1
|
Ahmadzadeh E, Polglase GR, Stojanovska V, Herlenius E, Walker DW, Miller SL, Allison BJ. Does fetal growth restriction induce neuropathology within the developing brainstem? J Physiol 2023; 601:4667-4689. [PMID: 37589339 PMCID: PMC10953350 DOI: 10.1113/jp284191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Fetal growth restriction (FGR) is a complex obstetric issue describing a fetus that does not reach its genetic growth potential. The primary cause of FGR is placental dysfunction resulting in chronic fetal hypoxaemia, which in turn causes altered neurological, cardiovascular and respiratory development, some of which may be pathophysiological, particularly for neonatal life. The brainstem is the critical site of cardiovascular, respiratory and autonomic control, but there is little information describing how chronic hypoxaemia and the resulting FGR may affect brainstem neurodevelopment. This review provides an overview of the brainstem-specific consequences of acute and chronic hypoxia, and what is known in FGR. In addition, we discuss how brainstem structural alterations may impair functional control of the cardiovascular and respiratory systems. Finally, we highlight the clinical and translational findings of the potential roles of the brainstem in maintaining cardiorespiratory adaptation in the transition from fetal to neonatal life under normal conditions and in response to the pathological environment that arises during development in growth-restricted infants. This review emphasises the crucial role that the brainstem plays in mediating cardiovascular and respiratory responses during fetal and neonatal life. We assess whether chronic fetal hypoxaemia might alter structure and function of the brainstem, but this also serves to highlight knowledge gaps regarding FGR and brainstem development.
Collapse
Affiliation(s)
- Elham Ahmadzadeh
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Graeme R. Polglase
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Vanesa Stojanovska
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Eric Herlenius
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children´s HospitalKarolinska University Hospital StockholmSolnaSweden
| | - David W. Walker
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical SciencesRoyal Melbourne Institute of Technology (RMIT)MelbourneVictoriaAustralia
| | - Suzanne L. Miller
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Beth J. Allison
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
2
|
Rosati P, Buongiorno S, Salvi S, Lanzone A, Familiari A. Reference values for pulsatility index of fetal anterior and posterior cerebral arteries in prolonged pregnancy. JOURNAL OF CLINICAL ULTRASOUND : JCU 2021; 49:199-204. [PMID: 33501682 DOI: 10.1002/jcu.22979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/10/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To establish consistent normal reference values for fetal anterior cerebral artery (ACA) and posterior cerebral artery (PCA) pulsatility index (PI) in prolonged pregnancy. METHODS This prospective cross-sectional observational study included singleton normal prolonged pregnancies into two study groups according to the gestational age: from 40 + 0 to 40 + 6 and from 41 + 0 to 41 + 6 weeks. The PI was assessed in both anatomical segments of ACA (ACA-S1 and ACA-S2) and of PCA (PCA-S1 and PCA-S2) with color Doppler imaging and pulsed Doppler examination, and reference centiles charts were generated. PI values from the two investigated segments of each vessel were also compared. RESULTS Data were obtained in 771 patients: n = 448 in the 40 + 0 and 40 + 6 weeks group, and n = 323 in the 41 + 0 and 41 + 6 weeks group. A moderate decrease in PI was observed as pregnancy progressed. No differences in PI values were found between the two anatomical segments of ACA and PCA. CONCLUSION This study provides Doppler reference values for the fetal ACA and PCA PI. It also shows that Doppler examination could be performed indifferently in one of the two anatomical segments of these arteries.
