1
|
Kapfhammer JP, Shimobayashi E. Viewpoint: spinocerebellar ataxias as diseases of Purkinje cell dysfunction rather than Purkinje cell loss. Front Mol Neurosci 2023; 16:1182431. [PMID: 37426070 PMCID: PMC10323145 DOI: 10.3389/fnmol.2023.1182431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Spinocerebellar ataxias (SCAs) are a group of hereditary neurodegenerative diseases mostly affecting cerebellar Purkinje cells caused by a wide variety of different mutations. One subtype, SCA14, is caused by mutations of Protein Kinase C gamma (PKCγ), the dominant PKC isoform present in Purkinje cells. Mutations in the pathway in which PKCγ is active, i.e., in the regulation of calcium levels and calcium signaling in Purkinje cells, are the cause of several other variants of SCA. In SCA14, many of the observed mutations in the PKCγ gene were shown to increase the basal activity of PKCγ, raising the possibility that increased activity of PKCγ might be the cause of most forms of SCA14 and might also be involved in the pathogenesis of SCA in related subtypes. In this viewpoint and review article we will discuss the evidence for and against such a major role of PKCγ basal activity and will suggest a hypothesis of how PKCγ activity and the calcium signaling pathway may be involved in the pathogenesis of SCAs despite the different and sometimes opposing effects of mutations affecting these pathways. We will then widen the scope and propose a concept of SCA pathogenesis which is not primarily driven by cell death and loss of Purkinje cells but rather by dysfunction of Purkinje cells which are still present and alive in the cerebellum.
Collapse
|
2
|
Hilber P. The Role of the Cerebellar and Vestibular Networks in Anxiety Disorders and Depression: the Internal Model Hypothesis. CEREBELLUM (LONDON, ENGLAND) 2022; 21:791-800. [PMID: 35414040 DOI: 10.1007/s12311-022-01400-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Clinical data and animal studies confirmed that the cerebellum and the vestibular system are involved in emotions. Nowadays, no real consensus has really emerged to explain the clinical symptoms in humans and behavioral deficits in the animal models. We envisage here that the cerebellum and the vestibular system play complementary roles in emotional reactivity. The cerebellum integrates a large variety of exteroceptive and proprioceptive information necessary to elaborate and to update the internal model: in emotion, as in motor processes, it helps our body and self to adapt to the environment, and to anticipate any changes in such environment in order to produce a time-adapted response. The vestibular system provides relevant environmental stimuli (i.e., gravity, self-position, and movement) and is involved in self-perception. Consequently, cerebellar or vestibular disorders could generate « internal fake news» (due to lack or false sensory information and/or integration) that could, in turn, generate potential internal model deficiencies. In this case, the alterations provoke false anticipation of motor command and external sensory feedback, associated with unsuited behaviors. As a result, the individual becomes progressively unable to cope with the environmental solicitation. We postulate that chronically unsuited, and potentially inefficient, behavioral and visceral responses to environmental solicitations lead to stressful situations. Furthermore, this inability to adapt to the context of the situation generates chronic anxiety which could precede depressive states.
Collapse
Affiliation(s)
- Pascal Hilber
- UNIROUEN, INSERM U1245, Cancer and Brain Genomics, Normandie University, 76000, Rouen, France.
- Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France.
| |
Collapse
|
3
|
Lee JM, Park J, Lee JH, Kwak HB, No MH, Heo JW, Kim YJ. Low-intensity treadmill exercise protects cognitive impairment by enhancing cerebellar mitochondrial calcium retention capacity in a rat model of chronic cerebral hypoperfusion. J Exerc Rehabil 2021; 17:324-330. [PMID: 34805021 PMCID: PMC8566105 DOI: 10.12965/jer.2142544.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/18/2021] [Indexed: 11/25/2022] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is caused by reduced blood flow to the brain representing gradually cognitive impairment. CCH induces mitochondrial dysfunction and neuronal cell death in the brain. Exercise is known to have a neuroprotective effect on brain damage and cognitive dysfunction. This study aimed to clarify the neuroprotective effect of low-intensity treadmill exercise (LITE) by enhancing cerebellar mitochondrial calcium retention capacity in an animal model of CCH. Wistar rats were divided into the sham group, the bilateral common carotid arteries occlusion (BCCAO) group, and the BCCAO and treadmill exercise (BCCAO+Ex) group. BCCAO+Ex group engaged the LITE on a treadmill for 30 min once a day for 8 weeks before the BCCAO surgery to investigate the protective effect of LITE on cognitive impairment. CCH induced by BCCAO resulted in mitochondrial dysfunction in the cerebellum, including impaired calcium homeostasis. CCH also decreased cerebellar Purkinje cells including of calbindin D28k and parvalbumin, resulting in cognitive impairment. The impairment of mitochondrial function, loss of cerebellar Purkinje cells, and cognitive dysfunction ameliorated by exercise. The present study showed that LITE hindered the deficit of spatial working memory and loss of Purkinje cell in the cerebellum induced by CCH. We confirmed that the protective effect of LITE on Purkinje cell by enhanced the mitochondrial calcium retention capacity. We suggest that LITE may protect against cognitive impairment, and further studies are needed to develop the intervention for patients who suffered from CCH.
