1
|
Kuramoto H, Nakanishi T, Yumoto H, Takegawa D, Mieda K, Hosaka K. Caffeic Acid Phenethyl Ester Enhances Bone Repair-related Factors in MC3T3-E1 Cells. Cell Biochem Biophys 2024:10.1007/s12013-024-01644-8. [PMID: 39708213 DOI: 10.1007/s12013-024-01644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 12/23/2024]
Abstract
Apical periodontitis is an inflammatory disease caused by bacterial infection in the root canal that spreads to the apical periodontal tissues, resulting in bone resorption around the root apex as the disease progresses. Vascular endothelial growth factor (VEGF), a growth factor involved in angiogenesis, plays an important role in bone remodeling. We reported that caffeic acid phenethyl ester (CAPE), a bioactive substance of propolis, induces VEGF in odontoblast-like cells and dental pulp cells. However, the effects of CAPE on bone tissues remain unclear. This study was aimed to investigate the effects of CAPE on MC3T3-E1 cells, mice preosteoblast line. As a result, CAPE up-regulated the production of VEGF and induced the phosphorylation of extracellular signal-regulated kinases (ERK), p38 mitogen-activated protein kinase (MAPK), and stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) in MC3T3-E1 cells. Furthermore, CAPE increased the expression of factors involved in osteoblast differentiation, runt-related transcription factor 2 (Runx2), Osterix, and Wnt5a/b in MC3T3-E1 cells. In this study, we show that CAPE could induce bone repair-related factors in MC3T3-E1 cells.
Collapse
Affiliation(s)
- Hitomi Kuramoto
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
- Department of Pediatric Dentistry, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Tadashi Nakanishi
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - Hiromichi Yumoto
- Department of Periodontology and Endodontology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Daisuke Takegawa
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Katsuhiro Mieda
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Keiichi Hosaka
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
- Division of Interdisciplinary Research for Medicine and Photonics, Institute of Post LED Photonics, Tokushima University, Tokushima, Japan
| |
Collapse
|
2
|
Yang J, Zhang L, Wang Y, Wang N, Wei H, Zhang S, Ding Q, Sun S, Ding C, Liu W. Dihydromyricetin-loaded oxidized polysaccharide/L-arginine chitosan adhesive hydrogel promotes bone regeneration by regulating PI3K/AKT signaling pathway and MAPK signaling pathway. Carbohydr Polym 2024; 346:122614. [PMID: 39245525 DOI: 10.1016/j.carbpol.2024.122614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Bone defects caused by trauma, infection and congenital diseases still face great challenges. Dihydromyricetin (DHM) is a kind of flavone extracted from Ampelopsis grossedentata, a traditional Chinese medicine. DHM can enhance the osteogenic differentiation of human bone marrow mesenchymal stem cells with the potential to promote bone regeneration. Hydrogel can be used as a carrier of DHM to promote bone regeneration due to its unique biochemical characteristics and three-dimensional structure. In this study, oxidized phellinus igniarius polysaccharides (OP) and L-arginine chitosan (CA) are used to develop hydrogel. The pore size and gel strength of the hydrogel can be changed by adjusting the oxidation degree of oxidized phellinus igniarius polysaccharides. The addition of DHM further reduce the pore size of the hydrogel (213 μm), increase the mechanical properties of the hydrogel, and increase the antioxidant and antibacterial activities of the hydrogel. The scavenging rate of DPPH are 72.30 ± 0.33 %, and the inhibition rate of E.coli and S.aureus are 93.12 ± 0.38 % and 94.49 ± 1.57 %, respectively. In addition, PCAD has good adhesion and biocompatibility, and its extract can effectively promote the osteogenic differentiation of MC3T3-E1 cells. Network pharmacology and molecular docking show that the promoting effect of DHM on osteogenesis may be achieved by activating the PI3K/AKT and MAPK signaling pathways. This is confirmed through in vitro cell experiments and in vivo animal experiments.
