1
|
Ganglberger F, Kaczanowska J, Penninger JM, Hess A, Bühler K, Haubensak W. Predicting functional neuroanatomical maps from fusing brain networks with genetic information. Neuroimage 2017; 170:113-120. [PMID: 28877513 DOI: 10.1016/j.neuroimage.2017.08.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023] Open
Abstract
Functional neuroanatomical maps provide a mesoscale reference framework for studies from molecular to systems neuroscience and psychiatry. The underlying structure-function relationships are typically derived from functional manipulations or imaging approaches. Although highly informative, these are experimentally costly. The increasing amount of publicly available brain and genetic data offers a rich source that could be mined to address this problem computationally. Here, we developed an algorithm that fuses gene expression and connectivity data with functional genetic meta data and exploits cumulative effects to derive neuroanatomical maps related to multi-genic functions. We validated the approach by using public available mouse and human data. The generated neuroanatomical maps recapture known functional anatomical annotations from literature and functional MRI data. When applied to multi-genic meta data from mouse quantitative trait loci (QTL) studies and human neuropsychiatric databases, this method predicted known functional maps underlying behavioral or psychiatric traits. Taken together, genetically weighted connectivity analysis (GWCA) allows for high throughput functional exploration of brain anatomy in silico. It maps functional genetic associations onto brain circuitry for refining functional neuroanatomy, or identifying trait-associated brain circuitry, from genetic data.
Collapse
Affiliation(s)
| | - Joanna Kaczanowska
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030, Vienna, Austria
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nuremberg, Fahrstrasse 17, 91054, Erlangen, Germany
| | - Katja Bühler
- VRVis Research Center, Donau-City Strasse 11, 1220, Vienna, Austria.
| | - Wulf Haubensak
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
| |
Collapse
|
2
|
Savage JE, Sawyers C, Roberson-Nay R, Hettema JM. The genetics of anxiety-related negative valence system traits. Am J Med Genet B Neuropsychiatr Genet 2017; 174:156-177. [PMID: 27196537 PMCID: PMC5349709 DOI: 10.1002/ajmg.b.32459] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/05/2016] [Indexed: 01/11/2023]
Abstract
NIMH's Research Domain Criteria (RDoC) domain of negative valence systems (NVS) captures constructs of negative affect such as fear and distress traditionally subsumed under the various internalizing disorders. Through its aims to capture dimensional measures that cut across diagnostic categories and are linked to underlying neurobiological systems, a large number of phenotypic constructs have been proposed as potential research targets. Since "genes" represent a central "unit of analysis" in the RDoC matrix, it is important for studies going forward to apply what is known about the genetics of these phenotypes as well as fill in the gaps of existing knowledge. This article reviews the extant genetic epidemiological data (twin studies, heritability) and molecular genetic association findings for a broad range of putative NVS phenotypic measures. We find that scant genetic epidemiological data is available for experimentally derived measures such as attentional bias, peripheral physiology, or brain-based measures of threat response. The molecular genetic basis of NVS phenotypes is in its infancy, since most studies have focused on a small number of candidate genes selected for putative association to anxiety disorders (ADs). Thus, more research is required to provide a firm understanding of the genetic aspects of anxiety-related NVS constructs. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jeanne E. Savage
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Chelsea Sawyers
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Roxann Roberson-Nay
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA,Department of Psychiatry, Virginia Commonwealth University, Richmond, VA
| | - John M. Hettema
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA,Department of Psychiatry, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
3
|
Rodríguez-Ortega E, Cañadas F, Carvajal F, Cardona D. In vivo stimulation of locus coeruleus: effects on amygdala subnuclei. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Netrin-G1 regulates fear-like and anxiety-like behaviors in dissociable neural circuits. Sci Rep 2016; 6:28750. [PMID: 27345935 PMCID: PMC4921862 DOI: 10.1038/srep28750] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 06/08/2016] [Indexed: 12/19/2022] Open
Abstract