Collapse
Affiliation(s)
- Jae-Min Lee
- Department of Basic Nursing Science, College of Nursing Science, Kyung Hee University, Seoul, Korea
| | - Jongmin Park
- Research Institute of Nursing Science, College of Nursing, Pusan National University, Yangsan, Korea
| | - Joo-Hee Lee
- Department of Basic Nursing Science, College of Nursing Science, Kyung Hee University, Seoul, Korea
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon, Korea
| | - Mi-Hyun No
- Department of Kinesiology, Inha University, Incheon, Korea
| | - Jun-Won Heo
- Department of Kinesiology, Inha University, Incheon, Korea
| | - Youn-Jung Kim
- Department of Basic Nursing Science, College of Nursing Science, Kyung Hee University, Seoul, Korea
| |
Collapse
|
4
|
Martin LA, Hsu FW, Herd B, Gregg M, Sample H, Kaplan J. Executive functions in agenesis of the corpus callosum: Working memory and sustained attention in the BTBR inbred mouse strain. Brain Behav 2021; 11:e01933. [PMID: 33300691 PMCID: PMC7821616 DOI: 10.1002/brb3.1933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Agenesis of the corpus callosum (AgCC) is characterized by the congenital partial or complete absence of the corpus callosum. Several strains of mice have been reported to carry AgCC, with the BTBR T+ Itpr3tf /J (BTBR) inbred mouse strain consistently showing a complete absence of the corpus callosum, as well as a variable reduction in the size of the hippocampal commissure. While much research has focused on the social deficits of the BTBR strain, little research on its cognitive behavior has been conducted. The goal of our study was to compare two facets of executive functioning, spatial working memory, and sustained attention between the BTBR and C57BL/6J (B6) strains. METHODS Spatial working memory was measured utilizing a delayed matching-to-position (DMTP) task and sustained attention was measured utilizing an operant task in which mice were trained to distinguish signal and nonsignal events. RESULTS Both the BTBR and B6 mice demonstrated a predictable decline in performance on the DMTP task as the delay interval increased and predictable increase in performance on the sustained attention task as the duration of the signal event increased. Although no significant differences were found between strains on the performance of these tasks, there was a significant difference in learning the association between lever pressing and food reward. Histological investigation confirmed the complete absence of commissural fibers from the corpus callosum, but also the hippocampal commissure, counter to a previous study. CONCLUSION The results suggest spatial working memory and sustained attention are unaffected by the absence of these commissural fibers alone.
Collapse
Affiliation(s)
- Loren A Martin
- Department of Graduate Psychology, Azusa Pacific University, Azusa, CA, USA
| | - Fang-Wei Hsu
- Department of Graduate Psychology, Azusa Pacific University, Azusa, CA, USA
| | - Brooke Herd
- Department of Graduate Psychology, Azusa Pacific University, Azusa, CA, USA
| | - Michael Gregg
- Department of Psychology, Azusa Pacific University, Azusa, CA, USA
| | - Hannah Sample
- Center for Next-Gen Precision Diagnostics, UCSF, San Francisco, CA, USA
| | - Jason Kaplan
- U.S. Department of Veterans Affairs, Coatesville, PA, USA
| |
Collapse
|
5
|
Shipman ML, Green JT. Cerebellum and cognition: Does the rodent cerebellum participate in cognitive functions? Neurobiol Learn Mem 2019; 170:106996. [PMID: 30771461 DOI: 10.1016/j.nlm.2019.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/02/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023]
Abstract
There is a widespread, nearly complete consensus that the human and non-human primate cerebellum is engaged in non-motor, cognitive functions. This body of research has implicated the lateral portions of lobule VII (Crus I and Crus II) and the ventrolateral dentate nucleus. With rodents, however, it is not so clear. We review here approximately 40 years of experiments using a variety of cerebellar manipulations in rats and mice and measuring the effects on executive functions (working memory, inhibition, and cognitive flexibility), spatial navigation, discrimination learning, and goal-directed and stimulus-driven instrumental conditioning. Our conclusion is that there is a solid body of support for engagement of the rodent cerebellum in tests of cognitive flexibility and spatial navigation, and some support for engagement in working memory and certain types of discrimination learning. Future directions will involve determining the relevant cellular mechanisms, cerebellar regions, and precise cognitive functions of the rodent cerebellum.
Collapse
Affiliation(s)
- Megan L Shipman
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT 05405, USA; Neuroscience Graduate Program, University of Vermont, 2 Colchester Avenue, Burlington, VT 05405, USA.
| | - John T Green
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
6
|
Dickson PE, Cairns J, Goldowitz D, Mittleman G. Cerebellar contribution to higher and lower order rule learning and cognitive flexibility in mice. Neuroscience 2017; 345:99-109. [PMID: 27012612 PMCID: PMC5031514 DOI: 10.1016/j.neuroscience.2016.03.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022]
Abstract
Cognitive flexibility has traditionally been considered a frontal lobe function. However, converging evidence suggests involvement of a larger brain circuit which includes the cerebellum. Reciprocal pathways connecting the cerebellum to the prefrontal cortex provide a biological substrate through which the cerebellum may modulate higher cognitive functions, and it has been observed that cognitive inflexibility and cerebellar pathology co-occur in psychiatric disorders (e.g., autism, schizophrenia, addiction). However, the degree to which the cerebellum contributes to distinct forms of cognitive flexibility and rule learning is unknown. We tested lurcher↔wildtype aggregation chimeras which lose 0-100% of cerebellar Purkinje cells during development on a touchscreen-mediated attentional set-shifting task to assess the contribution of the cerebellum to higher and lower order rule learning and cognitive flexibility. Purkinje cells, the sole output of the cerebellar cortex, ranged from 0 to 108,390 in tested mice. Reversal learning and extradimensional set-shifting were impaired in mice with⩾95% Purkinje cell loss. Cognitive deficits were unrelated to motor deficits in ataxic mice. Acquisition of a simple visual discrimination and an attentional-set were unrelated to Purkinje cells. A positive relationship was observed between Purkinje cells and errors when exemplars from a novel, non-relevant dimension were introduced. Collectively, these data suggest that the cerebellum contributes to higher order cognitive flexibility, lower order cognitive flexibility, and attention to novel stimuli, but not the acquisition of higher and lower order rules. These data indicate that the cerebellar pathology observed in psychiatric disorders may underlie deficits involving cognitive flexibility and attention to novel stimuli.
Collapse
Affiliation(s)
- P E Dickson
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, United States
| | - J Cairns
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - D Goldowitz
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - G Mittleman
- Department of Psychology, University of Memphis, Memphis, TN 38152, United States.
| |
Collapse
|
7
|
Kim KC, Gonzales EL, Lázaro MT, Choi CS, Bahn GH, Yoo HJ, Shin CY. Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders. Biomol Ther (Seoul) 2016; 24:207-43. [PMID: 27133257 PMCID: PMC4859786 DOI: 10.4062/biomolther.2016.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/05/2016] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication impairments, as well as repetitive and restrictive behaviors. The phenotypic heterogeneity of ASD has made it overwhelmingly difficult to determine the exact etiology and pathophysiology underlying the core symptoms, which are often accompanied by comorbidities such as hyperactivity, seizures, and sensorimotor abnormalities. To our benefit, the advent of animal models has allowed us to assess and test diverse risk factors of ASD, both genetic and environmental, and measure their contribution to the manifestation of autistic symptoms. At a broader scale, rodent models have helped consolidate molecular pathways and unify the neurophysiological mechanisms underlying each one of the various etiologies. This approach will potentially enable the stratification of ASD into clinical, molecular, and neurophenotypic subgroups, further proving their translational utility. It is henceforth paramount to establish a common ground of mechanistic theories from complementing results in preclinical research. In this review, we cluster the ASD animal models into lesion and genetic models and further classify them based on the corresponding environmental, epigenetic and genetic factors. Finally, we summarize the symptoms and neuropathological highlights for each model and make critical comparisons that elucidate their clinical and neurobiological relevance.