Collapse
Affiliation(s)
- Paolo Rosati
- Department of "Scienze della Salute della Donna, del Bambino e di Sanità Pubblica" della, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Silvia Buongiorno
- Department of "Scienze della Salute della Donna, del Bambino e di Sanità Pubblica" della, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Silvia Salvi
- Department of "Scienze della Salute della Donna, del Bambino e di Sanità Pubblica" della, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Antonio Lanzone
- Department of "Scienze della Salute della Donna, del Bambino e di Sanità Pubblica" della, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Alessandra Familiari
- Department of "Scienze della Salute della Donna, del Bambino e di Sanità Pubblica" della, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
- Department of Obstetrics and Gynecology, "L. Mangiagalli," Fondazione IRCCS "Ca' Granda" - Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
3
|
Dumont U, Sanchez S, Olivier B, Chateil JF, Deffieux D, Quideau S, Pellerin L, Beauvieux MC, Bouzier-Sore AK, Roumes H. Maternal alcoholism and neonatal hypoxia-ischemia: Neuroprotection by stilbenoid polyphenols. Brain Res 2020; 1738:146798. [PMID: 32229200 DOI: 10.1016/j.brainres.2020.146798] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/21/2020] [Accepted: 03/14/2020] [Indexed: 01/16/2023]
Abstract
The impact of maternal nutrition on neurodevelopment and neonatal neuroprotection is a research topic with increasing interest. Maternal diet can also have deleterious effects on fetal brain development. Fetal exposure to alcohol is responsible for poor neonatal global development, and may increase brain vulnerability to hypoxic-ischemic encephalopathy, one of the major causes of acute mortality and chronic neurological disability in newborns. Despite frequent prevention campaigns, about 10% of women in the general population drinks alcohol during pregnancy and breastfeeding. This study was inspired by this alarming fact. Its aim was to evaluate the beneficial effects of maternal supplementation with two polyphenols during pregnancy and breastfeeding, on hypoxic-ischemic neonate rat brain damages, sensorimotor and cognitive impairments, in a context of moderate maternal alcoholism. Both stilbenoid polyphenols, trans-resveratrol (RSV - 0.15 mg/kg/day), and its hydroxylated analog, trans-piceatannol (PIC - 0.15 mg/kg/day), were administered in the drinking water, containing or not alcohol (0.5 g/kg/day). In a 7-day post-natal rat model of hypoxia-ischemia (HI), our data showed that moderate maternal alcoholism does not increase brain lesion volumes measured by MRI but leads to higher motor impairments. RSV supplementation could not reverse the deleterious effects of HI coupled with maternal alcoholism. However, PIC supplementation led to a recovery of all sensorimotor and cognitive functions. This neuroprotection was obtained with a dose of PIC corresponding to the consumption of a single passion fruit per day for a pregnant woman.
Collapse
Affiliation(s)
- Ursule Dumont
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Stéphane Sanchez
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Benjamin Olivier
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Jean-François Chateil
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | | | | | - Luc Pellerin
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France; Department of Physiology, 7 Rue du Bugnon, CH1005 Lausanne, Switzerland.
| | | | - Anne-Karine Bouzier-Sore
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Hélène Roumes
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| |
Collapse
|
4
|
Cannabinoid-mediated Modulation of Oxidative Stress and Early Inflammatory Response after Hypoxia-Ischemia. Int J Mol Sci 2020; 21:ijms21041283. [PMID: 32074976 PMCID: PMC7072925 DOI: 10.3390/ijms21041283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
Abstract
In the process of neonatal encephalopathy, oxidative stress and neuroinflammation have a prominent role after perinatal asphyxia. With the exception of therapeutic hypothermia, no therapeutic interventions are available in the clinical setting to target either the oxidative stress or inflammation, despite the high prevalence of neurological sequelae of this devastating condition. The endocannabinoid system (ECS), recently recognized as a widespread neuromodulatory system, plays an important role in the development of the central nervous system (CNS). This study aims to evaluate the potential effect of the cannabinoid (CB) agonist WIN 55,212-2 (WIN) on reactive oxygen species (ROS) and early inflammatory cytokine production after hypoxia–ischemia (HI) in fetal lambs. Hypoxic–ischemic animals were subjected to 60 min of HI by partial occlusion of the umbilical cord. A group of lambs received a single dose of 0.01 μg/kg WIN, whereas non-asphyctic animals served as controls. WIN reduced the widespread and notorious increase in inflammatory markers tumor necrosis factor (TNF)-α and interleukin (IL)-1β and IL-6 induced by HI, a modulatory effect not observed for oxidative stress. Our study suggests that treatment with a low dose of WIN can alter the profile of pro-inflammatory cytokines 3 h after HI.
