1
|
Rocamonde B, Hasan U, Mathieu C, Dutartre H. Viral-induced neuroinflammation: Different mechanisms converging to similar exacerbated glial responses. Front Neurosci 2023; 17:1108212. [PMID: 36937670 PMCID: PMC10017484 DOI: 10.3389/fnins.2023.1108212] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
There is increasing evidence that viral infections are the source/origin of various types of encephalitis, encephalomyelitis, and other neurological and cognitive disorders. While the involvement of certain viruses, such as the Nipah virus and measles virus, is known, the mechanisms of neural invasion and the factors that trigger intense immune reactions are not fully understood. Based on recent publications, this review discusses the role of the immune response, interactions between viruses and glial cells, and cytokine mediators in the development of inflammatory diseases in the central nervous system. It also highlights the significant gaps in knowledge regarding these mechanisms.
Collapse
Affiliation(s)
- Brenda Rocamonde
- Centre International de Recherche en Infectiologie, Équipe d’Oncogenèse Rétrovirale, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR 5308, École Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
- *Correspondence: Brenda Rocamonde,
| | - Uzma Hasan
- Centre International de Recherche en Infectiologie, Team Enveloped Viruses, Vectors and Immunotherapy INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR 5308, École Normale Supérieure de Lyon, Université Lyon, Lyon, France
- The Lyon Immunotherapy for Cancer Laboratory (LICL), Centre de Recherche en Cancérologie de Lyon (CRCL, UMR INSERM 1052 – CNRS 5286) Centre Léon Bérard, Lyon, France
| | - Cyrille Mathieu
- Centre International de Recherche en Infectiologie Équipe Neuro-Invasion, Tropism and Viral Encephalitis, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR 5308, École Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Cyrille Mathieu,
| | - Hélène Dutartre
- Centre International de Recherche en Infectiologie, Équipe d’Oncogenèse Rétrovirale, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR 5308, École Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
- Hélène Dutartre,
| |
Collapse
|
2
|
Goldman JE. Alzheimer Type I Astrocytes: Still Mysterious Cells. J Neuropathol Exp Neurol 2022; 81:588-595. [PMID: 35689655 DOI: 10.1093/jnen/nlac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Over 100 years ago, von Hösslein and Alzheimer described enlarged and multinucleated astrocytes in the brains of patients with Wilson disease. These odd astrocytes, now well known to neuropathologists, are present in a large variety of neurological disorders, and yet the mechanisms underlying their generation and their functional attributes are still not well understood. They undergo abnormal mitoses and fail to accomplish cytokinesis, resulting in multinucleation. Oxidative stress, hypoxia, and inflammation may be contributing pathologies to generate these astrocytes. The abnormal mitoses occur from changes in cell shape, the accumulation of cytoplasmic proteins, and the mislocalization of many of the important molecules whose coordination is necessary for proper mitotic spindle formation. Modern technologies will be able to characterize their abnormalities and solve century old questions of their form and function.
Collapse
Affiliation(s)
- James E Goldman
- From the Division of Neuropathology, Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons and The Taub Institute for Research on Alzheimer's Disease and Aging, NY-Presbyterian Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
3
|
Astrocyte and Oligodendrocyte Cross-Talk in the Central Nervous System. Cells 2020; 9:cells9030600. [PMID: 32138223 PMCID: PMC7140446 DOI: 10.3390/cells9030600] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/23/2022] Open
Abstract
Over the last decade knowledge of the role of astrocytes in central nervous system (CNS) neuroinflammatory diseases has changed dramatically. Rather than playing a merely passive role in response to damage it is clear that astrocytes actively maintain CNS homeostasis by influencing pH, ion and water balance, the plasticity of neurotransmitters and synapses, cerebral blood flow, and are important immune cells. During disease astrocytes become reactive and hypertrophic, a response that was long considered to be pathogenic. However, recent studies reveal that astrocytes also have a strong tissue regenerative role. Whilst most astrocyte research focuses on modulating neuronal function and synaptic transmission little is known about the cross-talk between astrocytes and oligodendrocytes, the myelinating cells of the CNS. This communication occurs via direct cell-cell contact as well as via secreted cytokines, chemokines, exosomes, and signalling molecules. Additionally, this cross-talk is important for glial development, triggering disease onset and progression, as well as stimulating regeneration and repair. Its critical role in homeostasis is most evident when this communication fails. Here, we review emerging evidence of astrocyte-oligodendrocyte communication in health and disease. Understanding the pathways involved in this cross-talk will reveal important insights into the pathogenesis and treatment of CNS diseases.
