1
|
Ahmed M, Campbell SA. Modelling the effect of allopregnanolone on the resolution of spike-wave discharges. J Comput Neurosci 2024:10.1007/s10827-024-00887-x. [PMID: 39708102 DOI: 10.1007/s10827-024-00887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 08/21/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Childhood absence epilepsy (CAE) is a paediatric generalized epilepsy disorder with a confounding feature of resolving in adolescence in a majority of cases. In this study, we modelled how the small-scale (synapse-level) effect of progesterone metabolite allopregnanolone induces a large-scale (network-level) effect on a thalamocortical circuit associated with this disorder. In particular, our goal was to understand the role of sex steroid hormones in the spontaneous remission of CAE. The conductance-based computational model consisted of single-compartment cortical pyramidal, cortical interneurons, thalamic reticular and thalamocortical relay neurons, each described by a set of ordinary differential equations. Excitatory and inhibitory synapses were mediated by AMPA, GABAa and GABAb receptors. The model was implemented using the NetPyne modelling tool and the NEURON simulator. It was found that the action of allopregnanolone (ALLO) on individual GABAa-receptor mediated synapses can have an ameliorating effect on spike-wave discharges (SWDs) associated with absence seizures. This effect is region-specific and most significant in the thalamus, particularly the synapses between thalamic reticular neurons. The remedying effect of allopregnanolone on SWDs may possibly be true only for individuals that are predisposed to remission due to intrinsic connectivity differences or differences in tonic inhibition. These results are a useful first-step and prescribe directions for further investigation into the role of ALLO together with these differences to distinguish between models for CAE-remitting and non-remitting individuals.
Collapse
Affiliation(s)
- Maliha Ahmed
- Department of Applied Mathematics, and Centre for Theoretical Neuroscience, University of Waterloo, 200 University Avenue W, Waterloo, N2L 3G1, ON, Canada.
| | - Sue Ann Campbell
- Department of Applied Mathematics, and Centre for Theoretical Neuroscience, University of Waterloo, 200 University Avenue W, Waterloo, N2L 3G1, ON, Canada
| |
Collapse
|
2
|
Dervinis M, Crunelli V. Spike-and-wave discharges of absence seizures in a sleep waves-constrained corticothalamic model. CNS Neurosci Ther 2024; 30:e14204. [PMID: 37032628 PMCID: PMC10915988 DOI: 10.1111/cns.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
AIMS Recurrent network activity in corticothalamic circuits generates physiological and pathological EEG waves. Many computer models have simulated spike-and-wave discharges (SWDs), the EEG hallmark of absence seizures (ASs). However, these models either provided detailed simulated activity only in a selected territory (i.e., cortical or thalamic) or did not test whether their corticothalamic networks could reproduce the physiological activities that are generated by these circuits. METHODS Using a biophysical large-scale corticothalamic model that reproduces the full extent of EEG sleep waves, including sleep spindles, delta, and slow (<1 Hz) waves, here we investigated how single abnormalities in voltage- or transmitter-gated channels in the neocortex or thalamus led to SWDs. RESULTS We found that a selective increase in the tonic γ-aminobutyric acid type A receptor (GABA-A) inhibition of first-order thalamocortical (TC) neurons or a selective decrease in cortical phasic GABA-A inhibition is sufficient to generate ~4 Hz SWDs (as in humans) that invariably start in neocortical territories. Decreasing the leak conductance of higher-order TC neurons leads to ~7 Hz SWDs (as in rodent models) while maintaining sleep spindles at 7-14 Hz. CONCLUSION By challenging key features of current mechanistic views, this simulated ictal corticothalamic activity provides novel understanding of ASs and makes key testable predictions.
Collapse
Affiliation(s)
- Martynas Dervinis
- Neuroscience Division, School of BioscienceCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
- Present address:
School of Physiology, Pharmacology and NeuroscienceBiomedical BuildingBristolBS8 1TDUK
| | - Vincenzo Crunelli
- Neuroscience Division, School of BioscienceCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
| |
Collapse
|
3
|
Sarkisova K, van Luijtelaar G. The impact of early-life environment on absence epilepsy and neuropsychiatric comorbidities. IBRO Neurosci Rep 2022; 13:436-468. [PMID: 36386598 PMCID: PMC9649966 DOI: 10.1016/j.ibneur.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
This review discusses the long-term effects of early-life environment on epileptogenesis, epilepsy, and neuropsychiatric comorbidities with an emphasis on the absence epilepsy. The WAG/Rij rat strain is a well-validated genetic model of absence epilepsy with mild depression-like (dysthymia) comorbidity. Although pathologic phenotype in WAG/Rij rats is genetically determined, convincing evidence presented in this review suggests that the absence epilepsy and depression-like comorbidity in WAG/Rij rats may be governed by early-life events, such as prenatal drug exposure, early-life stress, neonatal maternal separation, neonatal handling, maternal care, environmental enrichment, neonatal sensory impairments, neonatal tactile stimulation, and maternal diet. The data, as presented here, indicate that some early environmental events can promote and accelerate the development of absence seizures and their neuropsychiatric comorbidities, while others may exert anti-epileptogenic and disease-modifying effects. The early environment can lead to phenotypic alterations in offspring due to epigenetic modifications of gene expression, which may have maladaptive consequences or represent a therapeutic value. Targeting DNA methylation with a maternal methyl-enriched diet during the perinatal period appears to be a new preventive epigenetic anti-absence therapy. A number of caveats related to the maternal methyl-enriched diet and prospects for future research are discussed.
Collapse
Affiliation(s)
- Karine Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova str. 5a, Moscow 117485, Russia
| | - Gilles van Luijtelaar
- Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognition, Radboud University, Nijmegen, PO Box 9104, 6500 HE Nijmegen, the Netherlands
| |
Collapse
|
4
|
Rajasekaran K, Ma Q, Good LB, Kathote G, Jakkamsetti V, Liu P, Avila A, Primeaux S, Alva JE, Markussen KH, Marin-Valencia I, Sirsi D, Hacker PMS, Gentry MS, Su J, Lu H, Pascual JM. Metabolic modulation of synaptic failure and thalamocortical hypersynchronization with preserved consciousness in Glut1 deficiency. Sci Transl Med 2022; 14:eabn2956. [PMID: 36197967 PMCID: PMC10276203 DOI: 10.1126/scitranslmed.abn2956] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Individuals with glucose transporter type I deficiency (G1D) habitually experience nutrient-responsive epilepsy associated with decreased brain glucose. However, the mechanistic association between blood glucose concentration and brain excitability in the context of G1D remains to be elucidated. Electroencephalography (EEG) in G1D individuals revealed nutrition time-dependent seizure oscillations often associated with preserved volition despite electrographic generalization and uniform average oscillation duration and periodicity, suggesting increased facilitation of an underlying neural loop circuit. Nonlinear EEG ictal source localization analysis and simultaneous EEG/functional magnetic resonance imaging converged on the thalamus-sensorimotor cortex as one potential circuit, and 18F-deoxyglucose positron emission tomography (18F-DG-PET) illustrated decreased glucose accumulation in this circuit. This pattern, reflected in a decreased thalamic to striatal 18F signal ratio, can aid with the PET imaging diagnosis of the disorder, whereas the absence of noticeable ictal behavioral changes challenges the postulated requirement for normal thalamocortical activity during consciousness. In G1D mice, 18F-DG-PET and mass spectrometry also revealed decreased brain glucose and glycogen, but preserved tricarboxylic acid cycle intermediates, indicating no overall energy metabolism failure. In brain slices from these animals, synaptic inhibition of cortical pyramidal neurons and thalamic relay neurons was decreased, and neuronal disinhibition was mitigated by metabolic sources of carbon; tonic-clonic seizures were also suppressed by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor inhibition. These results pose G1D as a thalamocortical synaptic disinhibition disease associated with increased glucose-dependent neuronal excitability, possibly in relation to reduced glycogen. Together with findings in other metabolic defects, inhibitory neuron dysfunction is emerging as a modulable mechanism of hyperexcitability.
