1
|
Canic T, Lopez J, Ortiz-Vega N, Zhai RG, Syed S. High-resolution, high-throughput analysis of Drosophila geotactic behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597941. [PMID: 38895419 PMCID: PMC11185704 DOI: 10.1101/2024.06.07.597941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Drosophila innate response to gravity, geotaxis, has been previously used to assess the impact of aging and disease on motor performance. Despite its rich history, fly geotaxis continues to be largely measured manually and assessed through simplistic metrics. The manual nature of this assay introduces substantial experimental variability while simplistic metrics provide limited analytic insights into the behavior. To address these shortcomings, we have constructed a fully automated, programable apparatus, and developed a multi-object tracking software capable of following sub-second movements of individual flies, thus allowing reproducible, detailed, and quantitative analysis of geotactic behavior. The apparatus triggers and monitors geotaxis of 10 fly cohorts simultaneously, with each cohort consisting of up to 7 flies. The tracking program isolates cohorts and records individual fly coordinate outputs allowing for simultaneous multi-group, multi-fly tracks per experiment, greatly improving throughput and resolution. The algorithm tracks individual flies during the entire run with ~97% accuracy, yielding detailed climbing curve, speed, and movement direction with 1/30 second resolution. Our tracking also allows the construction of multi-variable metrics and the detection of transitory movement phenotypes, such as slips and falls, which have thus far been neglected in geotaxis studies due to limited spatio-temporal resolution. Through a combination of automation and robust tracking, the platform is therefore poised to advance Drosophila geotaxis assay into a comprehensive assessment of locomotor behavior.
Collapse
Affiliation(s)
- Tijana Canic
- Department of Physics, University of Miami, Coral Gables, FL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juan Lopez
- Department of Physics, University of Miami, Coral Gables, FL, USA
| | - Natalie Ortiz-Vega
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - R. Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
2
|
Zhang B, Duan H, Kavaler J, Wei L, Eberl DF, Lai EC. A nonneural miRNA cluster mediates hearing via repression of two neural targets. Genes Dev 2023; 37:1041-1051. [PMID: 38110249 PMCID: PMC10760640 DOI: 10.1101/gad.351052.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
We show here that mir-279/996 are absolutely essential for development and function of Johnston's organ (JO), the primary proprioceptive and auditory organ in Drosophila Their deletion results in highly aberrant cell fate determination, including loss of scolopale cells and ectopic neurons, and mutants are electrophysiologically deaf. In vivo activity sensors and mosaic analyses indicate that these seed-related miRNAs function autonomously to suppress neural fate in nonneuronal cells. Finally, genetic interactions pinpoint two neural targets (elav and insensible) that underlie miRNA mutant JO phenotypes. This work uncovers how critical post-transcriptional regulation of specific miRNA targets governs cell specification and function of the auditory system.
Collapse
Affiliation(s)
- Binglong Zhang
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Hong Duan
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Joshua Kavaler
- Department of Biology, Colby College, Waterville, Maine 04901, USA
| | - Lu Wei
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Daniel F Eberl
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA;
| |
Collapse
|
3
|
Kendzel MJ, Parlin AF, Guerra PA. Gravisensation and modulation of gravitactic responses by other sensory cues in the monarch butterfly (Danaus plexippus). J Exp Biol 2023; 226:jeb245451. [PMID: 37818736 PMCID: PMC10651108 DOI: 10.1242/jeb.245451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Using the monarch butterfly (Danaus plexippus), we studied how animals can use cues from multiple sensory modalities for deriving directional information from their environment to display oriented movement. Our work focused on determining how monarchs use gravity as a cue for oriented movement and determined how cues from other sensory modalities, cues that by themselves also produce oriented movement (visual and magnetic directional cues), might modulate gravisensation. In two tests of gravisensation (movement in a vertical tube; righting behavior), we found that monarchs display negative gravitaxis only (movement opposite to the direction of gravity). Negative gravitaxis can be modulated by either visual (light) or magnetic field cues (inclination angle) that provide directional information. The modulation of gravity-mediated responses, however, depends on the relationship between cues when presented during trials, such as when cues are in accord or in conflict. For example, when light cues that elicit positive phototaxis conflicted with negative gravitaxis (light from below the monarch), monarch gravisensation was unaffected by directional light cues. We also found that the antennae play a role in gravity-mediated movement (righting), as, with antennae removed, monarch movement behavior was no longer the same as when the antennae were intact. Our results demonstrate that monarchs can use and integrate multiple, multimodal cues for oriented movement, but that the use of such cues can be hierarchical (that is, one cue dominant for movement), and the hierarchy of cues, and the responses towards them when found together, depends on the physical relationships between cues during movement.
Collapse
Affiliation(s)
- Mitchell J. Kendzel
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Adam F. Parlin
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Patrick A. Guerra
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
4
|
Sharma Y, Jacobs JS, Sivan-Loukianova E, Lee E, Kernan MJ, Eberl DF. The retrograde IFT dynein is required for normal function of diverse mechanosensory cilia in Drosophila. Front Mol Neurosci 2023; 16:1263411. [PMID: 37808471 PMCID: PMC10556659 DOI: 10.3389/fnmol.2023.1263411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Cilia biogenesis relies on intraflagellar transport (IFT), a conserved transport mechanism which functions bi-directionally to bring protein complexes to the growing ciliary tip and recycle signaling and transport proteins between the cilium and cell body. In Drosophila, anterograde IFT is critical for assembly of sensory cilia in the neurons of both chordotonal (ch) organs, which have relatively long ciliary axonemes, and external sensory (es) organs, which have short axonemal segments with microtubules in distal sensory segments forming non-axonemal bundles. We previously isolated the beethoven (btv) mutant in a mutagenesis screen for auditory mutants. Although many btv mutant flies are deaf, some retain a small residual auditory function as determined both by behavior and by auditory electrophysiology. Results Here we molecularly characterize the btv gene and demonstrate that it encodes the IFT-associated dynein-2 heavy chain Dync2h1. We also describe morphological changes in Johnston's organ as flies age to 30 days, and we find that morphological and electrophysiological phenotypes in this ch organ of btv mutants become more severe with age. We show that NompB protein, encoding the conserved IFT88 protein, an IFT complex B component, fails to be cleared from chordotonal cilia in btv mutants, instead accumulating in the distorted cilia. In macrochaete bristles, a class of es organ, btv mutants show a 50% reduction in mechanoreceptor potentials. Discussion Thus, the btv-encoded Dync2h1 functions as the retrograde IFT motor in the assembly of long ciliary axonemes in ch organs and is also important for normal function of the short ciliary axonemes in es organs.
Collapse
Affiliation(s)
- Yashoda Sharma
- Department of Biology, The University of Iowa, Iowa City, IA, United States
| | - Julie S. Jacobs
- Department of Biology, The University of Iowa, Iowa City, IA, United States
| | | | - Eugene Lee
- Department of Neurobiology and Behavior, State University of New York, Stony Brook, NY, United States
| | - Maurice J. Kernan
- Department of Neurobiology and Behavior, State University of New York, Stony Brook, NY, United States
| | - Daniel F. Eberl
- Department of Biology, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
5
|
Nsamela A, Garcia Zintzun AI, Montenegro-Johnson TD, Simmchen J. Colloidal Active Matter Mimics the Behavior of Biological Microorganisms-An Overview. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202685. [PMID: 35971193 DOI: 10.1002/smll.202202685] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/18/2022] [Indexed: 06/15/2023]
Abstract
This article provides a review of the recent development of biomimicking behaviors in active colloids. While the behavior of biological microswimmers is undoubtedly influenced by physics, it is frequently guided and manipulated by active sensing processes. Understanding the respective influences of the surrounding environment can help to engineering the desired response also in artificial swimmers. More often than not, the achievement of biomimicking behavior requires the understanding of both biological and artificial microswimmers swimming mechanisms and the parameters inducing mechanosensory responses. The comparison of both classes of microswimmers provides with analogies in their dependence on fuels, interaction with boundaries and stimuli induced motion, or taxis.
Collapse
Affiliation(s)
- Audrey Nsamela
- Chair of Physical Chemistry, TU Dresden, 01069, Dresden, Germany
- Elvesys SAS, 172 Rue de Charonne, Paris, 75011, France
| | | | | | - Juliane Simmchen
- Chair of Physical Chemistry, TU Dresden, 01069, Dresden, Germany
| |
Collapse
|
6
|
Wang T, Zhang P, Ahmed Z, Gao G, Ali A, Lu Z. Settling Preference of Two Coexisting Aphid Species on the Adaxial and Abaxial Surfaces of Walnut Leaves. ENVIRONMENTAL ENTOMOLOGY 2022; 51:1069-1076. [PMID: 36201290 DOI: 10.1093/ee/nvac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 06/16/2023]
Abstract
Walnut dusky-veined aphid Panaphis juglandis (Goeze) and walnut green aphid Chromaphis juglandicola (Kaltenbach) cause economic losses and co-occur on walnut trees, but they have separate niche. Panaphis juglandis feeds on the upper (adaxial) surface of leaves while C. juglandicola feeds on the lower (abaxial) surface. Field surveys and controlled experiments in the field and laboratory were conducted to determine microhabitat selection by P. juglandis and C. juglandicola and the factors associated with this behavior. In the field, the two aphid species colonized a leaflet as follows: P. juglandis only, 16.5%; C. juglandicola only, 44.5%; and both species on same leaflet, 39%. C. juglandicola settled on the abaxial surface earlier than P. juglandis settled on the adaxial surface. P. juglandis showed the highest reproduction rate when they were in the erect position on the adaxial surface. C. juglandicola exhibited the highest reproduction rate when they were inverted and on the abaxial surface. Under a light intensity of 50,000 lux, 60.5% of C. juglandicola remained on the illuminated surface, while P. juglandis did not move from the illuminated surface. Through field and laboratory experiments, we found that P. juglandis preferred to settle on the adaxial surface and C. juglandicola preferred to settle on the abaxial surface. Leaf surface, gravity, and light were three physical factors affecting microhabitat selection by the two aphid species but light intensity was the key factor. This information will help to better understand the habitats of two aphid species, which may be helpful for walnut aphids management strategies such as the usage of insecticides option and spraying.