Collapse
Affiliation(s)
- Ki Chan Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - María T Lázaro
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chang Soon Choi
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Geon Ho Bahn
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee Jeong Yoo
- Department of Neuropsychiatry, Seoul National University Bungdang Hospital, Seongnam 13620, Republic of Korea
| | - Chan Young Shin
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Normal Performance of Fmr1 Mice on a Touchscreen Delayed Nonmatching to Position Working Memory Task. eNeuro 2016; 3:eN-CFN-0143-15. [PMID: 27022628 PMCID: PMC4800045 DOI: 10.1523/eneuro.0143-15.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 11/21/2022] Open
Abstract
Fragile X syndrome is a neurodevelopmental disorder characterized by mild-to-severe cognitive deficits. The complete absence of Fmr1 and its protein product in the mouse model of fragile X (Fmr1 KO) provides construct validity. A major conundrum in the field is the remarkably normal performance of Fmr1 mice on cognitive tests in most reports. One explanation may be insufficiently challenging cognitive testing procedures. Here we developed a delayed nonmatching to position touchscreen task to test the hypothesis that paradigms placing demands on working memory would reveal robust and replicable cognitive deficits in the Fmr1 KO mouse. We first tested Fmr1 KO mice (Fmr1) and their wild-type (WT) littermates in a simple visual discrimination task, followed by assessment of reversal learning. We then tested Fmr1 and WT mice in a new touchscreen nonmatch to position task and subsequently challenged their working memory abilities by adding delays, representing a higher cognitive load. The performance by Fmr1 KO mice was equal to WTs on both touchscreen tasks. Last, we replicated previous reports of normal performance by Fmr1 mice on Morris water maze spatial navigation and reversal. These results indicate that, while the Fmr1 mouse model effectively recapitulates many molecular and cellular aspects of fragile X syndrome, the cognitive profile of Fmr1 mice generally does not recapitulate the primary cognitive deficits in the human syndrome, even when diverse and challenging tasks are imposed.
Collapse
|
9
|
Sakamoto T, Endo S. Deep cerebellar nuclei play an important role in two-tone discrimination on delay eyeblink conditioning in C57BL/6 mice. PLoS One 2013; 8:e59880. [PMID: 23555821 PMCID: PMC3608544 DOI: 10.1371/journal.pone.0059880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/19/2013] [Indexed: 01/12/2023] Open
Abstract
Previous studies have shown that deep cerebellar nuclei (DCN)-lesioned mice develop conditioned responses (CR) on delay eyeblink conditioning when a salient tone conditioned stimulus (CS) is used, which suggests that the cerebellum potentially plays a role in more complicated cognitive functions. In the present study, we examined the role of DCN in tone frequency discrimination in the delay eyeblink-conditioning paradigm. In the first experiment, DCN-lesioned and sham-operated mice were subjected to standard simple eyeblink conditioning under low-frequency tone CS (LCS: 1 kHz, 80 dB) or high-frequency tone CS (HCS: 10 kHz, 70 dB) conditions. DCN-lesioned mice developed CR in both CS conditions as well as sham-operated mice. In the second experiment, DCN-lesioned and sham-operated mice were subjected to two-tone discrimination tasks, with LCS+ (or HCS+) paired with unconditioned stimulus (US), and HCS− (or LCS−) without US. CR% in sham-operated mice increased in LCS+ (or HCS+) trials, regardless of tone frequency of CS, but not in HCS− (or LCS−) trials. The results indicate that sham-operated mice can discriminate between LCS+ and HCS− (or HCS+ and LCS−). In contrast, DCN-lesioned mice showed high CR% in not only LCS+ (or HCS+) trials but also HCS− (or LCS−) trials. The results indicate that DCN lesions impair the discrimination between tone frequency in eyeblink conditioning. Our results suggest that the cerebellum plays a pivotal role in the discrimination of tone frequency.
Collapse
Affiliation(s)
- Toshiro Sakamoto
- Laboratory for Behavioral Neuroendocrinology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | | |
Collapse
|
10
|
Maur DG, Romero CB, Burdet B, Palumbo ML, Zorrilla-Zubilete MA. Prenatal stress induces alterations in cerebellar nitric oxide that are correlated with deficits in spatial memory in rat’s offspring. Neurochem Int 2012; 61:1294-301. [DOI: 10.1016/j.neuint.2012.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 09/07/2012] [Accepted: 09/16/2012] [Indexed: 11/24/2022]
|
11
|
Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A, Chauhan V, Dager SR, Dickson PE, Estes AM, Goldowitz D, Heck DH, Kemper TL, King BH, Martin LA, Millen KJ, Mittleman G, Mosconi MW, Persico AM, Sweeney JA, Webb SJ, Welsh JP. Consensus paper: pathological role of the cerebellum in autism. CEREBELLUM (LONDON, ENGLAND) 2012; 11:777-807. [PMID: 22370873 PMCID: PMC3677555 DOI: 10.1007/s12311-012-0355-9] [Citation(s) in RCA: 474] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
There has been significant advancement in various aspects of scientific knowledge concerning the role of cerebellum in the etiopathogenesis of autism. In the current consensus paper, we will observe the diversity of opinions regarding the involvement of this important site in the pathology of autism. Recent emergent findings in literature related to cerebellar involvement in autism are discussed, including: cerebellar pathology, cerebellar imaging and symptom expression in autism, cerebellar genetics, cerebellar immune function, oxidative stress and mitochondrial dysfunction, GABAergic and glutamatergic systems, cholinergic, dopaminergic, serotonergic, and oxytocin-related changes in autism, motor control and cognitive deficits, cerebellar coordination of movements and cognition, gene-environment interactions, therapeutics in autism, and relevant animal models of autism. Points of consensus include presence of abnormal cerebellar anatomy, abnormal neurotransmitter systems, oxidative stress, cerebellar motor and cognitive deficits, and neuroinflammation in subjects with autism. Undefined areas or areas requiring further investigation include lack of treatment options for core symptoms of autism, vermal hypoplasia, and other vermal abnormalities as a consistent feature of autism, mechanisms underlying cerebellar contributions to cognition, and unknown mechanisms underlying neuroinflammation.
