1
|
Nakagawa S, Lagisz M, Yang Y, Drobniak SM. Finding the right power balance: Better study design and collaboration can reduce dependence on statistical power. PLoS Biol 2024; 22:e3002423. [PMID: 38190355 PMCID: PMC10773938 DOI: 10.1371/journal.pbio.3002423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Power analysis currently dominates sample size determination for experiments, particularly in grant and ethics applications. Yet, this focus could paradoxically result in suboptimal study design because publication biases towards studies with the largest effects can lead to the overestimation of effect sizes. In this Essay, we propose a paradigm shift towards better study designs that focus less on statistical power. We also advocate for (pre)registration and obligatory reporting of all results (regardless of statistical significance), better facilitation of team science and multi-institutional collaboration that incorporates heterogenization, and the use of prospective and living meta-analyses to generate generalizable results. Such changes could make science more effective and, potentially, more equitable, helping to cultivate better collaborations.
Collapse
Affiliation(s)
- Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Yefeng Yang
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Szymon M. Drobniak
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
2
|
Piotrowska M. Diversity and inclusion for rodents: how animal ethics committees can help improve translation. JOURNAL OF MEDICAL ETHICS 2023:jme-2023-109166. [PMID: 37407026 DOI: 10.1136/jme-2023-109166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023]
Abstract
Translation failure occurs when a treatment shown to be safe and effective in one type of population does not produce the same result in another. We are currently in a crisis involving the translatability of preclinical studies to human populations. Animal trials are no better than a coin toss at predicting the safety and efficacy of drugs in human trials, and the high failure rate of drugs entering human trials suggests that most of the suffering of laboratory animals is futile, creating no commensurate benefit for human patients. Here, I argue that animal ethics committees have a role to play in getting us out of this crisis. Inadequate representation is a known contributor to translation failures and is a matter of both scientific and ethical concern. Ethical review committees have the authority to address it by reprioritising the values already enshrined in their guiding principles.
Collapse
Affiliation(s)
- Monika Piotrowska
- Philosophy, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
3
|
Carneiro CFD, Drude N, Hülsemann M, Collazo A, Toelch U. Mapping strategies towards improved external validity in preclinical translational research. Expert Opin Drug Discov 2023; 18:1273-1285. [PMID: 37691294 DOI: 10.1080/17460441.2023.2251886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Translation is about successfully bringing findings from preclinical contexts into the clinic. This transfer is challenging as clinical trials frequently fail despite positive preclinical results. Limited robustness of preclinical research has been marked as one of the drivers of such failures. One suggested solution is to improve the external validity of in vitro and in vivo experiments via a suite of complementary strategies. AREAS COVERED In this review, the authors summarize the literature available on different strategies to improve external validity in in vivo, in vitro, or ex vivo experiments; systematic heterogenization; generalizability tests; and multi-batch and multicenter experiments. Articles that tested or discussed sources of variability in systematically heterogenized experiments were identified, and the most prevalent sources of variability are reviewed further. Special considerations in sample size planning, analysis options, and practical feasibility associated with each strategy are also reviewed. EXPERT OPINION The strategies reviewed differentially influence variation in experiments. Different research projects, with their unique goals, can leverage the strengths and limitations of each strategy. Applying a combination of these approaches in confirmatory stages of preclinical research putatively increases the chances of success in clinical studies.
Collapse
Affiliation(s)
- Clarissa F D Carneiro
- QUEST Center for Responsible Research, Berlin Institute of Health at Charité, Berlin, Germany
| | - Natascha Drude
- QUEST Center for Responsible Research, Berlin Institute of Health at Charité, Berlin, Germany
| | - Maren Hülsemann
- QUEST Center for Responsible Research, Berlin Institute of Health at Charité, Berlin, Germany
| | - Anja Collazo
- QUEST Center for Responsible Research, Berlin Institute of Health at Charité, Berlin, Germany
| | - Ulf Toelch
- QUEST Center for Responsible Research, Berlin Institute of Health at Charité, Berlin, Germany
| |
Collapse
|
4
|
Suman PR, Lino de Oliveira C. Systematic heterogenisation to improve reproducibility in animal studies. PLoS Biol 2022; 20:e3001629. [PMID: 35522652 PMCID: PMC9075638 DOI: 10.1371/journal.pbio.3001629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A recent study published in PLoS Biology investigated whether the systematic use of multiple experimenters boosts the reproducibility of behavioural assays in mice. This Primer explores study designs to investigate systematic heterogenization in single-or multi-laboratory settings.
Collapse
Affiliation(s)
- Patrick Remus Suman
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, RJ, Brazil
| | - Cilene Lino de Oliveira
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina–UFSC, Florianópolis–SC, Brazil
- * E-mail:
| |
Collapse
|
5
|
Vihinen M. Measuring and interpreting pervasive heterogeneity, poikilosis. FASEB Bioadv 2021; 3:611-625. [PMID: 34377957 PMCID: PMC8332472 DOI: 10.1096/fba.2021-00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 11/11/2022] Open
Abstract
Measurements are widely used in science, engineering, industry, and trade. They form the basis for experimental scientific research, approach, and progress; however, their foundations are seldom thought or questioned. Recently poikilosis, pervasive heterogeneity ranging from subatomic level to biosphere, was introduced. Poikilosis makes single point measurements and estimates obsolete and irrelevant as measurands display intervals of magnitudes. Consideration of poikilosis requires new lines of thinking in experimental design, conduction of studies, data analysis and interpretation. Measurements of poikilosis must consider lagom, normal, variation extent. Measurements, measures, and measurands as well as the measuring systems and uncertainties are discussed from the perspective of poikilosis. New systematics is introduced for description of uncertainty in measurements and for types of experimental designs. Poikilosis-aware experimenting, data analysis and interpretation are discussed. Instructions are provided for how to measure lagom and non-lagom effects of poikilosis. Consideration of poikilosis can solve scientific controversies and enigmas and can allow novel insight into systems, processes, mechanisms, and reactions and their interpretation, understanding, and manipulation. Furthermore, it will increase reproducibility of measurements and studies.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical ScienceLund UniversityLundSweden
| |
Collapse
|
6
|
Drude NI, Martinez Gamboa L, Danziger M, Dirnagl U, Toelch U. Improving preclinical studies through replications. eLife 2021; 10:e62101. [PMID: 33432925 PMCID: PMC7817176 DOI: 10.7554/elife.62101] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
The purpose of preclinical research is to inform the development of novel diagnostics or therapeutics, and the results of experiments on animal models of disease often inform the decision to conduct studies in humans. However, a substantial number of clinical trials fail, even when preclinical studies have apparently demonstrated the efficacy of a given intervention. A number of large-scale replication studies are currently trying to identify the factors that influence the robustness of preclinical research. Here, we discuss replications in the context of preclinical research trajectories, and argue that increasing validity should be a priority when selecting experiments to replicate and when performing the replication. We conclude that systematically improving three domains of validity - internal, external and translational - will result in a more efficient allocation of resources, will be more ethical, and will ultimately increase the chances of successful translation.