Collapse
Affiliation(s)
- Jiali Yang
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Lifeng Zhang
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yue Wang
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Hewei Wei
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
3
|
Umur E, Bulut SB, Yiğit P, Bayrak E, Arkan Y, Arslan F, Baysoy E, Kaleli-Can G, Ayan B. Exploring the Role of Hormones and Cytokines in Osteoporosis Development. Biomedicines 2024; 12:1830. [PMID: 39200293 PMCID: PMC11351445 DOI: 10.3390/biomedicines12081830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The disease of osteoporosis is characterized by impaired bone structure and an increased risk of fractures. There is a significant impact of cytokines and hormones on bone homeostasis and the diagnosis of osteoporosis. As defined by the World Health Organization (WHO), osteoporosis is defined as having a bone mineral density (BMD) that is 2.5 standard deviations (SD) or more below the average for young and healthy women (T score < -2.5 SD). Cytokines and hormones, particularly in the remodeling of bone between osteoclasts and osteoblasts, control the differentiation and activation of bone cells through cytokine networks and signaling pathways like the nuclear factor kappa-B ligand (RANKL)/the receptor of RANKL (RANK)/osteoprotegerin (OPG) axis, while estrogen, parathyroid hormones, testosterone, and calcitonin influence bone density and play significant roles in the treatment of osteoporosis. This review aims to examine the roles of cytokines and hormones in the pathophysiology of osteoporosis, evaluating current diagnostic methods, and highlighting new technologies that could help for early detection and treatment of osteoporosis.
Collapse
Affiliation(s)
- Egemen Umur
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Safiye Betül Bulut
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Pelin Yiğit
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Emirhan Bayrak
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Yaren Arkan
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Fahriye Arslan
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Engin Baysoy
- Department of Biomedical Engineering, Bahçeşehir University, İstanbul 34353, Türkiye
| | - Gizem Kaleli-Can
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Bugra Ayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Zamanian MY, Golmohammadi M, Vadiyan FV, Almulla AA, Vadiyan DE, Morozova NS, Alkadir OKA, Kareem AH, Alijani M. A narrative review of the effects of vitamin D3 on orthodontic tooth movement: Focus on molecular and cellular mechanisms. Food Sci Nutr 2024; 12:3164-3176. [PMID: 38726436 PMCID: PMC11077251 DOI: 10.1002/fsn3.4035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 05/12/2024] Open
Abstract
Orthodontic tooth movement (OTM) is a critical process in dental alignment, driven by the application of calibrated orthodontic forces. This study delves into the intricate molecular and cellular mechanisms by which vitamin D3 influences OTM. Vitamin D3 is identified as a critical regulator in bone metabolism, enhancing osteoblast activity and bone formation while also modulating osteoclast quantity and RANKL expression, essential for the remodeling of the alveolar bone. The precise mechanisms through which vitamin D3 facilitates these processes are explored, highlighting its potential in accelerating bone remodeling and, consequently, tooth alignment. This comprehensive review underscores vitamin D3's anabolic impact on bone metabolism and its pivotal role in the synthesis and mineralization processes governed by osteoblasts. The findings illuminate vitamin D3's promise in augmenting orthodontic therapy, suggesting its utility in improving treatment efficiency and reducing duration. However, the need for further research into the optimal application of vitamin D3 in orthodontics is emphasized, particularly concerning dosage, timing, and delivery methods.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | | | - Filipp V. Vadiyan
- Department of Therapeutic Dentistry, Institute of DentistryI.M. Sechenov First Moscow State Medical UniversityMoscowRussia
| | | | - Diana E. Vadiyan
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of DentistryI.M. Sechenov First Moscow State Medical UniversityMoscowRussia
| | - Natalia S. Morozova
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of DentistryI.M. Sechenov First Moscow State Medical UniversityMoscowRussia
| | | | | | - Mojtaba Alijani
- Department of Orthodontics, School of DentistryHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
5
|
Ali M, Farwa U, Park SS, Kim YS, Lee BT. Physico-biological and in vivo evaluation of irisin loaded 45S5 porous bioglass granules for bone regeneration. BIOMATERIALS ADVANCES 2023; 147:213326. [PMID: 36758281 DOI: 10.1016/j.bioadv.2023.213326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
In this study, we investigated the physico-biological and in-vivo evaluation of irisin loaded 45S5 bioglass bone graft for enhancing osteoblastic differentiation and bone regeneration in rat femur head defect model. Highly porous structure was obtained in the bioglass by burn-out process with varying the concentration of poly (methyl methacrylate) (PMMA) spheres. 10 % polyvinyl alcohol (PVA) was used as a binder for the sustain releasing of irisin on porous bioglass. Different concentrations of irisin were loaded on the selected bioglass samples and these were further evaluated for the biocompatibility and osteoblastic differentiation properties. The in vitro results demonstrated not only its biocompatibility but also that it stimulated pre-osteoblast differentiation. The in vivo data showed new bone formation as well as expression of osteogenic proteins like alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx-2), osteopontin (OPN), and collagen-1 (Col-1). Our results support the use of irisin loaded bioglass for the use of early bone regeneration.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Ume Farwa
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
| | - Seong-Su Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Yong-Sik Kim
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea; Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea.