Collapse
Affiliation(s)
- Karthik Rajasekaran
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qian Ma
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Levi B. Good
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gauri Kathote
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vikram Jakkamsetti
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peiying Liu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adrian Avila
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sharon Primeaux
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julio Enciso Alva
- Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Kia H. Markussen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Isaac Marin-Valencia
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deepa Sirsi
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter M. S. Hacker
- St. John’s College and Department of Philosophy, University of Oxford, Oxford OX1 3JP, UK
- University College London Queen’s Square Institute of Neurology, London WC1N 3BG, UK
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Jianzhong Su
- Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Hanzhang Lu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan M. Pascual
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Eugene McDermott Center for Human Growth and Development/Center for Human Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Çavdar S, Köse B, Özkan M, Sur Erdem İ. Comparison of astrocytes and gap junction proteins in the white matter of genetic absence epileptic and control rats: an experimental study. Neurol Res 2022; 44:708-718. [DOI: 10.1080/01616412.2022.2039527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Safiye Çavdar
- Department of Anatomy, Koç University School of Medicine, Istanbul, Turkey
| | - Büşra Köse
- Department of Anatomy, Koç University School of Medicine, Istanbul, Turkey
| | - Mazhar Özkan
- Department of Anatomy, Tekirdağ Namık Kemal University School of Medicine, Istanbul, Turkey
| | - İlknur Sur Erdem
- Department of Molecular Biology, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
6
|
Lamotrigine Attenuates Neuronal Excitability, Depresses GABA Synaptic Inhibition, and Modulates Theta Rhythms in Rat Hippocampus. Int J Mol Sci 2021; 22:ijms222413604. [PMID: 34948401 PMCID: PMC8705017 DOI: 10.3390/ijms222413604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/03/2022] Open
Abstract
Theta oscillations generated in hippocampal (HPC) and cortical neuronal networks are involved in various aspects of brain function, including sensorimotor integration, movement planning, memory formation and attention. Disruptions of theta rhythms are present in individuals with brain disorders, including epilepsy and Alzheimer’s disease. Theta rhythm generation involves a specific interplay between cellular (ion channel) and network (synaptic) mechanisms. HCN channels are theta modulators, and several medications are known to enhance their activity. We investigated how different doses of lamotrigine (LTG), an HCN channel modulator, and antiepileptic and neuroprotective agent, would affect HPC theta rhythms in acute HPC slices (in vitro) and anaesthetized rats (in vivo). Whole-cell patch clamp recordings revealed that LTG decreased GABAA-fast transmission in CA3 cells, in vitro. In addition, LTG directly depressed CA3 and CA1 pyramidal neuron excitability. These effects were partially blocked by ZD 7288, a selective HCN blocker, and are consistent with decreased excitability associated with antiepileptic actions. Lamotrigine depressed HPC theta oscillations in vitro, also consistent with its neuronal depressant effects. In contrast, it exerted an opposite, enhancing effect, on theta recorded in vivo. The contradictory in vivo and in vitro results indicate that LTG increases ascending theta activating medial septum/entorhinal synaptic inputs that over-power the depressant effects seen in HPC neurons. These results provide new insights into LTG actions and indicate an opportunity to develop more precise therapeutics for the treatment of dementias, memory disorders and epilepsy.
Collapse
|
7
|
Lattanzi S, Riva A, Striano P. Ganaxolone treatment for epilepsy patients: from pharmacology to place in therapy. Expert Rev Neurother 2021; 21:1317-1332. [PMID: 33724128 DOI: 10.1080/14737175.2021.1904895] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Nonsulfated neurosteroids can provide phasic and tonic inhibition through activation of synaptic and extra-synaptic γ-aminobutyric acid (GABA)A receptors, exhibiting a greater potency for the latter. These actions occur by interacting with modulatory sites that are distinct from those bound by benzodiazepines and barbiturates. Ganaxolone (GNX) is a synthetic analog of the endogenous neurosteroid allopregnanolone and a member of a novel class of neuroactive steroids called epalons.Areas covered: The authors review the pharmacology of GNX, summarize the main clinical evidence about its antiseizure efficacy and tolerability, and suggest implications for clinical practice and future research.Expert opinion: The clinical development of GNX is mainly oriented to target unmet needs and focused on status epilepticus and rare genetic epilepsies that have few or no treatment options.The availability of oral and intravenous formulations allows reaching adult and pediatric patients in acute and chronic care settings. Further evidence will complement the understanding of the potentialities of GNX and possibly lead to indications for use in clinical practice.
Collapse
Affiliation(s)
- Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, "G. Gaslini" Institute, University of Genoa, Genova, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, "G. Gaslini" Institute, University of Genoa, Genova, Italy
| |
Collapse
|
8
|
Doǧan E, Aygün H, Arslan G, Rzayev E, Avcı B, Ayyıldız M, Ağar E. The Role of NMDA Receptors in the Effect of Purinergic P2X7 Receptor on Spontaneous Seizure Activity in WAG/Rij Rats With Genetic Absence Epilepsy. Front Neurosci 2020; 14:414. [PMID: 32435183 PMCID: PMC7218146 DOI: 10.3389/fnins.2020.00414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
P2X7 receptors (P2X7Rs) are ATP sensitive cation channels and have been shown to be effective in various epilepsy models. Absence epilepsy is a type of idiopathic, generalized, non-convulsive epilepsy. Limited data exist on the role of P2X7Rs and no data has been reported regarding the interaction between P2X7Rs and glutamate receptor NMDA in absence epilepsy. Thus, this study was designed to investigate the role of P2X7 and NMDA receptors and their possible interaction in WAG/Rij rats with absence epilepsy. Permanent cannula and electrodes were placed on the skulls of the animals. After the healing period of the electrode and cannula implantation, ECoG recordings were obtained during 180 min before and after drug injections. P2X7R agonist BzATP, at doses of 50 μg and 100 μg (intracerebroventricular; i.c.v.) and antagonist A-438079, at doses of 20 μg and 40 μg (i.c.v.) were administered alone or prior to memantine (5 mg/kg, intraperitoneal; i.p.) injection. The total number (in every 20 min), the mean duration, and the amplitude of spike-wave discharges (SWDs) were calculated and compared. Rats were decapitated and the right and left hemisphere, cerebellum, and brainstem were separated for the measurements of the advanced oxidation protein product (AOPP), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), glutathione peroxide (GPx), and glutathione reductase (GR). BzATP and A-438079 did not alter measured SWDs parameters, whereas memantine reduced them, which is considered anticonvulsant. BzATP did not alter the anticonvulsant effect of memantine, while A-438079 decreased the effect of memantine. Administration of BzATP increased the levels of SOD and GR in cerebrum hemispheres. A-438079 did not alter any of the biochemical parameters. Memantine reduced the levels of MDA, GSH, and GR while increased the level of CAT in the cerebrum. Administration of BzATP before memantine abolished the effect of memantine on MDA levels. The evidence from this study suggests that P2X7Rs does not directly play a role in the formation of absence seizures. P2X7Rs agonist, reduced the antioxidant activity of memantine whereas agonist of P2X7Rs reduced the anticonvulsant action of memantine, suggesting a partial interaction between P2X7 and NMDA receptors in absence epilepsy model.
Collapse
Affiliation(s)
- Elif Doǧan
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Hatice Aygün
- Department of Physiology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - Gökhan Arslan
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Emil Rzayev
- Department of Clinical Biochemistry, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Bahattin Avcı
- Department of Clinical Biochemistry, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Mustafa Ayyıldız
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Erdal Ağar
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
9
|
Sitnikova E, Grubov V, Hramov AE. Slow-wave activity preceding the onset of 10-15-Hz sleep spindles and 5-9-Hz oscillations in electroencephalograms in rats with and without absence seizures. J Sleep Res 2019; 29:e12927. [PMID: 31578791 DOI: 10.1111/jsr.12927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/22/2023]
Abstract
Cortico-thalamocortical networks generate sleep spindles and slow waves during non-rapid eye movement sleep, as well as paroxysmal spike-wave discharges (i.e. electroencephalogram manifestation of absence epilepsy) and 5-9-Hz oscillations in genetic rat models (i.e. pro-epileptic activity). Absence epilepsy is a disorder of the thalamocortical network. We tested a hypothesis that absence epilepsy associates with changes in the slow-wave activity before the onset of sleep spindles and pro-epileptic 5-9-Hz oscillations. The study was performed in the WAG/Rij genetic rat model of absence epilepsy and Wistar rats at the age of 9-12 months. Electroencephalograms were recorded with epidural electrodes from the anterior cortex. Sleep spindles (10-15 Hz), 5-9-Hz oscillations and their slow-wave (2-7 Hz) precursors were automatically detected and analysed using continuous wavelet transform. Subjects with electroencephalogram seizures (the "epileptic" phenotype) and without seizure activity (the "non-epileptic" phenotype) were identified in both strains. It was found that time-amplitude features of sleep spindles and 5-9-Hz oscillations were similar in both rat strains and in both phenotypes. Sleep spindles in "epileptic" rats were more often preceded by the slow-wave (~4 Hz) activity than in "non-epileptic" rats. The intrinsic frequency of slow-wave precursors of sleep spindles and 5-9-Hz oscillations in "epileptic" rats was 1-1.5 Hz higher than in "non-epileptic" rats. In general, our results indicated that absence epilepsy associated with: (a) the reinforcement of slow waves immediately prior to normal sleep spindles; and (b) weakening of amplitude growth in transition "slow wave → spindle/5-9-Hz oscillation".