Collapse
|
4
|
Welsch JC, Charvet B, Dussurgey S, Allatif O, Aurine N, Horvat B, Gerlier D, Mathieu C. Type I Interferon Receptor Signaling Drives Selective Permissiveness of Astrocytes and Microglia to Measles Virus during Brain Infection. J Virol 2019; 93:e00618-19. [PMID: 31019048 PMCID: PMC6580971 DOI: 10.1128/jvi.00618-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
Fatal neurological syndromes can occur after measles virus (MeV) infection of the brain. The mechanisms controlling MeV spread within the central nervous system (CNS) remain poorly understood. We analyzed the role of type I interferon (IFN-I) receptor (IFNAR) signaling in the control of MeV infection in a murine model of brain infection. Using organotypic brain cultures (OBC) from wild-type and IFNAR-knockout (IFNARKO) transgenic mice ubiquitously expressing the human SLAM (CD150) receptor, the heterogeneity of the permissiveness of different CNS cell types to MeV infection was characterized. In the absence of IFNAR signaling, MeV propagated significantly better in explant slices. In OBC from IFNAR-competent mice, while astrocytes and microglia were infected on the day of explant preparation, they became refractory to infection with time, in contrast to neurons and oligodendrocytes, which remained permissive to infection. This selective loss of permissiveness to MeV infection was not observed in IFNARKO mouse OBC. Accordingly, the development of astrogliosis related to the OBC procedure was exacerbated in the presence of IFNAR signaling. In the hippocampus, this astrogliosis was characterized by a change in the astrocyte phenotype and by an increase of IFN-I transcripts. A proteome analysis showed the upregulation of 84 out of 111 secreted proteins. In the absence of IFNAR, only 27 secreted proteins were upregulated, and none of these were associated with antiviral activities. Our results highlight the essential role of the IFN-I response in astrogliosis and in the permissiveness of astrocytes and microglia that could control MeV propagation throughout the CNS.IMPORTANCE Measles virus (MeV) can infect the central nervous system (CNS), with dramatic consequences. The mechanisms controlling MeV invasion of the CNS remain ill-defined since most previous data were obtained from postmortem analysis. Here, we highlight for the first time the crucial role of the type I interferon (IFN-I) response not only in the control of CNS invasion but also in the early permissiveness of glial cells to measles virus infection.
Collapse
Affiliation(s)
- Jeremy Charles Welsch
- CIRI, International Center for Infectiology Research, CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
- LabEx Ecofect, Université de Lyon, Lyon, France
| | - Benjamin Charvet
- CIRI, International Center for Infectiology Research, CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Sebastien Dussurgey
- SFR BioSciences, INSERM, CNRS, UMS3444/US8, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Omran Allatif
- CIRI, International Center for Infectiology Research, CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Noemie Aurine
- CIRI, International Center for Infectiology Research, CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Branka Horvat
- CIRI, International Center for Infectiology Research, CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
- LabEx Ecofect, Université de Lyon, Lyon, France
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
- LabEx Ecofect, Université de Lyon, Lyon, France
| | - Cyrille Mathieu
- CIRI, International Center for Infectiology Research, CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
- LabEx Ecofect, Université de Lyon, Lyon, France
| |
Collapse
|
5
|
Ludlow M, McQuaid S, Milner D, de Swart RL, Duprex WP. Pathological consequences of systemic measles virus infection. J Pathol 2014; 235:253-65. [DOI: 10.1002/path.4457] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 01/25/2023]
Affiliation(s)
- Martin Ludlow
- Department of Microbiology; Boston University School of Medicine; MA USA
| | - Stephen McQuaid
- Tissue Pathology Laboratories; Belfast Health and Social Care Trust; Northern Ireland
| | - Dan Milner
- Department of Immunology and Infectious Diseases; Harvard School of Public Health; Boston MA USA
- Department of Pathology; Brigham and Women's Hospital; Boston MA USA
| | - Rik L de Swart
