1
|
Lymphocytic Extracellular Signal-Regulated Kinase Dysregulation in Autism Spectrum Disorder. J Am Acad Child Adolesc Psychiatry 2023; 62:582-592.e2. [PMID: 36638885 DOI: 10.1016/j.jaac.2022.09.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 08/06/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Extracellular signal-regulated kinase (ERK1/2) is a conserved central intracellular signaling cascade involved in many aspects of neuronal development and plasticity. Converging evidence support investigation of ERK1/2 activity in autism spectrum disorder (ASD). We previously reported enhanced baseline lymphocytic ERK1/2 activation in autism, and now we extend our work to investigate the early phase kinetics of lymphocytic ERK1/2 activation in idiopathic ASD. METHOD Study participants included 67 individuals with ASD (3-25 years of age), 65 age- and sex-matched typical developing control (TDC) subjects, and 36 age-, sex-, and IQ-matched developmental disability control (DDC) subjects matched to those with ASD and IQ <90. We completed an additional analysis comparing results from ASD, TDC, and DDC groups with data from 37 individuals with Fragile X syndrome (FXS). All subjects had blood lymphocyte samples analyzed by flow cytometry following stimulation with phorbol ester and sequentially analyzed for ERK1/2 activation (phosphorylation) at several time points. RESULTS The ASD group (mean = 5.81 minutes; SD = 1.5) had a significantly lower (more rapid) mean ERK1/2 T1/2 activation value than both the DDC group (mean = 6.78 minutes; SD = 1.6; p = .00078) and the TDC group (mean = 6.4 minutes; SD = 1.5; p = .025). More rapid ERK1/2 T1/2 activation times did correlate with increased social impairment across all study groups including the ASD cohort. Differences in ERK1/2 T1/2 activation were more pronounced in younger than in older individuals in the primary analysis. The ASD group additionally had more rapid activation times than the FXS group, and the FXS group activation kinetics did not differ from those of the TDC and DDC groups. CONCLUSION Our findings indicate that lymphocytic ERK1/2 activation kinetics are dysregulated in persons with ASD, marked by more rapid early phase activation. Group differences in ERK1/2 activation kinetics appear to be driven by findings from the youngest children analyzed. DIVERSITY & INCLUSION STATEMENT We worked to ensure sex and gender balance in the recruitment of human participants. We actively worked to promote sex and gender balance in our author group. The author list of this paper includes contributors from the location and/or community where the research was conducted who participated in the data collection, design, analysis, and/or interpretation of the work.
Collapse
|
2
|
Purushotham SS, Reddy NMN, D'Souza MN, Choudhury NR, Ganguly A, Gopalakrishna N, Muddashetty R, Clement JP. A perspective on molecular signalling dysfunction, its clinical relevance and therapeutics in autism spectrum disorder. Exp Brain Res 2022; 240:2525-2567. [PMID: 36063192 DOI: 10.1007/s00221-022-06448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are neurodevelopmental disorders that have become a primary clinical and social concern, with a prevalence of 2-3% in the population. Neuronal function and behaviour undergo significant malleability during the critical period of development that is found to be impaired in ID/ASD. Human genome sequencing studies have revealed many genetic variations associated with ASD/ID that are further verified by many approaches, including many mouse and other models. These models have facilitated the identification of fundamental mechanisms underlying the pathogenesis of ASD/ID, and several studies have proposed converging molecular pathways in ASD/ID. However, linking the mechanisms of the pathogenic genes and their molecular characteristics that lead to ID/ASD has progressed slowly, hampering the development of potential therapeutic strategies. This review discusses the possibility of recognising the common molecular causes for most ASD/ID based on studies from the available models that may enable a better therapeutic strategy to treat ID/ASD. We also reviewed the potential biomarkers to detect ASD/ID at early stages that may aid in diagnosis and initiating medical treatment, the concerns with drug failure in clinical trials, and developing therapeutic strategies that can be applied beyond a particular mutation associated with ASD/ID.
Collapse
Affiliation(s)
- Sushmitha S Purushotham
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Neeharika M N Reddy
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Michelle Ninochka D'Souza
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - Nilpawan Roy Choudhury
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Anusa Ganguly
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Niharika Gopalakrishna
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Ravi Muddashetty
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India.