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| | | | - Alexander E Hramov
- Innopolis University, Innopolis, Russia.,Saratov State Medical University, Saratov, Russia
| |
Collapse
|
10
|
Santos VR, Kobayashi I, Hammack R, Danko G, Forcelli PA. Impact of strain, sex, and estrous cycle on gamma butyrolactone-evoked absence seizures in rats. Epilepsy Res 2018; 147:62-70. [PMID: 30261353 PMCID: PMC6226012 DOI: 10.1016/j.eplepsyres.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/03/2018] [Accepted: 09/15/2018] [Indexed: 12/19/2022]
Abstract
Childhood absence epilepsy (CAE) is the most common pediatric epilepsy syndrome and is characterized by typical absence seizures (AS). AS are non-convulsive epileptic seizures characterized by a sudden loss of awareness and bilaterally generalized synchronous 2.5-4 Hz spike and slow-wave discharges (SWD). Gamma butyrolactone (GBL) is an acute pharmacological model of AS and induces bilaterally synchronous SWDs and behavioral arrest. Despite the long use of this model, little is known about its strain and sex-dependent features. We compared the dose-response profile of GBL-evoked SWDs in three rat strains (Long Evans, Sprague-Dawley, and Wistar), and examined the modulatory effects of estrous cycle on SWDs in female Wistar rats. We evaluated the number of seizures, the cumulative time seizing, and the average seizure duration as a function of dose, strain, and sex/estrous phase. Long Evans rats displayed the greatest sensitivity to GBL, followed by Wistar rats, and then by Sprague-Dawley rats. GBL-evoked SWDs were modulated by estrous cycle in female rats, with the lowest sensitivity to GBL occurring during metestrus. Wistar rats showed the greatest variability as a function of dose, and the least variability within dose; these features make this strain desirable for interventional studies. Moreover, our finding that the SWD response to GBL differs as a function of estrous cycle underscores the importance of cycle monitoring in studies examining female animals using this model. Together, these strain and sex-dependent findings provide guidance for future studies.
Collapse
Affiliation(s)
- Victor R Santos
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Ihori Kobayashi
- Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, United States
| | - Robert Hammack
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Gregory Danko
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States; Department of Neuroscience, Georgetown University School of Medicine, United States; Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, United States.
| |
Collapse
|
11
|
Russo E, Citraro R, Constanti A, Leo A, Lüttjohann A, van Luijtelaar G, De Sarro G. Upholding WAG/Rij rats as a model of absence epileptogenesis: Hidden mechanisms and a new theory on seizure development. Neurosci Biobehav Rev 2016; 71:388-408. [DOI: 10.1016/j.neubiorev.2016.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 09/19/2016] [Indexed: 02/06/2023]
|
12
|
Arakaki T, Mahon S, Charpier S, Leblois A, Hansel D. The Role of Striatal Feedforward Inhibition in the Maintenance of Absence Seizures. J Neurosci 2016; 36:9618-32. [PMID: 27629713 PMCID: PMC6601939 DOI: 10.1523/jneurosci.0208-16.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Absence seizures are characterized by brief interruptions of conscious experience accompanied by oscillations of activity synchronized across many brain areas. Although the dynamics of the thalamocortical circuits are traditionally thought to underlie absence seizures, converging experimental evidence supports the key involvement of the basal ganglia (BG). In this theoretical work, we argue that the BG are essential for the maintenance of absence seizures. To this end, we combine analytical calculations with numerical simulations to investigate a computational model of the BG-thalamo-cortical network. We demonstrate that abnormally strong striatal feedforward inhibition can promote synchronous oscillatory activity that persists in the network over several tens of seconds as observed during seizures. We show that these maintained oscillations result from an interplay between the negative feedback through the cortico-subthalamo-nigral pathway and the striatal feedforward inhibition. The negative feedback promotes epileptic oscillations whereas the striatal feedforward inhibition suppresses the positive feedback provided by the cortico-striato-nigral pathway. Our theory is consistent with experimental evidence regarding the influence of BG on seizures (e.g., with the fact that a pharmacological blockade of the subthalamo-nigral pathway suppresses seizures). It also accounts for the observed strong suppression of the striatal output during seizures. Our theory predicts that well-timed transient excitatory inputs to the cortex advance the termination of absence seizures. In contrast with the thalamocortical theory, it also predicts that reducing the synaptic transmission along the cortico-subthalamo-nigral pathway while keeping constant the average firing rate of substantia nigra pars reticulata reduces the incidence of seizures. SIGNIFICANCE STATEMENT Absence seizures are characterized by brief interruptions of consciousness accompanied by abnormal brain oscillations persisting tens of seconds. Thalamocortical circuits are traditionally thought to underlie absence seizures. However, recent experiments have highlighted the key role of the basal ganglia (BG). This work argues for a novel theory according to which the BG drive the oscillatory patterns of activity occurring during the seizures. It demonstrates that abnormally strong striatal feedforward inhibition promotes synchronous oscillatory activity in the BG-thalamo-cortical network and relate this property to the observed strong suppression of the striatal output during seizures. The theory is compatible with virtually all known experimental results, and it predicts that well-timed transient excitatory inputs to the cortex advance the termination of absence seizures.
Collapse
Affiliation(s)
- Takafumi Arakaki
- Center of Neurophysics, Physiology and Pathology, UMR 8119 CNRS, Paris Descartes University, 75270 Paris, France
| | - Séverine Mahon
- Sorbonne Universités, Université Paris 06, UPMC, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital Pitié-Salpêtrière, F-75013 Paris, France, and
| | - Stéphane Charpier
- Sorbonne Universités, Université Paris 06, UPMC, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital Pitié-Salpêtrière, F-75013 Paris, France, and UPMC Université Paris 06, F-75005 Paris, France
| | - Arthur Leblois
- Center of Neurophysics, Physiology and Pathology, UMR 8119 CNRS, Paris Descartes University, 75270 Paris, France
| | - David Hansel
- Center of Neurophysics, Physiology and Pathology, UMR 8119 CNRS, Paris Descartes University, 75270 Paris, France,
| |
Collapse
|
13
|
Williams MS, Altwegg-Boussac T, Chavez M, Lecas S, Mahon S, Charpier S. Integrative properties and transfer function of cortical neurons initiating absence seizures in a rat genetic model. J Physiol 2016; 594:6733-6751. [PMID: 27311433 DOI: 10.1113/jp272162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Absence seizures are accompanied by spike-and-wave discharges in cortical electroencephalograms. These complex paroxysmal activities, affecting the thalamocortical networks, profoundly alter cognitive performances and preclude conscious perception. Here, using a well-recognized genetic model of absence epilepsy, we investigated in vivo how information processing was impaired in the ictogenic neurons, i.e. the population of cortical neurons responsible for seizure initiation. In between seizures, ictogenic neurons were more prone to generate bursting activity and their firing response to weak depolarizing events was considerably facilitated compared to control neurons. In the course of seizures, information processing became unstable in ictogenic cells, alternating between an increased and a decreased responsiveness to excitatory inputs, depending on the spike and wave patterns. The state-dependent modulation in the excitability of ictogenic neurons affects their inter-seizure transfer function and their time-to-time responsiveness to incoming inputs during absences. ABSTRACT Epileptic seizures result from aberrant cellular and/or synaptic properties that can alter the capacity of neurons to integrate and relay information. During absence seizures, spike-and-wave discharges (SWDs) interfere with incoming sensory inputs and preclude conscious experience. The Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well-established animal model of absence epilepsy, allows exploration of the cellular basis of this impaired information processing. Here, by combining in vivo electrocorticographic and intracellular recordings from GAERS and control animals, we investigated how the pro-ictogenic properties of seizure-initiating cortical neurons modify their integrative properties and input-output operation during inter-ictal periods and during the spike (S-) and wave (W-) cortical patterns alternating during seizures. In addition to a sustained depolarization and an excessive firing rate in between seizures, ictogenic neurons exhibited a pronounced hyperpolarization-activated depolarization compared to homotypic control neurons. Firing frequency versus injected current relations indicated an increased sensitivity of GAERS cells to weak excitatory inputs, without modifications in the trial-to-trial variability of current-induced firing. During SWDs, the W-component resulted in paradoxical effects in ictogenic neurons, associating an increased membrane input resistance with a reduction in the current-evoked firing responses. Conversely, the collapse of cell membrane resistance during the S-component was accompanied by an elevated current-evoked firing relative to W-sequences, which remained, however, lower compared to inter-ictal periods. These findings show a dynamic modulation of ictogenic neurons' intrinsic properties that may alter inter-seizure cortical function and participate in compromising information processing in cortical networks during absences.
