1
|
Zhang Y, Yi X, Huang K, Sun Q, Kong R, Chen S, Liang C, Li M, Letcher RJ, Liu C. Tris(1,3-dichloro-2-propyl)phosphate Reduces Growth Hormone Expression via Binding to Growth Hormone Releasing Hormone Receptors and Inhibits the Growth of Crucian Carp. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8108-8118. [PMID: 34062063 DOI: 10.1021/acs.est.0c07708] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) has commonly been used as an additive flame retardant and frequently detected in the aquatic environment and in biological samples worldwide. Recently, it was found that exposure to TDCIPP inhibited the growth of zebrafish, but the relevant molecular mechanisms remained unclear. In this study, 5 day-old crucian carp (Carassius auratus) larvae were treated with 0.5, 5, or 50 μg/L TDCIPP for 90 days; the effect on growth was evaluated; and related molecular mechanisms were explored. Results demonstrated that 5 or 50 μg/L TDCIPP treatment significantly inhibited the growth of crucian carp and downregulated the expression of growth hormones (ghs), growth hormone receptor (ghr), and insulin-like growth factor 1 (igf1). Molecular docking, dual-luciferase reporter gene assay, and in vitro experiments demonstrated that TDCIPP could bind to the growth hormone releasing hormone receptor protein of crucian carp and disturb the stimulation of growth hormone releasing hormone to the expression of ghs, resulting in the decrease of the mRNA level of gh1 and gh2 in pituitary cells. Our findings provide new perceptions into the molecular mechanisms of developmental toxicity of TDCIPP in fish.
Collapse
Affiliation(s)
- Yongkang Zhang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun'e Yi
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Huang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Sun
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ren Kong
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng Chen
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengqian Liang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Li
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Robert J Letcher
- Departments of Chemistry and Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Chunsheng Liu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
De Gennaro Colonna V, Rossoni G, Bernareggi M, Müller EE, Berti F. Cardiac ischemia and impairment of vascular endothelium function in hearts from growth hormone-deficient rats: protection by hexarelin. Eur J Pharmacol 1997; 334:201-7. [PMID: 9369349 DOI: 10.1016/s0014-2999(97)01178-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ability of hexarelin, an effective growth hormone (GH)-releasing hexapeptide, to reverse the worsening of cardiac dysfunction in GH-deficient animals was studied in young male rats passively immunized by administration of an anti-GH-releasing hormone (GHRH) serum. Heart preparations from anti-GHRH serum-treated rats, undergoing low-flow ischemia and reperfusion, showed: (1) a progressive increase of left ventricular end-diastolic pressure during the ischemic period and a poor recovery of contractility at reperfusion with a consistent decrease of the left ventricular-developed pressure; (2) a decreased rate of formation of 6-keto-prostaglandin F1alpha (6-keto-PGF1alpha), a stable metabolite of prostacyclin, in perfusates from preischemic and reperfusion periods; (3) an increased vasopressor activity of angiotensin II. Hexarelin (80 microg/kg, bid, s.c.), administered for 15 days to anti-GHRH serum-treated rats, restored to normal the impaired somatotropic function and counteracted the ischemic damage, improving postischemic left ventricular developed pressure to values higher than those of controls. Furthermore, both the generation of 6-keto-PGF1alpha and the vasopressor activity of angiotensin II reverted to those of control preparations. Administration of hexarelin to control rats induced a considerable improvement of postischemic ventricular function of the perfused hearts which was similar to that present in preparations from anti-GHRH serum-treated rats given hexarelin. This protective activity was divorced from any further stimulation of somatotropic function. Collectively, these data indicate that, in GH-deficient rats, hexarelin is capable of restoring somatotropic function and has a beneficial effect in myocardial ischemia and reperfusion damage. In addition, the increased responsiveness of the coronary vasculature to angiotensin II and the decreased generation of prostacyclin in hearts from GH-deficient rats would indicate that for prevention of injury and dysfunction of the vascular endothelium a normal somatotropic function is mandatory.
Collapse
Affiliation(s)
- V De Gennaro Colonna
- Department of Pharmacology, Chemotherapy and Medical Toxicology, University of Milan, Italy
| | | | | | | | | |
Collapse
|
3
|
De Gennaro Colonna V, Rossoni G, Bonacci D, Ciceri S, Cattaneo L, Müller E, Berti F. Worsening of ischemic damage in hearts from rats with selective growth hormone deficiency. Eur J Pharmacol 1996; 314:333-8. [PMID: 8957255 DOI: 10.1016/s0014-2999(96)00585-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of growth hormone (GH) deficiency on cardiac function were studied in young male rats administered an anti-GH-releasing hormone (GHRH) serum from postnatal day 20 to 40. Dependence of heart abnormalities on GH deficiency was ascertained by giving a group of anti-GHRH serum-treated rats GH replacement therapy. Heart preparations from anti-GHRH serum-treated rats, undergoing low-flow ischemia, showed a progressive increase in left ventricular end-diastolic pressure with poor recovery of mechanical activity and increased coronary perfusion pressure upon reperfusion. Hearts from anti-GHRH serum + GH-treated rats, undergoing global reduction to the flow, showed only a minimal increase of left ventricular end-diastolic pressure and, upon reperfusion, cardiac mechanical activity recovered almost completely. Similar findings were also observed in heart preparations from control (normal rabbit serum-treated) rats. Infusion of acetylcholine (10(-6) M) into heart preparations in the preischemic period increased coronary perfusion pressure values more markedly in hearts from normal rabbit serum- and anti-GHRH serum + GH-treated rats than in those from anti-GHRH serum-treated rats. These results indicate that selective GH deficiency in young male rats renders the heart more sensitive to ischemic damage and leads to an impairment of cardiac muscarinic receptor function.
Collapse
Affiliation(s)
- V De Gennaro Colonna
- Department of Pharmacology, Chemoterapy and Toxicology, University of Milano, Italy
| | | | | | | | | | | | | |
Collapse
|