| |
Collapse
|
3
|
Alterations in Tau Protein Level and Phosphorylation State in the Brain of the Autistic-Like Rats Induced by Prenatal Exposure to Valproic Acid. Int J Mol Sci 2021; 22:ijms22063209. [PMID: 33809910 PMCID: PMC8004207 DOI: 10.3390/ijms22063209] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficient social interaction and communication besides repetitive, stereotyped behaviours. A characteristic feature of ASD is altered dendritic spine density and morphology associated with synaptic plasticity disturbances. Since microtubules (MTs) regulate dendritic spine morphology and play an important role in spine development and plasticity the aim of the present study was to investigate the alterations in the content of neuronal α/β-tubulin and Tau protein level as well as phosphorylation state in the valproic acid (VPA)-induced rat model of autism. Our results indicated that maternal exposure to VPA induces: (1) decrease the level of α/β-tubulin along with Tau accumulation in the hippocampus and cerebral cortex; (2) excessive Tau phosphorylation and activation of Tau-kinases: CDK5, ERK1/2, and p70S6K in the cerebral cortex; (3) up-regulation of mTOR kinase-dependent signalling in the hippocampus and cerebral cortex of adolescent rat offspring. Moreover, immunohistochemical staining showed histopathological changes in neurons (chromatolysis) in both analysed brain structures of rats prenatally exposed to VPA. The observed changes in Tau protein together with an excessive decrease in α/β-tubulin level may suggest destabilization and thus dysfunction of the MT cytoskeleton network, which in consequence may lead to the disturbance in synaptic plasticity and the development of autistic-like behaviours.
Collapse
|
4
|
Briuglia S, Calabrò M, Capra AP, La Rosa MA, Crisafulli C. CNVs inform the biological network of Autism spectrum disorder. Psychiatry Res 2021; 297:113729. [PMID: 33524775 DOI: 10.1016/j.psychres.2021.113729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/13/2021] [Indexed: 11/26/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous condition linked to an anomalous neurodevelopment. Although the underlying causes of ASD are not well described, literature data strongly suggests a genetic component, with a complex inheritance pattern. It has recently been observed that CNVs (copy number variation) may play an important role in ASD manifestation and partially explain the complex heritability of this tract. Another factor That adds another level of complexity to ASD is its potential genetic heterogeneity. In this paper, we hypothesize that the different patterns of alteration within individuals with ASD may converge towards the same function. We genotyped a sample of 107 individuals through aCGH analysis for CNVs that were related (by localization) to approximately 1400 genes. The genes were tested for functional interactions and clustered in functional groups. We highlighted a functional genetic cluster of 256 genes potentially related to ASD. These altered genes may contribute to the same function, alterations of which increase the risk of ASD. After testing our functional cluster for biological functions, processes related to oxidative stress, immune system and energy metabolism are the pathways potentially involved with the biological alterations underlying ASD.
Collapse
Affiliation(s)
- Silvana Briuglia
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Marco Calabrò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Anna Paola Capra
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Maria Angela La Rosa
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| |
Collapse
|
5
|
Wu WL, Cheng SJ, Lin SH, Chuang YC, Huang EYK, Chen CC. The Effect of ASIC3 Knockout on Corticostriatal Circuit and Mouse Self-grooming Behavior. Front Cell Neurosci 2019; 13:86. [PMID: 30930747 PMCID: PMC6424217 DOI: 10.3389/fncel.2019.00086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/20/2019] [Indexed: 01/23/2023] Open
Abstract
Stereotypic and/or repetitive behavior is one of the major symptoms of autism spectrum disorder (ASD). Increase of self-grooming behavior is a behavioral phenotype commonly observed in the mouse models for ASD. Previously, we have shown that knockout of acid-sensing ion channel 3 (ASIC3) led to the increased self-grooming behavior in resident-intruder test. Given the facts that ASIC3 is mainly expressed in the peripheral dorsal root ganglion (DRG) and conditional knockout of ASIC3 in the proprioceptors induced proprioception deficits. We speculate a hypothesis that stereotypic phenotype related to ASD, pararalled with striatal dysfunction, might be caused by proprioception defect in the peripheral sensory neuron origin. Herein, we investigate in depth whether and how ASIC3 is involved in the regulation of self-grooming behavior. First, we observed that Asic3 null mutant mice exhibited increased self-grooming in social interaction during juvenile stage. Similarly, they displayed increased self-grooming behavior in a novel cage in the absence of cagemate. To further understand the mechanism by which ASIC3 affects grooming behavior, we analyzed neurochemical, neuropathological and electrophysiological features in the dorsal striatum of Asic3 null mutant mice. Knockout of Asic3 increased dopamine (DA) activity and phospho-ERK immunoreactivities in the dorsal striatum. Furthermore, we detected a lower paired-pulse ratio (PPR) and impaired long-term potentiation (LTP) in corticostriatal circuits in Asic3 null mutant mice as compared with wild-type (WT) littermates. Moreover, knockout of Asic3 altered the medial spiny neurons in the striatum with defects in presynaptic function and decrease of dendritic spines. Lastly, genetic ablation of Asic3 specifically in parvalbumin-positive (PV+) cells resulted in the increase of self-grooming behavior in mice. These findings suggest knockout of Asic3 in the PV+ neurons alters grooming behavior by co-opting corticostriatal circuits.