Collapse
Affiliation(s)
- S Hossein Fatemi
- University of Minnesota Medical School, 420 Delaware St. SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Armstrong CL, Duffin CA, McFarland R, Vogel MW. Mechanisms of compartmental purkinje cell death and survival in the lurcher mutant mouse. THE CEREBELLUM 2012; 10:504-14. [PMID: 21104177 DOI: 10.1007/s12311-010-0231-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Lurcher mutant mouse is characterized by its ataxic gait and loss of cerebellar Purkinje cells and their afferents, granule cells and olivary neurons, during the first weeks of postnatal development. For the 50 years since its discovery, the heterozygous Lurcher mutant has served as an important model system for studying neuron-target interactions in the developing cerebellum and cerebellar function. The identification of the Lurcher (Lc) gene over 10 years ago as a gain-of-function mutation in the δ2 glutamate receptor (GluRδ2) led to extensive studies of cell death mechanisms in the Lc/+ cerebellum. The advantage of this model system is that GluRδ2(+) receptors and GluRδ2(Lc) channels are expressed predominantly in Purkinje cells, making it possible to study the effects of a well-characterized leak current in a well-defined cell type during a critical phase of neuronal development. Yet there is still controversy surrounding the mechanisms of neuronal death in Lc/+ Purkinje cells with competing hypotheses for necrotic, apoptotic, and autophagic cell death pathways as a consequence of the excitotoxic stress caused by the GluRδ2(Lc) leak current. The goal of this review is to summarize recent studies that critically test the role of various cell death pathways in Lc/+ Purkinje cell degeneration with respect to evidence for the molecular heterogeneity of Purkinje cells. We propose that the expression of putative survival factors, such as heat shock proteins, in a subset of cerebellar Purkinje cells may affect cell death pathways and account for the pattern and diverse mechanisms of Lc/+ Purkinje degeneration.
Collapse
Affiliation(s)
- Carol L Armstrong
- Department of Chemical and Biological Sciences, Mt Royal University, Calgary, AB, Canada, T3E 6K6
| | | | | | | |
Collapse
|
13
|
Jeong DU, Chang WS, Hwang YS, Lee D, Chang JW. Decrease of GABAergic markers and arc protein expression in the frontal cortex by intraventricular 192 IgG-saporin. Dement Geriatr Cogn Disord 2012; 32:70-8. [PMID: 21876356 DOI: 10.1159/000330741] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/08/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Previous studies used 192 IgG-saporin to study cholinergic function because of its facility for selective lesioning; however, results varied due to differences in the methods of administration and behavioral tests used. We examined an animal model of dementia using 192 IgG-saporin to confirm its features before applying this model to research of therapeutic drugs or electrical stimulation techniques. METHODS Features were verified by the Morris water maze test, immunochemistry, and Western blotting. Animals were examined after intraventricular injection of 192 IgG-saporin (0.63 μg/μl; 6, 8, and 10 μl) or phosphate-buffered saline. RESULTS In the acquisition phase of the Morris water maze test, the latencies of the injection groups were significantly delayed, but recovered within 1 week. In the probe test, 2 of 4 indices (time in the platform zone and the number of crossings) were significantly different in the 8-μl injection group. Immunohistochemistry revealed the extent of cholinergic destruction. Activity-regulated cytoskeleton-associated protein and glutamate decarboxylase expression significantly decreased in the frontal cortex (8- and 10-μl groups), but not in the hippocampus. CONCLUSION Spatial memory impairment was associated with cholinergic basal forebrain injury as well as frontocortical GABAergic hypofunction and synaptic plasticity deceleration.
Collapse
Affiliation(s)
- Da Un Jeong
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
14
|
Rogers TD, Dickson PE, Heck DH, Goldowitz D, Mittleman G, Blaha CD. Connecting the dots of the cerebro-cerebellar role in cognitive function: neuronal pathways for cerebellar modulation of dopamine release in the prefrontal cortex. Synapse 2011; 65:1204-12. [PMID: 21638338 DOI: 10.1002/syn.20960] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/18/2011] [Accepted: 05/24/2011] [Indexed: 12/26/2022]
Abstract
Cerebellar involvement in autism, schizophrenia, and other cognitive disorders is typically associated with prefrontal cortical pathology. However, the underlying neuronal mechanisms are largely unknown. It has previously been shown in mice that stimulation of the dentate nucleus (DN) of the cerebellum evokes dopamine (DA) release in the medial prefrontal cortex (mPFC). Here, we investigated the neuronal circuitry by which the cerebellum modulates mPFC DA release. Fixed potential amperometry was used to determine the contribution of two candidate pathways by which the cerebellum may modulate mPFC DA release. In urethane anesthetized mice, DA release evoked by DN stimulation (50 Hz) was recorded in mPFC following local anesthetic lidocaine (0.02 μg) or ionotropic glutamate receptor antagonist kynurenate (0.5 μg) infusions into the mediodorsal or ventrolateral thalamic nucleus (ThN md; ThN vl), or the ventral tegmental area (VTA). Following intra-VTA lidocaine or kynurenate infusions, DA release was decreased by ∼50%. Following intra-ThN md and ThN vl infusions of either drug, DA release was decreased by ∼35% and 15%, respectively. Reductions in DA release following lidocaine or kynurenate infusions were not significantly different indicating that neuronal cells in the VTA and ThN were activated primarily if not entirely by glutamatergic inputs. The present study suggests that neuropathological changes in the cerebellum commonly observed in autism, schizophrenia, and other cognitive disorders could result in a loss of functionality of cerebellar-mPFC circuitry that is manifested as aberrant dopaminergic activity in the mPFC. Additionally, these results specifically implicate glutamate as a modulator of mPFC dopaminergic activity.