Collapse
Affiliation(s)
- Mark S Williams
- Sorbonne Universités, UPMC Univ Paris 06, UPMC; INSERM U 1127, CNRS, UMR 7225, Hôpital Pitié-Salpêtrière, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Tristan Altwegg-Boussac
- Sorbonne Universités, UPMC Univ Paris 06, UPMC; INSERM U 1127, CNRS, UMR 7225, Hôpital Pitié-Salpêtrière, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Mario Chavez
- Sorbonne Universités, UPMC Univ Paris 06, UPMC; INSERM U 1127, CNRS, UMR 7225, Hôpital Pitié-Salpêtrière, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Sarah Lecas
- Sorbonne Universités, UPMC Univ Paris 06, UPMC; INSERM U 1127, CNRS, UMR 7225, Hôpital Pitié-Salpêtrière, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,UPMC Univ Paris 06, F-75005, Paris, France
| | - Séverine Mahon
- Sorbonne Universités, UPMC Univ Paris 06, UPMC; INSERM U 1127, CNRS, UMR 7225, Hôpital Pitié-Salpêtrière, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Stéphane Charpier
- Sorbonne Universités, UPMC Univ Paris 06, UPMC; INSERM U 1127, CNRS, UMR 7225, Hôpital Pitié-Salpêtrière, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,UPMC Univ Paris 06, F-75005, Paris, France
| |
Collapse
|
14
|
Ghamkhari Nejad G, Shahabi P, Alipoor MR, Ghaderi Pakdel F, Asghari M, Sadighi Alvandi M. Ethosuximide Affects Paired-Pulse Facilitation in Somatosensory Cortex of WAG\Rij Rats as a Model of Absence Seizure. Adv Pharm Bull 2016; 5:483-9. [PMID: 26819920 DOI: 10.15171/apb.2015.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/28/2015] [Accepted: 07/27/2015] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The interaction between somatosensory cortex and thalamus via a thalamocortical loop is a theory behind induction of absence epilepsy. Inside peri-oral somatosensory (S1po) and primary somatosensory forelimb (S1fl) regions, excitatory and inhibitory systems are not balanced and GABAergic inhibitory synapses seem to play a fundamental role in short-term plasticity alterations. METHODS We investigated the effects of Ethosuximide on presynaptic changes by utilizing paired-pulse stimulation that was recorded from somatosensory cortex in 18 WAG\Rij rats during epileptic activity. A twisted tripolar electrode including two stimulating electrodes and one recording electrode was implanted into the S1po and S1FL according to stereotaxic landmarks. Paired-pulses (200 µs, 100-1000 µA, 0.1 Hz) were applied to somatosensory cortex at 50, 100, 400, 500 ms inter-pulse intervals for 50 min period. RESULTS The results showed that paired-pulse facilitation was significantly reduced at all intervals in all times, but compared to the control group of epileptic WAG/Rij rats (p<0.05), it was exceptional about the first 10 minutes after the injection. At the intervals of 50 and 100 ms, a remarkable PPD was found in second, third, fourth and fifth 10-min post injection. CONCLUSION These experiments indicate that Ethosuximide has effects on presynaptic facilitation in somatosensory cortex inhibitory loops by alteration in GABA levels that leads to a markedly diminished PPF in paired-pulse stimulation.
Collapse
Affiliation(s)
| | - Parviz Shahabi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Reza Alipoor
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Firouz Ghaderi Pakdel
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Asghari
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Sadighi Alvandi
- Drug Applied Research Center, Tabriz University of Medical Sciences,Tabriz, Iran
| |
Collapse
|
15
|
Lüttjohann A, van Luijtelaar G. Dynamics of networks during absence seizure's on- and offset in rodents and man. Front Physiol 2015; 6:16. [PMID: 25698972 PMCID: PMC4318340 DOI: 10.3389/fphys.2015.00016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/11/2015] [Indexed: 11/13/2022] Open
Abstract
Network mechanisms relevant for the generation, maintenance and termination of spike-wave discharges (SWD), the neurophysiological hallmark of absence epilepsy, are still enigmatic and widely discussed. Within the last years, however, improvements in signal analytical techniques, applied to both animal and human fMRI, EEG, MEG, and ECoG data, greatly increased our understanding and challenged several, dogmatic concepts of SWD. This review will summarize these recent data, demonstrating that SWD are not primary generalized, are not sudden and unpredictable events. It will disentangle different functional contributions of structures within the cortico-thalamo-cortical system, relevant for the generation, generalization, maintenance, and termination of SWD and will present a new “network based” scenario for these oscillations. Similarities and differences between rodent and human data are presented demonstrating that in both species a local cortical onset zone of SWD exists, although with different locations; that in both some forms of cortical and thalamic precursor activity can be found, and that SWD occur through repetitive cyclic activity between cortex and thalamus. The focal onset zone in human data could differ between patients with varying spatial and temporal dynamics; in rats the latter is still poorly investigated.
Collapse
Affiliation(s)
- Annika Lüttjohann
- Donders Centre for Cognition, Donders Instiute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands ; Institute of Physiology I, Westfälische Wilhelms-University Münster Münster, Germany
| | - Gilles van Luijtelaar
- Donders Centre for Cognition, Donders Instiute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| |
Collapse
|
16
|
Karimzadeh F, Soleimani M, Mehdizadeh M, Jafarian M, Mohamadpour M, Kazemi H, Joghataei MT, Gorji A. Diminution of the NMDA receptor NR2B subunit in cortical and subcortical areas of WAG/Rij rats. Synapse 2013; 67:839-46. [PMID: 23754322 DOI: 10.1002/syn.21687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 05/21/2013] [Indexed: 12/27/2022]
Abstract
Modulation of glutamatergic NMDA receptors affects the synchronization of spike discharges in in WAG/Rij rats, a valid genetic animal model of absence epilepsy. In this study, we describe the alteration of NR2B subunit of NMDA receptors expression in WAG/Rij rats in different somatosensory cortical layers and in hippocampal CA1 area. Experimental groups were divided into four groups of six rats of both WAG/Rij and Wistar strains with 2 and 6 months of age. The distribution of NR2B receptors was assessed by immunohistochemical staining in WAG/Rij and compared with age-matched Wistar rats. The expression of NR2B subunit was significantly decreased in different somatosensory cortical layers in 2- and 6-month-old WAG/Rij rats. In addition, the distribution of NR2B in hippocampal CA1 area was lower in 6-month-old WAG/Rij compared with age-matched Wistar rats. The reduction of NR2B receptors in different brain areas points to disturbance of glutamate receptors expression in cortical and subcortical areas in WAG/Rij rats. An altered subunit assembly of NMDA receptors may underlie cortical hyperexcitability in absence epilepsy.
Collapse
Affiliation(s)
- Fariba Karimzadeh
- Tehran University of Medical Sciences, Tehran, Iran; Shefa Neuroscience Research Centre, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gigout S, Louvel J, Rinaldi D, Martin B, Pumain R. Thalamocortical relationships and network synchronization in a new genetic model "in mirror" for absence epilepsy. Brain Res 2013; 1525:39-52. [PMID: 23743261 DOI: 10.1016/j.brainres.2013.05.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 05/25/2013] [Accepted: 05/27/2013] [Indexed: 11/19/2022]
Abstract
Electroencephalographic generalized spike and wave discharges (SWD), the hallmark of human absence seizures, are generated in thalamocortical networks. However, the potential alterations in these networks in terms of the efficacy of the reciprocal synaptic activities between the cortex and the thalamus are not known in this pathology. Here, the efficacy of these reciprocal connections is assessed in vitro in thalamocortical slices obtained from BS/Orl mice, which is a new genetic model of absence epilepsy. These mice show spontaneous SWD, and their features can be compared to that of BR/Orl mice, which are free of SWD. In addition, since gap junctions may modulate the efficacy of these connections, their implications in pharmacologically-induced epileptiform discharges were studied in the same slices. The thalamus and neocortex were independently stimulated and the electrically-evoked responses in both structures were recorded from the same slice. The synaptic efficacy of thalamocortical and corticothalamic connections were assessed by measuring the dynamic range of synaptic field potential changes in response to increasing stimulation strengths. The connection efficacy was weaker in epileptic mice however, this decrease in efficacy was more pronounced in thalamocortical afferents, thus introducing an imbalance in the reciprocal connections between the cortex and thalamus. However, short-term facilitation of the thalamocortical responses were increased in epileptic mice compared to non-epileptic animals. These features may favor occurrence of rhythmical activities in thalamocortical networks. In addition, carbenoxolone (a gap junction blocker) decreased the cumulative duration of 4-aminopyridine-induced ictal-like activities, with a slower time course in epileptic mice. However, the 4-aminopyridine-induced GABA-dependent negative potentials, which appeared to trigger the ictal-like activities, remained. Our results show that the balance of the reciprocal connections between the thalamus and cortex is altered in favor of the corticothalamic connections in epileptic mice, and suggest that gap junctions mediate a stronger cortical synchronization in this strain.