- Department of Viroscience; Erasmus MC; Rotterdam The Netherlands
| | - W Paul Duprex
- Department of Microbiology; Boston University School of Medicine; MA USA
| |
Collapse
|
6
|
Experimental measles encephalitis in Lewis rats: dissemination of infected neuronal cell subtypes. J Neurovirol 2013; 19:461-70. [DOI: 10.1007/s13365-013-0199-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 08/05/2013] [Accepted: 08/09/2013] [Indexed: 12/11/2022]
|
7
|
Kim WK, Avarez X, Williams K. The role of monocytes and perivascular macrophages in HIV and SIV neuropathogenesis: information from non-human primate models. Neurotox Res 2005; 8:107-15. [PMID: 16260389 DOI: 10.1007/bf03033823] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Perivascular macrophages are located in the perivascular space of cerebral microvessels and thus uniquely situated at the intersection between the brain parenchyma and blood. Connections between the nervous and immune systems are mediated in part through these cells that are ideally located to sense perturbations in the periphery and turnover by cells entering the central nervous system (CNS) from the circulation. It has become clear that unique subsets of brain macrophages exist in normal and SIV- or HIV-infected brains, and perivascular macrophages and similar cells in the meninges and choroid plexus play a central role in lentiviral neuropathogenesis. Common to all these cell populations is their likely replacement within the CNS by monocytes. Studies of SIV-infected non-human primates and HIV-infected humans underscore the importance of virus-infected and activated monocytes, which traffic to the CNS from blood to become perivascular macrophages, potentially drive the blood-brain barrier damage and cause neuronal injury. This review summarizes what we know about SIV- and HIV-induced neuropathogenesis focusing on brain perivascular macrophages and their precursors in blood that may mediate HIV CNS infection and injury.
Collapse
Affiliation(s)
- W-K Kim
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
8
|
Geeraedts F, Wilczak N, van Binnendijk R, De Keyser J. Search for morbillivirus proteins in multiple sclerosis brain tissue. Neuroreport 2004; 15:27-32. [PMID: 15106826 DOI: 10.1097/00001756-200401190-00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated brain samples of patients with multiple sclerosis (MS) and controls with immunohistochemistry using monoclonal antibodies (MoAbs) against canine distemper virus (CDV) and measles virus (MV) proteins. All stained negative except for MoAb F3-5, which recognises a conserved epitope on the fusion protein of morbilliviruses. F3-5 immunostaining was found in 8/9 MS plaques and 2/5 herpes simplex virus encephalitis brain samples, but not in six controls or four patients with ischaemic stroke. Using RT-PCR we found no evidence for the presence of MV in MS plaques. The F3-5 epitope may represent a protein that is upregulated during inflammation or point to a yet unrecognised morbillivirus in the human central nervous system that might be implicated in MS pathogenesis.
Collapse
Affiliation(s)
- Felix Geeraedts
- Department of Neurology, Academisch Ziekenhuis Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands.
| | | | | | | |
Collapse
|
9
|
Anlar B, Söylemezoğlu F, Aysun S, Köse G, Belen D, Yalaz K. Tissue inflammatory response in subacute sclerosing panencephalitis (SSPE). J Child Neurol 2001; 16:895-900. [PMID: 11785503 DOI: 10.1177/088307380101601206] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The pattern of inflammatory infiltration was studied in the frontal brain biopsies of 28 cases with subacute sclerosing panencephalitis (SSPE) by immunohistochemistry. Lymphocytic infiltration and gliosis were common pathologic findings. CD4+ T lymphocytes were often observed in perivascular areas and CD8+ lymphocytes in the parenchyma. B lymphocytes were located in large perivascular cuffs associated with longer and slower disease. Major histocompatibility complex antigens, interferon-gamma, and tumor necrosis factor-alpha (TNF-alpha) were expressed in endothelial and glial cells. The inflammatory lesions in subacute sclerosing panencephalitis consist of various cell subtypes and cytokines localized in particular areas of the brain tissue and show certain associations with clinical course.