Collapse
Affiliation(s)
- Natascha Ingrid Drude
- Department of Experimental Neurology, Charité–UniversitätsmedizinBerlinGermany
- BIH QUEST Center for Transforming Biomedical Research, Berlin Institute of HealthBerlinGermany
| | - Lorena Martinez Gamboa
- Department of Experimental Neurology, Charité–UniversitätsmedizinBerlinGermany
- BIH QUEST Center for Transforming Biomedical Research, Berlin Institute of HealthBerlinGermany
| | - Meggie Danziger
- Department of Experimental Neurology, Charité–UniversitätsmedizinBerlinGermany
- BIH QUEST Center for Transforming Biomedical Research, Berlin Institute of HealthBerlinGermany
| | - Ulrich Dirnagl
- Department of Experimental Neurology, Charité–UniversitätsmedizinBerlinGermany
- BIH QUEST Center for Transforming Biomedical Research, Berlin Institute of HealthBerlinGermany
| | - Ulf Toelch
- BIH QUEST Center for Transforming Biomedical Research, Berlin Institute of HealthBerlinGermany
| |
Collapse
|
7
|
Witjes VM, Boleij A, Halffman W. Reducing versus Embracing Variation as Strategies for Reproducibility: The Microbiome of Laboratory Mice. Animals (Basel) 2020; 10:E2415. [PMID: 33348632 PMCID: PMC7767075 DOI: 10.3390/ani10122415] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Irreproducibility is a well-recognized problem in biomedical animal experimentation. Phenotypic variation in animal models is one of the many challenging causes of irreproducibility. How to deal with phenotypic variation in experimental designs is a topic of debate. Both reducing and embracing variation are highlighted as strategies for reproducibility. In this theoretical review, we use variation in mouse microbiome composition as an example to analyze this ongoing discussion, drawing on both animal research and philosophy of science. We provide a conceptual explanation of reproducibility and analyze how the microbiome affects mouse phenotypes to demonstrate that the role of the microbiome in irreproducibility can be understood in two ways: (i) the microbiome can act as a confounding factor, and (ii) the result may not be generalizable to mice harboring a different microbiome composition. We elucidate that reducing variation minimizes confounding, whereas embracing variation ensures generalizability. These contrasting strategies make dealing with variation in experimental designs extremely complex. Here, we conclude that the most effective strategy depends on the specific research aim and question. The field of biomedical animal experimentation is too broad to identify a single optimal strategy. Thus, dealing with variation should be considered on a case-by-case basis, and awareness amongst researchers is essential.
Collapse
Affiliation(s)
- Vera M. Witjes
- Institute for Science in Society, Faculty of Science, Radboud University, 6500 GL Nijmegen, The Netherlands;
| | - Annemarie Boleij
- Department of Pathology, Radboud Institute for Molecular Life Science (RIMLS), Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Willem Halffman
- Institute for Science in Society, Faculty of Science, Radboud University, 6500 GL Nijmegen, The Netherlands;
| |
Collapse
|
8
|
Voikar V, Gaburro S. Three Pillars of Automated Home-Cage Phenotyping of Mice: Novel Findings, Refinement, and Reproducibility Based on Literature and Experience. Front Behav Neurosci 2020; 14:575434. [PMID: 33192366 PMCID: PMC7662686 DOI: 10.3389/fnbeh.2020.575434] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Animal models of neurodegenerative and neuropsychiatric disorders require extensive behavioral phenotyping. Currently, this presents several caveats and the most important are: (i) rodents are nocturnal animals, but mostly tested during the light period; (ii) the conventional behavioral experiments take into consideration only a snapshot of a rich behavioral repertoire; and (iii) environmental factors, as well as experimenter influence, are often underestimated. Consequently, serious concerns have been expressed regarding the reproducibility of research findings on the one hand, and appropriate welfare of the animals (based on the principle of 3Rs-reduce, refine and replace) on the other hand. To address these problems and improve behavioral phenotyping in general, several solutions have been proposed and developed. Undisturbed, 24/7 home-cage monitoring (HCM) is gaining increased attention and popularity as demonstrating the potential to substitute or complement the conventional phenotyping methods by providing valuable data for identifying the behavioral patterns that may have been missed otherwise. In this review, we will briefly describe the different technologies used for HCM systems. Thereafter, based on our experience, we will focus on two systems, IntelliCage (NewBehavior AG and TSE-systems) and Digital Ventilated Cage (DVC®, Tecniplast)-how they have been developed and applied during recent years. Additionally, we will touch upon the importance of the environmental/experimenter artifacts and propose alternative suggestions for performing phenotyping experiments based on the published evidence. We will discuss how the integration of telemetry systems for deriving certain physiological parameters can help to complement the description of the animal model to offer better translation to human studies. Ultimately, we will discuss how such HCM data can be statistically interpreted and analyzed.