Collapse
Affiliation(s)
- Tiffany D Rogers
- Department of Psychology, University of Memphis, Memphis, Tennessee 38152, USA
| | | | | | | | | | | |
Collapse
|
15
|
Menghini D, Costanzo F, Vicari S. Relationship between brain and cognitive processes in Down syndrome. Behav Genet 2011; 41:381-93. [PMID: 21279430 DOI: 10.1007/s10519-011-9448-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 01/10/2011] [Indexed: 12/11/2022]
Abstract
We investigated regional grey matter (GM) density in adolescents with Down syndrome (DS) compared to age-matched controls and correlated MRI data with neuropsychological measures in the DS group. Inter-group comparisons documented several GM concentration abnormalities in the participants with DS compared to controls. In the adolescents with DS, intra-group results also showed associations between regional GM density and the neuropsychological measures considered. In particular, GM density of the cerebellum and middle and inferior temporal gyrus was associated with linguistic measures. Short-term memory performances were correlated with the inferior parietal lobule, insula, superior temporal gyrus, medial occipital lobe, and cerebellum. Long-term memory abilities were correlated with GM density in the orbitofrontal cortex, lateral and medial temporal lobe regions, and anterior cingulum and visuo-perceptual abilities with GM density the left middle frontal gyrus. Results of this preliminary study are consistent with a not always efficient brain organization in DS.
Collapse
Affiliation(s)
- Deny Menghini
- Department of Neuroscience, Children's Hospital Bambino Gesù, Rome, Italy
| | | | | |
Collapse
|
16
|
Pierce DR, Hayar A, Williams DK, Light KE. Developmental alterations in olivary climbing fiber distribution following postnatal ethanol exposure in the rat. Neuroscience 2010; 169:1438-48. [PMID: 20542091 DOI: 10.1016/j.neuroscience.2010.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 01/01/2023]
Abstract
Ethanol exposure during postnatal days (PN) 4-6 in rats alters cerebellar development resulting in significant loss of Purkinje cells. There is little knowledge, however, on what happens to the neurons that survive. In this study, rat pups were treated with a daily dose of ethanol (either 3.6 or 4.5 g/kg body weight) delivered by intragastric intubation on PN4, PN4-6, or PN7-9. Then the interactions between climbing fibers and Purkinje cells were examined on PN14 using confocal microscopy. Mid-vermal cerebellar sections were stained with antibodies to calbindin-D28k (to visualize Purkinje cells) and vesicular glutamate transporter 2 (VGluT2, to visualize climbing fibers). Confocal z-stack images were obtained from Lobule 1 and analyzed with Imaris software to quantify the staining of the two antibodies. The VGluT2 immunostaining was significantly reduced in the PN4 and PN4-6 ethanol groups for the 4.5 g/kg dose level, compared to controls, indicating that the cerebellar circuitry was significantly altered following developmental ethanol exposure. Not only were there fewer Purkinje cells following ethanol exposure, but the surviving neurons had significantly fewer VGluT2-labeled synapses. These alterations in the synaptic integrity were both dose dependent and temporally dependent.
Collapse
Affiliation(s)
- D R Pierce
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W Markham Street, #522-3 Little Rock, AR 72205-7199, USA.
| | | | | | | |
Collapse
|
17
|
Dickson PE, Rogers TD, Del Mar N, Martin LA, Heck D, Blaha CD, Goldowitz D, Mittleman G. Behavioral flexibility in a mouse model of developmental cerebellar Purkinje cell loss. Neurobiol Learn Mem 2010; 94:220-8. [PMID: 20566377 DOI: 10.1016/j.nlm.2010.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/23/2010] [Accepted: 05/21/2010] [Indexed: 01/23/2023]
Abstract
Although behavioral inflexibility and Purkinje cell loss are both well established in autism, it is unknown if these phenomena are causally related. Using a mouse model, we tested the hypothesis that developmental abnormalities of the cerebellum, including Purkinje cell loss, result in behavioral inflexibility. Specifically, we made aggregation chimeras (Lc/+<-->+/+) between lurcher (Lc/+) mutant embryos and wildtype (+/+) control embryos. Lurcher mice lose 100% of their Purkinje cells postnatally, while chimeric mice lose varying numbers of Purkinje cells. We tested these mice on the acquisition and serial reversals of an operant conditional visual discrimination, a test of behavioral flexibility in rodents. During reversals 1 and 2, all groups of mice committed similar numbers of "perseverative" errors (those committed while session performance was <= 40% correct). Lurchers, however, committed a significantly greater number of "learning" errors (those committed while session performance was between 41% and 85% correct) than both controls and chimeras, and most were unable to advance past reversal 3. During reversals 3 and 4, chimeras, as a group, committed more "perseverative", but not "learning" errors than controls, although a comparison of Purkinje cell number and performance in individual mice revealed that chimeras with fewer Purkinje cells made more "learning" errors and had shorter response latencies than chimeras with more Purkinje cells. These data suggest that developmental cerebellar Purkinje cell loss may affect higher level cognitive processes which have previously been shown to be mediated by the prefrontal cortex, and are commonly deficient in autism spectrum disorders.
Collapse
Affiliation(s)
- Price E Dickson
- Department of Psychology, University of Memphis, Memphis, TN 38152, United States
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Goto K, Kurashima R, Watanabe S. Delayed matching-to-position performance in C57BL/6N mice. Behav Processes 2010; 84:591-7. [PMID: 20211712 DOI: 10.1016/j.beproc.2010.02.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 02/18/2010] [Accepted: 02/25/2010] [Indexed: 10/19/2022]
Abstract
Delayed matching-to-sample is one of the most frequently employed behavioral tasks for assessing spatial working memory in animals. Although the advantages of the task have been widely acknowledged and it is used in the study of a variety of species, its application to mice has been rare. In the present study, we reported the efficacy of a delayed matching-to-position task in C57BL mice lever-pressing in an operant-conditioning chamber. Each trial started with the press of a back lever, followed by the presentation of either a left or right front lever. When the ratio requirement for presses to the front lever (sample) was met, a delay interval started. Delay interval continued until the mice made the first response after the elapse of the programmed delay interval. This was followed by the presentation of a choice of left or right front levers. The choice of the same front lever as the sample was reinforced, whereas the other was not. The proportion of correct choices showed a delay-dependent decrement. A higher ratio of response requirement to the sample resulted in increased accuracy, but the duration of the intertrial interval had no effect. Preceding trials also influenced response accuracy, indicating proactive interference. Overall, the results replicated the effects of parametric manipulations reported in other species, and thus, our findings validate the efficacy of the task for assessing spatial working memory in laboratory mice.