Collapse
Affiliation(s)
- B Anlar
- Department of Pediatric Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
10
|
Roscic-Mrkic B, Schwendener RA, Odermatt B, Zuniga A, Pavlovic J, Billeter MA, Cattaneo R. Roles of macrophages in measles virus infection of genetically modified mice. J Virol 2001; 75:3343-51. [PMID: 11238860 PMCID: PMC114127 DOI: 10.1128/jvi.75.7.3343-3351.2001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Knowledge of the mechanisms of virus dissemination in acute measles is cursory, but cells of the monocyte/macrophage (MM) lineage appear to be early targets. We characterized the dissemination of the Edmonston B vaccine strain of measles virus (MV-Ed) in peripheral blood mononuclear cells (PBMC) of two mouse strains expressing the human MV-Ed receptor CD46 with human-like tissue specificity and efficiency. In one strain the alpha/beta interferon receptor is defective, allowing for efficient MV-Ed systemic spread. In both mouse strains the PBMC most efficiently infected were F4/80-positive MMs, regardless of the inoculation route used. Circulating B lymphocytes and CD4-positive T lymphocytes were infected at lower levels, but no infected CD8-positive T lymphocytes were detected. To elucidate the roles of MMs in infection, we depleted these cells by clodronate liposome treatment in vivo. MV-Ed infection of splenic MM-depleted mice caused strong activation and infection of splenic dendritic cells (DC), followed by enhanced virus replication in the spleen. Similarly, depletion of lung macrophages resulted in strong activation and infection of lung DC. Thus, in MV infections of genetically modified mice, blood monocytes and tissue macrophages provide functions beneficial for both the virus and the host: they support virus replication early after infection, but they also contribute to protecting other immune cells from infection. Human MM may have similar roles in acute measles.
Collapse
Affiliation(s)
- B Roscic-Mrkic
- Molecular Biology Institute, University of Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Immune panels of many autism-spectrum children reveal signs of atypical infections and shifted cell counts. In conjunction with trait-related cerebral hypometabolism and hypoperfusion, these findings suggest a hypothesis: Several autism-spectrum subgroups derive from intra-monocyte pathogens such as measles virus, cytomegalovirus, human herpesvirus 6, and Yersinia enterocolitica. Furthermore, with much inter-child variation, their effects manifest as diminished hematopoiesis, impaired peripheral immunity, and altered blood-brain barrier function often accompanied by demyelination. In some such children, one or more of these pathogens persists as a chronic-active, seemingly subclinical infection etiologically significant to the child's autistic traits. Within these subgroups, immune impairments and atypical infections may be treatable.
Collapse
Affiliation(s)
- T Binstock
- Institute for Molecular Introspections, Estes Park, Colorado, USA.
| |
Collapse
|
12
|
Lackmann GM, Hannen M, Madjlessi F, Lenard HG, Schroten H. Rapid progressive subacute sclerosing panencephalitis in a 2-year-old child with congenital athyreosis. Clin Infect Dis 2000; 31:196-9. [PMID: 10913425 DOI: 10.1086/313917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We present the unique case of a 2-year-old girl with congenital athyreosis who acquired primary measles virus infection at the age of 18 months, coincidentally with an Epstein-Barr virus infection. First neurologic symptoms of subacute sclerosing panencephalitis appeared 5 months later, and the girl died within 6 months after a rapid progressive illness. Factors possibly predisposing to this extraordinary disease course-primary measles virus infection at an early age and lack of evidence for immunodeficiency-are discussed.
