Helicobacter. SYMPOSIUM SERIES (SOCIETY FOR APPLIED MICROBIOLOGY) 2001:25S-35S. [PMID: 11422558 DOI: 10.1046/j.1365-2672.2001.01351.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- C W Penn
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
14
|
Ishihara K, Miura T, Ebihara Y, Hirayama T, Kamiya S, Okuda K. Shared antigenicity between Helicobacter pylori and periodontopathic Campylobacter rectus strains. FEMS Microbiol Lett 2001; 197:23-7. [PMID: 11287141 DOI: 10.1111/j.1574-6968.2001.tb10577.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Periodontopathic Campylobacter rectus strains possess 41- and 68-kDa proteinaceous antigens which share antigenicity with antigens of Helicobacter pylori strains. H. pylori strains have a 54-kDa antigen which reacts with C. rectus strains. We found that the salivary IgA levels against H. pylori were correlated with those against C. rectus. These cross-reactive antigens of C. rectus may affect the serological diagnosis of H. pylori infections, especially when saliva is used. It is possible that these cross-reacting antigens may relate to the induction of immunopathological responses against both microorganisms.
Collapse
Affiliation(s)
- K Ishihara
- Department of Microbiology, Oral Science Center, Tokyo Dental College, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Harada K, Ozaki S, Kono N, Tsuneyama K, Katayanagi K, Hiramatsu K, Nakanuma Y. Frequent molecular identification of Campylobacter but not Helicobacter genus in bile and biliary epithelium in hepatolithiasis. J Pathol 2001; 193:218-23. [PMID: 11180169 DOI: 10.1002/1096-9896(2000)9999:9999<::aid-path776>3.0.co;2-h] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacterial infection of the biliary tree and bile stasis may be causally related to hepatolithiasis, but which bacterial species are involved and their roles in the pathogenesis of hepatolithiasis have not been ascertained. Recently, the Helicobacter genus was detected in human bile and biliary mucosal samples by molecular techniques, and its association with several biliary diseases has been suggested. The Campylobacter genus, which is closely related to the Helicobacter genus, has also recently been identified as causative of human gastrointestinal diseases. This study attempted to elucidate whether Helicobacter and/or Campylobacter bacteria are present in bile samples and biliary mucosal specimens from hepatolithiasis patients and whether they are involved in the pathogenesis of hepatolithiasis. The 16S rRNA gene of the Helicobacter and of the Campylobacter genus was examined by polymerase chain reaction in DNA samples extracted from bile and/or microdissected biliary epithelium from 69 patients with hepatolithiasis and control patients with choledocholithiasis, cholecystolithiasis, and normal gall bladders. The Helicobacter genus was detected in 1 of 8 (13%) biliary epithelial samples in hepatolithiasis and 1 of 10 (10%) bile samples in choledocholithiasis. The Campylobacter genus was detected in 3 of 14 (21%) bile samples and 5 of 8 (63%) epithelial samples in hepatolithiasis, and in 2 of 15 (13%) bile samples and 1 of 8 (13%) epithelial samples in cholecystolithiasis. The detection rate for Campylobacter in biliary epithelium of hepatolithiasis was significantly higher than in the bile or biliary epithelium of control groups (p<0.05). By a phylogenetic analysis based on nucleotide sequences, the Campylobacter genuses detected in hepatolithiasis were clustered with C. rectus or C. showae. The frequent detection of the Campylobacter 16S rRNA gene in bile, and especially in biliary epithelium of hepatolithiasis, suggests a pathogenetic relationship with Campylobacter infection.
Collapse
Affiliation(s)
- K Harada
- Department of Pathology (II), Kanazawa University School of Medicine, Kanazawa, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Braun M, Kuhnert P, Nicolet J, Burnens AP, Frey J. Cloning and characterization of two bistructural S-layer-RTX proteins from Campylobacter rectus. J Bacteriol 1999; 181:2501-6. [PMID: 10198015 PMCID: PMC93677 DOI: 10.1128/jb.181.8.2501-2506.1999] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter rectus is an important periodontal pathogen in humans. A surface-layer (S-layer) protein and a cytotoxic activity have been characterized and are thought to be its major virulence factors. The cytotoxic activity was suggested to be due to a pore-forming protein toxin belonging to the RTX (repeats in the structural toxins) family. In the present work, two closely related genes, csxA and csxB (for C. rectus S-layer and RTX protein) were cloned from C. rectus and characterized. The Csx proteins appear to be bifunctional and possess two structurally different domains. The N-terminal part shows similarity with S-layer protein, especially SapA and SapB of C. fetus and Crs of C. rectus. The C-terminal part comprising most of CsxA and CsxB is a domain with 48 and 59 glycine-rich canonical nonapeptide repeats, respectively, arranged in three blocks. Purified recombinant Csx peptides bind Ca2+. These are characteristic traits of RTX toxin proteins. The S-layer and RTX domains of Csx are separated by a proline-rich stretch of 48 amino acids. All C. rectus isolates studied contained copies of either the csxA or csxB gene or both; csx genes were absent from all other Campylobacter and Helicobacter species examined. Serum of a patient with acute gingivitis showed a strong reaction to recombinant Csx protein on immunoblots.
Collapse
Affiliation(s)
- M Braun
- Institute for Veterinary Bacteriology, University of Berne, CH-3012 Berne, Switzerland
| | | | | | | | | |
Collapse
|