Collapse
|
5
|
Ciardulli A, D'Antonio F, Caissutti C, Manzoli L, Flacco ME, Buongiorno S, Saccone G, Rosati P, Lanzone A, Scambia G, Berghella V. Fetal brain hemodynamics in pregnancies at term: correlation with gestational age, birthweight and clinical outcome. J Matern Fetal Neonatal Med 2019; 34:913-919. [PMID: 31288578 DOI: 10.1080/14767058.2019.1622669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION The primary aim of this study was to ascertain the strength of association between cerebral blood flow assessed in anterior (ACA), middle (MCA), and posterior (PCA) cerebral arteries and the following clinical outcomes: small for gestational age (SGA), induction of labor (IOL) for oligohydramnios and caesarean section (CS) for nonreassuring fetal status (NRFS) during labor. MATERIAL AND METHODS Retrospective analysis of prospectively collected data on consecutive singleton pregnancies from 40 0/7 to 41 6/7 week of gestation. UA, ACA, MCA, PCA pulsatility index (PI) were measured from 40 weeks of gestations. Furthermore, the ratios between cerebral blood flow and UA (CPR, ACA/UA and PCA/UA) were calculated and correlated with the observed outcomes. RESULTS Two hundred twenty-four singleton pregnancies were included in the study. Mean PI of either ACA (p = .04), MCA (p = .008), and PCA (p = .003) were lower in the SGA compared to non-SGA group; furthermore, mean PCA PI was significantly lower than MCA PI (p = .04). Furthermore, CPR (p = .016), ACA/UA (p = .02), and PCA/UA (p = .003) were significantly lower in the SGA group compared to controls. UA, ACA, MCA, and PCA PI were higher in women undergoing IOL for oligohydramnios compared to controls. Logistic regression analysis showed that CPR and PCA/UA ratio were independently associated with SGA. SGA, ACA PI, and ACA/UA were independently associated with CS for NRFS. Finally, birthweight centile, were independently associated with IOL oligohydramnios. Despite this, the predictive accuracy of Doppler in detecting any of the explored outcome was only poor to moderate. CONCLUSION Redistribution of cerebral blood flow at term is significantly associated with SGA, IOL for oligohydramnios and CS for NRFS in labor. However, the predictive accuracy of Doppler at term is only poor to moderate, thus advising against its use in clinical practice as a standalone screening test for adverse perinatal outcome in pregnancies at term. Key Message Redistribution of cerebral blood flow at term is significantly associated with SGA, IOL for oligohydramnios and CS for NRFS in labor.
Collapse
Affiliation(s)
- Andrea Ciardulli
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
| | - Francesco D'Antonio
- Women and Perinatology Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway.,Department of Obstetrics and Gynecology, University Hospital of Northern Norway, Tromsø, Norway
| | - Claudia Caissutti
- Department of Experimental Clinical and Medical Science, DISM, Clinic of Obstetrics and Gynecology, University of Udine, Udine, Italy
| | - Lamberto Manzoli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria Elena Flacco
- Department of Medicine and Aging Science, University of Chieti, Chieti, Italy
| | - Silvia Buongiorno
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
| | - Gabriele Saccone
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Paolo Rosati
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
| | - Antonio Lanzone
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
| | - Giovanni Scambia
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
| | - Vincenzo Berghella
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Rosati P, Buongiorno S, Salvi S, Guariglia L, Lanzone A, Morales-Roselló J. Reproducibility of the fetal cerebral vessels assessment in full and late term pregnancies. J Matern Fetal Neonatal Med 2018; 33:2159-2165. [PMID: 30474451 DOI: 10.1080/14767058.2018.1542681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: Data concerning feasibility of the fetal cerebral Doppler examination in full term and late term pregnancy is lacking. Our purpose was to perform an evaluation of these arteries with power Doppler ultrasound, calculating the percentage of identification and measurement and the intraobserver reproducibility.Methods: This was a cross sectional study evaluating a population of 578 normally grown fetuses divided according to the week of examination. The first group included fetuses examined at week 40 (N = 323) and the second fetuses examined at week 41 (N = 255). The three major branches of the internal carotid artery (anterior, middle and posterior cerebral arteries, ACA, middle cerebral artery (MCA), posterior cerebral arteries (PCA)) and their anastomosis (A1, A2, P1, P2) were examined with power Doppler ultrasonography by three independent ultrasonographers. The proportion of vessel identified and measured was calculated and the reproducibility among the three operators was investigated.Results: The major arteries at the circle of Willis were fully identified/measured in 65/56 and 62/48% of fetuses at 40 and 41 weeks. The MCA obtained the higher percentage of identification and measurement at both periods (> 80 and >70%). The entire set of anastomosis were less frequently identified/measured at both periods (50/< 50% of cases), especially in the A2 segment. The best agreement was obtained in the MCA and the worst in the PCA-P1 segment.Conclusions: At 40 and 41 weeks, the fetal cerebral vessels, especially the MCA, are suitable for power Doppler evaluation, providing an interesting tool to evaluate fetal hemodynamics in full and late term pregnancy.