Collapse
Affiliation(s)
- Sylvain Gigout
- Epilepsie de l'Enfant et Plasticité Cérébrale, INSERM U 663, Paris, France.
| | | | | | | | | |
Collapse
|
18
|
Zheng TW, O'Brien TJ, Morris MJ, Reid CA, Jovanovska V, O'Brien P, van Raay L, Gandrathi AK, Pinault D. Rhythmic neuronal activity in S2 somatosensory and insular cortices contribute to the initiation of absence-related spike-and-wave discharges. Epilepsia 2012; 53:1948-58. [PMID: 23083325 DOI: 10.1111/j.1528-1167.2012.03720.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE The origin of bilateral synchronous spike-and-wave discharges (SWDs) that underlie absence seizures has been widely debated. Studies in genetic rodent models suggest that SWDs originate from a restricted region in the somatosensory cortex. The properties of this initiation site remain unknown. Our goal was to characterize the interictal, preictal and ictal neuronal activity in the primary and secondary cortical regions (S1, S2) and in the adjacent insular cortex (IC) in Genetic Absence Epilepsy Rats from Strasbourg (GAERS). METHODS We performed electroencephalography (EEG) recordings in combination with multisite local field potential (LFP) and single cell juxtacellular recordings, and cortical electrical stimulations, in freely moving rats and those under neurolept-anesthesia. KEY FINDINGS The onset of the SWDs was preceded by 5-9 Hz field potential oscillations, which were detected earlier in S2 and IC than in S1. Sustained SWDs could be triggered by a 2-s train of 7-Hz electrical stimuli at a lower current intensity in S2 than in S1. In S2 and IC, subsets of neurons displayed rhythmic firing (5-9 Hz) in between seizures. S2 and IC layers V and VI neurons fired during the same time window, whereas in S1 layer VI, neurons fired before layer V neurons. Just before the spike component of each SW complex, short-lasting high-frequency oscillations consistently occurred in IC ∼20 msec before S1. SIGNIFICANCE Our findings demonstrate that the S2/IC cortical areas are a critical component of the macro-network that is responsible for the generation of absence-related SWDs.
Collapse
Affiliation(s)
- Thomas W Zheng
- Departments of Medicine, Surgery and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hanaya R, Hosoyama H, Sugata S, Tokudome M, Hirano H, Tokimura H, Kurisu K, Serikawa T, Sasa M, Arita K. Low distribution of synaptic vesicle protein 2A and synaptotagimin-1 in the cerebral cortex and hippocampus of spontaneously epileptic rats exhibiting both tonic convulsion and absence seizure. Neuroscience 2012; 221:12-20. [DOI: 10.1016/j.neuroscience.2012.06.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 06/25/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
|
20
|
Chloride-mediated inhibition of the ictogenic neurones initiating genetically-determined absence seizures. Neuroscience 2011; 192:642-51. [DOI: 10.1016/j.neuroscience.2011.06.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/13/2011] [Accepted: 06/11/2011] [Indexed: 11/20/2022]
|
21
|
From sleep spindles of natural sleep to spike and wave discharges of typical absence seizures: is the hypothesis still valid? Pflugers Arch 2011; 463:201-12. [PMID: 21861061 PMCID: PMC3256322 DOI: 10.1007/s00424-011-1009-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/22/2011] [Accepted: 08/01/2011] [Indexed: 11/15/2022]
Abstract
The temporal coincidence of sleep spindles and spike-and-wave discharges (SWDs) in patients with idiopathic generalized epilepsies, together with the transformation of spindles into SWDs following intramuscular injection of the weak GABAA receptor (GABAAR) antagonist, penicillin, in an experimental model, brought about the view that SWDs may represent ‘perverted’ sleep spindles. Over the last 20 years, this hypothesis has received considerable support, in particular by in vitro studies of thalamic oscillations following pharmacological/genetic manipulations of GABAARs. However, from a critical appraisal of the evidence in absence epilepsy patients and well-established models of absence epilepsy it emerges that SWDs can occur as frequently during wakefulness as during sleep, with their preferential occurrence in either one of these behavioural states often being patient dependent. Moreover, whereas the EEG expression of both SWDs and sleep spindles requires the integrity of the entire cortico-thalamo-cortical network, SWDs initiates in cortex while sleep spindles in thalamus. Furthermore, the hypothesis of a reduction in GABAAR function across the entire cortico-thalamo-cortical network as the basis for the transformation of sleep spindles into SWDs is no longer tenable. In fact, while a decreased GABAAR function may be present in some cortical layers and in the reticular thalamic nucleus, both phasic and tonic GABAAR inhibitions of thalamo-cortical neurons are either unchanged or increased in this epileptic phenotype. In summary, these differences between SWDs and sleep spindles question the view that the EEG hallmark of absence seizures results from a transformation of this EEG oscillation of natural sleep.
Collapse
|
22
|
Kovács Z, Czurkó A, Kékesi KA, Juhász G. Intracerebroventricularly administered lipopolysaccharide enhances spike–wave discharges in freely moving WAG/Rij rats. Brain Res Bull 2011; 85:410-6. [DOI: 10.1016/j.brainresbull.2011.05.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 03/19/2011] [Accepted: 05/08/2011] [Indexed: 12/15/2022]
|
23
|
Electrical stimulation of the epileptic focus in absence epileptic WAG/Rij rats: assessment of local and network excitability. Neuroscience 2011; 188:125-34. [PMID: 21569824 DOI: 10.1016/j.neuroscience.2011.04.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/15/2011] [Accepted: 04/14/2011] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The study aims to investigate whether there is a higher excitability in the deep cortical layers of the peri-oral region of the somatosensory cortex as compared to other cortical regions in absence epileptic WAG/Rij rats and whether this is unique for this type of epileptic rats, as would be predicted by the cortical focus theory of absence epilepsy. METHODS Excitability of cortical structures was assessed in a double pulse paradigm (inter-pulse interval 400 ms, 400 μs pulse duration, varying stimulation intensities (20-100 μA)). Electrical stimulation was applied to the subgranular layers of the somatosensory and motor cortex of freely moving WAG/Rij and control Wistar rats. Electrical evoked potentials (EEPs) and afterdischarges (ADs) were recorded during wakefulness, drowsiness and non-REM sleep. RESULTS WAG/Rij rats, stimulated in the somatosensory cortex, showed higher amplitudes for the N1 and N3 components of the EEPs as compared to WAG/Rij rats stimulated in the motor cortex. This effect was present in all states of alertness and at all tested intensities. In addition, this effect was not (N1) or to much less extent (N3) present in nonepileptic control rats. Stimulation-induced 8 Hz ADs were predominantly found in WAG/Rij rats. ADs were longer after stimulation in the somatosensory than in the motor cortex and preferentially occurred during drowsiness. CONCLUSION There is a heightened excitability in the deep layer neurons of the perioral region of somatosensory cortex, which is unique for WAG/Rij rats. Moreover, the presence of 8 Hz ADs might point toward additional changes in the cortico-thalamo-cortical network. Drowsiness is an excellent state for 8 Hz ADs, mimicking spike and wave discharges (SWDs). The results are in good agreement with the cortical-focus theory of absence epilepsy.
Collapse
|
24
|
van Luijtelaar G, Sitnikova E, Littjohann A. On the origin and suddenness of absences in genetic absence models. Clin EEG Neurosci 2011; 42:83-97. [PMID: 21675598 DOI: 10.1177/155005941104200209] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The origin of spike-wave discharges (SWDs), typical for absences, has been debated for at least half a century. While most classical views adhere to a thalamic oscillatory machinery and an active role of the cortex in modifying normal oscillations into pathological SWDs, recent studies in genetic models such as WAG/Rij and GAERS rats have challenged this proposal. It seems now well established that SWDs originate from the deep layers of the somatosensory cortex, that the activity quickly spreads over the cortex and invades the thalamus. The reticular thalamic nucleus and other thalamic nuclei provide a resonance circuitry for the amplification, spreading and entrainment of the SWDs. Conclusive evidence has been found that the changed functionality of HCN1 channels is a causative factor for the changes in local excitability and age-dependent increase in SWD. Furthermore, upregulation of two subtypes of Na+ channels, reduction of GABAB and mGlu 2/3 receptors might also play a role in the local increased excitability in WAG/Rij rats. Signal analytical studies have also challenged the view that SWDs occur suddenly from a normal background EEG. SWDs are recruited cortical responses and they develop from increasing associations within and between cortical layers and subsequently subcortical regions, triggered by the simultaneous occurrence of theta and delta precursor activity in the cortex and thalamus in case both structures are in a favorable condition, and increased directional coupling between cortex and thalamus. It is hypothesized that the cortex is the driving force throughout the whole SWD and is also responsible for its end.