Collapse
Affiliation(s)
- Wei-Li Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Sin-Jhong Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shing-Hong Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Dana Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Yu-Chia Chuang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan Mouse Clinic—National Comprehensive Mouse Phenotyping and Drug Testing Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Schaefer TL, Davenport MH, Grainger LM, Robinson CK, Earnheart AT, Stegman MS, Lang AL, Ashworth AA, Molinaro G, Huber KM, Erickson CA. Acamprosate in a mouse model of fragile X syndrome: modulation of spontaneous cortical activity, ERK1/2 activation, locomotor behavior, and anxiety. J Neurodev Disord 2017; 9:6. [PMID: 28616095 PMCID: PMC5467053 DOI: 10.1186/s11689-017-9184-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/13/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Fragile X Syndrome (FXS) occurs as a result of a silenced fragile X mental retardation 1 gene (FMR1) and subsequent loss of fragile X mental retardation protein (FMRP) expression. Loss of FMRP alters excitatory/inhibitory signaling balance, leading to increased neuronal hyperexcitability and altered behavior. Acamprosate (the calcium salt of N-acetylhomotaurinate), a drug FDA-approved for relapse prevention in the treatment of alcohol dependence in adults, is a novel agent with multiple mechanisms that may be beneficial for people with FXS. There are questions regarding the neuroactive effects of acamprosate and the significance of the molecule's calcium moiety. Therefore, the electrophysiological, cellular, molecular, and behavioral effects of acamprosate were assessed in the Fmr1-/y (knock out; KO) mouse model of FXS controlling for the calcium salt in several experiments. METHODS Fmr1 KO mice and their wild-type (WT) littermates were utilized to assess acamprosate treatment on cortical UP state parameters, dendritic spine density, and seizure susceptibility. Brain extracellular-signal regulated kinase 1/2 (ERK1/2) activation was used to investigate this signaling molecule as a potential biomarker for treatment response. Additional adult mice were used to assess chronic acamprosate treatment and any potential effects of the calcium moiety using CaCl2 treatment on behavior and nuclear ERK1/2 activation. RESULTS Acamprosate attenuated prolonged cortical UP state duration, decreased elevated ERK1/2 activation in brain tissue, and reduced nuclear ERK1/2 activation in the dentate gyrus in KO mice. Acamprosate treatment modified behavior in anxiety and locomotor tests in Fmr1 KO mice in which control-treated KO mice were shown to deviate from control-treated WT mice. Mice treated with CaCl2 were not different from saline-treated mice in the adult behavior battery or nuclear ERK1/2 activation. CONCLUSIONS These data indicate that acamprosate, and not calcium, improves function reminiscent of reduced anxiety-like behavior and hyperactivity in Fmr1 KO mice and that acamprosate attenuates select electrophysiological and molecular dysregulation that may play a role in the pathophysiology of FXS. Differences between control-treated KO and WT mice were not evident in a recognition memory test or in examination of acoustic startle response/prepulse inhibition which impeded conclusions from being made about the treatment effects of acamprosate in these instances.
Collapse
Affiliation(s)
- Tori L Schaefer
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - Matthew H Davenport
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - Lindsay M Grainger
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - Chandler K Robinson
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - Anthony T Earnheart
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - Melinda S Stegman
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA.,Present address: Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Anna L Lang
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA.,Present address: Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202 USA
| | - Amy A Ashworth
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA.,Present address: BlackbookHR, Cincinnati, OH 45202 USA
| | - Gemma Molinaro
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Craig A Erickson
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| |
Collapse
|
7
|
System-based proteomic and metabonomic analysis of the Df(16)A +/- mouse identifies potential miR-185 targets and molecular pathway alterations. Mol Psychiatry 2017; 22:384-395. [PMID: 27001617 PMCID: PMC5322275 DOI: 10.1038/mp.2016.27] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 01/24/2016] [Accepted: 01/28/2016] [Indexed: 12/25/2022]
Abstract
Deletions on chromosome 22q11.2 are a strong genetic risk factor for development of schizophrenia and cognitive dysfunction. We employed shotgun liquid chromatography-mass spectrometry (LC-MS) proteomic and metabonomic profiling approaches on prefrontal cortex (PFC) and hippocampal (HPC) tissue from Df(16)A+/- mice, a model of the 22q11.2 deletion syndrome. Proteomic results were compared with previous transcriptomic profiling studies of the same brain regions. The aim was to investigate how the combined effect of the 22q11.2 deletion and the corresponding miRNA dysregulation affects the cell biology at the systems level. The proteomic brain profiling analysis revealed PFC and HPC changes in various molecular pathways associated with chromatin remodelling and RNA transcription, indicative of an epigenetic component of the 22q11.2DS. Further, alterations in glycolysis/gluconeogenesis, mitochondrial function and lipid biosynthesis were identified. Metabonomic