Collapse
Affiliation(s)
- Vootele Voikar
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
9
|
Reproducibility of animal research in light of biological variation. Nat Rev Neurosci 2020; 21:384-393. [PMID: 32488205 DOI: 10.1038/s41583-020-0313-3] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
Context-dependent biological variation presents a unique challenge to the reproducibility of results in experimental animal research, because organisms' responses to experimental treatments can vary with both genotype and environmental conditions. In March 2019, experts in animal biology, experimental design and statistics convened in Blonay, Switzerland, to discuss strategies addressing this challenge. In contrast to the current gold standard of rigorous standardization in experimental animal research, we recommend the use of systematic heterogenization of study samples and conditions by actively incorporating biological variation into study design through diversifying study samples and conditions. Here we provide the scientific rationale for this approach in the hope that researchers, regulators, funders and editors can embrace this paradigm shift. We also present a road map towards better practices in view of improving the reproducibility of animal research.
Collapse
|
10
|
Gururajan A, Reif A, Cryan JF, Slattery DA. The future of rodent models in depression research. Nat Rev Neurosci 2019; 20:686-701. [DOI: 10.1038/s41583-019-0221-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 12/15/2022]
|
11
|
Ben-Ami F. Host Age Effects in Invertebrates: Epidemiological, Ecological, and Evolutionary Implications. Trends Parasitol 2019; 35:466-480. [PMID: 31003758 DOI: 10.1016/j.pt.2019.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/26/2022]
Abstract
In most species, variation in age among individuals is the strongest and most visible form of phenotypic variation. Individual-level age effects on disease traits, caused by differences in the age at exposure of the host or its parents, have been widely documented in invertebrates. They can influence diverse traits, such as host susceptibility, virulence, parasite reproduction and further transmission, and may cascade to the population level, influencing disease prevalence and within-host competition. Here, I summarize what is known about the relationship between individual-level age/stage effects and infectious disease in invertebrates. I also attempt to link age effects to the theory of aging (senescence), and highlight the importance of population age structure to disease epidemiology and evolution. I conclude by identifying gaps in our understanding of individual- and population-level age effects in invertebrates. As the age structure of populations varies across space and time, age effects have strong epidemiological, ecological, and evolutionary implications for explaining variation in infectious diseases of invertebrates.
Collapse
Affiliation(s)
- Frida Ben-Ami
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
12
|
Maximino C, van der Staay FJ. Behavioral models in psychopathology: epistemic and semantic considerations. Behav Brain Funct 2019; 15:1. [PMID: 30823933 PMCID: PMC6397463 DOI: 10.1186/s12993-019-0152-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/14/2019] [Indexed: 03/12/2023] Open
Abstract
The use of animals in neurosciences has a long history. It is considered indispensable in areas in which “translational” research is deemed invaluable, such as behavioral pharmacology and comparative psychology. Animal models are being used in pharmacology and genetics to screen for treatment targets, and in the field of experimental psychopathology to understand the neurobehavioral underpinnings of a disorder and of its putative treatment. The centrality of behavioral models betrays the complexity of the epistemic and semantic considerations which are needed to understand what a model is. In this review, such considerations are made, and the breadth of model building and evaluation approaches is extended to include theoretical considerations on the etiology of mental disorders. This expansion is expected to help improve the validity of behavioral models and to increase their translational value. Moreover, the role of theory in improving construct validity creates the need for behavioral scientists to fully engage this process.
Collapse
Affiliation(s)
- Caio Maximino
- Laboratório de Neurociências e Comportamento, Grupo de Pesquisas em Neurofarmacologia e Psicopatologia Experimental, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Unidade III - Av. dos Ipês, S/N, Marabá, Brazil
| | - Franz Josef van der Staay
- Behavior and Welfare Group, Department of Farm Animal Health, Veterinary Faculty, University Utrecht, P.O.Box 80.151, 3508 TD, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Ellis SLH, Riemer S, Thompson H, Burman OHP. Assessing the External Validity of Successive Negative Contrast - Implications for Animal Welfare. J APPL ANIM WELF SCI 2019; 23:54-61. [PMID: 30694088 DOI: 10.1080/10888705.2019.1572509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
When unexpectedly switched from a preferred to a less-preferred food reward, non-human animals may decrease consumption below that when only receiving the less-preferred reward - a successive negative contrast (SNC) effect. SNC has been proposed as an animal welfare indicator, however, to be effective it should show external validity; being demonstrable outside of highly standardized laboratory settings. We therefore investigated whether the SNC effect typically shown in laboratory rats was observed in owned (pet) rats from heterogeneous non-laboratory environments. Subjects (N = 14) were tested in a consummatory SNC paradigm with solid food rewards. "Shifted" rats received a high-value reward for 10 days (pre-shift), a low-value reward for six days (post-shift), then one additional day of high-value reward (re-shift). "Unshifted" rats always received the same low-value reward. "Shifted" rats consumed more food during pre-shift and re-shift trials, but ate less of the low-value food than "unshifted" animals in the post-shift trials - a SNC effect. This confirms the external validity of the SNC paradigm, extending reproducibility to outside the laboratory, indicating translatability across contexts, thus enhancing its potential use as a welfare indicator.