Collapse
|
19
|
Martin LA, Goldowitz D, Mittleman G. Repetitive behavior and increased activity in mice with Purkinje cell loss: a model for understanding the role of cerebellar pathology in autism. Eur J Neurosci 2010; 31:544-55. [PMID: 20105240 DOI: 10.1111/j.1460-9568.2009.07073.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Repetitive behaviors and hyperactivity are common features of developmental disorders, including autism. Neuropathology of the cerebellum is also a frequent occurrence in autism and other developmental disorders. Recent studies have indicated that cerebellar pathology may play a causal role in the generation of repetitive and hyperactive behaviors. In this study, we examined the relationship between cerebellar pathology and these behaviors in a mouse model of Purkinje cell loss. Specifically, we made aggregation chimeras between Lc/+ mutant embryos and +/+ embryos. Lc/+ mice lose 100% of their Purkinje cells postnatally due to a cell-intrinsic gain-of-function mutation. Through our histological examination, we demonstrated that Lc/+<-->+/+ chimeric mice have Purkinje cells ranging from zero to normal numbers. Our analysis of these chimeric cerebella confirmed previous studies on Purkinje cell lineage. The results of both open-field activity and hole-board exploration testing indicated negative relationships between Purkinje cell number and measures of activity and investigatory nose-poking. Additionally, in a progressive-ratio operant paradigm, we found that Lc/+ mice lever-pressed significantly less than +/+ controls, which led to significantly lower breakpoints in this group. In contrast, chimeric mice lever-pressed significantly more than controls and this repetitive lever-pressing behavior was significantly and negatively correlated with total Purkinje cell numbers. Although the performance of Lc/+ mice is probably related to their motor deficits, the significant relationships between Purkinje cell number and repetitive lever-pressing behavior as well as open-field activity measures provide support for a role of cerebellar pathology in generating repetitive behavior and increased activity in chimeric mice.
Collapse
Affiliation(s)
- Loren A Martin
- Department of Psychology, Azusa Pacific University, Azusa, CA 91702, USA.
| | | | | |
Collapse
|
20
|
Foti F, Mandolesi L, Cutuli D, Laricchiuta D, De Bartolo P, Gelfo F, Petrosini L. Cerebellar Damage Loosens the Strategic Use of the Spatial Structure of the Search Space. THE CEREBELLUM 2009; 9:29-41. [DOI: 10.1007/s12311-009-0134-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Caceres LG, Rios H, Guelman LR. Long-lasting effects of neonatal ionizing radiation exposure on spatial memory and anxiety-like behavior. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:895-904. [PMID: 18947871 DOI: 10.1016/j.ecoenv.2008.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 07/28/2008] [Accepted: 09/07/2008] [Indexed: 05/27/2023]
Abstract
Neonatal ionizing radiation exposure has been shown to induce a cerebellar cytoarchitecture disarrangement. Since cerebellar abnormalities have been linked to an impairment of behavioral functions, the aim of the present work was to investigate whether exposure of developing rats to ionizing radiations can produce behavioral deficits in the adult. Male Wistar rats were X-irradiated with 5Gy within 48h after birth and were tested in a radial maze and in an open field at 30 and 90 days post irradiation. Irradiated rats showed significative changes in spatial, exploratory, and procedural parameters in the radial maze, as well as a significative decrease in anxiety-like behavior, assessed in the open field. These results suggest that ionizing radiations can induce long-lasting spatial memory and anxiety-related changes. A relationship with radiation-induced cerebellar cytoarchitecture abnormalities supports the hypothesis that cerebellar integrity seems to be critical to achieve spatial performance and emotional behavior establishment.
Collapse
Affiliation(s)
- Lucila Guadalupe Caceres
- 1 feminine Cátedra de Farmacología, Departamento de Farmacología, Facultad de Medicina, UBA, Paraguay 2155-piso 15 (1121), Buenos Aires, Argentina
| | | | | |
Collapse
|
22
|
MITTLEMAN GUY, GOLDOWITZ DANIEL, HECK DETLEFH, BLAHA CHARLESD. Cerebellar modulation of frontal cortex dopamine efflux in mice: relevance to autism and schizophrenia. Synapse 2008; 62:544-50. [PMID: 18435424 PMCID: PMC3854870 DOI: 10.1002/syn.20525] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cerebellar and frontal cortical pathologies have been commonly reported in schizophrenia, autism, and other developmental disorders. Whether there is a relationship between prefrontal and cerebellar pathologies is unknown. Using fixed potential amperometry, dopamine (DA) efflux evoked by cerebellar or, dentate nucleus electrical stimulation (50 Hz, 200 muA) was recorded in prefrontal cortex of urethane anesthetized lurcher (Lc/+) mice with 100% loss of cerebellar Purkinje cells and wildtype (+/+) control mice. Cerebellar stimulation with 25 and 100 pulses evoked prefrontal cortex DA efflux in +/+ mice that persisted for 12 and 25 s poststimulation, respectively. In contrast, 25 pulse cerebellar stimulation failed to evoke prefrontal cortex DA efflux in Lc/+ mice indicating a dependency on cerebellar Purkinje cell outputs. Dentate nucleus stimulation (25 pulses) evoked a comparable but briefer (baseline recovery within 7 s) increase in prefrontal cortex DA efflux compared to similar cerebellar stimulation in +/+ mice. However, in Lc/+ mice 25 pulse dentate nucleus evoked prefrontal cortex DA efflux was attenuated by 60% with baseline recovery within 4 s suggesting that dentate nucleus outputs to prefrontal cortex remain partially functional. DA reuptake blockade enhanced 100 pulse stimulation evoked prefrontal cortex responses, while serotonin or norepinephrine reuptake blockade were without effect indicating the specificity of the amperometric recordings to DA. Results provide neurochemical evidence that the cerebellum can modulate DA efflux in the prefrontal cortex. Together, these findings may explain why cerebellar and frontal cortical pathologies co-occur, and may provide a mechanism that accounts for the diversity of symptoms common to multiple developmental disorders.