Collapse
Affiliation(s)
- G M Lackmann
- Department of Pediatrics, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
13
|
Duprex WP, McQuaid S, Rima BK. Measles virus-induced disruption of the glial-fibrillary-acidic protein cytoskeleton in an astrocytoma cell line (U-251). J Virol 2000; 74:3874-80. [PMID: 10729162 PMCID: PMC111896 DOI: 10.1128/jvi.74.8.3874-3880.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A recombinant measles virus which expresses enhanced green fluorescent protein (MVeGFP) has been used to infect two astrocytoma cell lines (GCCM and U-251) to study the effect of virus infection on the cytoskeleton. Indirect immunocytochemistry was used to demonstrate the cellular localization of the cytoskeletal components. Enhanced green fluorescent protein autofluorescence was used to identify measles virus-infected cells. No alteration of the actin, tubulin, or vimentin components of the cytoskeleton was observed in either cell type, whereas a disruption of the glial-fibrillary-acidic protein filament (GFAP) network was noted in MVeGFP-infected U-251 cells. The relative amounts of GFAP present in infected and uninfected U-251 cells were quantified by image analysis of data sets obtained by confocal microscopy by using vimentin, another intermediate filament on which MVeGFP has no effect, as a control.
Collapse
Affiliation(s)
- W P Duprex
- School of Biology and Biochemistry, The Queen's University of Belfast, Belfast BT9 7BL, Northern Ireland, United Kingdom.
| | | | | |
Collapse
|
14
|
Duprex WP, McQuaid S, Hangartner L, Billeter MA, Rima BK. Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. J Virol 1999; 73:9568-75. [PMID: 10516065 PMCID: PMC112991 DOI: 10.1128/jvi.73.11.9568-9575.1999] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/1999] [Accepted: 07/22/1999] [Indexed: 11/20/2022] Open
Abstract
A recombinant measles virus (MV) which expresses enhanced green fluorescent protein (EGFP) has been rescued. This virus, MVeGFP, expresses the reporter gene from an additional transcription unit which is located prior to the gene encoding the measles virus nucleocapsid protein. The recombinant virus was used to infect human astrocytoma cells (GCCM). Immunocytochemistry (ICC) together with EGFP autofluorescence showed that EGFP is both an early and very sensitive indicator of cell infection. Cells that were EGFP-positive and ICC-negative were frequently observed. Confocal microscopy was used to indirectly visualize MV infection of GCCM cells and to subsequently follow cell-to-cell spread in real time. These astrocytoma cells have extended processes, which in many cases are intimately associated. The processes appear to have an important role in cell-to-cell spread, and MVeGFP was observed to utilize them in the infection of surrounding cells. Heterogeneity was seen in cell-to-cell spread in what was expected to be a homogeneous monolayer. In tissue culture, physical constraints govern the integrity of the syncytia which are formed upon extensive cell fusion. When around 50 cells were fused, the syncytia rapidly disintegrated and many of the infected cells detached. Residual adherent EGFP-positive cells were seen to either continue to be involved in the infection of surrounding cells or to remain EGFP positive but no longer participate in the transmission of MV infection to neighboring cells.
Collapse
Affiliation(s)
- W P Duprex
- School of Biology and Biochemistry, The Queen's University of Belfast, Belfast BT9 7BL, Northern Ireland, United Kingdom.
| | | | | | | | | |
Collapse
|
15
|
Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 30:77-105. [PMID: 10407127 DOI: 10.1016/s0165-0173(99)00007-7] [Citation(s) in RCA: 623] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Damage to the central nervous system (CNS) leads to cellular changes not only in the affected neurons but also in adjacent glial cells and endothelia, and frequently, to a recruitment of cells of the immune system. These cellular changes form a graded response which is a consistent feature in almost all forms of brain pathology. It appears to reflect an evolutionarily conserved program which plays an important role in the protection against infectious pathogens and the repair of the injured nervous system. Moreover, recent work in mice that are genetically deficient for different cytokines (MCSF, IL1, IL6, TNFalpha, TGFbeta1) has begun to shed light on the molecular signals that regulate this cellular response. Here we will review this work and the insights it provides about the biological function of the neuroglial activation in the injured brain.
Collapse
Affiliation(s)
- G Raivich
- Department of Neuromorphology, Max-Planck Institute for Neurobiology, Am Klopferspitz 18A, D-82152 Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|