profiling substantiated the proteomic findings by identifying changes in 22q11.2 deletion syndrome (22q11.2DS)-related pathways, such as changes in ceramide phosphoethanolamines, sphingomyelin, carnitines, tyrosine derivates and panthothenic acid. The proteomic findings were confirmed using selected reaction monitoring mass spectrometry, validating decreased levels of several proteins encoded on 22q11.2, increased levels of the computationally predicted putative miR-185 targets UDP-N-acetylglucosamine-peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT1) and kinesin heavy chain isoform 5A and alterations in the non-miR-185 targets serine/threonine-protein phosphatase 2B catalytic subunit gamma isoform, neurofilament light chain and vesicular glutamate transporter 1. Furthermore, alterations in the proteins associated with mammalian target of rapamycin signalling were detected in the PFC and with glutamatergic signalling in the hippocampus. Based on the proteomic and metabonomic findings, we were able to develop a schematic model summarizing the most prominent molecular network findings in the Df(16)A+/- mouse. Interestingly, the implicated pathways can be linked to one of the most consistent and strongest proteomic candidates, (OGT1), which is a predicted miR-185 target. Our results provide novel insights into system-biological mechanisms associated with the 22q11DS, which may be linked to cognitive dysfunction and an increased risk to develop schizophrenia. Further investigation of these pathways could help to identify novel drug targets for the treatment of schizophrenia.
Collapse
|
8
|
Human iPS Cell-Derived Neurons Uncover the Impact of Increased Ras Signaling in Costello Syndrome. J Neurosci 2016; 36:142-52. [PMID: 26740656 DOI: 10.1523/jneurosci.1547-15.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Increasing evidence implicates abnormal Ras signaling as a major contributor in neurodevelopmental disorders, yet how such signaling causes cortical pathogenesis is unknown. We examined the consequences of aberrant Ras signaling in the developing mouse brain and uncovered several critical phenotypes, including increased production of cortical neurons and morphological deficits. To determine whether these phenotypes are recapitulated in humans, we generated induced pluripotent stem (iPS) cell lines from patients with Costello syndrome (CS), a developmental disorder caused by abnormal Ras signaling and characterized by neurodevelopmental abnormalities, such as cognitive impairment and autism. Directed differentiation toward a neuroectodermal fate revealed an extended progenitor phase and subsequent increased production of cortical neurons. Morphological analysis of mature neurons revealed significantly altered neurite length and soma size in CS patients. This study demonstrates the synergy between mouse and human models and validates the use of iPS cells as a platform to study the underlying cellular pathologies resulting from signaling deficits. SIGNIFICANCE STATEMENT Increasing evidence implicates Ras signaling dysfunction as a major contributor in psychiatric and neurodevelopmental disorders, such as cognitive impairment and autism, but the underlying cortical cellular pathogenesis remains unclear. This study is the first to reveal human neuronal pathogenesis resulting from abnormal Ras signaling and provides insights into how these phenotypic abnormalities likely contribute to neurodevelopmental disorders. We also demonstrate the synergy between mouse and human models, thereby validating the use of iPS cells as a platform to study underlying cellular pathologies resulting from signaling deficits. Recapitulating human cellular pathologies in vitro facilitates the future high throughput screening of potential therapeutic agents that may reverse phenotypic and behavioral deficits.
Collapse
|
9
|
Zhang JX, Zhang J, Li Y. Liver X receptor-β improves autism symptoms via downregulation of β-amyloid expression in cortical neurons. Ital J Pediatr 2016; 42:46. [PMID: 27154582 PMCID: PMC4859958 DOI: 10.1186/s13052-016-0249-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/03/2016] [Indexed: 11/10/2022] Open
Abstract
Background We study the effect of liver X receptor β (LXRβ) on β-amyloid (Aβ) peptide generation and autism behaviors by conducting an animal experiment. Methods In autistic mice treated with LXRβ agonist T0901317, enzyme linked immunosorbent assay was used to measure Aβ in brain tissue homogenates. Western blot was used to detect Aβ precursors, Aβ degradation and secretase enzymes, and expression of autophagy-related proteins and Ras/Raf/Erkl/2 signaling pathway proteins in brain tissue. Changes in autism spectrum disorder syndromes of the BTBR mice were compared before and after T0901317 treatment. Results Compared with the control group, autistic mice treated with LXRβ agonist T0901317 showed significantly lower Aβ level in brain tissue (P < 0.05), significantly higher Aβ degradation enzyme (NEP, IDE proteins) levels (all P < 0.05), significantly lower Aβ secretase enzyme BACE1 protein level (P < 0.05), and significantly lower Ras, P-C-Raf, C-Raf, P-Mekl/2, P-Erkl/2 protein levels (all P < 0.05). BTBR mice treated with T0901317 showed improvements in repetitive stereotyped behavior, inactivity, wall-facing standing time, self-combing time and center stay time, stayed longer in platform quadrant, and crossed the platform more frequently (all P < 0.05). Conclusions LXRβ could potentially reduce brain Aβ generation by inhibiting Aβ production and promoting Aβ degradation, thereby increasing the expression of autophagy-related proteins, reducing Ras/Raf/Erkl/2 signaling pathway proteins, and improving autism behaviors.