Collapse
Affiliation(s)
- Gilles van Luijtelaar
- Department of Biological Psychology, Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen , Nijmegen, the Netherlands.
| | | | | |
Collapse
|
25
|
N-methyl-D-aspartate-induced oscillatory properties in neocortical pyramidal neurons from patients with epilepsy. J Clin Neurophysiol 2011; 27:398-405. [PMID: 21076319 DOI: 10.1097/wnp.0b013e3182007c7d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
N-Methyl-D-aspartate (NMDA) receptors have been implicated in epileptogenesis, but how these receptors contribute to epilepsy remains unknown. In particular, their role is likely to be complicated because of their voltage-dependent behavior. Here, the authors investigate how activation of NMDA receptors can affect the intrinsic production of oscillation and the resonance properties of neocortical pyramidal neurons from children with intractable epilepsy. Intracellular whole-cell patch clamp recordings in cortical slices from these patients revealed that pyramidal neurons do not produce spontaneous oscillation under control conditions. However, they did exhibit resonance around 1.5 Hz. On NMDA receptor activation, with bath-applied NMDA (10 μM), the majority of neurons produced voltage-dependent intrinsic oscillation associated with a change in the stability of the neuronal system as reflected by the whole-cell I-V curve. Furthermore, the degree of resonance was amplified while the frequency of resonance was shifted to lower frequencies (∼1 Hz) in NMDA. These results suggest that NMDA receptors may both promote the production of low-frequency oscillation and sharpen the response of the cell to lower frequencies. Both these behaviors may be amplified in tissue from patients with epilepsy, resulting in an increased propensity to generate seizures.
Collapse
|
26
|
Sitnikova E. Neonatal sensory deprivation promotes development of absence seizures in adult rats with genetic predisposition to epilepsy. Brain Res 2010; 1377:109-18. [PMID: 21194524 DOI: 10.1016/j.brainres.2010.12.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 12/18/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
Abstract
Absence epilepsy has age-related onset. In a WAG/Rij rat genetic model, absence seizures appear after puberty and they are increased with age. It is known that (1) epileptic activity in WAG/Rij rats is initiated at the perioral area in the somatosensory cortex; (2) sensory deprivation, i.e., whisker trimming during the critical period of development, could enhance excitatory activity in the somatosensory cortex. It is hypothesized that the cortex may become more excitable after neonatal vibrissae removal, and this may precipitate absence seizures in adult rats. We found that whisker trimming during the first postnatal weeks caused more rapid development of EEG seizure activity in adult WAG/Rij rats. Epileptic discharges in the trimmed rats were more numerous (vs control), showed longer duration and often appeared in desynchronized and drowsy EEG. The number of absence-like spindle-shaped EEG events (spike-wave spindles) in the whisker-trimmed rats was higher than in control, especially during the intermediate sleep state. An age-dependent increase of intermediate sleep state was found in the trimmed rats, but not in the intact animals. We discuss epigenetic factors that can modulate absence epilepsy in genetically prone subjects.
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia.
| |
Collapse
|
27
|
A role for the preoptic sleep-promoting system in absence epilepsy. Neurobiol Dis 2009; 36:126-41. [PMID: 19631751 DOI: 10.1016/j.nbd.2009.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/26/2009] [Accepted: 07/13/2009] [Indexed: 11/23/2022] Open
Abstract
Absence epilepsy (AE) in humans and the genetic AE model in WAG/Rij rats are both associated with abnormalities in sleep architecture that suggest insufficiency of the sleep-promoting mechanisms. In this study we compared the functionality of sleep-active neuronal groups within two well-established sleep-promoting sites, the ventrolateral and median preoptic nuclei (VLPO and MnPN, respectively), in WAG/Rij and control rats. Neuronal activity was assessed using c-Fos immunoreactivity and chronic single-unit recording techniques. We found that WAG/Rij rats exhibited a lack of sleep-associated c-Fos activation of GABAergic MnPN and VLPO neurons, a lower percentage of MnPN and VLPO cells increasing discharge during sleep and reduced firing rates of MnPN sleep-active neurons, compared to non-epileptic rats. The role of sleep-promoting mechanisms in pathogenesis of absence seizures was assessed in non-epileptic rats using electrical stimulation and chemical manipulations restricted to the MnPN. We found that fractional activation of the sleep-promoting system in waking was sufficient to elicit absence-like seizures. Given that reciprocally interrelated sleep-promoting and arousal neuronal groups control thalamocortical excitability, we hypothesize that malfunctioning of sleep-promoting system results in impaired ascending control over thalamocortical rhythmogenic mechanisms during wake-sleep transitions thus favoring aberrant thalamocortical oscillations. Our findings suggest a pathological basis for AE-associated sleep abnormalities and a mechanism underlying association of absence seizures with wake-sleep transitions.
Collapse
|
28
|
Westmijse I, Ossenblok P, Gunning B, van Luijtelaar G. Onset and propagation of spike and slow wave discharges in human absence epilepsy: A MEG study. Epilepsia 2009; 50:2538-48. [PMID: 19519798 DOI: 10.1111/j.1528-1167.2009.02162.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE A nonlinear association and a source localization technique were used to describe the onset and propagation of spike-and-slow-wave discharges (SWDs) in children with absence seizures. Previous studies have emphasized a leading cortical role in the generation of absence seizures in genetic epileptic rats. METHODS Synchronization between all magnetoencephalography (MEG) sensor-couples before and during SWDs in five patients was investigated over time. A source localization [beamformer, SAM(g(2))] technique was used to find brain regions associated with the origin of the spikes of the SWDs. RESULTS The onset of SWDs was characterized by high associations at left and right frontal regions. An alternating pattern of high synchronization was found during trains of SWDs: generalized during the wave and localized during the spike; the origin of the spike was different from the onset of SWDs, more frontal lateral and medial parietal. The localization of this latter region was confirmed with SAM(g(2)). DISCUSSION The outcome of the nonlinear association techniques demonstrated that SWDs have a local cortical onset, whereas the association and beamformer technique support a local or even a focal cortical involvement in the occurrence of the spike in a train of SWDs. In all, the cortex contains local frontal and parietal sites relevant before the onset of the generalized pattern of SWDs and other ones that might contain the driving force behind the spike in trains of 3-4 Hz SWDs.
Collapse
Affiliation(s)
- Inge Westmijse
- Donders Centre for Cognition, Radboud University Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
29
|
Polack PO, Mahon S, Chavez M, Charpier S. Inactivation of the Somatosensory Cortex Prevents Paroxysmal Oscillations in Cortical and Related Thalamic Neurons in a Genetic Model of Absence Epilepsy. Cereb Cortex 2009; 19:2078-91. [DOI: 10.1093/cercor/bhn237] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Cortical hyperexcitability and epileptogenesis: Understanding the mechanisms of epilepsy – Part 1. J Clin Neurosci 2009; 16:355-65. [DOI: 10.1016/j.jocn.2008.08.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 08/12/2008] [Indexed: 11/22/2022]
|
31
|
Inaba Y, D'Antuono M, Bertazzoni G, Biagini G, Avoli M. Diminished presynaptic GABA(B) receptor function in the neocortex of a genetic model of absence epilepsy. Neurosignals 2009; 17:121-31. [PMID: 19176980 DOI: 10.1159/000197864] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 07/11/2008] [Indexed: 11/19/2022] Open
Abstract
Changes in GABA(B) receptor subunit expression have been recently reported in the neocortex of epileptic WAG/Rij rats that are genetically prone to experience absence seizures. These alterations may lead to hyperexcitability by downregulating the function of presynaptic GABA(B) receptors in neocortical networks as suggested by a reduction in paired-pulse depression. Here, we tested further this hypothesis by analyzing the effects induced by the GABA(B) receptor agonist baclofen (0.1-10 microM) on the inhibitory events recorded in vitro from neocortical slices obtained from epileptic (>180 day-old) WAG/Rij and age-matched, non-epileptic control (NEC) rats. We found that higher doses of baclofen were required to depress pharmacologically isolated, stimulus-induced IPSPs generated by WAG/Rij neurons as compared to NEC. We also obtained similar evidence by comparing the effects of baclofen on the rate of occurrence of synchronous GABAergic events recorded by WAG/Rij and NEC neocortical slices treated with 4-aminopyridine + glutamatergic receptor antagonists. In conclusion, these data highlight a decreased function of presynaptic GABA(B) receptors in the WAG/Rij rat neocortex. We propose that this alteration may contribute to neocortical hyperexcitability and thus to absence seizures.
