1
|
Adhikari PB, Liu X, Wu X, Zhu S, Kasahara RD. Fertilization in flowering plants: an odyssey of sperm cell delivery. PLANT MOLECULAR BIOLOGY 2020; 103:9-32. [PMID: 32124177 DOI: 10.1007/s11103-020-00987-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/26/2020] [Indexed: 05/22/2023]
Abstract
In light of the available discoveries in the field, this review manuscript discusses on plant reproduction mechanism and molecular players involved in the process. Sperm cells in angiosperms are immotile and are physically distant to the female gametophytes (FG). To secure the production of the next generation, plants have devised a clever approach by which the two sperm cells in each pollen are safely delivered to the female gametophyte where two fertilization events occur (by each sperm cell fertilizing an egg cell and central cell) to give rise to embryo and endosperm. Each of the successfully fertilized ovules later develops into a seed. Sets of macromolecules play roles in pollen tube (PT) guidance, from the stigma, through the transmitting tract and funiculus to the micropylar end of the ovule. Other sets of genetic players are involved in PT reception and in its rupture after it enters the ovule, and yet other sets of genes function in gametic fusion. Angiosperms have come long way from primitive reproductive structure development to today's sophisticated, diverse, and in most cases flamboyant organ. In this review, we will be discussing on the intricate yet complex molecular mechanism of double fertilization and how it might have been shaped by the evolutionary forces focusing particularly on the model plant Arabidopsis.
Collapse
Affiliation(s)
- Prakash B Adhikari
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoyan Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoyan Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shaowei Zhu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ryushiro D Kasahara
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Toda E, Okamoto T. Polyspermy in angiosperms: Its contribution to polyploid formation and speciation. Mol Reprod Dev 2019; 87:374-379. [PMID: 31736192 DOI: 10.1002/mrd.23295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Polyploidization has played a major role in the long-term diversification and evolutionary success of angiosperms. Triploid formation among diploid plants, which is generally considered to be achieved by fertilization of an unreduced gamete with a reduced one, has been accepted as a means of polyploid production. In addition, it has been supposed that polyspermy also contributes to the triploid formation in maize, wheat, and some orchids; however, such a mechanism has been considered uncommon because reproducing the polyspermic situation and unambiguously investigating developmental profiles of polyspermic zygotes are difficult. To overcome these problems, rice polyspermic zygotes have been successfully produced by electrofusion of an egg cell with two sperm cells, and their developmental profiles have been monitored. The triploid zygotes progress through karyogamy and divide into two-celled embryos via a typical bipolar mitotic division; the two-celled embryos further develop into triploid plants, indicating that polyspermic plant zygotes, unlike those of animals, can develop normally. Furthermore, progenies consisting of triparental genetic materials have been successfully obtained in Arabidopsis through the pollination of two different kinds of male parents with a female parent. These different pieces of evidence for development and emergence of polyspermic zygotes in vitro and in planta suggest that polyspermy is a key event in polyploidization and species diversification.
Collapse
Affiliation(s)
- Erika Toda
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| |
Collapse
|
3
|
Okamoto T, Ohnishi Y, Toda E. Development of polyspermic zygote and possible contribution of polyspermy to polyploid formation in angiosperms. JOURNAL OF PLANT RESEARCH 2017; 130:485-490. [PMID: 28275885 DOI: 10.1007/s10265-017-0913-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
Fertilization is a general feature of eukaryotic uni- and multicellular organisms to restore a diploid genome from female and male gamete haploid genomes. In angiosperms, polyploidization is a common phenomenon, and polyploidy would have played a major role in the long-term diversification and evolutionary success of plants. As for the mechanism of formation of autotetraploid plants, the triploid-bridge pathway, crossing between triploid and diploid plants, is considered as a major pathway. For the emergence of triploid plants, fusion of an unreduced gamete with a reduced gamete is generally accepted. In addition, the possibility of polyspermy has been proposed for maize, wheat and some orchids, although it has been regarded as an uncommon mechanism of triploid formation. One of the reasons why polyspermy is regarded as uncommon is because it is difficult to reproduce the polyspermy situation in zygotes and to analyze the developmental profiles of polyspermic triploid zygotes. Recently, polyspermic rice zygotes were successfully produced by electric fusion of an egg cell with two sperm cells, and their developmental profiles were monitored. Two sperm nuclei and an egg nucleus fused into a zygotic nucleus in the polyspermic zygote, and the triploid zygote divided into a two-celled embryo via mitotic division with a typical bipolar microtubule spindle. The two-celled proembryos further developed and regenerated into triploid plants. These suggest that polyspermic plant zygotes have the potential to form triploid embryos, and that polyspermy in angiosperms might be a pathway for the formation of triploid plants.