In vertebrate mammals, distributed neural circuits in the brain are involved in emotion-related behavior. Netrin-G1 is a glycosyl-phosphatidylinositol-anchored synaptic adhesion molecule whose deficiency results in impaired fear-like and anxiety-like behaviors under specific circumstances. To understand the cell type and circuit specificity of these responses, we generated netrin-G1 conditional knockout mice with loss of expression in cortical excitatory neurons, inhibitory neurons, or thalamic neurons. Genetic deletion of netrin-G1 in cortical excitatory neurons resulted in altered anxiety-like behavior, but intact fear-like behavior, whereas loss of netrin-G1 in inhibitory neurons resulted in attenuated fear-like behavior, but intact anxiety-like behavior. These data indicate a remarkable double dissociation of fear-like and anxiety-like behaviors involving netrin-G1 in excitatory and inhibitory neurons, respectively. Our findings support a crucial role for netrin-G1 in dissociable neural circuits for the modulation of emotion-related behaviors, and provide genetic models for investigating the mechanisms underlying the dissociation. The results also suggest the involvement of glycosyl-phosphatidylinositol-anchored synaptic adhesion molecules in the development and pathogenesis of emotion-related behavior.
Collapse
|
5
|
Callaerts-Vegh Z, Moechars D, Van Acker N, Daneels G, Goris I, Leo S, Naert A, Meert T, Balschun D, D'Hooge R. Haploinsufficiency of VGluT1 but not VGluT2 impairs extinction of spatial preference and response suppression. Behav Brain Res 2013; 245:13-21. [PMID: 23396167 DOI: 10.1016/j.bbr.2013.01.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/08/2013] [Accepted: 01/15/2013] [Indexed: 11/27/2022]
Abstract
The excitatory neurotransmitter l-glutamate is transported into synaptic vesicles by vesicular glutamate transporters (VGluTs) to transmit glutamatergic signals. Changes in their expression have been linked to various brain disorders including schizophrenia, Parkinson's, and Alzheimer's disease. Deleting either the VGluT1 or VGluT2 gene leads to profound developmental and neurological complications and early death, but mice heterozygous for VGluT1 or VGluT2 are viable and thrive. Acquisition, retention and extinction of conditioned visuospatial and emotional responses were compared between VGluT1(+/-) and VGluT2(+/-) mice, and their wildtype littermates, using different water maze procedures, appetitive scheduled conditioning, and conditioned fear protocols. The distinct brain expression profiles of the VGluT1 and -2 isoforms particularly in telencephalic structures, such as neocortex, hippocampus and striatum, are reflected in very specific behavioral changes. VGluT2(+/-) mice were unimpaired in spatial learning tasks and fear extinction. Conversely, VGluT1(+/-) mice displayed spatial extinction learning deficits and markedly impaired fear extinction. These data indicate that VGluT1, but not VGluT2, plays a role in the neural processes underlying inhibitory learning.
Collapse
|
6
|
Relation of emotional and behavioral problems with body mass index in preschool children: the Generation R study. J Dev Behav Pediatr 2012; 33:641-8. [PMID: 23027138 DOI: 10.1097/dbp.0b013e31826419b8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Although problem behavior in children and adolescents has frequently been associated with overweight, it is unclear whether this relationship is already present in early childhood. We hypothesized that problem behavior is positively related to body mass index (BMI) in children of preschool age and that eating behavior explains part of this relation. METHODS The study was embedded in the Generation R Study, a population-based cohort with data available on BMI and problem behavior for 3137 children aged 3 to 4 years. Problem behavior was measured with the child behavior checklist (CBCI), and eating behavior was assessed using the child eating behaviour questionnaire (CEBQ). Linear regression analyses were conducted to assess the association between the CBCI (expressed as z-scores). CEBQ, and BMI standard deviation scores (BMI-SDS), Bootstrapping was used to formally test mediation. RESULTS Children with higher levels of emotional problems had a lower BMI-SDS after adjustment for relevant covariates (e.g., β [95% confidence interval {Cl}] for mother report of emotional problems = -0.04 [-0.07, -0.001], father report = -0.04 [-0.08, -0.001]). Behavioral problems were not associated with BMI. Emotional and behavioral problems were not associated with underweight or overweight if studied categorically. The effect estimate for the relation of emotional problems with BMI-SDS attenuated to nonsignificance after adjustment for specific eating behaviors, i.e., they were accounted for by satiety responsiveness, fussiness, and emotional undereating. CONCLUSION In this population-based study, emotional problems in preschoolers were negatively related to BMI, and this relation was fully explained by food avoidant eating behaviors.