Collapse
Affiliation(s)
- Yugi Inaba
- Montreal Neurological Institute and Departments of Neurology and Neurosurgery, and Physiology, McGill University, Montréal, Que., Canada
| | | | | | | | | |
Collapse
|
32
|
Meeren HKM, Veening JG, Möderscheim TAE, Coenen AML, van Luijtelaar G. Thalamic lesions in a genetic rat model of absence epilepsy: dissociation between spike-wave discharges and sleep spindles. Exp Neurol 2009; 217:25-37. [PMID: 19416679 DOI: 10.1016/j.expneurol.2009.01.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 12/11/2008] [Accepted: 01/15/2009] [Indexed: 11/30/2022]
Abstract
Recent findings have challenged the traditional view that the thalamus is the primary driving source of generalized spike-wave discharges (SWDs) characteristic for absence seizures, and indicate a leading role for the cortex instead. In light of this we investigated the effects of thalamic lesions on SWDs and sleep spindles in the WAG/Rij rat, a genetic model of absence epilepsy. EEG was recorded from neocortex and thalamus in freely moving rats, both before and after unilateral thalamic ibotenic acid lesions. Complete unilateral destruction of the reticular thalamic nucleus (RTN) combined with extensive destruction of the thalamocortical relay (TCR) nuclei, resulted in the bilateral abolishment of SWDs and ipsilateral abolishment of sleep spindles. A suppression of both types of thalamocortical oscillations was found when complete or extensive damage to the RTN was combined with minor to moderate damage to the TCR nuclei. Lesions that left the rostral pole of the RTN and part of the TCR nuclei intact, resulted in an ipsilateral suppression of sleep spindles, but a large increase of bilateral SWDs. These findings demonstrate that the thalamus in general and the RTN in particular are a prerequisite for both the typical bilateral 7-11 Hz SWDs and natural occurring sleep spindles in the WAG/Rij rat, but suggest that different intrathalamic subcircuits are involved in the two types of thalamocortical oscillations. Whereas the whole RTN appears to be critical for the generation of sleep spindles, the rostral pole of the RTN seems to be the most likely part that generates SWDs.
Collapse
Affiliation(s)
- Hanneke K M Meeren
- Cognitive and Affective Neuroscience, Tilburg University, Tilburg, The Netherlands
| | | | | | | | | |
Collapse
|
33
|
Valenti O, Grace AA. Entorhinal cortex inhibits medial prefrontal cortex and modulates the activity states of electrophysiologically characterized pyramidal neurons in vivo. Cereb Cortex 2008; 19:658-74. [PMID: 18632738 DOI: 10.1093/cercor/bhn114] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The prefrontal cortex receives multiple inputs from the hippocampal complex, which are thought to drive memory-guided behavior. Moreover, dysfunctions of both regions have been repeatedly associated with several psychiatric disorders. Therefore, understanding the interconnections and modulatory interactions between these regions is essential in evaluating their role in behavior and pathology. The effects of entorhinal cortex (EC) stimulation on the activity of identified medial prefrontal cortex (mPFC) pyramidal neurons were examined using single-unit extracellular recordings and sharp-electrode intracellular recordings in anesthetized rats. Single-pulse electrical stimulation of EC induced a powerful inhibition in the majority of mPFC neurons examined during extracellular recording. Intracellular recording showed that EC stimulation evoked a complex synaptic response, in which the greater proportion of neurons exhibited excitatory postsynaptic events and/or a short lasting and a prolonged inhibitory postsynaptic response. Furthermore, stimulation of EC selectively produced an augmentation of the bistable up-down state only in the type 2 regular spiking neurons and in a subclass of nonintrinsic bursting neurons. Taken together, these data suggest that the potent inhibition observed following EC stimulation may mask a direct excitatory response within the mPFC which markedly potentiates the bistable states in a select subpopulation of mPFC pyramidal neurons.
Collapse
Affiliation(s)
- Ornella Valenti
- University of Pittsburgh, Department of Neuroscience, Psychiatry and Psychology, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
34
|
Polack PO, Guillemain I, Hu E, Deransart C, Depaulis A, Charpier S. Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures. J Neurosci 2007; 27:6590-9. [PMID: 17567820 PMCID: PMC6672429 DOI: 10.1523/jneurosci.0753-07.2007] [Citation(s) in RCA: 284] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Typical absence has long been considered as the prototypic form of generalized nonconvulsive epileptic seizures. Recent investigations in patients and animal models suggest that absence seizures could originate from restricted regions of the cerebral cortex. However, the cellular and local network processes of seizure initiation remain unknown. Here, we show that absence seizures in Genetic Absence Epilepsy Rats from Strasbourg, a well established genetic model of this disease, arise from the facial somatosensory cortex. Using in vivo intracellular recordings, we found that epileptic discharges are initiated in layer 5/6 neurons of this cortical region. These neurons, which show a distinctive hyperactivity associated with a membrane depolarization, lead the firing of distant cortical cells during the epileptic discharge. Consistent with their ictogenic properties, neurons from this "focus" exhibit interictal and preictal oscillations that are converted into epileptic pattern. These results confirm and extend the "focal hypothesis" of absence epilepsy and provide a cellular scenario for the initiation and generalization of absence seizures.
Collapse
Affiliation(s)
- Pierre-Olivier Polack
- Institut National de la Santé et de la Recherche Médicale Unité 667, Collège de France, 75231 Paris, Cedex 05, France.
| | | | | | | | | | | |
Collapse
|
35
|
Liu XB, Coble J, van Luijtelaar G, Jones EG. Reticular nucleus-specific changes in alpha3 subunit protein at GABA synapses in genetically epilepsy-prone rats. Proc Natl Acad Sci U S A 2007; 104:12512-7. [PMID: 17630284 PMCID: PMC1916487 DOI: 10.1073/pnas.0705320104] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Differential composition of GABA(A) receptor (GABA(A)R) subunits underlies the variability of fast inhibitory synaptic transmission; alteration of specific GABA(A)R subunits in localized brain regions may contribute to abnormal brain states such as absence epilepsy. We combined immunocytochemistry and high-resolution ImmunoGold electron microscopy to study cellular and subcellular localization of GABA(A)R alpha1, alpha3, and beta2/beta3 subunits in ventral posterior nucleus (VP) and reticular nucleus (RTN) of control rats and WAG/Rij rats, a genetic model of absence epilepsy. In control rats, alpha1 subunits were prominent at inhibitory synapses in VP and much less prominent in RTN; in contrast, the alpha3 subunit was highly evident at inhibitory synapses in RTN. beta2/beta3 subunits were evenly distributed at inhibitory synapses in both VP and RTN. ImmunoGold particles representing all subunits were concentrated at postsynaptic densities with no extrasynaptic localization. Calculated mean number of particles for alpha1 subunit per postsynaptic density in nonepileptic VP was 6.1 +/- 3.7, for alpha3 subunit in RTN it was 6.6 +/- 3.4, and for beta2/beta3 subunits in VP and RTN the mean numbers were 3.7 +/- 1.3 and 3.5 +/- 1.2, respectively. In WAG/Rij rats, there was a specific loss of alpha3 subunit immunoreactivity at inhibitory synapses in RTN, without reduction in alpha3 subunit mRNA or significant change in immunostaining for other markers of RTN cell identity such as GABA or parvalbumin. alpha3 immunostaining in cortex was unchanged. Subtle, localized changes in GABA(A)R expression acting at highly specific points in the interconnected thalamocortical network lie at the heart of idiopathic generalized epilepsy.
Collapse
Affiliation(s)
- Xiao-Bo Liu
- *Center for Neuroscience
- Department of Human Anatomy and Cell Biology, University of California, Davis, CA 95616; and
| | | | - Gilles van Luijtelaar
- Nijmegen Institute for Cognition and Information–Biological Psychology, Radboud University Nijmegen, 6500 HC Nijmegen, The Netherlands
| | - Edward G. Jones
- *Center for Neuroscience
- To whom correspondence should be addressed at:
Center for Neuroscience, 1544 Newton Court, Davis, CA 95618. E-mail:
| |
Collapse
|
36
|
Sargsyan A, Sitnikova E, Melkonyan A, Mkrtchian H, van Luijtelaar G. Simulation of sleep spindles and spike and wave discharges using a novel method for the calculation of field potentials in rats. J Neurosci Methods 2007; 164:161-76. [PMID: 17531326 DOI: 10.1016/j.jneumeth.2007.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 03/12/2007] [Accepted: 03/28/2007] [Indexed: 10/23/2022]
Abstract
We suggest a new method for calculation of extracellular field potentials generated by a large population of pyramidal cells (PCs), using a single PC compartmental model. Similar methods described earlier use the assumption that the intracellular potential or current distributions of the cells within the population are much alike as a result of simultaneous activation at about the same longitudinal location (i.e., all the PCs in the population are located on the same level and are ideally synchronized). However, the degree of synchronization of natural firing even during synchronized rhythmic discharges in the cortex is not as high. We introduce the possibility to vary the degree of synchronization of the PCs' activity in the population, thus taking into account disperse timing of cortical pyramidal cells' firing. The temporal variability in cell firing is described by a Gaussian distribution, the width of which defines the degree of synchronization/desynchronization. In addition, the suggested method allows for certain spatial spread of PCs in the population along longitudinal axis of the PCs. The method was applied to test the assumption that the transition from sleep spindles to rhythmic spike and wave discharges (SWDs) observed in absence epilepsy may occur due to an increase in pyramidal cells' firing synchronization. We show that in case of weak synchronization of PC firing in the population, the shape of field potential during rhythmic thalamic input is similar to the oscillations during a sleep spindle, while at stronger synchronization of PCs, it looks much more as a SWD, with clear expressed spikes and waves. This suggests that in large population of pyramidal cells the changes in the degree of synchronization of cell firing may explain the changes in the shape of field potential from spindle oscillations to SWDs and vice versa.