Collapse
Affiliation(s)
- Sarah L H Ellis
- Animal Behaviour, Cognition and Welfare Research Group, School of Life Sciences, University of Lincoln, Lincoln, UK
| | - Stefanie Riemer
- Animal Behaviour, Cognition and Welfare Research Group, School of Life Sciences, University of Lincoln, Lincoln, UK.,Division of Animal Welfare, VPH Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hannah Thompson
- Animal Behaviour, Cognition and Welfare Research Group, School of Life Sciences, University of Lincoln, Lincoln, UK
| | - Oliver H P Burman
- Animal Behaviour, Cognition and Welfare Research Group, School of Life Sciences, University of Lincoln, Lincoln, UK
| |
Collapse
|
14
|
André V, Gau C, Scheideler A, Aguilar-Pimentel JA, Amarie OV, Becker L, Garrett L, Hans W, Hölter SM, Janik D, Moreth K, Neff F, Östereicher M, Racz I, Rathkolb B, Rozman J, Bekeredjian R, Graw J, Klingenspor M, Klopstock T, Ollert M, Schmidt-Weber C, Wolf E, Wurst W, Gailus-Durner V, Brielmeier M, Fuchs H, Hrabé de Angelis M. Laboratory mouse housing conditions can be improved using common environmental enrichment without compromising data. PLoS Biol 2018; 16:e2005019. [PMID: 29659570 PMCID: PMC5922977 DOI: 10.1371/journal.pbio.2005019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/27/2018] [Accepted: 03/09/2018] [Indexed: 01/03/2023] Open
Abstract
Animal welfare requires the adequate housing of animals to ensure health and well-being. The application of environmental enrichment is a way to improve the well-being of laboratory animals. However, it is important to know whether these enrichment items can be incorporated in experimental mouse husbandry without creating a divide between past and future experimental results. Previous small-scale studies have been inconsistent throughout the literature, and it is not yet completely understood whether and how enrichment might endanger comparability of results of scientific experiments. Here, we measured the effect on means and variability of 164 physiological parameters in 3 conditions: with nesting material with or without a shelter, comparing these 2 conditions to a “barren” regime without any enrichments. We studied a total of 360 mice from each of 2 mouse strains (C57BL/6NTac and DBA/2NCrl) and both sexes for each of the 3 conditions. Our study indicates that enrichment affects the mean values of some of the 164 parameters with no consistent effects on variability. However, the influence of enrichment appears negligible compared to the effects of other influencing factors. Therefore, nesting material and shelters may be used to improve animal welfare without impairment of experimental outcome or loss of comparability to previous data collected under barren housing conditions. Adequate housing of laboratory animals is essential to guarantee their well-being. From a scientific perspective, physically and mentally healthy animals also contribute to increased validity and reproducibility of experimental results. The choice of nesting material or shelter type, referred to as environmental enrichment, may influence how laboratory animals perform species-specific behaviors. Consequently, changes in these nesting and shelter materials could influence scientific results by, for example, increasing variability in measured characteristics. Whether studies using different environmental enrichment materials can be compared is currently questioned. Our study shows that simple, species-specific environmental enrichment in the form of nesting material alone or in combination with a shelter did not consistently increase variability of physiological parameters in mice. Differences in parameter average values appeared to be of minor biological relevance when compared to the effects of other environmental factors. These simple environmental enrichment devices may therefore be applied to improve the housing environment of laboratory mice without compromising data validity or comparability.
Collapse
Affiliation(s)
- Viola André
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- * E-mail:
| | - Christine Gau
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Angelika Scheideler
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Juan A. Aguilar-Pimentel
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Oana V. Amarie
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Hans
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabine M. Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Dirk Janik
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Kristin Moreth
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Frauke Neff
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Manuela Östereicher
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ildiko Racz
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Raffi Bekeredjian
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, Freising-Weihenstephan, Germany
- ZIEL—Center for Nutrition and Food Sciences, Technische Universität München, Freising, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
- Deutsches Institut für Neurodegenerative Erkrankungen (DZNE), Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Ollert
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), Odense University hospital, University of Southern Denmark, Odense C, Denmark
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Carsten Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technische Universität München and Helmholtz Zentrum München, Munich, Germany and Member of the German Center for Lung Research (DZL), Gießen, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Deutsches Institut für Neurodegenerative Erkrankungen (DZNE), Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
- Technische Universität München, Freising-Weihenstephan, Chair of Developmental Genetics, c/o Helmholtz Zentrum München, Neuherberg, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Valérie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Markus Brielmeier
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabé de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
15
|
Boutet I, Collin CA, MacLeod LS, Messier C, Holahan MR, Berry-Kravis E, Gandhi RM, Kogan CS. Utility of the Hebb-Williams Maze Paradigm for Translational Research in Fragile X Syndrome: A Direct Comparison of Mice and Humans. Front Mol Neurosci 2018; 11:99. [PMID: 29643767 PMCID: PMC5882825 DOI: 10.3389/fnmol.2018.00099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/13/2018] [Indexed: 11/26/2022] Open
Abstract
To generate meaningful information, translational research must employ paradigms that allow extrapolation from animal models to humans. However, few studies have evaluated translational paradigms on the basis of defined validation criteria. We outline three criteria for validating translational paradigms. We then evaluate the Hebb–Williams maze paradigm (Hebb and Williams, 1946; Rabinovitch and Rosvold, 1951) on the basis of these criteria using Fragile X syndrome (FXS) as model disease. We focused on this paradigm because it allows direct comparison of humans and animals on tasks that are behaviorally equivalent (criterion #1) and because it measures spatial information processing, a cognitive domain for which FXS individuals and mice show impairments as compared to controls (criterion #2). We directly compared the performance of affected humans and mice across different experimental conditions and measures of behavior to identify which conditions produce comparable patterns of results in both species. Species differences were negligible for Mazes 2, 4, and 5 irrespective of the presence of visual cues, suggesting that these mazes could be used to measure spatial learning in both species. With regards to performance on the first trial, which reflects visuo-spatial problem solving, Mazes 5 and 9 without visual cues produced the most consistent results. We conclude that the Hebb–Williams mazes paradigm has the potential to be utilized in translational research to measure comparable cognitive functions in FXS humans and animals (criterion #3).