Collapse
Affiliation(s)
- Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan.
| | - Yukinosuke Ohnishi
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Erika Toda
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
- Plant Breeding Innovation Laboratory, RIKEN Innovation Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| |
Collapse
|
4
|
Toda E, Okamoto T. Formation of triploid plants via possible polyspermy. PLANT SIGNALING & BEHAVIOR 2016; 11:e1218107. [PMID: 27617495 PMCID: PMC5058460 DOI: 10.1080/15592324.2016.1218107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 05/28/2023]
Abstract
Polyploidization is a common phenomenon in angiosperms, and polyploidy has played a major role in the long-term diversification and evolutionary success of plants. Triploid plants are considered as the intermediate stage in the formation of stable autotetraploid plants, and this pathway of tetraploid formation is known as the triploid bridge. As for the mechanism of triploid formation among diploid populations, fusion of an unreduced gamete with a reduced gamete is generally accepted. In addition, the possibility of polyspermy has been proposed for maize, wheat and some orchids, although it has been regarded as an uncommon mechanism of polyploid formation. One of the reasons why polyspermy is regarded as uncommon is because it is difficult to reproduce the polyspermy situation in zygotes and to analyze the developmental profiles of polyspermic zygotes. In the study, we produced polyspermic rice zygotes by electric fusion of an egg cell with two sperm cells and monitored their developmental profiles. The two sperm nuclei and the egg nucleus fused into a zygotic nucleus in the polyspermic zygote, and the triploid zygote divided into a two-celled embryo via mitotic division with a typical bipolar microtubule spindle. The two-celled proembryos developed and regenerated into triploid plants. These results suggest that polyspermic plant zygotes have the potential to form triploid embryos, and that polyspermy in angiosperms might be a pathway for the formation of triploid plants.
Collapse
Affiliation(s)
- Erika Toda
- a Department of Biological Sciences , Tokyo Metropolitan University , Minami-osawa Hachioji, Tokyo , Japan
- b Plant Breeding Innovation Laboratory , RIKEN Innovation Center , Suehiro-cho, Tsurumi-ku, Yokohama , Japan
| | - Takashi Okamoto
- a Department of Biological Sciences , Tokyo Metropolitan University , Minami-osawa Hachioji, Tokyo , Japan
| |
Collapse
|
5
|
Marii L, Chiriac G. The role of viral infection in inducing variability in virus-free progeny in tomato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:476-488. [PMID: 19508359 DOI: 10.1111/j.1744-7909.2009.00817.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The effect of virus-host interactions on subsequent generations is poorly understood. The evaluation of the effects of viral infection on inheritance of quantitative traits in the progeny of infected plants and elucidation of a possible relationship between chiasma frequency in the infected plants and variability of traits in the progeny were investigated. The current study involved genotypes of four intraspecific hybrids of tomato (Solanum lycopersicum L.), their parental forms and two additional cultivars. Used as infection were the tobacco mosaic virus (TMV) and potato virus X (PVX). The consequences of the effect of viral infection were evaluated based on chromosome pairing in diakinesis and/or by examining quantitative and qualitative traits in the progeny of the infected tomato plants. Tomato plants infected with TMV + PVX were found to differ in chiasma frequency per pollen mother cell or per bivalent. Deviations have been observed for genotypes of both F(1) hybrids and cultivars. At the same time, differences in mean values of the traits under study have only been found for progeny populations (F(2)-F(4)) derived from virus-infected F(1) hybrids, but not in the case of progeny of the infected cultivars. The rate of recombinants combining traits of both parents increased significantly (2.22-8.24 times) in progeny populations of hybrids infected with TMV + PVX. The above suggests that the observed effects could be the result of modification of recombination frequencies that can be manifested in heterozygous hybrids and make small contributions to variability in cases of 'homozygous' tomato genotypes (i.e. cultivars).
Collapse
Affiliation(s)
- Liliana Marii
- Institute of Genetics and Plant Physiology, Academy of Sciences of Moldova, Chisinau, MD 2002, Republic Moldova.
| | | |
Collapse
|
6
|
Brandham PE. Inter-embryo competition in the progeny of autotriploid Aloineae (Liliaceae). Genetica 1982. [DOI: 10.1007/bf00130812] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Zeven AC. Polyploidy and domestication: the origin and survival of polyploids in cytotype mixtures. BASIC LIFE SCIENCES 1980; 13:385-407. [PMID: 550834 DOI: 10.1007/978-1-4613-3069-1_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The origin and survival of a polyploid in a mixture of this polyploid and its parent(s) is reviewed. With several examples a picture is drawn of the interference of cytotypes in a mixture of cytotypes. Some natural polyploids, both wild and domesticated, are very successful. They, like bread wheat and banana, largely replaced their parents. The same is true for some artificial polyploids like autotriploid hybride sugar beet in Europe and autotetraploid perennial ryegrass. But when grown together with their parents for several generations they will disappear from this misture. Although in South America under primitive conditions, diploid, triploid, and tetraploid potatoes are grown, elsewhere only the tetraploids have survived. Various causes are presented to explain why the diploids and triploids succumbed. Autotetraploids of maize, rye, barley, and rice cannot maintain themselves in diploid/tetraploid mixtures. The maintenance of diploid or tetraploid rye varieties is less difficult as both are "self-cleaning" with respect to the other. Only two haploid cultivars exist but they can only maintain themselves with the help of man. It is concluded that the survival chances of a polyploid after its origination is low. Firstly, under conditions of random sampling a rare type has a very small chance of occurring in the next generation. Furthermore, seedset of triploids and tetraploids is often low which limits their survival. In addition, in mixtures of cross-fertilizing diploid and autotetraploids the n gamete has an advantage over the 2n gamete. This limits the survival of the autotetraploids again. It is concluded that our knowledge of the the mutual interference of cytotypes in a cytotype mixture is quite limited. Much more research is needed and some proposals concerning this research are made.
Collapse
|