Collapse
Affiliation(s)
- P Rosati
- Department of Woman and Child Health, Woman Health Area, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - S Buongiorno
- Department of Woman and Child Health, Woman Health Area, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - S Salvi
- Department of Woman and Child Health, Woman Health Area, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - L Guariglia
- Department of Woman and Child Health, Woman Health Area, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - A Lanzone
- Department of Woman and Child Health, Woman Health Area, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - J Morales-Roselló
- Servicio de Obstetricia, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
7
|
Arteaga O, Revuelta M, Urigüen L, Álvarez A, Montalvo H, Hilario E. Pretreatment with Resveratrol Prevents Neuronal Injury and Cognitive Deficits Induced by Perinatal Hypoxia-Ischemia in Rats. PLoS One 2015; 10:e0142424. [PMID: 26544861 PMCID: PMC4636303 DOI: 10.1371/journal.pone.0142424] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 10/21/2015] [Indexed: 01/24/2023] Open
Abstract
Despite advances in neonatal care, hypoxic-ischemic brain injury is still a serious clinical problem, which is responsible for many cases of perinatal mortality, cerebral palsy, motor impairment and cognitive deficits. Resveratrol, a natural polyphenol with important anti-oxidant and anti-inflammatory properties, is present in grapevines, peanuts and pomegranates. The aim of the present work was to evaluate the possible neuroprotective effect of resveratrol when administered before or immediately after a hypoxic-ischemic brain event in neonatal rats by analyzing brain damage, the mitochondrial status and long-term cognitive impairment. Our results indicate that pretreatment with resveratrol protects against brain damage, reducing infarct volume, preserving myelination and minimizing the astroglial reactive response. Moreover its neuroprotective effect was found to be long lasting, as behavioral outcomes were significantly improved at adulthood. We speculate that one of the mechanisms for this neuroprotection may be related to the maintenance of the mitochondrial inner membrane integrity and potential, and to the reduction of reactive oxygen species. Curiously, none of these protective features was observed when resveratrol was administered immediately after hypoxia-ischemia.
Collapse
Affiliation(s)
- Olatz Arteaga
- Department of Cell Biology & Histology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Miren Revuelta
- Department of Cell Biology & Histology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Leyre Urigüen
- Department of Pharmacology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Antonia Álvarez
- Department of Cell Biology & Histology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Haizea Montalvo
- Department of Cell Biology & Histology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Enrique Hilario
- Department of Cell Biology & Histology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| |
Collapse
|
8
|
Revuelta M, Arteaga O, Montalvo H, Alvarez A, Hilario E, Martinez-Ibargüen A. Antioxidant Treatments Recover the Alteration of Auditory-Evoked Potentials and Reduce Morphological Damage in the Inferior Colliculus after Perinatal Asphyxia in Rat. Brain Pathol 2015; 26:186-98. [PMID: 25990815 DOI: 10.1111/bpa.12272] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/01/2015] [Indexed: 01/17/2023] Open
Abstract
Maturation of the auditory pathway is dependent on the central nervous system myelination and it can be affected by pathologies such as neonatal hypoxic ischemic (HI) encephalopathy. Our aim was to evaluate the functional integrity of the auditory pathway and to visualize, by histological and cellular methods, the damage to the brainstem using a neonatal rat model of HI brain injury. To carry out this morphofunctional evaluation, we studied the effects of the administration of the antioxidants nicotine, melatonin, resveratrol and docosahexaenoic acid after hypoxia-ischemia on the inferior colliculus and the auditory pathway. We found that the integrity of the auditory pathway in the brainstem was altered as a consequence of the HI insult. Thus, the auditory brainstem response (ABR) showed increased I-V and III-V wave latencies. At a histological level, HI altered the morphology of the inferior colliculus neurons, astrocytes and oligodendricytes, and at a molecular level, the mitochondria membrane potential and integrity was altered during the first hours after the HI and reactive oxygen species (ROS) activity is increased 12 h after the injury in the brainstem. Following antioxidant treatment, ABR interpeak latency intervals were restored and the body and brain weight was recovered as well as the morphology of the inferior colliculus that was similar to the control group. Our results support the hypothesis that antioxidant treatments have a protective effect on the functional changes of the auditory pathway and on the morphological damage which occurs after HI insult.