Collapse
Affiliation(s)
- Isabelle Boutet
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Claude Messier
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | | | - Elizabeth Berry-Kravis
- Pediatrics, Biochemistry, and Neurology, Rush University Medical Center, Chicago, IL, United States
| | - Reno M Gandhi
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Cary S Kogan
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
16
|
Mikó Z, Ujszegi J, Gál Z, Hettyey A. Standardize or Diversify Experimental Conditions in Ecotoxicology? A Case Study on Herbicide Toxicity to Larvae of Two Anuran Amphibians. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:562-569. [PMID: 28660298 DOI: 10.1007/s00244-017-0427-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Despite a steeply increasing number of ecotoxicological studies on the effects of pesticides on nontarget organisms, studies assessing the adequacy and reliability of different experimental approaches have remained scarce. We scrutinized effects of a glyphosate-based herbicide on larvae of two European anuran amphibians by estimating species-specific LC50 values, assessing how an additional stress factor may influence outcomes, and investigating whether replicate experiments yielded qualitatively the same results. We exposed Rana dalmatina and Bufo bufo tadpoles to two predator treatments (no predator vs. predator chemical cues) combined with varying herbicide concentrations, repeated the experiment with a subset of the experimental treatments and partly with slight modifications 1 week later and assessed survival. Our results indicated that the herbicide was moderately toxic to tadpoles. The presence of predator chemical cues did not affect the lethality of the herbicide in either species. The estimated sensitivity of R. dalmatina tadpoles varied considerably across experiments, whereas in case of B. bufo LC50 values remained very similar. Our results suggest that differences in the experimental setup may often have no influence on the measured effects of pesticides, whereas replicated experiments can deliver widely differing results in other cases, perhaps depending on the studied species, the population origin of the tested individuals, or the test conditions. This draws attention to the suggestion that strict standardization may not deliver widely applicable insights into the toxicity of contaminants and, instead, intentionally introducing variation into the design of ecotoxicological experiments and replicating entire experiments may prove highly beneficial.
Collapse
Affiliation(s)
- Zsanett Mikó
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest, 1022, Hungary.
| | - János Ujszegi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest, 1022, Hungary
- Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Zoltán Gál
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest, 1022, Hungary
- Agricultural Biotechnology Institute, NARIC, Szent-Györgyi Albert utca 4, Gödöllő, 2100, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest, 1022, Hungary
| |
Collapse
|
17
|
Bolker JA. Animal Models in Translational Research: Rosetta Stone or Stumbling Block? Bioessays 2017; 39. [PMID: 29052843 DOI: 10.1002/bies.201700089] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/17/2017] [Indexed: 01/12/2023]
Abstract
Leading animal models are powerful tools for translational research, but they also present obstacles. Poorly conducted preclinical research in animals is a common cause of translational failure, but even when such research is well-designed and carefully executed, challenges remain. In particular, dominant models may bias research directions, elide essential aspects of human disease, omit important context, or subtly shift research targets. Recognizing these stumbling blocks can help us find ways to avoid them: employing a wider range of models, incorporating more realistic environmental conditions, better aligning studies between animals and patients, and focusing on human biology and therapeutic goals. Such changes are costly; but insisting it would be impractical or unrealistic to change strategies offers no way out of the current impasse. Rather, we must acknowledge the obstacles as well as the advantages presented by core models, and direct some of our investments in translational research toward getting around them.
Collapse
Affiliation(s)
- Jessica A Bolker
- Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
18
|
Is a local sample internationally representative? Reproducibility of four cognitive tests in family dogs across testing sites and breeds. Anim Cogn 2017; 20:1019-1033. [PMID: 28988352 DOI: 10.1007/s10071-017-1133-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/09/2017] [Accepted: 09/23/2017] [Indexed: 10/18/2022]
Abstract
A fundamental precept of the scientific method is reproducibility of methods and results, and there is growing concern over the failure to reproduce significant results. Family dogs have become a favoured species in comparative cognition research, but they may be subject to cognitive differences arising from genetic (breeding lines) or cultural differences (e.g. preferred training methods). Such variation is of concern as it affects the validity and generalisability of experimental results. Despite its importance, this problem has not been specifically addressed to date. Therefore, we aimed to test the influence of three factors on reproducibility: testing site (proximal environment), breed and sex (phenotype). The same experimenter tested cognitive performance by more than 200 dogs in four experiments. Additionally, dogs' performance was tested in an obedience task administered by the owner. Breed of dog and testing site were found to influence the level of performance only mildly, and only in a means-end experiment and the obedience task. Our findings demonstrate that by applying the same test protocols on sufficiently large samples, the reported phenomena in these cognitive tests can be reproduced, but slight differences in performance levels can occur between different samples. Accordingly, we recommend the utilisation of well-described protocols supported by video examples of the whole experimental procedure. Findings should focus on the main outcome variables of the experiments, rather than speculating about the general importance of small or secondary performance outcomes which are more susceptible to random or local noise.
Collapse
|
19
|
Sjoberg EA. Logical fallacies in animal model research. Behav Brain Funct 2017; 13:3. [PMID: 28202023 PMCID: PMC5312558 DOI: 10.1186/s12993-017-0121-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/01/2017] [Indexed: 12/31/2022] Open
Abstract
Background Animal models of human behavioural deficits involve conducting experiments on animals with the hope of gaining new knowledge that can be applied to humans. This paper aims to address risks, biases, and fallacies associated with drawing conclusions when conducting experiments on animals, with focus on animal models of mental illness. Conclusions Researchers using animal models are susceptible to a fallacy known as false analogy, where inferences based on assumptions of similarities between animals and humans can potentially lead to an incorrect conclusion. There is also a risk of false positive results when evaluating the validity of a putative animal model, particularly if the experiment is not conducted double-blind. It is further argued that animal model experiments are reconstructions of human experiments, and not replications per se, because the animals cannot follow instructions. This leads to an experimental setup that is altered to accommodate the animals, and typically involves a smaller sample size than a human experiment. Researchers on animal models of human behaviour should increase focus on mechanistic validity in order to ensure that the underlying causal mechanisms driving the behaviour are the same, as relying on face validity makes the model susceptible to logical fallacies and a higher risk of Type 1 errors. We discuss measures to reduce bias and risk of making logical fallacies in animal research, and provide a guideline that researchers can follow to increase the rigour of their experiments.
Collapse
Affiliation(s)
- Espen A Sjoberg
- Department of Behavioral Sciences, Oslo and Akershus University College of Applied Sciences, St. Olavs Plass, P.O. Box 4, 0130, Oslo, Norway.
| |
Collapse
|
20
|
Abstract
Little attention has been paid to the effects of fish microbiotas on the reproducibility and comparability of fish studies so far. Extrinsic and intrinsic factors, such as water quality, environmental microbial populations, diet, host genetic profile, gender, age and stress status, affect fish microbiotas and create significant inter- and intra-species variations. Fish microbiotas play critical roles in many key aspects of host physiology, such as protection against pathogens, digestion and development of the digestive tract and the local immune system. Thus, greater effort should be invested in standardizing the microbiological profiles of research fish. In this context, issues requiring consideration include the establishment of isogenic and isobiotic fish lines, the standardization of rearing conditions and the development of appropriate tests to adequately describe microbial populations. There are many challenges involved in each of these issues, and the research community must decide which aspects should be standardized for each species and each type of research. For all studies in which microbiota is expected to exert an influence, thorough reporting is of paramount importance. Every step towards standardization increases study quality and simultaneously contributes to reducing the number of fish used in research, which is a legal and ethical obligation.