Collapse
|
7
|
Johnson LR, McGuire J, Lazarus R, Palmer AA. Pavlovian fear memory circuits and phenotype models of PTSD. Neuropharmacology 2011; 62:638-46. [PMID: 21782833 DOI: 10.1016/j.neuropharm.2011.07.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/07/2011] [Accepted: 07/06/2011] [Indexed: 11/26/2022]
Abstract
Pavlovian fear conditioning, also known as classical fear conditioning is an important model in the study of the neurobiology of normal and pathological fear. Progress in the neurobiology of Pavlovian fear also enhances our understanding of disorders such as posttraumatic stress disorder (PTSD) and with developing effective treatment strategies. Here we describe how Pavlovian fear conditioning is a key tool for understanding both the neurobiology of fear and the mechanisms underlying variations in fear memory strength observed across different phenotypes. First we discuss how Pavlovian fear models aspects of PTSD. Second, we describe the neural circuits of Pavlovian fear and the molecular mechanisms within these circuits that regulate fear memory. Finally, we show how fear memory strength is heritable; and describe genes which are specifically linked to both changes in Pavlovian fear behavior and to its underlying neural circuitry. These emerging data begin to define the essential genes, cells and circuits that contribute to normal and pathological fear. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- Luke R Johnson
- Psychiatry and Neuroscience, School of Medicine, Uniformed Services University (USU), Bethesda, MD 20814, USA.
| | | | | | | |
Collapse
|
8
|
Müller M, Faber-Zuschratter H, Yanagawa Y, Stork O, Schwegler H, Linke R. Synaptology of ventral CA1 and subiculum projections to the basomedial nucleus of the amygdala in the mouse: relation to GABAergic interneurons. Brain Struct Funct 2011; 217:5-17. [PMID: 21584649 DOI: 10.1007/s00429-011-0326-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/30/2011] [Indexed: 02/04/2023]
Abstract
GABAergic neurons of the amygdala are thought to play a critical role in establishing networks for feedback and feedforward inhibition and in mediating rhythmic network activity patterns relevant for emotional behavior, determination of stimulus salience, and memory strength under stressful experiences. These functions are typically fulfilled in interplay of amygdala and hippocampus. Therefore, we explored the putative connectivity of GABAergic neurons with the hippocampo-amygdalar projection with the anterograde tracers Phaseolus vulgaris leucoagglutinin (Phal) and Miniruby injected to GAD67-GFP knock-in mice in which GABAergic neurons are labeled by the expression of the gene for green fluorescent protein (GFP) inserted to the GAD1 gene locus (Tamamaki et al. J Comp Neurol 467:60-79, 2003). We found that, while hippocampal axons target all nuclei of the amygdala, the densest fiber plexus was found in the posterior basomedial nucleus. Electron microscopy revealed that the vast majority of contacts in this nucleus were formed by thin fibers making small asymmetrical contacts, predominantly on GFP-negative profiles. However, several asymmetrical contacts could also be seen on GFP-positive profiles. A surprising result was the occasional occurrence of anterogradely labeled symmetrical synapses indicating a GABAergic contribution to the projection from the hippocampus to the amygdala. While hippocampal input to the amygdala appears to be largely excitatory and targets non-GABAergic neurons, our data provide evidence for a direct involvement of GABAergic neurons in the interplay of these regions, either as target in the amygdala or as projection neurons from the hippocampus. These particular "interface neurons" may be of relevance for the information processing in the amygdalo-hippocampal system involved in emotional behavior and memory formation.