Collapse
Affiliation(s)
- Ji-Xiang Zhang
- Department of Clinical Psychology, Linyi People's Hospital, Linyi, 276000, China
| | - Jun Zhang
- Department of Children's Rehabilitation, Linyi People's Hospital, No.27 East Jiefang Road, Linyi, 276000, China.
| | - Ye Li
- Department of Outpatient Operation Room, Linyi People's Hospital, Linyi, 276000, China
| |
Collapse
|
10
|
Kim SY, Han YM, Oh M, Kim WK, Oh KJ, Lee SC, Bae KH, Han BS. DUSP4 regulates neuronal differentiation and calcium homeostasis by modulating ERK1/2 phosphorylation. Stem Cells Dev 2014; 24:686-700. [PMID: 25397900 DOI: 10.1089/scd.2014.0434] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein tyrosine phosphatases have been recognized as critical components of multiple signaling regulators of fundamental cellular processes, including differentiation, cell death, and migration. In this study, we show that dual specificity phosphatase 4 (DUSP4) is crucial for neuronal differentiation and functions in the neurogenesis of embryonic stem cells (ESCs). The endogenous mRNA and protein expression levels of DUSP4 gradually increased during mouse development from ESCs to postnatal stages. Neurite outgrowth and the expression of neuron-specific markers were markedly reduced by genetic ablation of DUSP4 in differentiated neurons, and these effects were rescued by the reintroduction of DUSP4. In addition, DUSP4 knockdown dramatically enhanced extracellular signal-regulated kinase (ERK) activation during neuronal differentiation. Furthermore, the DUSP4-ERK pathway functioned to balance calcium signaling, not only by regulating Ca(2+)/calmodulin-dependent kinase I phosphorylation, but also by facilitating Cav1.2 expression and plasma membrane localization. These data are the first to suggest a molecular link between the MAPK-ERK cascade and calcium signaling, which provides insight into the mechanism by which DUSP4 modulates neuronal differentiation.
Collapse
Affiliation(s)
- Sun Young Kim
- 1 Department of Biological Sciences, Center for Stem Cell Differentiation, KAIST , Daejeon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wesseling H, Guest PC, Lee CM, Wong EH, Rahmoune H, Bahn S. Integrative proteomic analysis of the NMDA NR1 knockdown mouse model reveals effects on central and peripheral pathways associated with schizophrenia and autism spectrum disorders. Mol Autism 2014; 5:38. [PMID: 25061506 PMCID: PMC4109791 DOI: 10.1186/2040-2392-5-38] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/20/2014] [Indexed: 12/21/2022] Open
Abstract
Background Over the last decade, the transgenic N-methyl-D-aspartate receptor (NMDAR) NR1-knockdown mouse (NR1neo−/−) has been investigated as a glutamate hypofunction model for schizophrenia. Recent research has now revealed that the model also recapitulates cognitive and negative symptoms in the continuum of other psychiatric diseases, particularly autism spectrum disorders (ASD). As previous studies have mostly focussed on behavioural readouts, a molecular characterisation of this model will help to identify novel biomarkers or potential drug targets. Methods Here, we have used multiplex immunoassay analyses to investigate peripheral analyte alterations in serum of NR1neo−/− mice, as well as a combination of shotgun label-free liquid chromatography mass spectrometry, bioinformatic pathway analyses, and a shotgun-based 40-plex selected reaction monitoring (SRM) assay to investigate altered molecular pathways in the frontal cortex and hippocampus. All findings were cross compared to identify translatable findings between the brain and periphery. Results Multiplex immunoassay profiling led to identification of 29 analytes that were significantly altered in sera of NR1neo−/− mice. The highest magnitude changes were found for neurotrophic factors (VEGFA, EGF, IGF-1), apolipoprotein A1, and fibrinogen. We also found decreased levels of several chemokines. Following this, LC-MSE profiling led to identification of 48 significantly changed proteins in the frontal cortex and 41 in the hippocampus. In particular, MARCS, the mitochondrial pyruvate kinase, and CamKII-alpha were affected. Based on the combination of protein set enrichment and bioinformatic pathway analysis, we designed orthogonal SRM-assays which validated the abnormalities of proteins involved in synaptic long-term potentiation, myelination, and the ERK-signalling pathway in both brain regions. In contrast, increased levels of proteins involved in neurotransmitter metabolism and release were found only in the frontal cortex and abnormalities of proteins involved in the purinergic system were found exclusively in the hippocampus. Conclusions Taken together, this multi-platform profiling study has identified peripheral changes which are potentially linked to central alterations in synaptic plasticity and neuronal function associated with NMDAR-NR1 hypofunction. Therefore, the reported proteomic changes may be useful as translational biomarkers in human and rodent model drug discovery efforts.