Collapse
Affiliation(s)
- Ting Wang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Ping Zhang
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Guizhen Gao
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Abid Ali
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Zhaozhi Lu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
7
|
Fowler EK, Leigh S, Rostant WG, Thomas A, Bretman A, Chapman T. Memory of social experience affects female fecundity via perception of fly deposits. BMC Biol 2022; 20:244. [PMID: 36310170 PMCID: PMC9620669 DOI: 10.1186/s12915-022-01438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/14/2022] [Indexed: 08/30/2023] Open
Abstract
Background Animals can exhibit remarkable reproductive plasticity in response to their social surroundings, with profound fitness consequences. The presence of same-sex conspecifics can signal current or future expected competition for resources or mates. Plastic responses to elevated sexual competition caused by exposure to same-sex individuals have been well-studied in males. However, much less is known about such plastic responses in females, whether this represents sexual or resource competition, or if it leads to changes in investment in mating behaviour and/or reproduction. Here, we used Drosophila melanogaster to measure the impact of experimentally varying female exposure to other females prior to mating on fecundity before and after mating. We then deployed physical and genetic methods to manipulate the perception of different social cues and sensory pathways and reveal the potential mechanisms involved. Results The results showed that females maintained in social isolation prior to mating were significantly more likely to retain unfertilised eggs before mating, but to show the opposite and lay significantly more fertilised eggs in the 24h after mating. More than 48h of exposure to other females was necessary for this social memory response to be expressed. Neither olfactory nor visual cues were involved in mediating fecundity plasticity—instead, the relevant cues were perceived through direct contact with the non-egg deposits left behind by other females. Conclusions The results demonstrate that females show reproductive plasticity in response to their social surroundings and can carry this memory of their social experience forward through mating. Comparisons of our results with previous work show that the nature of female plastic reproductive responses and the cues they use differ markedly from those of males. The results emphasise the deep divergence in how each sex realises its reproductive success. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01438-5.
Collapse
Affiliation(s)
- E. K. Fowler
- grid.8273.e0000 0001 1092 7967School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - S. Leigh
- grid.8273.e0000 0001 1092 7967School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - W. G. Rostant
- grid.8273.e0000 0001 1092 7967School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - A. Thomas
- grid.8273.e0000 0001 1092 7967School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - A. Bretman
- grid.9909.90000 0004 1936 8403School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - T. Chapman
- grid.8273.e0000 0001 1092 7967School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
8
|
Huang G, Dierick HA. The need for unbiased genetic screens to dissect aggression in Drosophila melanogaster. Front Behav Neurosci 2022; 16:901453. [PMID: 35979224 PMCID: PMC9377312 DOI: 10.3389/fnbeh.2022.901453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Aggression is an evolutionarily conserved behavior present in most animals and is necessary for survival when competing for limited resources and mating partners. Studies have shown that aggression is modulated both genetically and epigenetically, but details of how the molecular and cellular mechanisms interact to determine aggressive behavior remain to be elucidated. In recent decades, Drosophila melanogaster has emerged as a powerful model system to understand the mechanisms that regulate aggression. Surprisingly most of the findings discovered to date have not come from genetic screens despite the fly's long and successful history of using screens to unravel its biology. Here, we highlight the tools and techniques used to successfully screen for aggression-linked behavioral elements in Drosophila and discuss the potential impact future screens have in advancing our knowledge of the underlying genetic and neural circuits governing aggression.
Collapse
Affiliation(s)
- Gary Huang
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Herman A Dierick
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
9
|
Shegelski VA, Evenden ML, Huber DPW, Sperling FAH. Identification of genes and gene expression associated with dispersal capacity in the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). PeerJ 2021; 9:e12382. [PMID: 34754626 PMCID: PMC8555496 DOI: 10.7717/peerj.12382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Dispersal flights by the mountain pine beetle have allowed range expansion and major damage to pine stands in western Canada. We asked what the genetic and transcriptional basis of mountain pine beetle dispersal capacity is. Using flight mills, RNA-seq and a targeted association study, we compared strong-flying, weak-flying, and non-flying female beetles from the recently colonized northern end of their range. Nearly 3,000 genes were differentially expressed between strong and weak flying beetles, while weak fliers and nonfliers did not significantly differ. The differentially expressed genes were mainly associated with lipid metabolism, muscle maintenance, oxidative stress response, detoxification, endocrine function, and flight behavior. Three variant loci, two in the coding region of genes, were significantly associated with flight capacity but these genes had no known functional link to flight. Several differentially expressed gene systems may be important for sustained flight, while other systems are downregulated during dispersal and likely to conserve energy before host colonization. The candidate genes and SNPs identified here will inform further studies and management of mountain pine beetle, as well as contribute to understanding the mechanisms of insect dispersal flights.
Collapse
Affiliation(s)
- Victor A Shegelski
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Maya L Evenden
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Dezene P W Huber
- Faculty of Environment, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Felix A H Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Salim S, Banu A, Alwa A, Gowda SBM, Mohammad F. The gut-microbiota-brain axis in autism: what Drosophila models can offer? J Neurodev Disord 2021; 13:37. [PMID: 34525941 PMCID: PMC8442445 DOI: 10.1186/s11689-021-09378-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The idea that alterations in gut-microbiome-brain axis (GUMBA)-mediated communication play a crucial role in human brain disorders like autism remains a topic of intensive research in various labs. Gastrointestinal issues are a common comorbidity in patients with autism spectrum disorder (ASD). Although gut microbiome and microbial metabolites have been implicated in the etiology of ASD, the underlying molecular mechanism remains largely unknown. In this review, we have summarized recent findings in human and animal models highlighting the role of the gut-brain axis in ASD. We have discussed genetic and neurobehavioral characteristics of Drosophila as an animal model to study the role of GUMBA in ASD. The utility of Drosophila fruit flies as an amenable genetic tool, combined with axenic and gnotobiotic approaches, and availability of transgenic flies may reveal mechanistic insight into gut-microbiota-brain interactions and the impact of its alteration on behaviors relevant to neurological disorders like ASD.
Collapse
Affiliation(s)
- Safa Salim
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Ayesha Banu
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Amira Alwa
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Swetha B M Gowda
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar.
| |
Collapse
|
11
|
The Divider Assay is a high-throughput pipeline for aggression analysis in Drosophila. Commun Biol 2021; 4:85. [PMID: 33469118 PMCID: PMC7815768 DOI: 10.1038/s42003-020-01617-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Aggression is a complex social behavior that remains poorly understood. Drosophila has become a powerful model system to study the underlying biology of aggression but lack of high throughput screening and analysis continues to be a barrier for comprehensive mutant and circuit discovery. Here we developed the Divider Assay, a simplified experimental procedure to make aggression analysis in Drosophila fast and accurate. In contrast to existing methods, we can analyze aggression over long time intervals and in complete darkness. While aggression is reduced in the dark, flies are capable of intense fighting without seeing their opponent. Twenty-four-hour behavioral analysis showed a peak in fighting during the middle of the day, a drastic drop at night, followed by re-engagement with a further increase in aggression in anticipation of the next day. Our pipeline is easy to implement and will facilitate high throughput screening for mechanistic dissection of aggression.
Collapse
|
12
|
Zhou F, Green SR, Tsay M, Hsu S, Dibbs R, Beckingham KM. The roles of jim lovell and uninflatable in different endopolyploid larval tissues of Drosophila melanogaster. PLoS One 2020; 15:e0237662. [PMID: 32822370 PMCID: PMC7444548 DOI: 10.1371/journal.pone.0237662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/30/2020] [Indexed: 11/24/2022] Open
Abstract
The larvae of Drosophila melanogaster grow rapidly through use of a highly truncated cell cycle in which mitosis is entirely eliminated. The Drosophila homolog of the protooncogene transcription factor Myc plays a major role in promoting this endopolyploid (EP) growth. We have previously determined that the gene jim lovell (lov), which encodes a member of the BTB/POZ (Bric-a-brac, Tramtrack, Broad/Pox virus zinc finger) domain family of transcription factors, is also required for EP growth in one larval tissue, the trachea. Here we show that lov promotes EP growth in three further tissues indicating a fundamental role in this process. However, epistasis experiments revealed heterogeneity in lov's action in these tissues. Whereas in the tracheae and salivary glands lov acts downstream of Myc, in the fat body, reduced expression of lov does not impede the action of Myc, indicating an upstream action for the gene. We show here that lov's regulation of the gene uninflatable (uif) in the tracheae is a component of this difference. uif is required for tracheal EP growth downstream of Myc and lov but has no equivalent role in the fat body. Although Uif is a transmembrane component of the plasma membrane in the tracheae, its action downstream of Myc suggests an intracellular role for the protein in the tracheae. In addition to regulating uif expression in some tissues we also show that lov locates to the nucleolus, indicating it can function in both polymerase I and polymerase II transcriptional events. Our major finding is that tissue-specific mechanisms can interact with universal growth promotion by Myc to generate the individual endopolyploid organs of the larvae.
Collapse
Affiliation(s)
- Fanli Zhou
- Biosciences Dept, Rice University, Houston, Texas, United States of America
- Data Science Dept, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie R. Green
- Biosciences Dept, Rice University, Houston, Texas, United States of America
- McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, United States of America
| | - Michael Tsay
- Biosciences Dept, Rice University, Houston, Texas, United States of America
| | - Safina Hsu
- Biosciences Dept, Rice University, Houston, Texas, United States of America
- UTHealth School of Public Health, Houston, Texas, United States of America
| | - Rami Dibbs
- Biosciences Dept, Rice University, Houston, Texas, United States of America
- Louisiana State University School of Medicine, New Orleans, Louisiana, United States of America
| | | |
Collapse
|
13
|
Gomulski LM, Manni M, Carraretto D, Nolan T, Lawson D, Ribeiro JM, Malacrida AR, Gasperi G. Transcriptional variation of sensory-related genes in natural populations of Aedes albopictus. BMC Genomics 2020; 21:547. [PMID: 32767966 PMCID: PMC7430840 DOI: 10.1186/s12864-020-06956-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/27/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The Asian tiger mosquito, Aedes albopictus, is a highly dangerous invasive vector of numerous medically important arboviruses including dengue, chikungunya and Zika. In four decades it has spread from tropical Southeast Asia to many parts of the world in both tropical and temperate climes. The rapid invasion process of this mosquito is supported by its high ecological and genetic plasticity across different life history traits. Our aim was to investigate whether wild populations, both native and adventive, also display transcriptional genetic variability for functions that may impact their biology, behaviour and ability to transmit arboviruses, such as sensory perception. RESULTS Antennal transcriptome data were derived from mosquitoes from a native population from Ban Rai, Thailand and from three adventive Mediterranean populations: Athens, Greece and Arco and Trento from Italy. Clear inter-population differential transcriptional activity was observed in different gene categories related to sound perception, olfaction and viral infection. The greatest differences were detected between the native Thai and the Mediterranean populations. The two Italian populations were the most similar. Nearly one million quality filtered SNP loci were identified. CONCLUSION The ability to express this great inter-population transcriptional variability highlights, at the functional level, the remarkable genetic flexibility of this mosquito species. We can hypothesize that the differential expression of genes, including those involved in sensory perception, in different populations may enable Ae. albopictus to exploit different environments and hosts, thus contributing to its status as a global vector of arboviruses of public health importance. The large number of SNP loci present in these transcripts represents a useful addition to the arsenal of high-resolution molecular markers and a resource that can be used to detect selective pressure and adaptive changes that may have occurred during the colonization process.