Collapse
Affiliation(s)
- M Müller
- Institute of Anatomy, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Middeldorp CM, Slof-Op 't Landt MCT, Medland SE, van Beijsterveldt CEM, Bartels M, Willemsen G, Hottenga JJ, de Geus EJC, Suchiman HED, Dolan CV, Neale MC, Slagboom PE, Boomsma DI. Anxiety and depression in children and adults: influence of serotonergic and neurotrophic genes? GENES BRAIN AND BEHAVIOR 2010; 9:808-16. [PMID: 20633049 PMCID: PMC3151552 DOI: 10.1111/j.1601-183x.2010.00619.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There are two major hypotheses regarding the etiology of anxiety and depression: the mono-amine hypothesis and the hypothesis of an abnormal stress response acting partly via reduced neurogenesis. Association studies have focused on genes involved in these processes, but with inconclusive results. This study investigated the effect of 45 single nucleotide polymorphisms (SNPs) in genes encoding for serotonin receptors 1A, 1D, 2A, catechol-O-methyltransferase (COMT), tryptophane hydroxylase type 2 (TPH2), brain derived neurotrophic factor (BDNF), PlexinA2 and regulators of G-protein-coupled signaling (RGS) 2, 4, 16. Anxious depression (A/D) symptoms were assessed five times in 11 years in over 11 000 adults with 1504 subjects genotyped and at age 7, 10, 12 and during adolescence in over 20 000 twins with 1078 subjects genotyped. In both cohorts, a longitudinal model with one latent factor loading on all A/D measures over time was analysed. The genetic association effect modeled at the level of this latent factor was 60% and 70% heritable in the children and adults, respectively, and explained around 50% of the total phenotypic variance. Power analyses showed that the samples contained 80% power to detect an effect explaining between 1.4% and 3.6% of the variance. However, no SNP showed a consistent effect on A/D. To conclude, this longitudinal study in children and adults found no association of SNPs in the serotonergic system or core regulators of neurogenesis with A/D. Overall, there has been no convincing evidence, so far, for a role of genetic variation in these pathways in the development of anxiety and depression.
Collapse
Affiliation(s)
- C M Middeldorp
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Role of the neural cell adhesion molecule (NCAM) in amygdalo-hippocampal interactions and salience determination of contextual fear memory. Int J Neuropsychopharmacol 2010; 13:661-74. [PMID: 20003620 DOI: 10.1017/s1461145709991106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Evidence suggests that the neural cell adhesion molecule (NCAM) is an important molecular constituent of adaptive and maladaptive circuit (re-)organization in the central nervous system. Here, we further investigate its putative involvement in amygdala and hippocampus functions during context fear memory formation. Using laser capture microdissection and quantitative RT-PCR, we show high NCAM mRNA expression levels in the lateral and basolateral subnuclei of the amygdala, as well as their training intensity- and context-dependent regulation during fear memory consolidation. Moreover, we demonstrate that deficits of NCAM-/- mice in context fear memory can be overcome through contextual pre-exposure, i.e. by reducing the modulatory influence of the amygdala on this hippocampus-dependent memory. On the contrary, NCAM-/- mice failed to increase contextual fear memory after salient overtraining, although they adequately increased their response to auditory-cued fear stimuli. Finally, we demonstrate a reduction of amygdalo-hippocampal theta synchronization in NCAM-/- mice during fear memory retrieval. Together, these results suggest an involvement of NCAM-mediated cell recognition processes in information processing of the amygdalo-hippocampal system and in the amygdala-mediated modulation of context fear memory according to stimulus salience.