Collapse
Affiliation(s)
- I N Vatsos
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
21
|
Crabbe JC. Reproducibility of Experiments with Laboratory Animals: What Should We Do Now? Alcohol Clin Exp Res 2016; 40:2305-2308. [PMID: 27716958 DOI: 10.1111/acer.13228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/29/2016] [Indexed: 01/27/2023]
|
22
|
Longitudinal imaging of the ageing mouse. Mech Ageing Dev 2016; 160:93-116. [PMID: 27530773 DOI: 10.1016/j.mad.2016.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/30/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022]
Abstract
Several non-invasive imaging techniques are used to investigate the effect of pathologies and treatments over time in mouse models. Each preclinical in vivo technique provides longitudinal and quantitative measurements of changes in tissues and organs, which are fundamental for the evaluation of alterations in phenotype due to pathologies, interventions and treatments. However, it is still unclear how these imaging modalities can be used to study ageing with mice models. Almost all age related pathologies in mice such as osteoporosis, arthritis, diabetes, cancer, thrombi, dementia, to name a few, can be imaged in vivo by at least one longitudinal imaging modality. These measurements are the basis for quantification of treatment effects in the development phase of a novel treatment prior to its clinical testing. Furthermore, the non-invasive nature of such investigations allows the assessment of different tissue and organ phenotypes in the same animal and over time, providing the opportunity to study the dysfunction of multiple tissues associated with the ageing process. This review paper aims to provide an overview of the applications of the most commonly used in vivo imaging modalities used in mouse studies: micro-computed-tomography, preclinical magnetic-resonance-imaging, preclinical positron-emission-tomography, preclinical single photon emission computed tomography, ultrasound, intravital microscopy, and whole body optical imaging.
Collapse
|
23
|
Koopmans SJ, Schuurman T. Considerations on pig models for appetite, metabolic syndrome and obese type 2 diabetes: From food intake to metabolic disease. Eur J Pharmacol 2015; 759:231-9. [PMID: 25814261 DOI: 10.1016/j.ejphar.2015.03.044] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/06/2015] [Accepted: 03/12/2015] [Indexed: 12/24/2022]
Abstract
(Mini)pigs have proven to be a valuable animal model in nutritional, metabolic and cardiovascular research and in some other biomedical research areas (toxicology, neurobiology). The large resemblance of (neuro)anatomy, the gastro-intestinal tract, body size, body composition, and the omnivorous food choice and appetite of the pig are additional reasons to select this large animal species for (preclinical) nutritional and pharmacological studies. Both humans and pigs are prone to the development of obesity and related cardiovascular diseases such as hypertension and atherosclerosis. Bad cholesterol (LDL) is high and good cholesterol (HDL) is low in pigs, like in humans. Disease-relevant pig models fill the gap between rodent models and primate species including humans. Diet-induced obese pigs show a phenotype related to the metabolic syndrome including high amounts of visceral fat, fatty organs, insulin resistance and high blood pressure. However, overt hyperglycaemia does not develop within 6 months after initiation of high sugar-fat feeding. Therefore, to accelerate the induction of obese type 2 diabetes, obese pigs can be titrated with streptozotocin, a chemical agent which selectively damages the insulin-producing pancreatic beta-cells. However, insulin is required to maintain obesity. With proper titration of streptozotocin, insulin secretion can be restrained at such a level that hyperglycaemia will be induced but lipolysis is still inhibited due to the fact that inhibition of lipolysis is more sensitive to insulin compared to stimulation of glucose uptake. This strategy may lead to a stable hyperglycaemic, non-ketotic obese pig model which remains anabolic with time without the necessity of exogenous insulin treatment.
Collapse
Affiliation(s)
- Sietse Jan Koopmans
- Wageningen UR Livestock Research, de Elst 1 and CARUS Animal Facilities, Bornseweilanden 5, Wageningen University, Wageningen, The Netherlands.
| | - Teun Schuurman
- Wageningen University, Department of Animal Sciences, Animal Nutrition Group, de Elst 1, Wageningen, The Netherlands
| |
Collapse
|
24
|
Sex Differences in Physiological Acclimatization after Transfer in Wistar Rats. Animals (Basel) 2014; 4:693-711. [PMID: 26479007 PMCID: PMC4494431 DOI: 10.3390/ani4040693] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/16/2014] [Accepted: 10/22/2014] [Indexed: 11/22/2022] Open
Abstract
Simple Summary This study in laboratory rodents shows a sex specific effect of breeder to research facility transfer on several physiological parameters, such as heart rate and blood pressure. We recommend at least 8 days of acclimatization time after transfer in male rats and at least two weeks in female rats, before using these animals in research. Abstract Most laboratory animals used in research are vendor-bred and transferred to research facilities. Transfer procedures might have considerable and unintended effects on research results. In the present study we compared physiological and behavioral parameters before and after external and internal transfer, as well as between transferred and non-transferred Wistar rats. The impact of both external and internal transfer on body weight, plasma corticosterone levels, heart rate, blood pressure, and locomotor activity was studied in both male and female Wistar rats, taking into account the sex differences in stress responsivity. External transfer was found to decrease body weight, increase plasma corticosterone, increase activity, increase heart rate in female rats, but decrease heart rate in male rats. Parameters showed differences between the sexes and light phases. This study shows that acclimatization after transfer is sex-specific and researchers should take the sex into consideration when determining the acclimatization period. It is recommended to allow for acclimatization of at least 8 days in males and two weeks in females after external transfer and timely (2 days before starting experiments) transfer the animals internally to the testing room.