Collapse
Affiliation(s)
- Ludvik M Gomulski
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Mosè Manni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Davide Carraretto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Tony Nolan
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Daniel Lawson
- Department of Life Sciences, Imperial College London, London, UK
| | - José M Ribeiro
- NIAID, Laboratory of Malaria and Vector Research, NIH, Rockville, MD, 20852, USA
| | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Giuliano Gasperi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
14
|
Singh MD, Jensen M, Lasser M, Huber E, Yusuff T, Pizzo L, Lifschutz B, Desai I, Kubina A, Yennawar S, Kim S, Iyer J, Rincon-Limas DE, Lowery LA, Girirajan S. NCBP2 modulates neurodevelopmental defects of the 3q29 deletion in Drosophila and Xenopus laevis models. PLoS Genet 2020; 16:e1008590. [PMID: 32053595 PMCID: PMC7043793 DOI: 10.1371/journal.pgen.1008590] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/26/2020] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
The 1.6 Mbp deletion on chromosome 3q29 is associated with a range of neurodevelopmental disorders, including schizophrenia, autism, microcephaly, and intellectual disability. Despite its importance towards neurodevelopment, the role of individual genes, genetic interactions, and disrupted biological mechanisms underlying the deletion have not been thoroughly characterized. Here, we used quantitative methods to assay Drosophila melanogaster and Xenopus laevis models with tissue-specific individual and pairwise knockdown of 14 homologs of genes within the 3q29 region. We identified developmental, cellular, and neuronal phenotypes for multiple homologs of 3q29 genes, potentially due to altered apoptosis and cell cycle mechanisms during development. Using the fly eye, we screened for 314 pairwise knockdowns of homologs of 3q29 genes and identified 44 interactions between pairs of homologs and 34 interactions with other neurodevelopmental genes. Interestingly, NCBP2 homologs in Drosophila (Cbp20) and X. laevis (ncbp2) enhanced the phenotypes of homologs of the other 3q29 genes, leading to significant increases in apoptosis that disrupted cellular organization and brain morphology. These cellular and neuronal defects were rescued with overexpression of the apoptosis inhibitors Diap1 and xiap in both models, suggesting that apoptosis is one of several potential biological mechanisms disrupted by the deletion. NCBP2 was also highly connected to other 3q29 genes in a human brain-specific interaction network, providing support for the relevance of our results towards the human deletion. Overall, our study suggests that NCBP2-mediated genetic interactions within the 3q29 region disrupt apoptosis and cell cycle mechanisms during development. Rare copy-number variants, or large deletions and duplications in the genome, are associated with a wide range of neurodevelopmental disorders. The 3q29 deletion confers an increased risk for schizophrenia and autism. To understand the conserved biological mechanisms that are disrupted by this deletion, we systematically tested 14 individual homologs and 314 pairwise interactions of 3q29 genes for neuronal, cellular, and developmental phenotypes in Drosophila melanogaster and Xenopus laevis models. We found that multiple homologs of genes within the deletion region contribute towards developmental defects, such as larval lethality and disrupted cellular organization. Interestingly, we found that NCBP2 acts as a key modifier gene within the region, enhancing the developmental phenotypes of each of the homologs for other 3q29 genes and leading to disruptions in apoptosis and cell cycle pathways. Our results suggest that multiple genes within the 3q29 region interact with each other through shared mechanisms and jointly contribute to neurodevelopmental defects.
Collapse
Affiliation(s)
- Mayanglambam Dhruba Singh
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew Jensen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Micaela Lasser
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Emily Huber
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Tanzeen Yusuff
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Lucilla Pizzo
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Brian Lifschutz
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Inshya Desai
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Alexis Kubina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sneha Yennawar
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sydney Kim
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Janani Iyer
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Laura Anne Lowery
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts, United States of America
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
15
|
Olesnicky EC, Antonacci S, Popitsch N, Lybecker MC, Titus MB, Valadez R, Derkach PG, Marean A, Miller K, Mathai SK, Killian DJ. Shep interacts with posttranscriptional regulators to control dendrite morphogenesis in sensory neurons. Dev Biol 2018; 444:116-128. [PMID: 30352216 DOI: 10.1016/j.ydbio.2018.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/20/2018] [Accepted: 09/09/2018] [Indexed: 10/28/2022]
Abstract
RNA binding proteins (RBPs) mediate posttranscriptional gene regulatory events throughout development. During neurogenesis, many RBPs are required for proper dendrite morphogenesis within Drosophila sensory neurons. Despite their fundamental role in neuronal morphogenesis, little is known about the molecular mechanisms in which most RBPs participate during neurogenesis. In Drosophila, alan shepard (shep) encodes a highly conserved RBP that regulates dendrite morphogenesis in sensory neurons. Moreover, the C. elegans ortholog sup-26 has also been implicated in sensory neuron dendrite morphogenesis. Nonetheless, the molecular mechanism by which Shep/SUP-26 regulate dendrite development is not understood. Here we show that Shep interacts with the RBPs Trailer Hitch (Tral), Ypsilon schachtel (Yps), Belle (Bel), and Poly(A)-Binding Protein (PABP), to direct dendrite morphogenesis in Drosophila sensory neurons. Moreover, we identify a conserved set of Shep/SUP-26 target RNAs that include regulators of cell signaling, posttranscriptional gene regulators, and known regulators of dendrite development.
Collapse
Affiliation(s)
- Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States.
| | - Simona Antonacci
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| | - Niko Popitsch
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, A-1090 Vienna, Austria
| | - Meghan C Lybecker
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States
| | - M Brandon Titus
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States
| | - Racquel Valadez
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States
| | - Paul G Derkach
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States
| | - Amber Marean
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| | - Katherine Miller
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| | - Samuel K Mathai
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| | - Darrell J Killian
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| |
Collapse
|
16
|
Insight into Notch Signaling Steps That Involve pecanex from Dominant-Modifier Screens in Drosophila. Genetics 2018; 209:1099-1119. [PMID: 29853475 DOI: 10.1534/genetics.118.300935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/22/2018] [Indexed: 12/14/2022] Open
Abstract
Notch signaling plays crucial roles in intercellular communications. In Drosophila, the pecanex (pcx) gene, which encodes an evolutionarily conserved multi-pass transmembrane protein, appears to be required to activate Notch signaling in some contexts, especially during neuroblast segregation in the neuroectoderm. Although Pcx has been suggested to contribute to endoplasmic reticulum homeostasis, its functions remain unknown. Here, to elucidate these roles, we performed genetic modifier screens of pcx We found that pcx heterozygotes lacking its maternal contribution exhibit cold-sensitive lethality, which is attributed to a reduction in Notch signaling at decreased temperatures. Using sets of deletions that uncover most of the second and third chromosomes, we identified four enhancers and two suppressors of the pcx cold-sensitive lethality. Among these, five genes encode known Notch-signaling components: big brain, Delta (Dl), neuralized (neur), Brother of Bearded A (BobA), a member of the Bearded (Brd) family, and N-ethylmaleimide-sensitive factor 2 (Nsf2). We showed that BobA suppresses Dl endocytosis during neuroblast segregation in the neuroectoderm, as Brd family genes reportedly do in the mesoderm for mesectoderm specification. Analyses of Nsf2, a key regulator of vesicular fusion, suggested a novel role in neuroblast segregation, which is distinct from Nsf2's previously reported role in imaginal tissues. Finally, jim lovell, which encodes a potential transcription factor, may play a role in Notch signaling during neuroblast segregation. These results reveal new research avenues for Pcx functions and Notch signaling.
Collapse
|
17
|
Baggett V, Mishra A, Kehrer AL, Robinson AO, Shaw P, Zars T. Place learning overrides innate behaviors in Drosophila. ACTA ACUST UNITED AC 2018; 25:122-128. [PMID: 29449456 PMCID: PMC5817280 DOI: 10.1101/lm.046136.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/19/2017] [Indexed: 11/24/2022]
Abstract
Animals in a natural environment confront many sensory cues. Some of these cues bias behavioral decisions independent of experience, and action selection can reveal a stimulus–response (S–R) connection. However, in a changing environment it would be a benefit for an animal to update behavioral action selection based on experience, and learning might modify even strong S–R relationships. How animals use learning to modify S–R relationships is a largely open question. Three sensory stimuli, air, light, and gravity sources were presented to individual Drosophila melanogaster in both naïve and place conditioning situations. Flies were tested for a potential modification of the S–R relationships of anemotaxis, phototaxis, and negative gravitaxis by a contingency that associated place with high temperature. With two stimuli, significant S–R relationships were abandoned when the cue was in conflict with the place learning contingency. The role of the dunce (dnc) cAMP-phosphodiesterase and the rutabaga (rut) adenylyl cyclase were examined in all conditions. Both dnc1 and rut2080 mutant flies failed to display significant S–R relationships with two attractive cues, and have characteristically lower conditioning scores under most conditions. Thus, learning can have profound effects on separate native S–R relationships in multiple contexts, and mutation of the dnc and rut genes reveal complex effects on behavior.
Collapse
Affiliation(s)
- Vincent Baggett
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Aditi Mishra
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Abigail L Kehrer
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Abbey O Robinson
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Paul Shaw
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Troy Zars
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
18
|
Mishra A, Salari A, Berigan BR, Miguel KC, Amirshenava M, Robinson A, Zars BC, Lin JL, Milescu LS, Milescu M, Zars T. The Drosophila Gr28bD product is a non-specific cation channel that can be used as a novel thermogenetic tool. Sci Rep 2018; 8:901. [PMID: 29343813 PMCID: PMC5772361 DOI: 10.1038/s41598-017-19065-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/21/2017] [Indexed: 11/23/2022] Open
Abstract
Extrinsic control of single neurons and neuronal populations is a powerful approach for understanding how neural circuits function. Adding new thermogenetic tools to existing optogenetic and other forms of intervention will increase the complexity of questions that can be addressed. A good candidate for developing new thermogenetic tools is the Drosophila gustatory receptor family, which has been implicated in high-temperature avoidance behavior. We examined the five members of the Gr28b gene cluster for temperature-dependent properties via three approaches: biophysical characterization in Xenopus oocytes, functional calcium imaging in Drosophila motor neurons, and behavioral assays in adult Drosophila. Our results show that Gr28bD expression in Xenopus oocytes produces a non-specific cationic current that is activated by elevated temperatures. This current is non-inactivating and non-voltage dependent. When expressed in Drosophila motor neurons, Gr28bD can be used to change the firing pattern of individual cells in a temperature-dependent fashion. Finally, we show that pan-neuronal or motor neuron expression of Gr28bD can be used to alter fruit fly behavior with elevated temperatures. Together, these results validate the potential of the Gr28bD gene as a founding member of a new class of thermogenetic tools.