| |
Collapse
|
6
|
Duan Y, Li H, Dong X, Geng Z, Xu X, Liu Y. VEGF mitigates bisphosphonate-induced apoptosis and differentiation inhibition of MC3T3-E1 cells. Exp Ther Med 2022; 23:130. [PMID: 34970353 PMCID: PMC8713161 DOI: 10.3892/etm.2021.11053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/01/2021] [Indexed: 11/26/2022] Open
Abstract
The present study aimed to investigate whether VEGF was involved in bisphosphonate (BP)-induced apoptosis and differentiation of osteoblasts. Murine MC3T3-E1 osteoblasts were stimulated with zoledronic acid (ZA) for 7 days. VEGF mRNA and protein expression levels were determined via reverse transcription-quantitative PCR and western blot analysis, respectively. Cell viability was evaluated using Cell Counting Kit-8 assay. In addition, the cell apoptotic rate and the expression levels of apoptosis-related proteins were measured using a TUNEL staining kit and western blot analysis, respectively. To evaluate mineralization, cells were stained with alizarin red, while the secretion levels of alkaline phosphatase (ALP) were measured using the corresponding assay kit. Finally, the expression levels of differentiation-related proteins and proteins of the Nod-like receptor family pyrin domain-containing 3 (NLRP3)/caspase 1/gasdermin D (GSDMD) pyroptosis pathway were measured by western blot analysis. VEGF expression level was notably decreased in ZA-stimulated MC3T3-E1 cells. However, the viability of these cells was enhanced following VEGF addition. Furthermore, VEGF attenuated apoptosis, promoted mineralization and increased ALP activity in ZA-stimulated MC3T3-E1 cells. The ZA-mediated decrease in the protein expression of the osteogenic genes osteopontin, osteocalcin and runt-related transcription factor 2 was restored after MC3T3-E1 cell treatment with 10 ng/ml VEGF. The present study demonstrated that VEGF could attenuate BP-induced apoptosis and differentiation of MC3T3 cells by regulating the NLRP3/caspase 1/GSDMD pathway.
Collapse
Affiliation(s)
- Yao Duan
- Department of Second Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, P.R. China
| | - Heija Li
- Department of Third Dental Center, Peking University School and Hospital of Stomatology, Beijing 100083, P.R. China
| | - Xiaohong Dong
- Stomatology Department, Changle People's Hospital, Weifang, Shandong 262400, P.R. China
| | - Zhaoli Geng
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China
| | - Xinyi Xu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China.,Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, P.R. China
| |
Collapse
|
7
|
Nirwana I, Munadziroh E, Yuliati A, Fadhila AI, Nurliana, Wardhana AS, Shariff KA, Surboyo MDC. Ellagic acid and hydroxyapatite promote angiogenesis marker in bone defect. J Oral Biol Craniofac Res 2022; 12:116-120. [PMID: 34840942 PMCID: PMC8605383 DOI: 10.1016/j.jobcr.2021.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022] Open
Abstract
The combination of hydroxyapatite and the herbal extract ellagic acid is expected to accelerate the bone healing process (osteogenesis) due to the extract's anti-inflammatory and antioxidant properties. The osteogenesis process is closely associated with angiogenesis markers, such as fibroblast growth factor 2 (FGF-2), vascular endothelial growth factor (VEGF) and alkali phosphatase (ALP). The objective of this study is to analyse the combination of ellagic acid and hydroxyapatite to promote FGF-2, VEGF and ALP expression as angiogenesis markers in a bone defect model. The research sample comprised 30 male Wistar rats with a defect introduced on the left femur; these were divided into three groups for treatment with ellagic acid and hydroxyapatite, hydroxyapatite and polyethylene glycol (PEG) (control). On days 7 and 14 days after treatment, the Wistar rats were euthanised, and the femoral bone tissue was removed for the immunohistochemical analysis of FGF-2, VEGF and ALP expression. FGF-2 and ALP expression increased in the group treated with ellagic acid and hydroxyapatite on days 7 and 14 post treatment (p < 0.05), and there was an increase in VEGF expression on day 7 post treatment (p < 0.05). The combination of ellagic acid and hydroxyapatite promoted FGF-2, VEGF and ALP expression as angiogenesis markers in the bone defect model.