Collapse
Affiliation(s)
- Miren Revuelta
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Olatz Arteaga
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Haizea Montalvo
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Antonia Alvarez
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Enrique Hilario
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Agustin Martinez-Ibargüen
- Department of Otorhinolaryngology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| |
Collapse
|
9
|
Alvarez FJ, Revuelta M, Santaolalla F, Alvarez A, Lafuente H, Arteaga O, Alonso-Alconada D, Sanchez-del-Rey A, Hilario E, Martinez-Ibargüen A. Effect of neonatal asphyxia on the impairment of the auditory pathway by recording auditory brainstem responses in newborn piglets: a new experimentation model to study the perinatal hypoxic-ischemic damage on the auditory system. PLoS One 2015; 10:e0126885. [PMID: 26010092 PMCID: PMC4444324 DOI: 10.1371/journal.pone.0126885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/08/2015] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Hypoxia-ischemia (HI) is a major perinatal problem that results in severe damage to the brain impairing the normal development of the auditory system. The purpose of the present study is to study the effect of perinatal asphyxia on the auditory pathway by recording auditory brain responses in a novel animal experimentation model in newborn piglets. METHOD Hypoxia-ischemia was induced to 1.3 day-old piglets by clamping 30 minutes both carotid arteries by vascular occluders and lowering the fraction of inspired oxygen. We compared the Auditory Brain Responses (ABRs) of newborn piglets exposed to acute hypoxia/ischemia (n = 6) and a control group with no such exposure (n = 10). ABRs were recorded for both ears before the start of the experiment (baseline), after 30 minutes of HI injury, and every 30 minutes during 6 h after the HI injury. RESULTS Auditory brain responses were altered during the hypoxic-ischemic insult but recovered 30-60 minutes later. Hypoxia/ischemia seemed to induce auditory functional damage by increasing I-V latencies and decreasing wave I, III and V amplitudes, although differences were not significant. CONCLUSION The described experimental model of hypoxia-ischemia in newborn piglets may be useful for studying the effect of perinatal asphyxia on the impairment of the auditory pathway.
Collapse
Affiliation(s)
- Francisco Jose Alvarez
- Research Unit on Experimental Perinatal Physiopathology, Cruces University Hospital, Barakaldo, 48080, Bizkaia, Spain
| | - Miren Revuelta
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain
| | - Francisco Santaolalla
- Department of Otorhinolaryngology, Basurto University Hospital, Faculty of Medicine, University of the Basque Country, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain
- * E-mail: (FS); (EH)
| | - Antonia Alvarez
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain
| | - Hector Lafuente
- Research Unit on Experimental Perinatal Physiopathology, Cruces University Hospital, Barakaldo, 48080, Bizkaia, Spain
| | - Olatz Arteaga
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain
| | - Daniel Alonso-Alconada
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain
| | - Ana Sanchez-del-Rey
- Department of Otorhinolaryngology, Basurto University Hospital, Faculty of Medicine, University of the Basque Country, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain
| | - Enrique Hilario
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain
- * E-mail: (FS); (EH)
| | - Agustin Martinez-Ibargüen
- Department of Otorhinolaryngology, Basurto University Hospital, Faculty of Medicine, University of the Basque Country, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain
| |
Collapse
|
10
|
Evans LC, Liu H, Thompson LP. Differential effect of intrauterine hypoxia on caspase 3 and DNA fragmentation in fetal guinea pig hearts and brains. Reprod Sci 2012; 19:298-305. [PMID: 22383778 PMCID: PMC3343149 DOI: 10.1177/1933719111420883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study is to quantify the effect of intrauterine hypoxia (HPX) and the role of nitric oxide (NO) on the apoptotic enzyme, caspase 3, and DNA fragmentation in fetal heart and brain. Hypoxia and NO are important regulators of apoptosis, although this has been little studied in the fetal organs. We investigated the effect of intrauterine HPX on apoptosis and the role of NO in both fetal hearts and brains. Pregnant guinea pigs were exposed to room temperature (N = 14) or 10.5% O₂ (N = 12) for 14 days prior to term (term = 65 days) and administered water or L-N6-(1-iminoethyl)-lysine (LNIL), an inducible nitric oxide synthase (iNOS) inhibitor, for 10 days. Fetal hearts and brains were excised from anesthetized near-term fetuses for study. Chronic HPX decreased pro- and active caspase 3, caspase 3 activity, and DNA fragmentation levels in fetal hearts compared with normoxic controls. L-N6-(1-iminoethyl)-lysine prevented the HPX-induced decrease in caspase 3 activity but did not alter DNA fragmentation levels. In contrast, chronic HPX increased both apoptotic indices in fetal brains, which were inhibited by LNIL. Thus, the effect of HPX on apoptosis differs between fetal organs, and NO may play an important role in modulating these effects.