Collapse
Affiliation(s)
- Aditi Mishra
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Autoosa Salari
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Benton R Berigan
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Kayla C Miguel
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Marzie Amirshenava
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Abbey Robinson
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Benjamin C Zars
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jenna L Lin
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Lorin S Milescu
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Mirela Milescu
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Troy Zars
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
19
|
Chen D, Dale RK, Lei EP. Shep regulates Drosophila neuronal remodeling by controlling transcription of its chromatin targets. Development 2018; 145:dev.154047. [PMID: 29158441 DOI: 10.1242/dev.154047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 11/07/2017] [Indexed: 11/20/2022]
Abstract
Neuronal remodeling is crucial for formation of the mature nervous system and disruption of this process can lead to neuropsychiatric diseases. Global gene expression changes in neurons during remodeling as well as the factors that regulate these changes remain poorly defined. To elucidate this process, we performed RNA-seq on isolated Drosophila larval and pupal neurons and found upregulated synaptic signaling and downregulated gene expression regulators as a result of normal neuronal metamorphosis. We further tested the role of alan shepard (shep), which encodes an evolutionarily conserved RNA-binding protein required for proper neuronal remodeling. Depletion of shep in neurons prevents the execution of metamorphic gene expression patterns, and shep-regulated genes correspond to Shep chromatin and/or RNA-binding targets. Reduced expression of a Shep-inhibited target gene that we identified, brat, is sufficient to rescue neuronal remodeling defects of shep knockdown flies. Our results reveal direct regulation of transcriptional programs by Shep to regulate neuronal remodeling during metamorphosis.
Collapse
Affiliation(s)
- Dahong Chen
- Nuclear Organization and Gene Expression Section, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan K Dale
- Nuclear Organization and Gene Expression Section, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elissa P Lei
- Nuclear Organization and Gene Expression Section, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Hall H, Medina P, Cooper DA, Escobedo SE, Rounds J, Brennan KJ, Vincent C, Miura P, Doerge R, Weake VM. Transcriptome profiling of aging Drosophila photoreceptors reveals gene expression trends that correlate with visual senescence. BMC Genomics 2017; 18:894. [PMID: 29162050 PMCID: PMC5698953 DOI: 10.1186/s12864-017-4304-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Aging is associated with functional decline of neurons and increased incidence of both neurodegenerative and ocular disease. Photoreceptor neurons in Drosophila melanogaster provide a powerful model for studying the molecular changes involved in functional senescence of neurons since decreased visual behavior precedes retinal degeneration. Here, we sought to identify gene expression changes and the genomic features of differentially regulated genes in photoreceptors that contribute to visual senescence. RESULTS To identify gene expression changes that could lead to visual senescence, we characterized the aging transcriptome of Drosophila sensory neurons highly enriched for photoreceptors. We profiled the nuclear transcriptome of genetically-labeled photoreceptors over a 40 day time course and identified increased expression of genes involved in stress and DNA damage response, and decreased expression of genes required for neuronal function. We further show that combinations of promoter motifs robustly identify age-regulated genes, suggesting that transcription factors are important in driving expression changes in aging photoreceptors. However, long, highly expressed and heavily spliced genes are also more likely to be downregulated with age, indicating that other mechanisms could contribute to expression changes at these genes. Lastly, we identify that circular RNAs (circRNAs) strongly increase during aging in photoreceptors. CONCLUSIONS Overall, we identified changes in gene expression in aging Drosophila photoreceptors that could account for visual senescence. Further, we show that genomic features predict these age-related changes, suggesting potential mechanisms that could be targeted to slow the rate of age-associated visual decline.
Collapse
Affiliation(s)
- Hana Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Patrick Medina
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Daphne A Cooper
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | - Spencer E Escobedo
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jeremiah Rounds
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Kaelan J Brennan
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Pedro Miura
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | | | - Vikki M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA. .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, 47907, USA.
| |
Collapse
|
21
|
Regulatory Mechanisms of Metamorphic Neuronal Remodeling Revealed Through a Genome-Wide Modifier Screen in Drosophila melanogaster. Genetics 2017; 206:1429-1443. [PMID: 28476867 PMCID: PMC5500141 DOI: 10.1534/genetics.117.200378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/28/2017] [Indexed: 02/01/2023] Open
Abstract
During development, neuronal remodeling shapes neuronal connections to establish fully mature and functional nervous systems. Our previous studies have shown that the RNA-binding factor alan shepard (shep) is an important regulator of neuronal remodeling during metamorphosis in Drosophila melanogaster, and loss of shep leads to smaller soma size and fewer neurites in a stage-dependent manner. To shed light on the mechanisms by which shep regulates neuronal remodeling, we conducted a genetic modifier screen for suppressors of shep-dependent wing expansion defects and cellular morphological defects in a set of peptidergic neurons, the bursicon neurons, that promote posteclosion wing expansion. Out of 702 screened deficiencies that covered 86% of euchromatic genes, we isolated 24 deficiencies as candidate suppressors, and 12 of them at least partially suppressed morphological defects in shep mutant bursicon neurons. With RNA interference and mutant alleles of individual genes, we identified Daughters against dpp (Dad) and Olig family (Oli) as shep suppressor genes, and both of them restored the adult cellular morphology of shep-depleted bursicon neurons. Dad encodes an inhibitory Smad protein that inhibits bone morphogenetic protein (BMP) signaling, raising the possibility that shep interacted with BMP signaling through antagonism of Dad. By manipulating expression of the BMP receptor tkv, we found that activated BMP signaling was sufficient to rescue loss-of-shep phenotypes. These findings reveal mechanisms of shep regulation during neuronal development, and they highlight a novel genetic shep interaction with the BMP signaling pathway that controls morphogenesis in mature, terminally differentiated neurons during metamorphosis.
Collapse
|
22
|
Pervasive Behavioral Effects of MicroRNA Regulation in Drosophila. Genetics 2017; 206:1535-1548. [PMID: 28468905 PMCID: PMC5500149 DOI: 10.1534/genetics.116.195776] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/23/2017] [Indexed: 11/18/2022] Open
Abstract
Picao-Osorio et al. reveal pervasive effects of microRNA regulation on complex locomotor behaviors in Drosophila larvae: over 40% of microRNAs display... The effects of microRNA (miRNA) regulation on the genetic programs underlying behavior remain largely unexplored. Despite this, recent work in Drosophila shows that mutation of a single miRNA locus (miR-iab4/iab8) affects the capacity of the larva to correct its orientation if turned upside down (self-righting, SR), suggesting that other miRNAs might also be involved in behavioral control. Here we explore this possibility, studying early larval SR behavior in a collection of 81 Drosophila miRNA mutants covering almost the entire miRNA complement of the late embryo. Unexpectedly, we observe that >40% of all miRNAs tested significantly affect SR time, revealing pervasive behavioral effects of miRNA regulation in the early larva. Detailed analyses of those miRNAs affecting SR behavior (SR-miRNAs) show that individual miRNAs can affect movement in different ways, suggesting that specific molecular and cellular elements are affected by individual miRNA mutations. Furthermore, gene expression analysis shows that the Hox gene Abdominal-B (Abd-B) represents one of the targets deregulated by several SR-miRNAs. Our work thus reveals pervasive effects of miRNA regulation on a complex innate behavior in Drosophila and suggests that miRNAs may be core components of the genetic programs underlying behavioral control in other animals too.
Collapse
|
23
|
Beasley V, Dowse H. Suppression of Tryptophan 2,3-Dioxygenase Produces a Slow Heartbeat Phenotype in Drosophila melanogaster. ACTA ACUST UNITED AC 2017; 325:651-664. [PMID: 28127944 DOI: 10.1002/jez.2057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/23/2016] [Accepted: 12/01/2016] [Indexed: 12/27/2022]
Abstract
The primary pathway utilizing tryptophan leads initially to kynurenine before branching. Products include nicotinamide adenine dinucleotide and important pigments in the eye. Products in this pathway have been linked to a number of pathologies. The gene encoding the first step in this pathway, tryptophan 2,3-dioxegenase, is encoded by the gene vermilion, initially discovered in Drosophila. In the fly, v is an important eye color marker, but is found to have multiple pleiotropic effects. We have uncovered significant effects of this mutation on the fly heart. The heart beats more slowly and more rhythmically in both males and females and in strains which we have outcrossed. In addition, the fly heart normally beats irregularly with multiple brief stoppages, and the time structure of these stoppages, as investigated by looking at interbeat intervals, is changed in flies bearing this mutation. Fewer flies bearing the v1 mutation show long hiatuses in beat compared to wild type, however, in some strains of the mutant animals that do, the number of stoppages in much greater and the mean duration is longer.
Collapse
Affiliation(s)
- Vernon Beasley
- School of Biology and Ecology, University of Maine, Orono, Maine
| | - Harold Dowse
- School of Biology and Ecology, University of Maine, Orono, Maine.,Department of Mathematics and Statistics, University of Maine, Orono, Maine
| |
Collapse
|
24
|
Busto GU, Guven-Ozkan T, Chakraborty M, Davis RL. Developmental inhibition of miR-iab8-3p disrupts mushroom body neuron structure and adult learning ability. Dev Biol 2016; 419:237-249. [PMID: 27634569 PMCID: PMC5204246 DOI: 10.1016/j.ydbio.2016.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/08/2016] [Accepted: 09/10/2016] [Indexed: 01/15/2023]
Abstract
MicroRNAs are small non-coding RNAs that inhibit protein expression post-transcriptionally. They have been implicated in many different physiological processes, but little is known about their individual involvement in learning and memory. We recently identified several miRNAs that either increased or decreased intermediate-term memory when inhibited in the central nervous system, including miR-iab8-3p. We report here a new developmental role for this miRNA. Blocking the expression of miR-iab8-3p during the development of the organism leads to hypertrophy of individual mushroom body neuron soma, a reduction in the field size occupied by axonal projections, and adult intellectual disability. We further identified four potential mRNA targets of miR-iab8-3p whose inhibition modulates intermediate-term memory including ceramide phosphoethanolamine synthase, which may account for the behavioral effects produced by miR-iab8-3p inhibition. Our results offer important new information on a microRNA required for normal neurodevelopment and the capacity to learn and remember normally.
Collapse
Affiliation(s)
- Germain U Busto
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter FL 33458, USA.
| | - Tugba Guven-Ozkan
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter FL 33458, USA
| | - Molee Chakraborty
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter FL 33458, USA
| | - Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter FL 33458, USA.
| |
Collapse
|
25
|
Zhou F, Qiang KM, Beckingham KM. Failure to Burrow and Tunnel Reveals Roles for jim lovell in the Growth and Endoreplication of the Drosophila Larval Tracheae. PLoS One 2016; 11:e0160233. [PMID: 27494251 PMCID: PMC4975476 DOI: 10.1371/journal.pone.0160233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022] Open
Abstract
The Drosophila protein Jim Lovell (Lov) is a putative transcription factor of the BTB/POZ (Bric- a-Brac/Tramtrack/Broad/ Pox virus and Zinc finger) domain class that is expressed in many elements of the developing larval nervous system. It has roles in innate behaviors such as larval locomotion and adult courtship. In performing tissue-specific knockdown with the Gal4-UAS system we identified a new behavioral phenotype for lov: larvae failed to burrow into their food during their growth phase and then failed to tunnel into an agarose substratum during their wandering phase. We determined that these phenotypes originate in a previously unrecognized role for lov in the tracheae. By using tracheal-specific Gal4 lines, Lov immunolocalization and a lov enhancer trap line, we established that lov is normally expressed in the tracheae from late in embryogenesis through larval life. Using an assay that monitors food burrowing, substrate tunneling and death we showed that lov tracheal knockdown results in tracheal fluid-filling, producing hypoxia that activates the aberrant behaviors and inhibits development. We investigated the role of lov in the tracheae that initiates this sequence of events. We discovered that when lov levels are reduced, the tracheal cells are smaller, more numerous and show lower levels of endopolyploidization. Together our findings indicate that Lov is necessary for tracheal endoreplicative growth and that its loss in this tissue causes loss of tracheal integrity resulting in chronic hypoxia and abnormal burrowing and tunneling behavior.