Collapse
Affiliation(s)
- Intan Nirwana
- Department of Dental Material, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Elly Munadziroh
- Department of Dental Material, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Anita Yuliati
- Department of Dental Material, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Azalia Izzah Fadhila
- Bachelor of Dental Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Nurliana
- Bachelor of Dental Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Agung Satria Wardhana
- Department of Dental Material, Faculty of Dentistry, Universitas Lambung Mangkurat, Banjarmasin, Indonesia
| | - Khairul Anuar Shariff
- Department of Dental Material, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
- Biomaterial Niche Area, School of Material and Mineral Resource Enginering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulang Pinang, Malaysia
| | | |
Collapse
|
8
|
McLaughlin KI, Milne TJ, Zafar S, Zanicotti DG, Cullinan MP, Seymour GJ, Coates DE. The in vitro effect of VEGF receptor inhibition on primary alveolar osteoblast nodule formation. Aust Dent J 2020; 65:196-204. [PMID: 32072641 DOI: 10.1111/adj.12752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is a master regulator and is required for the effective coupling of angiogenesis and osteogenesis supporting both skeletal development and postnatal bone repair. A direct role for VEGF in intramembranous-derived osteoblast growth and differentiation is not clear. We investigated the expression of primary alveolar osteoblast VEGF receptors and the subsequent effects on mineralization and nodule formation in vitro following VEGFR inhibition. METHODS Primary human alveolar osteoblasts (HAOBs) were cultured in the presence of VEGF receptor inhibitors, exogenous VEGF or the bisphosphonate, zoledronic acid. VEGF, VEGFR1 and VEGFR2 mRNA expression and nodule formation following 21 days of culture. VEGFR1 protein expression was examined using immunofluorescence after 48 h. RESULTS The HAOBs expressed high levels of VEGF and VEGFR1 protein but VEGFR2 was not detected. The VEGFR1/2 inhibitors, ZM306416 and KRN633, lead to a dose-dependent decrease in mineralization. Treatment with zoledronic acid showed no difference in HAOB VEGF receptor expression. CONCLUSION VEGF/VEGFR1 pathway appears to be important for intramembranous-derived osteoblast differentiation and maturation in vitro.
Collapse
Affiliation(s)
- K I McLaughlin
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - T J Milne
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - S Zafar
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - D G Zanicotti
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - M P Cullinan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - G J Seymour
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - D E Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Zheng D, Li M, Zhou J, Wang J, Bian W, Yoshimura K, Yu L. Effect of Salvia Miltiorrhiza Injection in Patients With Autologous Fat Grafting to the Breast: A Preliminary Comparative Study. Aesthet Surg J 2019; 39:NP243-NP252. [PMID: 30541057 DOI: 10.1093/asj/sjy318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Salvia miltiorrhiza (SM) is an herb used in Chinese medicine formulations for promoting blood circulation and minimizing vascular stasis. It has been successfully utilized in treating cardiovascular diseases, such as atherosclerosis, thromboembolism, and angina. OBJECTIVES The authors sought to study the effect of SM injections in autologous fat grafting to the breast. METHODS Fifteen women who elected to undergo breast augmentation with autologous fat grafting were included in this study. Of these, 10 were given intravenous infusions of SM for 4 weeks perioperatively, and the remaining 5 did not receive herbal infusion. The increase in breast volume after fat grafting was measured in both the groups using a three-dimensional scanner. Breast tissue specimens were harvested just before the second fat injection procedure and were analyzed by the immunofluorescence staining test. RESULTS All of the patients showed improvement in breast volume after fat grafting. The fat graft retention rate in the SM group was 60.06 ± 16.12%, whereas that in the non-SM group was 34.04 ± 11.15%. In addition, the SMG showed good breast morphology and absence of cyst formation. CONCLUSIONS SM has the potential to increase the retention rate of fat grafts in breast augmentation. LEVEL OF EVIDENCE: 3
Collapse
Affiliation(s)
- Danning Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Maoqun Li
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jia Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Weiwei Bian
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Kotaro Yoshimura
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Li Yu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Paisrisarn P, Tepaamorndech S, Khongkow M, Khemthong P, Kasamechonchung P, Klysubun W, Wutikhun T, Huang L, Chantarasakha K, Boonrungsiman S. Alterations of mineralized matrix by lead exposure in osteoblast (MC3T3-E1) culture. Toxicol Lett 2018; 299:172-181. [PMID: 30312686 DOI: 10.1016/j.toxlet.2018.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/31/2018] [Accepted: 10/08/2018] [Indexed: 01/02/2023]
Abstract
The present study investigated the effect of lead (Pb) on bone ultrastructure and chemistry using an in vitro bone model. MC3T3-E1 preosteoblasts were differentiated and treated with lead acetate at 0.4, 2, 10, and 50 μM. No abnormalities in either cell growth or bone nodule formation were observed with the treated dose of lead acetate. However, Pb treatments could significantly increase Pb accumulation in differentiated osteoblast cultures and upregulate expression of Divalent metal transporter 1 (Dmt1) in a dose dependent manner. Pb treatments also altered the expression of osteogenic genes, including secreted phosphoprotein 1, osteocalcin, type I collagen, and osteoprotegerin. Moreover, in mineralized osteoblast cultures, Pb was found to be mainly deposited as Pb salts and oxides, respectively. Ultrastructure analysis revealed Pb localizing with calcium and phosphorus in the mineralized matrix. In mineralizing osteoblast cells, Pb was found in the intracellular calcified vesicles which is one of the bone mineralization mechanisms. Pb was also present in mineral deposits with various shapes and sizes, such as small and large globular or needle-like mineral deposits representing early to mature stages of mineral deposits. Furthermore, Pb was found more in the globular deposits than the needle shaped mineral crystals. Taken together, our observations revealed how Pb incorporates into bone tissue, and showed a close association with bone apatite.