Collapse
Affiliation(s)
- Hendrik Wesseling
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, UK
| | - Paul C Guest
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, UK
| | - Chi-Ming Lee
- AstraZeneca Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850, USA
| | - Erik Hf Wong
- AstraZeneca Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850, USA
| | - Hassan Rahmoune
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, UK
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, UK ; Department of Neuroscience, Erasmus Medical Center, Rotterdam, CA, 3000, The Netherlands
| |
Collapse
|
12
|
Liang W, Fang D, Ye D, Zou L, Shen Y, Dai L, Xu J. Differential expression of extracellular-signal-regulated kinase 5 (ERK5) in normal and degenerated human nucleus pulposus tissues and cells. Biochem Biophys Res Commun 2014; 449:466-70. [PMID: 24857985 DOI: 10.1016/j.bbrc.2014.05.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/07/2014] [Indexed: 12/31/2022]
Abstract
Extracellular-signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and regulates a wide variety of cellular processes such as proliferation, differentiation, necrosis, apoptosis and degeneration. However, the expression of ERK5 and its role in degenerated human nucleus pulposus (NP) is hitherto unknown. In this study, we observed the differential expression of ERK5 in normal and degenerated human nucleus pulposus tissues by using immunohistochemical staining and Western blot. Treatment of NP cells with Pro-inflammatory cytokine, TNF-α decreased ERK5 gene expression as well as NP marker gene expression; including the type II collagen and aggrecan. Suppression of ERK5 gene expression in NP cells by ERK5 siRNA resulted in decreased gene expression of type II collagen and aggrecan. Furthermore, inhibition of ERK5 activation by BIX02188 (5μM) decreased the gene expression of type II collagen and aggrecan in NP cells. Our results document the expression of ERK5 in degenerated nucleus pulposus tissues, and suggest a potential involvement of ERK5 in human degenerated nucleus pulposus.
Collapse
Affiliation(s)
- Weiguo Liang
- Guangzhou Institute of Traumatic Surgery, The Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510220, China.
| | - Dejian Fang
- Guangzhou Institute of Traumatic Surgery, The Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510220, China
| | - Dongping Ye
- Guangzhou Institute of Traumatic Surgery, The Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510220, China; School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Longqiang Zou
- Guangzhou Institute of Traumatic Surgery, The Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510220, China
| | - Yan Shen
- Guangzhou Institute of Traumatic Surgery, The Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510220, China
| | - Libing Dai
- Guangzhou Institute of Traumatic Surgery, The Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510220, China
| | - Jiake Xu
- Guangzhou Institute of Traumatic Surgery, The Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510220, China; School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia.
| |
Collapse
|
13
|
Lanz TA, Guilmette E, Gosink MM, Fischer JE, Fitzgerald LW, Stephenson DT, Pletcher MT. Transcriptomic analysis of genetically defined autism candidate genes reveals common mechanisms of action. Mol Autism 2013; 4:45. [PMID: 24238429 PMCID: PMC4176301 DOI: 10.1186/2040-2392-4-45] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 10/09/2013] [Indexed: 12/31/2022] Open
Abstract
Background Austism spectrum disorder (ASD) is a heterogeneous behavioral disorder or condition characterized by severe impairment of social engagement and the presence of repetitive activities. The molecular etiology of ASD is still largely unknown despite a strong genetic component. Part of the difficulty in turning genetics into disease mechanisms and potentially new therapeutics is the sheer number and diversity of the genes that have been associated with ASD and ASD symptoms. The goal of this work is to use shRNA-generated models of genetic defects proposed as causative for ASD to identify the common pathways that might explain how they produce a core clinical disability. Methods Transcript levels of Mecp2, Mef2a, Mef2d, Fmr1, Nlgn1, Nlgn3, Pten, and Shank3 were knocked-down in mouse primary neuron cultures using shRNA constructs. Whole genome expression analysis was conducted for each of the knockdown cultures as well as a mock-transduced culture and a culture exposed to a lentivirus expressing an anti-luciferase shRNA. Gene set enrichment and a causal reasoning engine was employed to identify pathway level perturbations generated by the transcript knockdown. Results Quantification of the shRNA targets confirmed the successful knockdown at the transcript and protein levels of at least 75% for each of the genes. After subtracting out potential artifacts caused by viral infection, gene set enrichment and causal reasoning engine analysis showed that a significant number of gene expression changes mapped to pathways associated with neurogenesis, long-term potentiation, and synaptic activity. Conclusions This work demonstrates that despite the complex genetic nature of ASD, there are common molecular mechanisms that connect many of the best established autism candidate genes. By identifying the key regulatory checkpoints in the interlinking transcriptional networks underlying autism, we are better able to discover the ideal points of intervention that provide the broadest efficacy across the diverse population of autism patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mathew T Pletcher
- Rare Disease Research Unit, Pfizer, Inc, Cambridge Park Drive, Cambridge, MA 02140, USA.