Collapse
|
25
|
|
26
|
Olayo-Lortia J, Ferreira-Nuño A, Velázquez-Moctezuma J, Morales-Otal A. Further definition on the multiple partner choice arena: a potential animal model for the study of premature ejaculation. J Sex Med 2014; 11:2428-38. [PMID: 25052779 DOI: 10.1111/jsm.12637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION The multiple partner choice arena (MPCA) is an experimental setup in which male rats display a significant shortening of ejaculation latency, which is the main characteristic of premature ejaculation (PE) in men. Thus, the MPCA is a potential animal model for PE. AIM In this study, we further analyze whether the features of the MPCA satisfy the validity criteria for it to be considered an animal model as well as the possible participation of the serotoninergic system in the faster ejaculation exhibited by male rats in the MPCA. METHODS In Experiment 1, male rats were tested in a standard arena to assess their sexual behavior, then were assessed 1 week later in the MPCA. Another group was first tested in the MPCA, then in a standard arena. In Experiment 2, male rats divided into two groups were treated daily with WAY-100635 (5-HT(1A) antagonist) or vehicle for 15 days. In each group, half of the subjects were tested in a standard arena and half were tested in the MPCA on days 1, 8, and 15 of treatment. MAIN OUTCOME MEASURES Number of intromissions and intromission and ejaculation latencies were the main outcome measures. RESULTS In Experiment 1, males tested in the MPCA ejaculated significantly faster, regardless of the order in which they were evaluated in both arenas. In Experiment 2, the administration of WAY-100635 increased intromission and ejaculation latencies, and the number of intromissions in the MPCA. CONCLUSIONS The results obtained in the MPCA support its use as an animal model for PE evaluation.
Collapse
Affiliation(s)
- Jesús Olayo-Lortia
- Programa de Doctorado en Ciencias Biológicas y de la Salud de la Universidad Autónoma Metropolitana, Mexico City, Mexico; Área de Neurociencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | | | | | | |
Collapse
|
27
|
Gieling ET, Mijdam E, van der Staay FJ, Nordquist RE. Lack of mirror use by pigs to locate food. Appl Anim Behav Sci 2014. [DOI: 10.1016/j.applanim.2014.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Boltze J, Ayata C, Wagner DC, Plesnila N. Preclinical phase III trials in translational stroke research: call for collective design of framework and guidelines. Stroke 2014; 45:357. [PMID: 24407954 DOI: 10.1161/strokeaha.113.004148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Johannes Boltze
- From the Fraunhofer Institute of Cell Therapy and Immunology and Translational Center of Regenerative Medicine, University of Leipzig, Leipzig, Germany (J.B., D.-C.W.); Neurovascular Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston (J.B., C.A.); and Institute for Stroke and Dementia Research, University of Munich Medical Center, Munich, Germany (N.P.)
| | | | | | | |
Collapse
|
29
|
Garner JP. The significance of meaning: why do over 90% of behavioral neuroscience results fail to translate to humans, and what can we do to fix it? ILAR J 2014; 55:438-56. [PMID: 25541546 PMCID: PMC4342719 DOI: 10.1093/ilar/ilu047] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The vast majority of drugs entering human trials fail. This problem (called "attrition") is widely recognized as a public health crisis, and has been discussed openly for the last two decades. Multiple recent reviews argue that animals may be just too different physiologically, anatomically, and psychologically from humans to be able to predict human outcomes, essentially questioning the justification of basic biomedical research in animals. This review argues instead that the philosophy and practice of experimental design and analysis is so different in basic animal work and human clinical trials that an animal experiment (as currently conducted) cannot reasonably predict the outcome of a human trial. Thus, attrition does reflect a lack of predictive validity of animal experiments, but it would be a tragic mistake to conclude that animal models cannot show predictive validity. A variety of contributing factors to poor validity are reviewed. The need to adopt methods and models that are highly specific (i.e., which can identify true negative results) in order to complement the current preponderance of highly sensitive methods (which are prone to false positive results) is emphasized. Concepts in biomarker-based medicine are offered as a potential solution, and changes in the use of animal models required to embrace a translational biomarker-based approach are outlined. In essence, this review advocates a fundamental shift, where we treat every aspect of an animal experiment that we can as if it was a clinical trial in a human population. However, it is unrealistic to expect researchers to adopt a new methodology that cannot be empirically justified until a successful human trial. "Validation with known failures" is proposed as a solution. Thus new methods or models can be compared against existing ones using a drug that has translated (a known positive) and one that has failed (a known negative). Current methods should incorrectly identify both as effective, but a more specific method should identify the negative compound correctly. By using a library of known failures we can thereby empirically test the impact of suggested solutions such as enrichment, controlled heterogenization, biomarker-based models, or reverse-translated measures.
Collapse
|
30
|
Jonker RM, Guenther A, Engqvist L, Schmoll T. Does systematic variation improve the reproducibility of animal experiments? Nat Methods 2013; 10:373. [DOI: 10.1038/nmeth.2439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Eckert MJ, Abraham WC. Effects of environmental enrichment exposure on synaptic transmission and plasticity in the hippocampus. Curr Top Behav Neurosci 2013; 15:165-187. [PMID: 22798066 DOI: 10.1007/7854_2012_215] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Exposure to an enriched environment (EE) is beneficial to the structure and function of the brain. The added sensory, social, and spatial complexity of the EE also improves cognitive functions such as memory in both healthy brains and damaged or diseased brains, yet the underlying neural mechanisms of these cognitive improvements are poorly understood. In particular, studies that have examined the effects of EE on cellular function in the hippocampus, a structure critical for memory storage, have produced somewhat confusing results. Experiments performed in ex vivo hippocampal slices have reported a variety of EE effects on synaptic transmission and plasticity in both CA1 and the dentate gyrus. However, together with data from in vivo recordings made during and after the EE treatment, the overall results suggest an evolution of changes in neuronal function in the hippocampus, whereby there is an early transient increase in cell activity and plasticity that gives rise to more subtle long-term enhancements in cellular and network function that may contribute to enhanced hippocampus-dependent cognition.