Collapse
Affiliation(s)
- Piyawan Paisrisarn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathumthani 12120, Thailand
| | - Surapun Tepaamorndech
- National Center of Genetic engineering and Biotechnology Center (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Pathumthani 12120, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathumthani 12120, Thailand
| | - Pongtanawat Khemthong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathumthani 12120, Thailand
| | - Panita Kasamechonchung
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathumthani 12120, Thailand
| | - Wantana Klysubun
- Synchrotron Light Research Institute, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Tuksadon Wutikhun
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathumthani 12120, Thailand
| | - Liping Huang
- USDA/ARS/Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616, USA
| | - Kanittha Chantarasakha
- National Center of Genetic engineering and Biotechnology Center (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Pathumthani 12120, Thailand
| | - Suwimon Boonrungsiman
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathumthani 12120, Thailand.
| |
Collapse
|
11
|
Wang PL, Tachi Y, Masuno K, Okusa N, Imamura Y. The Effect of Ozone Gel on Bone Matrix Production by Human Osteosarcoma Cell Line Saos-2. J HARD TISSUE BIOL 2018. [DOI: 10.2485/jhtb.27.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Pao-Li Wang
- Department of Innovation in Dental Education, Osaka Dental University
| | - Yoichi Tachi
- Laboratory of Nutritional Physiology, Tokyo Kasei University
| | - Kazuya Masuno
- Department of Innovation in Dental Education, Osaka Dental University
| | - Nobutaka Okusa
- Department of Forensic Dentistry, Osaka Dental University
| | | |
Collapse
|
12
|
Rashid A, ElSharaby FA, Nassef EM, Mehanni S, Mostafa YA. Effect of platelet-rich plasma on orthodontic tooth movement in dogs. Orthod Craniofac Res 2017; 20:102-110. [DOI: 10.1111/ocr.12146] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2017] [Indexed: 12/20/2022]
Affiliation(s)
- A. Rashid
- Department of Orthodontics and Dentofacial Orthopedics; Fayoum University; Fayoum Egypt
| | - F. A. ElSharaby
- Department of Orthodontics and Dentofacial Orthopedics; Cairo University; Cairo Egypt
| | - E. M. Nassef
- Department of Orthodontics and Dentofacial Orthopedics; Future University; Cairo Egypt
| | - S. Mehanni
- Department of Oral Biology; Cairo University; Cairo Egypt
| | - Y. A. Mostafa
- Department of Orthodontics and Dentofacial Orthopedics; Future University; Cairo Egypt
| |
Collapse
|
13
|
Luo J, Zhong Y, Huang S, Li L, Zhang C, Zou X. Ginkgolide B enhances the differentiation of preosteoblastic MC3T3-E1 cells through VEGF: Involvement of the p38 MAPK signaling pathway. Mol Med Rep 2016; 14:4787-4794. [PMID: 27748928 DOI: 10.3892/mmr.2016.5829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 09/29/2016] [Indexed: 11/06/2022] Open
Abstract
Ginkgolide B (GB) is one of the ginkgolides isolated from the leaves of the Ginkgo biloba tree. Our previous study indicated that GB promotes the proliferation, migration and adhesion of endothelial progenitor cells, and the induction of angiogenesis through vascular endothelial factor (VEGF). In the present study, the effects of GB on the differentiation of MC3T3‑E1 cells and the signaling pathway involved were investigated in vitro. The MC3T3‑E1 cell viability activities were assessed using an MTS assay. Measurements of alkaline phosphatase activity and Alizarin Red staining were used to identify osteoblastic differentiation of the MC3T3‑E1 cells. The mRNA and secretion levels of VEGF were detected using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis and enzyme-linked immunosorbent assays, respectively. The protein expression levels of phosphorylation‑associated markers were detected using western blot analysis and associated gene expression was determined using RT‑qPCR analysis. It was found that GB significantly promoted alkaline phosphatase activity and osteoblastic mineralization in the MC3T3‑E1 cells. In addition, the mRNA expression and secretion levels of VEGF in the MC3T3‑E1 cells were significantly increased in MC3T3‑E1 cells treated with GB. SB203580, a specific inhibitor of p38 mitogen‑activated protein (MAP) kinase, markedly suppressed the GB‑induced p38 kinase phosphorylation and GB‑induced synthesis of VEGF. PD98059, an inhibitor of the upstream kinase, which activates p44/p42 MAP kinase, had minimal effect on the GB‑induced phosphorylation of p44/p42 MAP kinase or the GB‑induced synthesis of VEGF. Taken together, these results indicated that GB promoted osteoblastic differentiation of the MC3T3‑E1 cells through VEGF, and that the p38, but not the p44/p42 MAP kinase signaling pathway, was involved in the GB‑induced synthesis of VEGF.