| |
Collapse
|
14
|
de Lacy N, King BH. Revisiting the relationship between autism and schizophrenia: toward an integrated neurobiology. Annu Rev Clin Psychol 2013; 9:555-87. [PMID: 23537488 DOI: 10.1146/annurev-clinpsy-050212-185627] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Schizophrenia and autism have been linked since their earliest descriptions. Both are disorders of cerebral specialization originating in the embryonic period. Genetic, molecular, and cytologic research highlights a variety of shared contributory mechanisms that may lead to patterns of abnormal connectivity arising from altered development and topology. Overt behavioral pathology likely emerges during or after neurosensitive periods in which resource demands overwhelm system resources and the individual's ability to compensate using interregional activation fails. We are at the threshold of being able to chart autism and schizophrenia from the inside out. In so doing, the door is opened to the consideration of new therapeutics that are developed based upon molecular, synaptic, and systems targets common to both disorders.
Collapse
Affiliation(s)
- Nina de Lacy
- University of Washington and Seattle Children's Hospital, Seattle, Washington 98195, USA
| | | |
Collapse
|
15
|
Rippey C, Walsh T, Gulsuner S, Brodsky M, Nord AS, Gasperini M, Pierce S, Spurrell C, Coe BP, Krumm N, Lee MK, Sebat J, McClellan JM, King MC. Formation of chimeric genes by copy-number variation as a mutational mechanism in schizophrenia. Am J Hum Genet 2013; 93:697-710. [PMID: 24094746 PMCID: PMC3791253 DOI: 10.1016/j.ajhg.2013.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/15/2013] [Accepted: 09/10/2013] [Indexed: 12/28/2022] Open
Abstract
Chimeric genes can be caused by structural genomic rearrangements that fuse together portions of two different genes to create a novel gene. We hypothesize that brain-expressed chimeras may contribute to schizophrenia. Individuals with schizophrenia and control individuals were screened genome wide for copy-number variants (CNVs) that disrupted two genes on the same DNA strand. Candidate events were filtered for predicted brain expression and for frequency < 0.001 in an independent series of 20,000 controls. Four of 124 affected individuals and zero of 290 control individuals harbored such events (p = 0.002); a 47 kb duplication disrupted MATK and ZFR2, a 58 kb duplication disrupted PLEKHD1 and SLC39A9, a 121 kb duplication disrupted DNAJA2 and NETO2, and a 150 kb deletion disrupted MAP3K3 and DDX42. Each fusion produced a stable protein when exogenously expressed in cultured cells. We examined whether these chimeras differed from their parent genes in localization, regulation, or function. Subcellular localizations of DNAJA2-NETO2 and MAP3K3-DDX42 differed from their parent genes. On the basis of the expression profile of the MATK promoter, MATK-ZFR2 is likely to be far more highly expressed in the brain during development than the ZFR2 parent gene. MATK-ZFR2 includes a ZFR2-derived isoform that we demonstrate localizes preferentially to neuronal dendritic branch sites. These results suggest that the formation of chimeric genes is a mechanism by which CNVs contribute to schizophrenia and that, by interfering with parent gene function, chimeras may disrupt critical brain processes, including neurogenesis, neuronal differentiation, and dendritic arborization.