Collapse
Affiliation(s)
- GUY MITTLEMAN
- Department of Psychology, The University of Memphis, Memphis, Tennessee 38152
| | - DANIEL GOLDOWITZ
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - DETLEF H. HECK
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - CHARLES D. BLAHA
- Department of Psychology, The University of Memphis, Memphis, Tennessee 38152
| |
Collapse
|
23
|
Lennerz JK, Rühle V, Ceppa EP, Neuhuber WL, Bunnett NW, Grady EF, Messlinger K. Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: Differences between peripheral and central CGRP receptor distribution. J Comp Neurol 2008; 507:1277-99. [DOI: 10.1002/cne.21607] [Citation(s) in RCA: 249] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Phonological short-term store impairment after cerebellar lesion: a single case study. Neuropsychologia 2008; 46:1940-53. [PMID: 18342342 DOI: 10.1016/j.neuropsychologia.2008.01.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 01/17/2008] [Accepted: 01/25/2008] [Indexed: 11/23/2022]
Abstract
The cerebellum is a recent addition to the growing list of cerebral areas involved in the multifaceted structural system that sustains verbal working memory (vWM), but its contribution is still a matter of debate. Here, we present a patient with a selective deficit of vWM resulting from a bilateral cerebellar ischemic lesion. After this acute event, the patient had impaired immediate and delayed word-serial recall and auditory-verbal delayed recognition. The digit span, however, was completely preserved. To investigate the cerebellar contribution to vWM, four experiments addressing the function of different vWM phonological loop components were performed 18 months after the lesion, and results were compared with normative data or, when needed, with a small group of matched controls. In Experiment 1, digit span was assessed with different presentation and response modalities using lists of digits of varying lengths. In Experiment 2, the articulatory rehearsal system was analyzed by measurement of word length and articulatory suppression effects. Experiment 3 was devoted to analyzing the phonological short-term store (ph-STS) by the recency effect, the phonological similarity effect, short-term forgetting, and unattended speech. Data suggested a possible key role of the semantic component of the processed material, which was tested in Experiment 4, in which word and nonword-serial recall with or without interpolating activity were analyzed. The patient showed noticeably reduced scores in the tasks that primarily or exclusively engaged activity of the ph-STS, namely those of Experiment 3, and good performance in the tests that investigated the recirculation of verbal information. This pattern of results implicates the ph-STS as the cognitive locus of the patient's deficit. This report demonstrates a cerebellar role in encoding and/or strengthening the phonological traces in vWM.
Collapse
|
25
|
Bobylova MY, Petrukhin AS, Dunaevskaya GN, Piliya SV, Il'ina ES. Clinical-psychological characteristics of children with dysgenesis of the cerebellar vermis. ACTA ACUST UNITED AC 2008; 37:755-9. [PMID: 17922238 DOI: 10.1007/s11055-007-0078-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Indexed: 10/22/2022]
Abstract
This report addresses behavioral abnormalities in children with cerebellar anomalies demonstrated on MRI scans. Published data are presented showing an interaction between cerebellar pathology and early childhood autism. The cerebellum is involved not only in movement coordination, but also in social adaptation and verbal communication. The genes expressed in the cerebellum during childhood are identical to those expressed in the hippocampus. We have observed 20 children with MRI-identified agenesis of the cerebellar vermis and behavioral abnormalities; children were aged 3-15 (mean 7.05) years and there were 12 males and eight females. A variety of autistic characteristics were identified in these children.
Collapse
|
26
|
Vogel MW, Caston J, Yuzaki M, Mariani J. The Lurcher mouse: Fresh insights from an old mutant. Brain Res 2007; 1140:4-18. [PMID: 16412991 DOI: 10.1016/j.brainres.2005.11.086] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 11/29/2005] [Indexed: 11/30/2022]
Abstract
The Lurcher mouse was first discovered in 1954 as a spontaneously occurring autosomal dominant mutation that caused the degeneration of virtually all cerebellar Purkinje cells and most olivary neurons and granule cells. More recent molecular studies revealed that Lurcher is a gain of function mutation in the delta2 glutamate receptor (GluRdelta2) that converts an alanine to threonine in the highly conserved third hydrophobic segment of GluRdelta2. The mutation converts the receptor into a constitutively leaky cation channel. The GluRdelta2 receptor is predominantly expressed in cerebellar Purkinje cells and in the heterozygous Lurcher mutant (+/Lc). Purkinje cells die due to the mutation in the GluRdelta2 receptor, while olivary neurons and granule cells degenerate due to the loss of their Purkinje cell targets. The purpose of the review is to provide highlights from 5 decades of research on the Lurcher mutant that have provided insights into the developmental mechanisms that regulate cell number during development, cerebellar pattern formation, cerebellar physiology, and the role of the cerebellum in CNS function.
Collapse
Affiliation(s)
- Michael W Vogel
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA.
| | | | | | | |
Collapse
|
27
|
Leingärtner A, Thuret S, Kroll TT, Chou SJ, Leasure JL, Gage FH, O'Leary DDM. Cortical area size dictates performance at modality-specific behaviors. Proc Natl Acad Sci U S A 2007; 104:4153-8. [PMID: 17360492 PMCID: PMC1820724 DOI: 10.1073/pnas.0611723104] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mammalian neocortex is organized into unique areas that serve functions such as sensory perception and modality-specific behaviors. The sizes of primary cortical areas vary across species, and also within a species, raising the question of whether area size dictates behavioral performance. We show that adult mice genetically engineered to overexpress the transcription factor EMX2 in embryonic cortical progenitor cells, resulting in reductions in sizes of somatosensory and motor areas, exhibit significant deficiencies at tactile and motor behaviors. Even increasing the size of sensorimotor areas by decreasing cortical EMX2 levels can lead to diminished sensorimotor behaviors. Genetic crosses that retain ectopic Emx2 transgene expression subcortically but restore cortical Emx2 expression to wild-type levels also restore cortical areas to wild-type sizes and in parallel restore tactile and motor behaviors to wild-type performance. These findings show that area size can dictate performance at modality-specific behaviors and suggest that areas have an optimal size, influenced by parameters of its neural system, for maximum behavioral performance. This study underscores the importance of establishing during embryonic development appropriate levels of regulatory proteins that determine area sizes, thereby influencing behavior later in life.
Collapse
Affiliation(s)
| | - Sandrine Thuret
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037
| | | | | | - J. Leigh Leasure
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037
- To whom correspondence may be addressed. E-mail:
or
| | - Dennis D. M. O'Leary
- *Molecular Neurobiology Laboratory and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
28
|
Martin LA, Goldowitz D, Mittleman G. Sustained attention in the mouse: A study of the relationship with the cerebellum. Behav Neurosci 2006; 120:477-81. [PMID: 16719710 DOI: 10.1037/0735-7044.120.2.477] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To explore the role of the cerebellum in sustained attention, the authors tested lurcher, wildtype, and lurcher chimeric mice with zero, normal, and variable numbers of Purkinje cells, respectively, in a previously validated task of sustained attention. Results indicate that lurcher mice had a deficit in performance likely related to their motor disability, whereas lurcher chimeras performed similarly to wildtype controls. Presentation of auditory or visual distracters caused deficits in the performance of all mice that were specific to either signal (auditory) or non-signal (visual) events. The authors' results do not support a role of the cerebellum in sustained attention, instead indicating that behavioral changes are an indirect result of motor deficits.