Collapse
|
11
|
Pape HC, Pare D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 2010; 90:419-63. [PMID: 20393190 DOI: 10.1152/physrev.00037.2009] [Citation(s) in RCA: 766] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The last 10 years have witnessed a surge of interest for the mechanisms underlying the acquisition and extinction of classically conditioned fear responses. In part, this results from the realization that abnormalities in fear learning mechanisms likely participate in the development and/or maintenance of human anxiety disorders. The simplicity and robustness of this learning paradigm, coupled with the fact that the underlying circuitry is evolutionarily well conserved, make it an ideal model to study the basic biology of memory and identify genetic factors and neuronal systems that regulate the normal and pathological expressions of learned fear. Critical advances have been made in determining how modified neuronal functions upon fear acquisition become stabilized during fear memory consolidation and how these processes are controlled in the course of fear memory extinction. With these advances came the realization that activity in remote neuronal networks must be coordinated for these events to take place. In this paper, we review these mechanisms of coordinated network activity and the molecular cascades leading to enduring fear memory, and allowing for their extinction. We will focus on Pavlovian fear conditioning as a model and the amygdala as a key component for the acquisition and extinction of fear responses.
Collapse
Affiliation(s)
- Hans-Christian Pape
- Institute of Physiology, Westfaelische Wilhelms-University, Muenster, Germany; and Rutgers State University, Newark, New Jersey, USA.
| | | |
Collapse
|
12
|
Middeldorp CM, Vink JM, Hettema JM, de Geus EJC, Kendler KS, Willemsen G, Neale MC, Boomsma DI, Chen X. An association between Epac-1 gene variants and anxiety and depression in two independent samples. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:214-9. [PMID: 19475578 PMCID: PMC2798914 DOI: 10.1002/ajmg.b.30976] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Deficiency in signal transduction might play a role in the development of anxiety and depression, as suggested by a study on the involvement of the PKA-independent Epac pathway. We investigated the association between Epac-1 gene variants, also known as RapGEF-3, and measures of anxiety and depression in a Dutch twin-family sample. Replication was sought in a USA sample consisting of unrelated individuals. Genotype and phenotype data were available for 910 Dutch and 684 USA individuals. Longitudinal self-report measures of neuroticism, anxiety and depression and genetic factor scores (GFS-NL), based on these measures, were analyzed in the Dutch sample. In the USA sample, neuroticism and Genetic Factor Scores (GFS-USA), based on neuroticism and diagnoses of anxiety disorders and depression, were analyzed. Three intronic SNPs were genotyped. Analyses were performed in QTDT. Genotype and haplotype frequencies differed significantly between the samples. In the Dutch sample, rs2072115 showed a significant dominant effect for anxiety and depression. Subjects with haplotype G-C-C (ordered rs2072115-rs757281-2074533) had significantly lower anxiety, neuroticism and GFS-NL scores. In the USA sample, a significant additive effect of rs2074533 on GFS-USA was found. Subjects with haplotypes G-C-C and A-C-T had significantly higher and lower GFS-USA scores, respectively. Both samples showed an association between Epac-1 gene variants and anxiety and depression, but for different variants or in opposite directions. The divergent results could be due to differences in linkage disequilibrium between the investigated SNPs and a functional polymorphism in the Dutch and USA sample.