Collapse
Affiliation(s)
- Fanli Zhou
- Department of Biosciences, Rice University, Houston, Texas, 77005, United States of America
| | - Karen M. Qiang
- Department of Biosciences, Rice University, Houston, Texas, 77005, United States of America
| | - Kathleen M. Beckingham
- Department of Biosciences, Rice University, Houston, Texas, 77005, United States of America
- * E-mail:
| |
Collapse
|
26
|
Zhang Y, Wang XX, Jing X, Tian HG, Liu TX. Winged Pea Aphids Can Modify Phototaxis in Different Development Stages to Assist Their Host Distribution. Front Physiol 2016; 7:307. [PMID: 27531980 PMCID: PMC4969297 DOI: 10.3389/fphys.2016.00307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Abstract
The pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), shows wing polyphenism (winged and wingless morphs) in its life cycle. The winged morph is adapted for dispersal; its two developmental adult stages (for dispersal and reproduction) are based on its breeding periods. The two morphs show different phototactic behavior and the winged can change its preference to light according to the developmental stages. To determine the mechanism and ecological functions of phototaxis for A. pisum, we first investigated the phototaxis of the two aphid morphs at different stages and analyzed the phototactic response to lights of different wavelengths; the correlation between alate fecundity and their phototactic behaviors were then studied. Finally, we focused on the possible functions of phototaxis in aphid host location and distribution in combination with gravitaxis behaviors. Negative phototaxis was found for breeding winged adults but all the other stages of both winged and wingless morphs showed positive phototaxis. The reactions of the aphids to different wavelengths were also different. Nymph production in winged adults showed negative correlation to phototaxis. The dopamine pathway was possibly involved in these behavior modifications. We speculated that winged adults can use light for dispersal in the early dispersal stage and for position holding in the breeding stage. Based on our results, we assume that light signals are important for aphid dispersal and distribution, and are also essential for the pea aphids to cope with environmental changes.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Xing-Xing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Xiangfeng Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Hong-Gang Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F UniversityYangling, China
| |
Collapse
|
27
|
Circadian and Geotactic Behaviors: Genetic Pleiotropy in Drosophila Melanogaster. J Circadian Rhythms 2016; 14:5. [PMID: 30210553 PMCID: PMC5356207 DOI: 10.5334/jcr.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Data presented in this paper test the hypotheses that Hirsch’s positive geotaxis (Lo) and negative geotaxis (Hi5) strains of Drosophila melanogaster (fruit fly) differ in length of the free-running circadian activity period (tau) as well as adult geotaxis. Several genes have been shown to alter geotaxis in Drosophila. Two of these genes, cryptochrome (cry) and Pigment-dispersing-factor (Pdf) are integral to the function of biological clocks. Pdf plays a crucial role in maintaining free-running circadian periods. The cry gene alters blue-light (<420 nm) phototransduction which affects biological clocks, spatial orientation and taxis relative to gravity, magnetic fields, solar, lunar, and celestial radiation in several species. The cry gene is involved in phase resetting (entrainment) of the circadian clock by blue light (<420 nm). Geotaxis involves spatial orientation, so it might be expected that geotaxis is linked genetically with other forms of spatial orientation. The association between geotaxis and biological clocks is less intuitive. The data and the literature presented here show that genes, physiology and behavioural aspects of geotaxis, biological clocks, magnetosensitivity and other types of spatial orientation, are complex, intriguing and interrelated.
Collapse
|
28
|
Bae JE, Bang S, Min S, Lee SH, Kwon SH, Lee Y, Lee YH, Chung J, Chae KS. Positive geotactic behaviors induced by geomagnetic field in Drosophila. Mol Brain 2016; 9:55. [PMID: 27192976 PMCID: PMC4870802 DOI: 10.1186/s13041-016-0235-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/18/2022] Open
Abstract
Background Appropriate vertical movement is critical for the survival of flying animals. Although negative geotaxis (moving away from Earth) driven by gravity has been extensively studied, much less is understood concerning a static regulatory mechanism for inducing positive geotaxis (moving toward Earth). Results Using Drosophila melanogaster as a model organism, we showed that geomagnetic field (GMF) induces positive geotaxis and antagonizes negative gravitaxis. Remarkably, GMF acts as a sensory cue for an appetite-driven associative learning behavior through the GMF-induced positive geotaxis. This GMF-induced positive geotaxis requires the three geotaxis genes, such as cry, pyx and pdf, and the corresponding neurons residing in Johnston’s organ of the fly’s antennae. Conclusions These findings provide a novel concept with the neurogenetic basis on the regulation of vertical movement by GMF in the flying animals. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0235-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ji-Eun Bae
- Department of Biology Education, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Korea.,Department of Nanoscience & Nanotechnology, Kyungpook National University, Daegu, Korea
| | - Sunhoe Bang
- National Creative Research Initiatives Center for Energy Homeostasis Regulation, Institute of Molecular Biology and Genetics and School of Biological Sciences, Seoul National University, Seoul, 151-742, Korea
| | - Soohong Min
- National Creative Research Initiatives Center for Energy Homeostasis Regulation, Institute of Molecular Biology and Genetics and School of Biological Sciences, Seoul National University, Seoul, 151-742, Korea
| | - Sang-Hyup Lee
- Department of Biology Education, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Korea
| | - Soon-Hwan Kwon
- Department of Biology Education, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, Korea
| | - Yong-Ho Lee
- Brain and Cognition Measurement Laboratory, Korea Research Institute of Standards and Science, Daejeon, Korea
| | - Jongkyeong Chung
- National Creative Research Initiatives Center for Energy Homeostasis Regulation, Institute of Molecular Biology and Genetics and School of Biological Sciences, Seoul National University, Seoul, 151-742, Korea.
| | - Kwon-Seok Chae
- Department of Biology Education, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Korea. .,Department of Nanoscience & Nanotechnology, Kyungpook National University, Daegu, Korea. .,Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
29
|
Božičević V, Hutter S, Stephan W, Wollstein A. Population genetic evidence for cold adaptation in European Drosophila melanogaster populations. Mol Ecol 2016; 25:1175-91. [PMID: 26558479 DOI: 10.1111/mec.13464] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 01/05/2023]
Abstract
We studied Drosophila melanogaster populations from Europe (the Netherlands and France) and Africa (Rwanda and Zambia) to uncover genetic evidence of adaptation to cold. We present here four lines of evidence for genes involved in cold adaptation from four perspectives: (i) the frequency of SNPs at genes previously known to be associated with chill-coma recovery time (CCRT), startle reflex (SR) and resistance to starvation stress (RSS) vary along environmental gradients and therefore among populations; (ii) SNPs of genes that correlate significantly with latitude and altitude in African and European populations overlap with SNPs that correlate with a latitudinal cline from North America; (iii) at the genomewide level, the top candidate genes are enriched in gene ontology (GO) terms that are related to cold tolerance; (iv) GO enriched terms from North American clinal genes overlap significantly with those from Africa and Europe. Each SNP was tested in 10 independent runs of Bayenv2, using the median Bayes factors to ascertain candidate genes. None of the candidate genes were found close to the breakpoints of cosmopolitan inversions, and only four candidate genes were linked to QTLs related to CCRT. To overcome the limitation that we used only four populations to test correlations with environmental gradients, we performed simulations to estimate the power of our approach for detecting selection. Based on our results, we propose a novel network of genes that is involved in cold adaptation.
Collapse
Affiliation(s)
- Vedran Božičević
- Section of Evolutionary Biology, Department of Biology II, University of Munich, D-82152, Planegg-Martinsried, Germany
| | - Stephan Hutter
- Section of Evolutionary Biology, Department of Biology II, University of Munich, D-82152, Planegg-Martinsried, Germany
| | - Wolfgang Stephan
- Section of Evolutionary Biology, Department of Biology II, University of Munich, D-82152, Planegg-Martinsried, Germany
| | - Andreas Wollstein
- Section of Evolutionary Biology, Department of Biology II, University of Munich, D-82152, Planegg-Martinsried, Germany
| |
Collapse
|
30
|
Brooks AN, Duff MO, May G, Yang L, Bolisetty M, Landolin J, Wan K, Sandler J, Booth BW, Celniker SE, Graveley BR, Brenner SE. Regulation of alternative splicing in Drosophila by 56 RNA binding proteins. Genome Res 2015; 25:1771-80. [PMID: 26294686 PMCID: PMC4617972 DOI: 10.1101/gr.192518.115] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/19/2015] [Indexed: 12/26/2022]
Abstract
Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected the splicing of pre-mRNAs encoding other splicing regulators. This large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs.
Collapse
Affiliation(s)
- Angela N Brooks
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA; Broad Institute, Cambridge, Massachusetts 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Michael O Duff
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Gemma May
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Li Yang
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Mohan Bolisetty
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Jane Landolin
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ken Wan
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jeremy Sandler
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Benjamin W Booth
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Susan E Celniker
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Steven E Brenner
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
31
|
Schachtner LT, Sola IE, Forand D, Antonacci S, Postovit AJ, Mortimer NT, Killian DJ, Olesnicky EC. Drosophila Shep and C. elegans SUP-26 are RNA-binding proteins that play diverse roles in nervous system development. Dev Genes Evol 2015; 225:319-30. [PMID: 26271810 DOI: 10.1007/s00427-015-0514-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/03/2015] [Indexed: 12/14/2022]
Abstract
The Caenorhabditis elegans gene sup-26 encodes a well-conserved RNA-recognition motif-containing RNA-binding protein (RBP) that functions in dendrite morphogenesis of the PVD sensory neuron. The Drosophila ortholog of sup-26, alan shepard (shep), is expressed throughout the nervous system and has been shown to regulate neuronal remodeling during metamorphosis. Here, we extend these studies to show that sup-26 and shep are required for the development of diverse cell types within the nematode and fly nervous systems during embryonic and larval stages. We ascribe roles for sup-26 in regulating dendrite number and the expression of genes involved in mechanosensation within the nematode peripheral nervous system. We also find that in Drosophila, shep regulates dendrite length and branch order of nociceptive neurons, regulates the organization of neuronal clusters of the peripheral nervous system and the organization of axons within the ventral nerve cord. Taken together, our results suggest that shep/sup-26 orthologs play diverse roles in neural development across animal species. Moreover, we discuss potential roles for shep/sup-26 orthologs in the human nervous system.