Collapse
Affiliation(s)
- Caitlin Rippey
- Departments of Medicine and of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Retraction. GENES, BRAIN, AND BEHAVIOR 2013; 12:593. [PMID: 23971092 DOI: 10.1111/gbb.12054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
17
|
Burket JA, Benson AD, Tang AH, Deutsch SI. D-Cycloserine improves sociability in the BTBR T+ Itpr3tf/J mouse model of autism spectrum disorders with altered Ras/Raf/ERK1/2 signaling. Brain Res Bull 2013; 96:62-70. [PMID: 23685206 DOI: 10.1016/j.brainresbull.2013.05.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 04/30/2013] [Accepted: 05/07/2013] [Indexed: 11/16/2022]
Abstract
The genetically inbred BTBR T+ Itpr3tf/J (BTBR) mouse is a proposed model of autism spectrum disorders (ASDs). Similar to several syndromic forms of ASDs, mTOR activity may be enhanced in this mouse strain as a result of increased Ras signaling. Recently, D-cycloserine, a partial glycineB site agonist that targets the NMDA receptor, was shown to improve the sociability of the Balb/c mouse strain, another proposed genetically inbred model of ASDs. NMDA receptor activation is an important regulator of mTOR signaling activity. Given the ability of D-cycloserine to improve the sociability of the Balb/c mouse strain and the regulatory role of the NMDA receptor in mTOR signaling, we wondered if D-cycloserine would improve the impaired sociability of the BTBR mouse strain. D-Cycloserine (320 mg/kg, ip) improved measures of sociability in a standard sociability paradigm and spontaneous grooming that emerged during social interaction with an ICR stimulus mouse in the BTBR strain; however, similar effects were observed in the Swiss Webster comparator strain, raising questions about their strain-selectivity. Importantly, the profile of D-cycloserine's effects on both measures of sociability and stereotypies is consistent with that of a desired medication for ASDs; specifically, a desired medication would not improve sociability at the expense of worsening stereotypic behaviors or vice versa.
Collapse
Affiliation(s)
- Jessica A Burket
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | | | | | | |
Collapse
|
18
|
Intact and impaired executive abilities in the BTBR mouse model of autism. Behav Brain Res 2012; 234:33-7. [DOI: 10.1016/j.bbr.2012.05.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/28/2012] [Accepted: 05/29/2012] [Indexed: 11/19/2022]
|
19
|
Yang K, Cao F, Sheikh AM, Malik M, Wen G, Wei H, Ted Brown W, Li X. Up-regulation of Ras/Raf/ERK1/2 signaling impairs cultured neuronal cell migration, neurogenesis, synapse formation, and dendritic spine development. Brain Struct Funct 2012; 218:669-82. [PMID: 22555958 DOI: 10.1007/s00429-012-0420-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 04/18/2012] [Indexed: 11/26/2022]
Abstract
The Ras/Raf/ERK1/2 signaling pathway controls many cellular responses such as cell proliferation, migration, differentiation, and death. In the nervous system, emerging evidence also points to a death-promoting role for ERK1/2 in both in vitro and in vivo models of neuronal death. Recent studies have suggested that abnormal apoptosis in the central nervous system may be involved in the pathogenesis of autism. Two studies reported that both a microdeletion and microduplication on chromosome 16, which includes the MAPK3 gene that encodes ERK1, are associated with autism. In addition, our recent work showed that Ras/Raf/ERK1/2 signaling activities were significantly up-regulated in the frontal cortex of autistic individuals and in the BTBR murine model of autism. To further investigate how Ras/Raf/ERK1/2 up-regulation may lead to the development of autism, we developed a cellular model of Raf/ERK up-regulation by over-expressing c-Raf in cultured cortical neurons (CNs) and cerebellar granule cells (CGCs). We found that Raf/ERK up-regulation stimulates the migration of both CNs and CGCs, and impairs the formation of excitatory synapses in CNs. In addition, we found that Raf/ERK up-regulation inhibits the development of mature dendritic spines in CNs. Investigating the possible mechanisms through which Raf/ERK up-regulation affects excitatory synapse formation and dendritic spine development, we discovered that Raf/ERK up-regulation suppresses the development and maturation of CNs. Together, these results suggest that the up-regulation of the Raf/ERK signaling pathway may contribute to the pathogenesis of autism through both its impairment of cortical neuron development and causing neural circuit imbalances.
Collapse
Affiliation(s)
- Kun Yang
- Department of Neurochemistry, NY State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York, NY, 10314, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Becker KG. Male gender bias in autism and pediatric autoimmunity. Autism Res 2012; 5:77-83. [PMID: 22431266 PMCID: PMC4530611 DOI: 10.1002/aur.1227] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 01/23/2012] [Indexed: 12/13/2022]
Abstract
Male bias in both autism and pediatric autoimmune disease is thought to involve hormonal perturbations in pregnancy or early childhood in the context of genetic control. These early molecular events, at a time of rapid development, are intimately linked to concurrent development in the brain and immune system. It is suggested here that these early regulatory events may overlap between autism and autoimmunity in determining male sex bias and may provide evidence of an etiological link among autism, immune dysregulation, and autoimmune disease.
Collapse
Affiliation(s)
- Kevin G Becker
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|