Collapse
Affiliation(s)
- Christel M Middeldorp
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sehlmeyer C, Schöning S, Zwitserlood P, Pfleiderer B, Kircher T, Arolt V, Konrad C. Human fear conditioning and extinction in neuroimaging: a systematic review. PLoS One 2009; 4:e5865. [PMID: 19517024 PMCID: PMC2692002 DOI: 10.1371/journal.pone.0005865] [Citation(s) in RCA: 400] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 03/25/2009] [Indexed: 12/22/2022] Open
Abstract
Fear conditioning and extinction are basic forms of associative learning that have gained considerable clinical relevance in enhancing our understanding of anxiety disorders and facilitating their treatment. Modern neuroimaging techniques have significantly aided the identification of anatomical structures and networks involved in fear conditioning. On closer inspection, there is considerable variation in methodology and results between studies. This systematic review provides an overview of the current neuroimaging literature on fear conditioning and extinction on healthy subjects, taking into account methodological issues such as the conditioning paradigm. A Pubmed search, as of December 2008, was performed and supplemented by manual searches of bibliographies of key articles. Two independent reviewers made the final study selection and data extraction. A total of 46 studies on cued fear conditioning and/or extinction on healthy volunteers using positron emission tomography or functional magnetic resonance imaging were reviewed. The influence of specific experimental factors, such as contingency and timing parameters, assessment of conditioned responses, and characteristics of conditioned and unconditioned stimuli, on cerebral activation patterns was examined. Results were summarized descriptively. A network consisting of fear-related brain areas, such as amygdala, insula, and anterior cingulate cortex, is activated independently of design parameters. However, some neuroimaging studies do not report these findings in the presence of methodological heterogeneities. Furthermore, other brain areas are differentially activated, depending on specific design parameters. These include stronger hippocampal activation in trace conditioning and tactile stimulation. Furthermore, tactile unconditioned stimuli enhance activation of pain related, motor, and somatosensory areas. Differences concerning experimental factors may partly explain the variance between neuroimaging investigations on human fear conditioning and extinction and should, therefore, be taken into serious consideration in the planning and the interpretation of research projects.
Collapse
Affiliation(s)
- Christina Sehlmeyer
- Department of Psychiatry, University of Muenster, Muenster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Muenster, Muenster, Germany
| | - Sonja Schöning
- Department of Psychiatry, University of Muenster, Muenster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Muenster, Muenster, Germany
| | | | - Bettina Pfleiderer
- Department of Clinical Radiology, University of Muenster, Muenster, Germany
| | - Tilo Kircher
- Department of Psychiatry und Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Muenster, Muenster, Germany
| | - Carsten Konrad
- Department of Psychiatry, University of Muenster, Muenster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Muenster, Muenster, Germany
- Department of Psychiatry und Psychotherapy, Philipps-University Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
14
|
Brown AM, Whiteside SP. Relations among perceived parental rearing behaviors, attachment style, and worry in anxious children. J Anxiety Disord 2008; 22:263-72. [PMID: 17383852 DOI: 10.1016/j.janxdis.2007.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 02/09/2007] [Accepted: 02/19/2007] [Indexed: 11/20/2022]
Abstract
The present study extended the findings of Muris et al. [Muris, P., Meesters, C., Merckelbach, H., & Hulsenbeck, P. (2000). Worry in children is related to perceived parental rearing and attachment. Behavior Research and Therapy, 38, 487-497] regarding the relations between perceived parental rearing behaviors, self-reported attachment style, and worry in a community sample to a clinical sample of anxious children. Sixty-four children and adolescents, aged 7-18 years, with a primary anxiety disorder completed (a) the EMBU-C, a questionnaire measuring perceptions of parental rearing behaviors, (b) a single-item measure of attachment style, and (c) an index of worry severity. Findings revealed that child rated parental rearing behaviors, particularly parental rejection, were positively related to child worry. Self-reported attachment style was also related to worry, such that children who classified themselves as ambivalently attached reported higher levels of worry than did children who classified themselves as securely attached. Parenting style and attachment were found to make independent contributions to worry. The results are compared to those from Muris et al.'s community study, and implications for future research are discussed.
Collapse
Affiliation(s)
- Amy M Brown
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN 55905, USA.
| | | |
Collapse
|
15
|
Antiepileptika in der Therapie von Angsterkrankungen – eine mögliche therapeutische Alternative? DER NERVENARZT 2007; 78:1274-82. [DOI: 10.1007/s00115-007-2361-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|