Collapse
Affiliation(s)
- Loren A Martin
- Department of Psychology, Azusa Pacific University, Azusa, CA 91702-7000, USA.
| | | | | |
Collapse
|
29
|
Sajdel-Sulkowska EM, Nguon K, Sulkowski ZL, Rosen GD, Baxter MG. Purkinje cell loss accompanies motor impairment in rats developing at altered gravity. Neuroreport 2005; 16:2037-40. [PMID: 16317350 DOI: 10.1097/00001756-200512190-00014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously reported that the developmental exposure of rats to altered gravity (1.65 g) from gestational day 8 to postnatal day 21 impacts motor functions and cerebellar structure. The present study examined whether the decrease in cerebellar mass accompanied by impaired performance on a rotorod in hypergravity-exposed rats was related to a decrease in Purkinje cell number. The total number of Purkinje cells was determined on postnatal day 21 using a stereological analysis applied to paraformaldehyde-fixed cerebellar samples subsequently embedded in celloidin. Total Purkinje cell number was decreased by 17.7-25.3%. These results imply that exposure to altered gravity during Purkinje cell birth may affect their proliferation, resulting in a decrease in Purkinje cell number, which, in turn, leads to motor impairment.
Collapse
|
30
|
Ko DC, Milenkovic L, Beier SM, Manuel H, Buchanan J, Scott MP. Cell-autonomous death of cerebellar purkinje neurons with autophagy in Niemann-Pick type C disease. PLoS Genet 2005; 1:81-95. [PMID: 16103921 PMCID: PMC1183526 DOI: 10.1371/journal.pgen.0010007] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 05/17/2005] [Indexed: 01/07/2023] Open
Abstract
Niemann-Pick type C is a neurodegenerative lysosomal storage disorder caused by mutations in either of two genes, npc1 and npc2. Cells lacking Npc1, which is a transmembrane protein related to the Hedgehog receptor Patched, or Npc2, which is a secreted cholesterol-binding protein, have aberrant organelle trafficking and accumulate large quantities of cholesterol and other lipids. Though the Npc proteins are produced by all cells, cerebellar Purkinje neurons are especially sensitive to loss of Npc function. Since Niemann-Pick type C disease involves circulating molecules such as sterols and steroids and a robust inflammatory response within the brain parenchyma, it is crucial to determine whether external factors affect the survival of Purkinje cells (PCs). We investigated the basis of neurodegeneration in chimeric mice that have functional npc1 in only some cells. Death of mutant npc1 cells was not prevented by neighboring wild-type cells, and wild-type PCs were not poisoned by surrounding mutant npc1 cells. PCs undergoing cell-autonomous degeneration have features consistent with autophagic cell death. Chimeric mice exhibited a remarkable delay and reduction of wasting and ataxia despite their substantial amount of mutant tissue and dying cells, revealing a robust mechanism that partially compensates for massive PC death. Niemann-Pick disease type C is a deadly neurodegenerative disease that is most often due to mutations in a gene called npc1. As a consequence of intracellular lipid trafficking defects, patients with Niemann-Pick type C, and mice with the same disease, lose an important class of cerebellar neurons called Purkinje cells (PCs). Npc1 (the protein coded by npc1) might be needed in other cell types to produce substances that nourish PCs or within the PCs themselves. To see which is true, the researchers constructed genetically mosaic mice in which some cells have mutant Npc1 and some have normal Npc1 function. In the cerebella of these mosaic mice, PCs lacking Npc1 continued to die even while surrounded by normal cells, while normal PCs appeared unaffected by their partially mutant surroundings. From these findings, the researchers concluded that the neurodegeneration is due to a problem within PCs and not due to a lack of supporting factors provided by other cells or an extrinsic toxic or inflammatory insult. Npc1 probably functions within PCs to allow critical transport processes necessary for cell survival. The researchers also found that the degenerating PCs undergo a complex process called autophagy in which the cells sense a lack of key nutrients and start to break down their own structures to feed themselves. By identifying exactly which cells require Npc1 function, the researchers set the stage for investigating the exact molecular roles of Npc1 protein in the cells where it is most needed.
Collapse
Affiliation(s)
- Dennis C Ko
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ljiljana Milenkovic
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Steven M Beier
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Hermogenes Manuel
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - JoAnn Buchanan
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Matthew P Scott
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
31
|
Bitoun E, Davies KE. The robotic mouse: unravelling the function of AF4 in the cerebellum. CEREBELLUM (LONDON, ENGLAND) 2005; 4:250-60. [PMID: 16321881 DOI: 10.1080/14734220500325897] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The devastating nature and lack of effective treatments associated with neurodegenerative diseases have stimulated a world-wide search for the elucidation of their molecular basis to which mouse models have made a major contribution. In combination with transgenic and knockout technologies, large-scale mouse mutagenesis is a powerful approach for the identification of new genes and associated signalling pathways controlling neuronal cell death and survival. Here we review the characterization of the robotic mouse, a novel model of autosomal dominant cerebellar ataxia isolated from an ENU-mutagenesis programme, which develops adult-onset region-specific Purkinje cell loss and cataracts, and displays defects in early T-cell maturation and general growth retardation. The mutated protein, Af4, is a member of the AF4/LAF4/FMR2 (ALF) family of putative transcription factors previously implicated in childhood leukaemia and FRAXE mental retardation. The mutation, which lies in a highly conserved region among the ALF family members, significantly reduces the binding affinity of Af4 to the E3 ubiquitin-ligase Siah-1a, isolated with Siah-2 as interacting proteins in the brain. This leads to a markedly slower turnover of mutant Af4 by the ubiquitin-proteasome pathway and consequently to its abnormal accumulation in the robotic mouse. Importantly, the conservation of the Siah-binding domain of Af4 in all other family members reveals that Siah-mediated proteasomal degradation is a common regulatory mechanism that controls the levels, and thereby the function, of the ALF family. The robotic mouse represents a unique model in which to study the newly revealed role of Af4 in the maintenance of vital functions of Purkinje cells in the cerebellum and further the understanding of its implication in lymphopoeisis.
Collapse
Affiliation(s)
- Emmanuelle Bitoun
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|