Collapse
Affiliation(s)
- Logan T Schachtner
- Department of Biology, University of Colorado at Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO, 80918, USA
| | - Ismail E Sola
- Department of Biology, University of Colorado at Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO, 80918, USA
| | - Daniel Forand
- Department of Biology, University of Colorado at Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO, 80918, USA
| | - Simona Antonacci
- Department of Molecular Biology, Colorado College, 14 East Cache La Poudre Street, Colorado Springs, CO, 80903, USA
| | - Adam J Postovit
- Department of Biology, University of Colorado at Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO, 80918, USA
| | - Nathan T Mortimer
- Department of Biological Sciences, University of Denver, Denver, CO, 80208, USA.,School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Darrell J Killian
- Department of Molecular Biology, Colorado College, 14 East Cache La Poudre Street, Colorado Springs, CO, 80903, USA.
| | - Eugenia C Olesnicky
- Department of Biology, University of Colorado at Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO, 80918, USA.
| |
Collapse
|
32
|
Neuronal remodeling during metamorphosis is regulated by the alan shepard (shep) gene in Drosophila melanogaster. Genetics 2014; 197:1267-83. [PMID: 24931409 DOI: 10.1534/genetics.114.166181] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peptidergic neurons are a group of neuronal cells that synthesize and secrete peptides to regulate a variety of biological processes. To identify genes controlling the development and function of peptidergic neurons, we conducted a screen of 545 splice-trap lines and identified 28 loci that drove expression in peptidergic neurons when crossed to a GFP reporter transgene. Among these lines, an insertion in the alan shepard (shep) gene drove expression specifically in most peptidergic neurons. shep transcripts and SHEP proteins were detected primarily and broadly in the central nervous system (CNS) in embryos, and this expression continued into the adult stage. Loss of shep resulted in late pupal lethality, reduced adult life span, wing expansion defects, uncoordinated adult locomotor activities, rejection of males by virgin females, and reduced neuropil area and reduced levels of multiple presynaptic markers throughout the adult CNS. Examination of the bursicon neurons in shep mutant pharate adults revealed smaller somata and fewer axonal branches and boutons, and all of these cellular phenotypes were fully rescued by expression of the most abundant wild-type shep isoform. In contrast to shep mutant animals at the pharate adult stage, shep mutant larvae displayed normal bursicon neuron morphologies. Similarly, shep mutant adults were uncoordinated and weak, while shep mutant larvae displayed largely, although not entirely, normal locomotor behavior. Thus, shep played an important role in the metamorphic development of many neurons.
Collapse
|
33
|
Toll mediated infection response is altered by gravity and spaceflight in Drosophila. PLoS One 2014; 9:e86485. [PMID: 24475130 PMCID: PMC3901686 DOI: 10.1371/journal.pone.0086485] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/12/2013] [Indexed: 11/19/2022] Open
Abstract
Space travel presents unlimited opportunities for exploration and discovery, but requires better understanding of the biological consequences of long-term exposure to spaceflight. Immune function in particular is relevant for space travel. Human immune responses are weakened in space, with increased vulnerability to opportunistic infections and immune-related conditions. In addition, microorganisms can become more virulent in space, causing further challenges to health. To understand these issues better and to contribute to design of effective countermeasures, we used the Drosophila model of innate immunity to study immune responses in both hypergravity and spaceflight. Focusing on infections mediated through the conserved Toll and Imd signaling pathways, we found that hypergravity improves resistance to Toll-mediated fungal infections except in a known gravitaxis mutant of the yuri gagarin gene. These results led to the first spaceflight project on Drosophila immunity, in which flies that developed to adulthood in microgravity were assessed for immune responses by transcription profiling on return to Earth. Spaceflight alone altered transcription, producing activation of the heat shock stress system. Space flies subsequently infected by fungus failed to activate the Toll pathway. In contrast, bacterial infection produced normal activation of the Imd pathway. We speculate on possible linkage between functional Toll signaling and the heat shock chaperone system. Our major findings are that hypergravity and spaceflight have opposing effects, and that spaceflight produces stress-related transcriptional responses and results in a specific inability to mount a Toll-mediated infection response.
Collapse
|
34
|
Hall EA, Keighren M, Ford MJ, Davey T, Jarman AP, Smith LB, Jackson IJ, Mill P. Acute versus chronic loss of mammalian Azi1/Cep131 results in distinct ciliary phenotypes. PLoS Genet 2013; 9:e1003928. [PMID: 24415959 PMCID: PMC3887133 DOI: 10.1371/journal.pgen.1003928] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/14/2013] [Indexed: 01/20/2023] Open
Abstract
Defects in cilium and centrosome function result in a spectrum of clinically-related disorders, known as ciliopathies. However, the complex molecular composition of these structures confounds functional dissection of what any individual gene product is doing under normal and disease conditions. As part of an siRNA screen for genes involved in mammalian ciliogenesis, we and others have identified the conserved centrosomal protein Azi1/Cep131 as required for cilia formation, supporting previous Danio rerio and Drosophila melanogaster mutant studies. Acute loss of Azi1 by knock-down in mouse fibroblasts leads to a robust reduction in ciliogenesis, which we rescue by expressing siRNA-resistant Azi1-GFP. Localisation studies show Azi1 localises to centriolar satellites, and traffics along microtubules becoming enriched around the basal body. Azi1 also localises to the transition zone, a structure important for regulating traffic into the ciliary compartment. To study the requirement of Azi1 during development and tissue homeostasis, Azi1 null mice were generated (Azi1Gt/Gt). Surprisingly, Azi1Gt/Gt MEFs have no discernible ciliary phenotype and moreover are resistant to Azi1 siRNA knock-down, demonstrating that a compensation mechanism exists to allow ciliogenesis to proceed despite the lack of Azi1. Cilia throughout Azi1 null mice are functionally normal, as embryonic patterning and adult homeostasis are grossly unaffected. However, in the highly specialised sperm flagella, the loss of Azi1 is not compensated, leading to striking microtubule-based trafficking defects in both the manchette and the flagella, resulting in male infertility. Our analysis of Azi1 knock-down (acute loss) versus gene deletion (chronic loss) suggests that Azi1 plays a conserved, but non-essential trafficking role in ciliogenesis. Importantly, our in vivo analysis reveals Azi1 mediates novel trafficking functions necessary for flagellogenesis. Our study highlights the importance of both acute removal of a protein, in addition to mouse knock-out studies, when functionally characterising candidates for human disease. Cilia are slender projections from the surface of most mammalian cells and have sensory and sometimes motile functions. They are essential for mammalian development and defects in cilia lead to a group of human diseases, termed ciliopathies, with variable symptoms including embryonic lethality, lung and kidney defects, blindness and infertility. Cilia are complex structures composed of hundreds of components, whose individual functions are poorly understood. We screened for mammalian genes important in building cilia, and identified Azi1/Cep131, a gene previously shown to be required for cilia formation and function in fish and flies. We show that if we acutely reduce levels of Azi1 in mouse cells, fewer cells form cilia, but if we generate cells chronically lacking all Azi1, cilia form normally. In addition, mice without any Azi1 are healthy and viable, confirming normal cilia function. However, in these mice, the highly specialised ciliary structure of the sperm tail does not form, resulting in male infertility. We suggest Azi1 has conserved trafficking roles in both primary cilia and the specialised sperm flagella. Abruptly removing Azi1 results in instability causing the existing cilia network to collapse, whereas chronic deletion of Azi1 allows the system to re-equilibrate, and cilia to form normally.
Collapse
Affiliation(s)
- Emma A. Hall
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Margaret Keighren
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Matthew J. Ford
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Tracey Davey
- Electron Microscopy Research Services, Medical School, Newcastle University, Newcastle, United Kingdom
| | - Andrew P. Jarman
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lee B. Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Ian J. Jackson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
- * E-mail: (IJJ); (PM)
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
- * E-mail: (IJJ); (PM)
| |
Collapse
|
35
|
Boekhoff-Falk G, Eberl DF. The Drosophila auditory system. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 3:179-91. [PMID: 24719289 DOI: 10.1002/wdev.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/28/2013] [Accepted: 09/10/2013] [Indexed: 11/10/2022]
Abstract
Development of a functional auditory system in Drosophila requires specification and differentiation of the chordotonal sensilla of Johnston's organ (JO) in the antenna, correct axonal targeting to the antennal mechanosensory and motor center in the brain, and synaptic connections to neurons in the downstream circuit. Chordotonal development in JO is functionally complicated by structural, molecular, and functional diversity that is not yet fully understood, and construction of the auditory neural circuitry is only beginning to unfold. Here, we describe our current understanding of developmental and molecular mechanisms that generate the exquisite functions of the Drosophila auditory system, emphasizing recent progress and highlighting important new questions arising from research on this remarkable sensory system.
Collapse
Affiliation(s)
- Grace Boekhoff-Falk
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
36
|
Bjorum SM, Simonette RA, Alanis R, Wang JE, Lewis BM, Trejo MH, Hanson KA, Beckingham KM. The Drosophila BTB domain protein Jim Lovell has roles in multiple larval and adult behaviors. PLoS One 2013; 8:e61270. [PMID: 23620738 PMCID: PMC3631165 DOI: 10.1371/journal.pone.0061270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 03/06/2013] [Indexed: 02/06/2023] Open
Abstract
Innate behaviors have their origins in the specification of neural fates during development. Within Drosophila, BTB (Bric-a-brac,Tramtrack, Broad) domain proteins such as Fruitless are known to play key roles in the neural differentiation underlying such responses. We previously identified a gene, which we have termed jim lovell (lov), encoding a BTB protein with a role in gravity responses. To understand more fully the behavioral roles of this gene we have investigated its function through several approaches. Transcript and protein expression patterns have been examined and behavioral phenotypes of new lov mutations have been characterized. Lov is a nuclear protein, suggesting a role as a transcriptional regulator, as for other BTB proteins. In late embryogenesis, Lov is expressed in many CNS and PNS neurons. An examination of the PNS expression indicates that lov functions in the late specification of several classes of sensory neurons. In particular, only two of the five abdominal lateral chordotonal neurons express Lov, predicting functional variation within this highly similar group. Surprisingly, Lov is also expressed very early in embryogenesis in ways that suggests roles in morphogenetic movements, amnioserosa function and head neurogenesis. The phenotypes of two new lov mutations that delete adjacent non-coding DNA regions are strikingly different suggesting removal of different regulatory elements. In lov47, Lov expression is lost in many embryonic neurons including the two lateral chordotonal neurons. lov47 mutant larvae show feeding and locomotor defects including spontaneous backward movement. Adult lov47 males perform aberrant courtship behavior distinguished by courtship displays that are not directed at the female. lov47 adults also show more defective negative gravitaxis than the previously isolated lov91Y mutant. In contrast, lov66 produces largely normal behavior but severe female sterility associated with ectopic lov expression in the ovary. We propose a negative regulatory role for the DNA deleted in lov66.