Collapse
Affiliation(s)
- LaShauna C. Evans
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hongshan Liu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Loren P. Thompson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Alonso-Alconada D, Hilario E, Álvarez FJ, Álvarez A. Apoptotic cell death correlates with ROS overproduction and early cytokine expression after hypoxia-ischemia in fetal lambs. Reprod Sci 2012; 19:754-63. [PMID: 22378862 DOI: 10.1177/1933719111432868] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite advances in neonatology, the hypoxic-ischemic injury in the perinatal period remains the single most important cause of brain injury in the newborn, leading to death or lifelong sequelae. Using a sheep model of intrauterine asphyxia, we evaluated the correlation between reactive oxygen species (ROS) overproduction, cytokine expression, and apoptotic cell death. Fetal lambs were assigned to sham group, nonasphyctic animals; and hypoxia-ischemia (HI) group, lambs subjected to 60 minutes of HI) by partial cord occlusion and sacrificed 3 hours later. Different brain regions were separated to quantify the number of apoptotic cells and the same territories were dissociated for flow cytometry studies. Our results suggest that the overproduction of ROS and the early increase in cytokine production after HI in fetal lambs correlate in a significant manner with the apoptotic index, as well as with each brain region evaluated.
Collapse
Affiliation(s)
- Daniel Alonso-Alconada
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Vizcaya, Spain.
| | | | | | | |
Collapse
|
12
|
Alonso-Alconada D, Alvarez A, Hilario E. Cannabinoid as a neuroprotective strategy in perinatal hypoxic-ischemic injury. Neurosci Bull 2011; 27:275-85. [PMID: 21788999 DOI: 10.1007/s12264-011-1008-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Perinatal hypoxia-ischemia remains the single most important cause of brain injury in the newborn, leading to death or lifelong sequelae. Because of the fact that there is still no specific treatment for perinatal brain lesions due to the complexity of neonatal hypoxic-ischemic pathophysiology, the search of new neuroprotective therapies is of great interest. In this regard, therapeutic possibilities of the endocannabinoid system have grown lately. The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury, acting as a natural neuroprotectant. Concerning perinatal asphyxia, the neuroprotective role of this endogenous system is emerging these years. The present review mainly focused on the current knowledge of the cannabinoids as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Daniel Alonso-Alconada
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Vizcaya, Spain
| | | | | |
Collapse
|
13
|
Alvarez-Díaz A, Hilario E, de Cerio FG, Valls-i-Soler A, Alvarez-Díaz FJ. Hypoxic-ischemic injury in the immature brain--key vascular and cellular players. Neonatology 2007; 92:227-35. [PMID: 17556841 DOI: 10.1159/000103741] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Over the past decade, much has been learned about the cellular and molecular mechanisms underlying hypoxic-ischemic (H-I) injury in the preterm human brain. The pathogenesis of H-I brain injury is now understood to be multifactorial and quite complex, depending on (i) the severity, intensity and timing of asphyxia, (ii) selective ischemic vulnerability, (iii) the degree of maturity of the brain, and (iv) the characteristics of the ensuing reoxygenation/reperfusion phase. Each of these factors has differential effects on the distinct cell populations in the brain, with certain specific cell types being particularly vulnerable in the developing brain. In this review, we discuss the role of the blood vessels and the distinct cell populations, which are the mayor constitutive elements of the immature brain, in the pathophysiology of H-I lesion. The presence of fragile and poorly anastomosed blood vessels and the existence of disturbances in the blood-brain barrier alter blood flow, vascular tone and nutrient delivery. Brain cells are sensitive to the overstimulation of neurotransmitter receptors, particularly glutamate receptors, which can provoke excitotoxicity leading to the death of neurons and other cells such as astrocytes and oligodendrocyte progenitors. Microglial activation by means of excitatory amino acids and by leukocyte migration initiates the inflammatory response giving rise to an increase in regional cerebral blood flow and promoting astrocyte and oligodendrocyte injuries. A better understanding of these aspects of H-I injury will contribute to more efficient strategies for the management of the associated damage.
Collapse
Affiliation(s)
- A Alvarez-Díaz
- Department of Cell Biology and Histology, University of the Basque Country, Leioa, Spain
| | | | | | | | | |
Collapse
|