Collapse
Affiliation(s)
- Jiaquan Luo
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yu Zhong
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Sheng Huang
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Liangping Li
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chi Zhang
- Department of Pharmacology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
14
|
Huang H, Ma L, Kyrkanides S. Effects of vascular endothelial growth factor on osteoblasts and osteoclasts. Am J Orthod Dentofacial Orthop 2016; 149:366-73. [PMID: 26926024 DOI: 10.1016/j.ajodo.2015.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/01/2015] [Accepted: 09/01/2015] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Bone remodeling is crucial to the success of many dental procedures and is tightly regulated. Vascular endothelial growth factor (VEGF), a key cytokine for angiogenesis, is also an important regulator of bone remodeling. We aimed to examine the mechanisms by which VEGF induces bone remodeling by studying its effects on cultured osteoblasts and osteoclasts. METHODS Preosteoblastic MC3T3-E1 cells were treated with vehicle or VEGF-A165. Cell proliferation, migration, and invasion potentials were assessed. Preosteoclastic RAW264.7 cells were treated with vehicle or VEGF with or without the receptor activator of nuclear factor kappa-B ligand (RANKL), and osteoclast formation was measured with tartrate-resistant acid phosphatase staining. Conditioned media from vehicle-treated or VEGF-treated MC3T3-E1 cells were tested for the levels of RANKL and osteoprotegerin (OPG) and were used to treat RAW264.7 cells to observe osteoclast formation. RESULTS VEGF significantly induced MC3T3-E1 cell proliferation, migration, and invasion. VEGF did not directly induce osteoclastogenesis but significantly increased the RANKL/OPG ratio in the conditioned media from the MC3T3-E1 cultures; this significantly increased osteoclast formation. CONCLUSIONS VEGF stimulates osteoclast differentiation by increasing the osteoblastic RANKL/OPG ratio but has no direct effect on osteoclast precursor cells, and it induces osteoblast proliferation, migration, and invasion potentials in vitro.
Collapse
Affiliation(s)
- Hechang Huang
- Assistant professor, Department of Orthodontics and Pediatric Dentistry, School of Dental Medicine, State University of New York at Stony Brook, Stony Brook, NY.