Collapse
Affiliation(s)
- Armen Sargsyan
- Neuronal Systems Mathematical Modelling Laboratory, Orbeli Institute of Physiology, 22 Orbeli Br. Str., Yerevan 375028, Armenia.
| | | | | | | | | |
Collapse
|
37
|
Merlo D, Mollinari C, Inaba Y, Cardinale A, Rinaldi AM, D'Antuono M, D'Arcangelo G, Tancredi V, Ragsdale D, Avoli M. Reduced GABAB receptor subunit expression and paired-pulse depression in a genetic model of absence seizures. Neurobiol Dis 2007; 25:631-41. [PMID: 17207629 DOI: 10.1016/j.nbd.2006.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 10/17/2006] [Accepted: 11/05/2006] [Indexed: 10/23/2022] Open
Abstract
Neocortical networks play a major role in the genesis of generalized spike-and-wave (SW) discharges associated with absence seizures in humans and in animal models, including genetically predisposed WAG/Rij rats. Here, we tested the hypothesis that alterations in GABA(B) receptors contribute to neocortical hyperexcitability in these animals. By using Real-Time PCR we found that mRNA levels for most GABA(B(1)) subunits are diminished in epileptic WAG/Rij neocortex as compared with age-matched non-epileptic controls (NEC), whereas GABA(B(2)) mRNA is unchanged. Next, we investigated the cellular distribution of GABA(B(1)) and GABA(B(2)) subunits by confocal microscopy and discovered that GABA(B(1)) subunits fail to localize in the distal dendrites of WAG/Rij neocortical pyramidal cells. Intracellular recordings from neocortical cells in an in vitro slice preparation demonstrated reduced paired-pulse depression of pharmacologically isolated excitatory and inhibitory responses in epileptic WAG/Rij rats as compared with NECs; moreover, paired-pulse depression in NEC slices was diminished by a GABA(B) receptor antagonist to a greater extent than in WAG/Rij rats further suggesting GABA(B) receptor dysfunction. In conclusion, our data identify changes in GABA(B) receptor subunit expression and distribution along with decreased paired-pulse depression in epileptic WAG/Rij rat neocortex. We propose that these alterations may contribute to neocortical hyperexcitability and thus to SW generation in absence epilepsy.
Collapse
Affiliation(s)
- D Merlo
- Istituto Superiore di Sanità, Dipartimento di Biologia Cellulare e Neuroscienze, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
van Luijtelaar G, Bikbaev A. Midfrequency cortico-thalamic oscillations and the sleep cycle: Genetic, time of day and age effects. Epilepsy Res 2007; 73:259-65. [PMID: 17156975 DOI: 10.1016/j.eplepsyres.2006.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 11/02/2006] [Accepted: 11/06/2006] [Indexed: 11/17/2022]
Abstract
WAG/Rij rats have various types of mid frequency cortico-thalamic oscillations, such as anterior and posterior sleep spindles and two types of spike-wave discharges (SWD). The generalized SWD (type I) preferentially occur at transitions from wake to sleep, type II can be found at the occipital cortex during quite wakefulness. In the present experiment sleep spindles, SWD and sleep cycle characteristics of 6-month-old WAG/Rij rats were studied and compared with those of younger WAG/Rij rats with much less SWD and age-matched control (ACI) rats. EEG recordings were made during the beginning (morning) and end (afternoon) of the light period in these four groups of rats. Quantitative characteristics of SWD, sleep spindles and the sleep cycle were determined. There were strain-related and age-dependent effects in the various cortico-thalamic oscillations, older WAG/Rij had more SWDs than younger WAG/Rij rats (both types I and II) and there were more type I SWDs at the end of the light period compared to the beginning. Large strain, age and time of day effects on the sleep cycle were found. The duration of non-REM sleep and the sleep cycle was shorter in WAG/Rij rats but only at the end of the light period and only in older WAG/Rij rats. It can be concluded that the various phasic events and the length of the sleep cycle are under genetic control, and that the sleep cycle length is also controlled by time of day, age and genetic factors. Non-REM sleep and the sleep cycle are disrupted by absence seizures but only in fragile periods when drowsiness and light slow wave sleep dominate.
Collapse
|
39
|
Abstract
The absence epilepsies are characterized by recurrent episodes of loss of consciousness associated with generalized spike-and-wave discharges, with an abrupt onset and offset, in the thalamocortical system. In the absence of detailed neurophysiological studies in humans, many of the concepts regarding the pathophysiological basis of absence seizures are based on studies in animal models. Each of these models has its particular strengths and limitations, and the validity of findings from these models for the human condition cannot be assumed. Consequently, studies in different models have produced some conflicting findings and conclusions. A long-standing concept, based primarily from studies in vivo in cats and in vitro brain slices, is that these paroxysmal electrical events develop suddenly from sleep-related spindle oscillations. More specifically, it is proposed that the initial mechanisms that underlie absence-related spike-and-wave discharges are located in the thalamus, involving especially the thalamic reticular nucleus. By contrast, more recent studies in well-established, genetic models of absence epilepsy in rats demonstrate that spike-and-wave discharges originate in a cortical focus and develop from a wake-related natural corticothalamic sensorimotor rhythm. In this review we integrate recent findings showing that, in both the thalamus and the neocortex, genetically-determined, absence-related spike-and-wave discharges are the manifestation of hypersynchronized, cellular, rhythmic excitations and inhibitions that result from a combination of complex, intrinsic, synaptic mechanisms. Arguments are put forward supporting the hypothesis that layer VI corticothalamic neurons act as 'drivers' in the generation of spike-and-wave discharges in the somatosensory thalamocortical system that result in corticothalamic resonances particularly initially involving the thalamic reticular nucleus. However an important unresolved question is: what are the cellular and network mechanisms responsible for the switch from physiological, wake-related, natural oscillations into pathological spike-and-wave discharges? We speculate on possible answers to this, building particularly on recent findings from genetic models in rats.
Collapse
|
40
|
Kole MHP, Bräuer AU, Stuart GJ. Inherited cortical HCN1 channel loss amplifies dendritic calcium electrogenesis and burst firing in a rat absence epilepsy model. J Physiol 2006; 578:507-25. [PMID: 17095562 PMCID: PMC2075144 DOI: 10.1113/jphysiol.2006.122028] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
While idiopathic generalized epilepsies are thought to evolve from temporal highly synchronized oscillations between thalamic and cortical networks, their cellular basis remains poorly understood. Here we show in a genetic rat model of absence epilepsy (WAG/Rij) that a rapid decline in expression of hyperpolarization-activated cyclic-nucleotide gated (HCN1) channels (I(h)) precedes the onset of seizures, suggesting that the loss of HCN1 channel expression is inherited rather than acquired. Loss of HCN1 occurs primarily in the apical dendrites of layer 5 pyramidal neurons in the cortex, leading to a spatially uniform 2-fold reduction in dendritic HCN current throughout the entire somato-dendritic axis. Dual whole-cell recordings from the soma and apical dendrites demonstrate that loss of HCN1 increases somato-dendritic coupling and significantly reduces the frequency threshold for generation of dendritic Ca2+ spikes by backpropagating action potentials. As a result of increased dendritic Ca2+ electrogenesis a large population of WAG/Rij layer 5 neurons showed intrinsic high-frequency burst firing. Using morphologically realistic models of layer 5 pyramidal neurons from control Wistar and WAG/Rij animals we show that the experimentally observed loss of dendritic I(h) recruits dendritic Ca2+ channels to amplify action potential-triggered dendritic Ca2+ spikes and increase burst firing. Thus, loss of function of dendritic HCN1 channels in layer 5 pyramidal neurons provides a somato-dendritic mechanism for increasing the synchronization of cortical output, and is therefore likely to play an important role in the generation of absence seizures.
Collapse
Affiliation(s)
- Maarten H P Kole
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, ACT, 0200, Canberra, Australia.
| | | | | |
Collapse
|