Collapse
Affiliation(s)
- Sonia M. Bjorum
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Rebecca A. Simonette
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Raul Alanis
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Jennifer E. Wang
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Benjamin M. Lewis
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Michael H. Trejo
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Keith A. Hanson
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Kathleen M. Beckingham
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
37
|
Biron DG, Loxdale HD. Host–parasite molecular cross-talk during the manipulative process of a host by its parasite. J Exp Biol 2013; 216:148-60. [DOI: 10.1242/jeb.073825] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Summary
Many parasite taxa are able to alter a wide range of phenotypic traits of their hosts in ways that seem to improve the parasite’s chance of completing its life cycle. Host behavioural alterations are classically seen as compelling illustrations of the ‘extended phenotype’ concept, which suggests that parasite genes have phenotype effects on the host. The molecular mechanisms and the host–parasite cross-talk involved during the manipulative process of a host by its parasite are still poorly understood. In this Review, the current knowledge on proximate mechanisms related to the ‘parasite manipulation hypothesis’ is presented. Parasite genome sequences do not themselves provide a full explanation of parasite biology nor of the molecular cross-talk involved in host–parasite associations. Recently, first-generation proteomics tools have been employed to unravel some aspects of the parasite manipulation process (i.e. proximate mechanisms and evolutionary convergence) using certain model arthropod-host–parasite associations. The pioneer proteomics results obtained on the manipulative process are here highlighted, along with the many gaps in our knowledge. Candidate genes and biochemical pathways potentially involved in the parasite manipulation are presented. Finally, taking into account the environmental factors, we suggest new avenues and approaches to further explore and understand the proximate mechanisms used by parasite species to alter phenotypic traits of their hosts.
Collapse
Affiliation(s)
- David G. Biron
- Clermont Université, Université Blaise Pascal, Laboratoire ‘Microorganismes: Génome et Environnement’, BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, F-63177 Aubiere, France
| | - Hugh D. Loxdale
- Royal Entomological Society, Chiswell Green Lane, St Albans AL2 3NS, UK
| |
Collapse
|
38
|
Abstract
Gametogenesis combines two important features: reduction of the genome content from diploid to haploid by carefully partitioning chromosomes, and the subsequent differentiation into fertilization-competent gametes, which in males is characterized by profound nuclear restructuring. These are quite difficult tasks and require a tight coordination of different cellular mechanisms. Recent studies in the field established a key role for LINC complexes in both meiosis and sperm head formation. LINC complexes comprise SUN and KASH domain proteins that form nuclear envelope (NE) bridges, linking the nucleoskeleton to the cytoskeleton. They are well known for their crucial roles in diverse cellular and developmental processes, such as nuclear positioning and cell polarization. In this review, we highlight key roles ascribed to LINC complexes and to the nucleocytoskeletal connection in gametogenesis. First, we give a short overview about the general features of LINC components and the profound reorganization of the NE in germ cells. We then focus on specific roles of LINC complexes in meiotic chromosome dynamics and their impact on pairing, synapsis, and recombination. Finally, we provide an update of the mechanisms controlling sperm head formation and discuss the role of sperm-specific LINC complexes in nuclear shaping and their relation to specialized cytoskeletal structures that form concurrently with nuclear restructuring and sperm elongation.
Collapse
Affiliation(s)
- Martin P Kracklauer
- Department of Physiology, Wayne State University Medical School, Detroit, Michigan, USA
| | | | | |
Collapse
|
39
|
Matzat LH, Dale RK, Moshkovich N, Lei EP. Tissue-specific regulation of chromatin insulator function. PLoS Genet 2012; 8:e1003069. [PMID: 23209434 PMCID: PMC3510032 DOI: 10.1371/journal.pgen.1003069] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/20/2012] [Indexed: 11/18/2022] Open
Abstract
Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type–specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein Shep as a direct interactor of two individual components of the gypsy insulator complex in Drosophila. Mutation of shep improves gypsy-dependent enhancer blocking, indicating a role as a negative regulator of insulator activity. Unlike ubiquitously expressed core gypsy insulator proteins, Shep is highly expressed in the central nervous system (CNS) with lower expression in other tissues. We developed a novel, quantitative tissue-specific barrier assay to demonstrate that Shep functions as a negative regulator of insulator activity in the CNS but not in muscle tissue. Additionally, mutation of shep alters insulator complex nuclear localization in the CNS but has no effect in other tissues. Consistent with negative regulatory activity, ChIP–seq analysis of Shep in a CNS-derived cell line indicates substantial genome-wide colocalization with a single gypsy insulator component but limited overlap with intact insulator complexes. Taken together, these data reveal a novel, tissue-specific mode of regulation of a chromatin insulator. Mounting evidence in human, mouse, and Drosophila demonstrates a role for the DNA–protein complexes known as chromatin insulators in orchestrating three-dimensional genome organization. Several genes that are only expressed in specific cell types display distinct chromatin configurations correlated with expression status. Recent evidence shows that chromatin insulators play a role in defining tissue-specific chromatin conformation; however, tissue-specific factors that may modulate insulator activity remain unknown. Here we identify a putative RNA–binding protein, Shep, which is expressed most highly in the CNS and interacts directly with insulator complexes. We developed a novel quantitative, tissue-specific insulator assay and found that Shep negatively regulates insulator activity in the CNS. We also find that mutation of shep alters insulator complex nuclear localization in the brain but not other tissues. Finally, we mapped Shep and gypsy insulator protein localization throughout the genome and found that Shep colocalizes with one individual insulator protein but less often than expected with an intact insulator complex. These data suggest that Shep negatively influences insulator activity in a tissue-specific manner.
Collapse
Affiliation(s)
- Leah H. Matzat
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ryan K. Dale
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nellie Moshkovich
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Graduate Program in Molecular and Cell Biology, University of Maryland, College Park, Maryland, United States of America
| | - Elissa P. Lei
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
40
|
Vang LL, Medvedev AV, Adler J. Simple ways to measure behavioral responses of Drosophila to stimuli and use of these methods to characterize a novel mutant. PLoS One 2012; 7:e37495. [PMID: 22649531 PMCID: PMC3359294 DOI: 10.1371/journal.pone.0037495] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/19/2012] [Indexed: 11/26/2022] Open
Abstract
The behavioral responses of adult Drosophila fruit flies to a variety of sensory stimuli – light, volatile and non-volatile chemicals, temperature, humidity, gravity, and sound - have been measured by others previously. Some of those assays are rather complex; a review of them is presented in the Discussion. Our objective here has been to find out how to measure the behavior of adult Drosophila fruit flies by methods that are inexpensive and easy to carry out. These new assays have now been used here to characterize a novel mutant that fails to be attracted or repelled by a variety of sensory stimuli even though it is motile.
Collapse
Affiliation(s)
- Lar L. Vang
- Departments of Biochemistry and Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexei V. Medvedev
- Departments of Biochemistry and Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Microbiology and Immunology, Georgetown University, Georgetown, Washington, D.C., United States of America
| | - Julius Adler
- Departments of Biochemistry and Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
41
|
Herranz R, Larkin OJ, Dijkstra CE, Hill RJA, Anthony P, Davey MR, Eaves L, van Loon JJWA, Medina FJ, Marco R. Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster. BMC Genomics 2012; 13:52. [PMID: 22296880 PMCID: PMC3305489 DOI: 10.1186/1471-2164-13-52] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 02/01/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many biological systems respond to the presence or absence of gravity. Since experiments performed in space are expensive and can only be undertaken infrequently, Earth-based simulation techniques are used to investigate the biological response to weightlessness. A high gradient magnetic field can be used to levitate a biological organism so that its net weight is zero. RESULTS We have used a superconducting magnet to assess the effect of diamagnetic levitation on the fruit fly D. melanogaster in levitation experiments that proceeded for up to 22 consecutive days. We have compared the results with those of similar experiments performed in another paradigm for microgravity simulation, the Random Positioning Machine (RPM). We observed a delay in the development of the fruit flies from embryo to adult. Microarray analysis indicated changes in overall gene expression of imagoes that developed from larvae under diamagnetic levitation, and also under simulated hypergravity conditions. Significant changes were observed in the expression of immune-, stress-, and temperature-response genes. For example, several heat shock proteins were affected. We also found that a strong magnetic field, of 16.5 Tesla, had a significant effect on the expression of these genes, independent of the effects associated with magnetically-induced levitation and hypergravity. CONCLUSIONS Diamagnetic levitation can be used to simulate an altered effective gravity environment in which gene expression is tuned differentially in diverse Drosophila melanogaster populations including those of different age and gender. Exposure to the magnetic field per se induced similar, but weaker, changes in gene expression.
Collapse
Affiliation(s)
- Raul Herranz
- Centro de Investigaciones Biológicas, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hill RJA, Larkin OJ, Dijkstra CE, Manzano AI, de Juan E, Davey MR, Anthony P, Eaves L, Medina FJ, Marco R, Herranz R. Effect of magnetically simulated zero-gravity and enhanced gravity on the walk of the common fruitfly. J R Soc Interface 2012; 9:1438-49. [PMID: 22219396 PMCID: PMC3367808 DOI: 10.1098/rsif.2011.0715] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Understanding the effects of gravity on biological organisms is vital to the success of future space missions. Previous studies in Earth orbit have shown that the common fruitfly (Drosophila melanogaster) walks more quickly and more frequently in microgravity, compared with its motion on Earth. However, flight preparation procedures and forces endured on launch made it difficult to implement on the Earth's surface a control that exposed flies to the same sequence of major physical and environmental changes. To address the uncertainties concerning these behavioural anomalies, we have studied the walking paths of D. melanogaster in a pseudo-weightless environment (0g*) in our Earth-based laboratory. We used a strong magnetic field, produced by a superconducting solenoid, to induce a diamagnetic force on the flies that balanced the force of gravity. Simultaneously, two other groups of flies were exposed to a pseudo-hypergravity environment (2g*) and a normal gravity environment (1g*) within the spatially varying field. The flies had a larger mean speed in 0g* than in 1g*, and smaller in 2g*. The mean square distance travelled by the flies grew more rapidly with time in 0g* than in 1g*, and slower in 2g*. We observed no other clear effects of the magnetic field, up to 16.5 T, on the walks of the flies. We compare the effect of diamagnetically simulated weightlessness with that of weightlessness in an orbiting spacecraft, and identify the cause of the anomalous behaviour as the altered effective gravity.