| | - Li Ma
- Research assistant professor, Department of Orthodontics and Pediatric Dentistry, School of Dental Medicine, State University of New York at Stony Brook, Stony Brook, NY
| | - Stephanos Kyrkanides
- Professor and chair, Department of Orthodontics and Pediatric Dentistry, School of Dental Medicine, State University of New York at Stony Brook, Stony Brook, NY
| |
Collapse
|
15
|
Accelerated orthodontic tooth movement: Molecular mechanisms. Am J Orthod Dentofacial Orthop 2014; 146:620-32. [DOI: 10.1016/j.ajodo.2014.07.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 12/22/2022]
|
16
|
Zhang W, Liu W, Ling J, Lin Z, Gao Y, Mao X, Jian Y. Odontogenic differentiation of vascular endothelial growth factor-transfected human dental pulp stem cells in vitro. Mol Med Rep 2014; 10:1899-906. [PMID: 25119396 DOI: 10.3892/mmr.2014.2481] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 05/23/2014] [Indexed: 11/06/2022] Open
Abstract
Dental pulp stem cells (DPSCs) can be induced towards odontogenic differentiation. Previous studies have shown that vascular endothelial growth factor (VEGF) is able to induce the osteogenic differentiation of cells, but the effectiveness of VEGF in the odontogenic differentiation of DPSCs remains unclear. This study aimed to investigate the effects of lentivirus‑mediated human VEGF gene transfection on the proliferation and odontogenic differentiation of human DPSCs in vitro. DPSCs were transfected with either lentiviral pCDH‑CMV‑MCS‑EFI‑copGFP (pCDH) vector or recombinant pCDH‑VEGF vector, and the growth characteristics of the resulting DPSCs/Vector and DPSCs/VEGF were subsequently assessed. The odontogenic differentiation genes of the two groups of cells, including alkaline phosphatase, osteocalcin, dentin sialophosphoprotein and dentin matrix protein 1 (DMP1), were evaluated by quantitative polymerase chain reaction (qPCR). The specific proteins of odontogenic differentiation, including dentin sialoprotein and DMP1, were analyzed by western blotting. DPSCs/VEGF showed similar proliferation characteristics to DPSCs/Vector during the observation period. qPCR results showed that the relative VEGF gene expression was significantly higher in DPSCs/VEGF than that in DPSCs/Vector two days after transfection (P<0.01). Similarly, western blot analysis showed that the protein expression levels of VEGF were higher in DPSCs/VEGF than those in DPSCs/Vector. On the first, fourth, eighth and 16th days after lentivirus-mediated transfection, the expression of odontogenic differentiation-specific genes and proteins was higher in DPSCs/VEGF than that in DPSCs/Vector. These results indicated that lentivirus-mediated VEGF gene transfection promoted the odontogenic differentiation of human DPSCs in vitro.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Guangdong Province Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Wei Liu
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Guangdong Province Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Junqi Ling
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Guangdong Province Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Zhengmei Lin
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Guangdong Province Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yan Gao
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Guangdong Province Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Xueli Mao
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Guangdong Province Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yutao Jian
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Guangdong Province Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
17
|
Wenden A, Yang Y, Chai L, Wong RWK. Salvia Miltiorrhiza
Induces VEGF Expression and Regulates Expression of VEGF Receptors in Osteoblastic Cells. Phytother Res 2013; 28:673-7. [DOI: 10.1002/ptr.5031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/22/2013] [Accepted: 05/28/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Alex Wenden
- Orthodontics, Faculty of Dentistry; The University of Hong Kong, Hong Kong SAR; China
| | - Yanqi Yang
- Orthodontics, Faculty of Dentistry; The University of Hong Kong, Hong Kong SAR; China
| | - Lei Chai
- Orthodontics, Faculty of Dentistry; The University of Hong Kong, Hong Kong SAR; China
- School of Dentistry; University of Queensland; Brisbane Australia
| | - Ricky W. K. Wong
- Orthodontics, Faculty of Dentistry; The University of Hong Kong, Hong Kong SAR; China
| |
Collapse
|
18
|
Abd-Elmeguid A, Abdeldayem M, Kline LW, Moqbel R, Vliagoftis H, Yu DC. Osteocalcin Expression in Pulp Inflammation. J Endod 2013; 39:865-72. [DOI: 10.1016/j.joen.2012.12.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 12/27/2012] [Accepted: 12/30/2012] [Indexed: 12/13/2022]
|
19
|
Leedy MR, Jennings JA, Haggard WO, Bumgardner JD. Effects of VEGF-loaded chitosan coatings. J Biomed Mater Res A 2013; 102:752-9. [PMID: 23564543 DOI: 10.1002/jbm.a.34745] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/21/2013] [Accepted: 04/02/2013] [Indexed: 11/08/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a powerful growth factor that promotes vascularization as well as osteoblastic differentiation and bone regeneration, all of which are key processes in the osseointegration of dental implants. Strategies to increase vascularization through delivery of VEGF may improve osseointegration, especially in patients with reduced bone healing potential. The aim of this study was to determine the potential of chitosan coatings on titanium to deliver VEGF and to support growth and matrix production of osteoblastic cells in vitro. Chitosan was chemically bonded to titanium coupons via silane-glutaraldehyde linker molecules and loaded with 0, 20, 50, or 100 ng of VEGF. Protein was released during a three day period with around 75% of VEGF (4.44, 11.37, and 22.10 ng/mL/cm(2) from the 20, 50, and 100 ng loaded levels, respectively) released during the first 12 h, and 90-95% of the VEGF released from the coatings by day 3. Saos-2 bone cells continued to proliferate over the 28-day period on the VEGF-loaded chitosan coatings in contrast to cells seeded on uncoated titanium, which plateaued after 14 days. Cells on uncoated titanium exhibited a peak in alkaline phosphatase expression at approximately 14 days, concomitant with the plateau in growth. While osteoblast-like cells on all chitosan coatings exhibited up to a 2-fold enhancement of the alkaline phosphatase activity and 10-fold increase in calcium deposition compared to uncoated controls, the incorporation of VEGF into the coatings did not enhance osteoblast matrix production over plain chitosan coatings throughout this study.