Collapse
Affiliation(s)
- Michael J Eckert
- Canadian Center for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, Canada,
| | | |
Collapse
|
32
|
Boleij H, Salomons AR, van Sprundel M, Arndt SS, Ohl F. Not all mice are equal: welfare implications of behavioural habituation profiles in four 129 mouse substrains. PLoS One 2012; 7:e42544. [PMID: 22880028 PMCID: PMC3411796 DOI: 10.1371/journal.pone.0042544] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 07/10/2012] [Indexed: 12/03/2022] Open
Abstract
Safeguarding the welfare of animals is an important aim when defining housing and management standards in animal based, experimental research. While such standards are usually defined per animal species, it is known that considerable differences between laboratory mouse strains exist, for example with regard to their emotional traits. Following earlier experiments, in which we found that 129P3 mice show a lack of habituation of anxiety related behaviour after repeated exposure to an initially novel environment (non-adaptive profile), we here investigated four other 129 inbred mouse substrains (129S2/SvPas, 129S2/SvHsd (exp 1); 129P2 and 129X1 (exp 2)) on habituation of anxiety related behaviour. Male mice of each strain were repeatedly placed in the modified hole board test, measuring anxiety-related behaviour, exploratory and locomotor behaviour. The results reveal that all four substrains show a lack of habituation behaviour throughout the period of testing. Although not in all of the substrains a possible confounding effect of general activity can be excluded, our findings suggest that the genetic background of the 129 substrains may increase their vulnerability to cope with environmental challenges, such as exposure to novelty. This vulnerability might negatively affect the welfare of these mice under standard laboratory conditions when compared with other strains. Based on our findings we suggest to consider (sub)strain-specific guidelines and protocols, taking the (subs)train-specific adaptive capabilities into account.
Collapse
Affiliation(s)
- Hetty Boleij
- Faculty of Veterinary Medicine, Department of Animals in Science and Society, Division of Animal Welfare and Laboratory Animal Science, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
33
|
van der Staay FJ, Gieling ET, Pinzón NE, Nordquist RE, Ohl F. The appetitively motivated “cognitive” holeboard: A family of complex spatial discrimination tasks for assessing learning and memory. Neurosci Biobehav Rev 2012; 36:379-403. [DOI: 10.1016/j.neubiorev.2011.07.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 06/30/2011] [Accepted: 07/04/2011] [Indexed: 12/27/2022]
|
34
|
Schaefer AT, Claridge-Chang A. The surveillance state of behavioral automation. Curr Opin Neurobiol 2011; 22:170-6. [PMID: 22119142 PMCID: PMC3398388 DOI: 10.1016/j.conb.2011.11.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/02/2011] [Accepted: 11/03/2011] [Indexed: 11/17/2022]
Abstract
Genetics’ demand for increased throughput is driving automatization of behavior analysis far beyond experimental workhorses like circadian monitors and the operant conditioning box. However, the new automation is not just faster: it is also allowing new kinds of experiments, many of which erase the boundaries of the traditional neuroscience disciplines (psychology, ethology and physiology) while producing insight into problems that were otherwise opaque. Ironically, a central theme of current automatization is to improve observation of animals in increasingly naturalistic environments. This is not just a return to 19th century priorities: the new observational methods provide unprecedented quantitation of actions and ever-closer integration with experimentation.
Collapse
Affiliation(s)
- Andreas T Schaefer
- Behavioural Neurophysiology, Max-Planck-Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany.
| | | |
Collapse
|
35
|
van der Staay FJ, Rutten K, Erb C, Blokland A. Effects of the cognition impairer MK-801 on learning and memory in mice and rats. Behav Brain Res 2011; 220:215-29. [DOI: 10.1016/j.bbr.2011.01.052] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 01/26/2011] [Accepted: 01/29/2011] [Indexed: 12/28/2022]
|
36
|
Gieling ET, Nordquist RE, van der Staay FJ. Assessing learning and memory in pigs. Anim Cogn 2011; 14:151-73. [PMID: 21203792 PMCID: PMC3040303 DOI: 10.1007/s10071-010-0364-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 11/23/2010] [Accepted: 11/25/2010] [Indexed: 01/12/2023]
Abstract
In recent years, there has been a surge of interest in (mini) pigs (Sus scrofa) as species for cognitive research. A major reason for this is their physiological and anatomical similarity with humans. For example, pigs possess a well-developed, large brain. Assessment of the learning and memory functions of pigs is not only relevant to human research but also to animal welfare, given the nature of current farming practices and the demands they make on animal health and behavior. In this article, we review studies of pig cognition, focusing on the underlying processes and mechanisms, with a view to identifying. Our goal is to aid the selection of appropriate cognitive tasks for research into pig cognition. To this end, we formulated several basic criteria for pig cognition tests and then applied these criteria and knowledge about pig-specific sensorimotor abilities and behavior to evaluate the merits, drawbacks, and limitations of the different types of tests used to date. While behavioral studies using (mini) pigs have shown that this species can perform learning and memory tasks, and much has been learned about pig cognition, results have not been replicated or proven replicable because of the lack of validated, translational behavioral paradigms that are specially suited to tap specific aspects of pig cognition. We identified several promising types of tasks for use in studies of pig cognition, such as versatile spatial free-choice type tasks that allow the simultaneous measurement of several behavioral domains. The use of appropriate tasks will facilitate the collection of reliable and valid data on pig cognition.
Collapse
Affiliation(s)
- Elise Titia Gieling
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Emotion and Cognition Program, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands
- Rudolf Magnus Institute of Neuroscience, Universiteitsweg 100, Utrecht, The Netherlands
| | - Rebecca Elizabeth Nordquist
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Emotion and Cognition Program, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands
- Rudolf Magnus Institute of Neuroscience, Universiteitsweg 100, Utrecht, The Netherlands
| | - Franz Josef van der Staay
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Emotion and Cognition Program, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands
- Rudolf Magnus Institute of Neuroscience, Universiteitsweg 100, Utrecht, The Netherlands
| |
Collapse
|