Collapse
Affiliation(s)
- Richard J A Hill
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Airoldi SJ, McLean PF, Shimada Y, Cooley L. Intercellular protein movement in syncytial Drosophila follicle cells. J Cell Sci 2011; 124:4077-86. [PMID: 22135360 DOI: 10.1242/jcs.090456] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Ring canals connecting Drosophila germline, follicle and imaginal disc cells provide direct contact of cytoplasm between cells. To date, little is known about the formation, structure, or function of the somatic ring canals present in follicle and imaginal disc cells. Here, we show by confocal and electron microscopy that Pavarotti kinesin-like protein and Visgun are stable components of somatic ring canals. Using live-cell confocal microscopy, we show that somatic ring canals form from the stabilization of mitotic cleavage furrows. In contrast to germline cells, syncytial follicle cells do not divide synchronously, are not maximally branched and their ring canals do not increase in size during egg chamber development. We show for the first time that somatic ring canals permit exchange of cytoplasmic proteins between follicle cells. These results provide insight into the composition and function of ring canals in somatic cells, implying a broader functional significance for syncytial organization of cells outside the germline.
Collapse
Affiliation(s)
- Stephanie J Airoldi
- Department of Genetics, Yale School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
44
|
Texada MJ, Simonette RA, Deery WJ, Beckingham KM. Tropomyosin is an interaction partner of the Drosophila coiled coil protein yuri gagarin. Exp Cell Res 2010; 317:474-87. [PMID: 21126519 DOI: 10.1016/j.yexcr.2010.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 01/28/2023]
Abstract
The Drosophila gene yuri gagarin is a complex locus encoding three protein isoform classes that are ubiquitously expressed in the organism. Mutations to the gene affect processes as diverse as gravitactic behavior and spermatogenesis. The larger Yuri isoforms contain extensive coiled-coil regions. Our previous studies indicate that one of the large isoform classes (Yuri-65) is required for formation of specialized F-actin-containing structures generated during spermatogenesis, including the so-called actin "cones" that mediate spermatid individualization. We used the tandem affinity purification of a tagged version of Yuri-65 (the TAP-tagging technique) to identify proteins associated with Yuri-65 in the intact organism. Tropomyosin, primarily as the 284-residue isoform derived from the ubiquitously expressed Tropomyosin 1 gene was thus identified as a major Yuri interaction partner. Co-immunoprecipitation experiments confirmed this interaction. We have established that the stable F-actin cones of spermatogenesis contain Tropomyosin 1 (Tm1) and that in mutant yuri(F64), failure of F-actin cone formation is associated with failure of Tm1 to accumulate at the cone initiation sites. In investigating possible interactions of Tm1 and Yuri in other tissues, we discovered that Tm1 and Yuri frequently colocalize with the endoplasmic reticulum. Tropomyosin has been implicated in actin-mediated membrane trafficking activity in other systems. Our findings suggest that Yuri-Tm1 complexes participate in related functions.
Collapse
Affiliation(s)
- Michael J Texada
- Department of Biochemistry and Cell Biology, Rice University, MS-140, 6100 Main Street, Houston TX 77005, USA
| | | | | | | |
Collapse
|
45
|
Quantitative trait locus mapping of gravitaxis behaviour in Drosophila melanogaster. Genet Res (Camb) 2010; 92:167-74. [PMID: 20667161 DOI: 10.1017/s0016672310000194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Drosophila melanogaster, like other organisms, move and orient themselves in response to the earth's gravitational force. The ability to sense and respond to gravity is essential for an organism to navigate and thrive in its environment. The genes underlying this behaviour in Drosophila remain elusive. Using 88 recombinant inbred lines, we have identified four quantitative trait loci (QTLs) that contribute to adult gravitaxis (geotaxis) behaviour in Drosophila. Candidate genes of interest were selected from the QTLs of highest significance based on their function in chordotonal organ formation. Quantitative complementation tests with these candidate genes revealed a role for skittles in adult gravitaxis behaviour in D. melanogaster.
Collapse
|
46
|
Robie AA, Straw AD, Dickinson MH. Object preference by walking fruit flies, Drosophila melanogaster, is mediated by vision and graviperception. ACTA ACUST UNITED AC 2010; 213:2494-506. [PMID: 20581279 DOI: 10.1242/jeb.041749] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Walking fruit flies, Drosophila melanogaster, use visual information to orient towards salient objects in their environment, presumably as a search strategy for finding food, shelter or other resources. Less is known, however, about the role of vision or other sensory modalities such as mechanoreception in the evaluation of objects once they have been reached. To study the role of vision and mechanoreception in exploration behavior, we developed a large arena in which we could track individual fruit flies as they walked through either simple or more topologically complex landscapes. When exploring a simple, flat environment lacking three-dimensional objects, flies used visual cues from the distant background to stabilize their walking trajectories. When exploring an arena containing an array of cones, differing in geometry, flies actively oriented towards, climbed onto, and explored the objects, spending most of their time on the tallest, steepest object. A fly's behavioral response to the geometry of an object depended upon the intrinsic properties of each object and not a relative assessment to other nearby objects. Furthermore, the preference was not due to a greater attraction towards tall, steep objects, but rather a change in locomotor behavior once a fly reached and explored the surface. Specifically, flies are much more likely to stop walking for long periods when they are perched on tall, steep objects. Both the vision system and the antennal chordotonal organs (Johnston's organs) provide sufficient information about the geometry of an object to elicit the observed change in locomotor behavior. Only when both these sensory systems were impaired did flies not show the behavioral preference for the tall, steep objects.
Collapse
Affiliation(s)
- Alice A Robie
- Department of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | |
Collapse
|
47
|
Beckingham KM. Synergy between stresses: an interaction between spaceflight-associated conditions and the microgravity response. Mol Ecol 2010; 19:4105-7. [PMID: 25241407 DOI: 10.1111/j.1365-294x.2010.04799.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gravity is the one constant, ubiquitous force that has shaped life on Earth over its 4.8 billion years of evolution. But the sheer inescapability of Earth's gravitational pull has meant that its influence on Earth's organisms is difficult to study. Neutralization of the gravity vector (so-called simulated microgravity) by random movement in three-dimensional space is the best option for Earth-based experiments, with spaceflight alone offering the possibility to assess the effects of an extremely reduced gravitational field (microgravity). However, the technical constraints associated with spaceflight introduce complications that can compromise the interpretation of microgravity experiments. It can be unclear whether changes detected in these experiments reflect additional spaceflight-related stresses (temperature shifts, vibrational effects, radiation exposure, and so on) as opposed to the loss of gravitational force per se. In this issue, Herranz et al. (2010) report a careful study in which the effects of simulated and actual microgravity on gene expression in Drosophila melanogaster were compared and the effects of the flight-associated stresses on the microgravity responses were investigated. A striking finding emerged. The additional stresses associated with the spaceflight experiment altered the response to microgravity. Despite controlling for the effects of these stresses/constraints, the group found that responses to microgravity are much stronger in the stressed/constrained background than in its absence. This interaction of gravity with other environmental influences is a novel finding with important implications for microgravity research and other situations where multiple stress factors are combined.
Collapse
|
48
|
Herranz R, Benguría A, Laván DA, López-Vidriero I, Gasset G, Javier Medina F, van Loon JJWA, Marco R. Spaceflight-related suboptimal conditions can accentuate the altered gravity response of Drosophila transcriptome. Mol Ecol 2010; 19:4255-64. [PMID: 20819157 DOI: 10.1111/j.1365-294x.2010.04795.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Genome-wide transcriptional profiling shows that reducing gravity levels during Drosophila metamorphosis in the International Space Station (ISS) causes important alterations in gene expression: a large set of differentially expressed genes (DEGs) are observed compared to 1g controls. However, the preparation procedures for spaceflight and the nonideal environmental conditions on board the ISS subject the organisms to additional environmental stresses that demonstrably affect gene expression. Simulated microgravity experiments performed on the ground, under ideal conditions for the flies, using the random position machine (RPM), show much more subtle effects on gene expression. However, when the ground experiments are repeated under conditions designed to reproduce the additional environmental stresses imposed by spaceflight procedures, 79% of the DEGs detected in the ISS are reproduced by the RPM experiment. Gene ontology analysis of them shows they are genes that affect respiratory activity, developmental processes and stress-related changes. Here, we analyse the effects of microgravity on gene expression in relation to the environmental stresses imposed by spaceflight. Analysis using 'gene expression dynamics inspector' (GEDI) self-organizing maps reveals a subtle response of the transcriptome to microgravity. Remarkably, hypergravity simulation induces similar response of the transcriptome, but in the opposite direction, i.e. the genes promoted under microgravity are usually suppressed under hypergravity. These results suggest that the transcriptome is finely tuned to normal gravity and that microgravity, together with environmental constraints associated with space experiments, can have profound effects on gene expression.
Collapse
Affiliation(s)
- Raul Herranz
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas 'Alberto Sols' (UAM-CSIC), C/Arzobispo Morcillo, 4 Madrid, 28029 SpainCentro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, E-28040, Madrid, SpainCentro Nacional de Biotecnología (UAM-CSIC), Madrid, SpainGenomics Unit. Centro Nacional de Investigaciones Cardiovasculares, C/Melchor Fernández Almagro, 3. Madrid, SpainGSBMS, Université Paul Sabatier, Toulouse, FranceDutch Experiment Support Center, DESC at OCB-ACTA, VU-University and Univ. of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kracklauer MP, Wiora HM, Deery WJ, Chen X, Bolival B, Romanowicz D, Simonette RA, Fuller MT, Fischer JA, Beckingham KM. The Drosophila SUN protein Spag4 cooperates with the coiled-coil protein Yuri Gagarin to maintain association of the basal body and spermatid nucleus. J Cell Sci 2010; 123:2763-72. [PMID: 20647369 DOI: 10.1242/jcs.066589] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maintaining the proximity of centrosomes to nuclei is important in several cellular contexts, and LINC complexes formed by SUN and KASH proteins are crucial in this process. Here, we characterize the presumed Drosophila ortholog of the mammalian SUN protein, sperm-associated antigen 4 (Spag4, previously named Giacomo), and demonstrate that Spag4 is required for centriole and nuclear attachment during spermatogenesis. Production of spag4 mRNA is limited to the testis, and Spag4 protein shows a dynamic pattern of association with the germline nuclei, including a concentration of protein at the site of attachment of the single spermatid centriole. In the absence of Spag4, nuclei and centrioles or basal bodies (BBs) dissociate from each other after meiosis. This role of Spag4 in centriolar attachment does not involve either of the two KASH proteins of the Drosophila genome (Klarsicht and MSP-300), but does require the coiled-coil protein Yuri Gagarin. Yuri shows an identical pattern of localization at the nuclear surface to Spag4 during spermatogenesis, and epistasis studies show that the activities of Yuri and dynein-dynactin are downstream of spag4 in this centriole attachment pathway. The later defects in spermatogenesis seen for yuri and spag4 mutants are similar, suggesting they could be secondary to initial disruption of events at the nuclear surface.
Collapse
Affiliation(s)
- Martin P Kracklauer
- Institute for Cell and Molecular Biology and Section of Cell and Developmental Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|