Collapse
Affiliation(s)
- Megan R Leedy
- University of Memphis, Biomedical Engineering, 330 Engineering Technology Building, Memphis, Tennessee, 38122
| | | | | | | |
Collapse
|
20
|
Yang Y, Chin A, Zhang L, Lu J, Wong RWK. The Role of Traditional Chinese Medicines in Osteogenesis and Angiogenesis. Phytother Res 2013; 28:1-8. [DOI: 10.1002/ptr.4959] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/04/2013] [Accepted: 02/04/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Yanqi Yang
- Orthodontics, Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
| | - Alice Chin
- Government Orthodontic Clinic; Department of Health; Hong Kong SAR China
| | - Linkun Zhang
- Orthodontics, Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
- Orthodontics; Tianjin Stomatological Hospital of Nankai University; Tianjin China
| | - Jiajing Lu
- Orthodontics, Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
- Taizhou Polytechnic College; Taizhou China
| | - Ricky Wing Kit Wong
- Orthodontics, Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
| |
Collapse
|
21
|
Neve A, Cantatore FP, Corrado A, Gaudio A, Ruggieri S, Ribatti D. In vitro and in vivo angiogenic activity of osteoarthritic and osteoporotic osteoblasts is modulated by VEGF and vitamin D3 treatment. ACTA ACUST UNITED AC 2013; 184:81-4. [PMID: 23500833 DOI: 10.1016/j.regpep.2013.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 12/26/2012] [Accepted: 03/03/2013] [Indexed: 10/27/2022]
Abstract
Vascular Endothelial Growth Factor (VEGF) is a potent angiogenic factor, which also regulates bone remodeling. Osteoblasts not only respond to VEGF stimulation, but also express and synthesize this factor. The present study was aimed to evaluate in vitro differences in VEGF production and expression of cultured human osteoblastic cells derived from healthy donors and from subjects affected by osteoarthritis and osteoporosis, under basal conditions than after vitamin D3, and to investigate the angiogenic activity of culture media obtained by these cells in chick embryo chorioallantoic membrane (CAM) assay. The results showed that normal and pathological osteoblasts produce and express VEGF and 1,25 dihydroxy-vitamin D3 treatment increases protein and m-RNA VEGF levels. In addition culture media of pathological osteoblasts induce a strong angiogenic response, greater than observed with culture medium of normal cells, suggesting the involvement of osteoblast-derived VEGF in the pathogenesis of bone diseases.
Collapse
Affiliation(s)
- Anna Neve
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, Ospedale Col. D'Avanzo, Foggia, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Matsumoto MA, Caviquioli G, Biguetti CC, Holgado LDA, Saraiva PP, Rennó ACM, Kawakami RY. A novel bioactive vitroceramic presents similar biological responses as autogenous bone grafts. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:1447-1456. [PMID: 22426745 DOI: 10.1007/s10856-012-4612-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 03/06/2012] [Indexed: 05/31/2023]
Abstract
Bioactive glasses represent an interesting class of bone substitute's biomaterials. The present study investigated the repair of bone defects filled with a novel bioactive vitroceramic (Biosilicate(®)), alone or in association with particulate autogenous bone grafts in calvaria defects of rabbits. After 7, 14, and 30 days the specimens were retrieved for histological, histomorphometric and immunohistochemistry analysis. Satisfactory bone formation was observed in all groups, and direct bone-biomaterial surface was noted. Histomorphometric assessment did not show statistically significant differences in bone formation among the groups and periods, except for BG group at day 14. Immunoexpression of Runx-2 was similar among the groups containing the graft and the biomaterial, being more intense than in control group. Similar result was observed for VEGF expression, especially in the last experimental period. These results revealed that Biosilicate(®) presented a favorable behavior, comparable to autogenous bone graft.
Collapse
Affiliation(s)
- Mariza Akemi Matsumoto
- Department of Health Sciences, Universidade Sagrado Coração-USC, Chácara das Flores, Bauru, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|