1
|
Cha E, Kim J, Gotina L, Kim J, Kim HJ, Seo SH, Park JE, Joo J, Kang M, Lee J, Hwang H, Kim HJ, Pae AN, Park KD, Park JH, Lim SM. Exploration of Tetrahydroisoquinoline- and Benzo[ c]azepine-Based Sphingosine 1-Phosphate Receptor 1 Agonists for the Treatment of Multiple Sclerosis. J Med Chem 2023; 66:10381-10412. [PMID: 37489798 DOI: 10.1021/acs.jmedchem.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Because of the wide use of Fingolimod for the treatment of multiple sclerosis (MS) and its cardiovascular side effects such as bradycardia, second-generation sphingosine 1-phosphate receptor 1 (S1P1) agonist drugs for MS have been developed and approved by FDA. The issue of bradycardia is still present with the new drugs, however, which necessitates further exploration of S1P1 agonists with improved safety profiles for next-generation MS drugs. Herein, we report a tetrahydroisoquinoline or a benzo[c]azepine core-based S1P1 agonists such as 32 and 60 after systematic examination of hydrophilic groups and cores. We investigated the binding modes of our representative compounds and their molecular interactions with S1P1 employing recent S1P1 cryo-EM structures. Also, favorable ADME properties of our compounds were shown. Furthermore, in vivo efficacy of our compounds was clearly demonstrated with PLC and EAE studies. Also, the preliminary in vitro cardiovascular safety of our compound was verified with human iPSC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Eunji Cha
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jushin Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Lizaveta Gotina
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jaehwan Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hyeon Jeong Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Seon Hee Seo
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jeong-Eun Park
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Jeongmin Joo
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Minsik Kang
- Doping Control Center, Research Resources Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jaeick Lee
- Doping Control Center, Research Resources Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hayoung Hwang
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ae Nim Pae
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ki Duk Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jong-Hyun Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sang Min Lim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
2
|
The impact of SARS-CoV-2 treatment on the cardiovascular system: an updated review. Inflammopharmacology 2022; 30:1143-1151. [PMID: 35701719 PMCID: PMC9196858 DOI: 10.1007/s10787-022-01009-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 02/08/2023]
Abstract
The coronavirus disease-2019 (COVID-19) pandemic has become a major global health problem. COVID-19 is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and exhibits pulmonary and extrapulmonary effects, including cardiovascular involvement. There are several attempts to identify drugs that could treat COVID-19. Moreover, many patients infected with COVID-19 have underlying diseases, particularly cardiovascular diseases. These patients are more likely to develop severe illnesses and would require optimized treatment strategies. The current study gathered information from various databases, including relevant studies, reviews, trials, or meta-analyses until April 2022 to identify the impact of SARS-CoV-2 treatment on the cardiovascular system. Studies have shown that the prognosis of patients with underlying cardiovascular disease is worsened by COVID-19, with some COVID-19 medications interfering with the cardiovascular system. The COVID-19 treatment strategy should consider many factors and parameters to avoid medication-induced cardiac injury, mainly in elderly patients. Therefore, this article provides a synthesis of evidence on the impact of different COVID-19 medications on the cardiovascular system and related disease conditions.
Collapse
|
3
|
Li Y, Chen J, Bolinger AA, Chen H, Liu Z, Cong Y, Brasier AR, Pinchuk IV, Tian B, Zhou J. Target-Based Small Molecule Drug Discovery Towards Novel Therapeutics for Inflammatory Bowel Diseases. Inflamm Bowel Dis 2021; 27:S38-S62. [PMID: 34791293 DOI: 10.1093/ibd/izab190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), is a class of severe and chronic diseases of the gastrointestinal (GI) tract with recurrent symptoms and significant morbidity. Long-term persistence of chronic inflammation in IBD is a major contributing factor to neoplastic transformation and the development of colitis-associated colorectal cancer. Conversely, persistence of transmural inflammation in CD is associated with formation of fibrosing strictures, resulting in substantial morbidity. The recent introduction of biological response modifiers as IBD therapies, such as antibodies neutralizing tumor necrosis factor (TNF)-α, have replaced nonselective anti-inflammatory corticosteroids in disease management. However, a large proportion (~40%) of patients with the treatment of anti-TNF-α antibodies are discontinued or withdrawn from therapy because of (1) primary nonresponse, (2) secondary loss of response, (3) opportunistic infection, or (4) onset of cancer. Therefore, the development of novel and effective therapeutics targeting specific signaling pathways in the pathogenesis of IBD is urgently needed. In this comprehensive review, we summarize the recent advances in drug discovery of new small molecules in preclinical or clinical development for treating IBD that target biologically relevant pathways in mucosal inflammation. These include intracellular enzymes (Janus kinases, receptor interacting protein, phosphodiesterase 4, IκB kinase), integrins, G protein-coupled receptors (S1P, CCR9, CXCR4, CB2) and inflammasome mediators (NLRP3), etc. We will also discuss emerging evidence of a distinct mechanism of action, bromodomain-containing protein 4, an epigenetic regulator of pathways involved in the activation, communication, and trafficking of immune cells. We highlight their chemotypes, mode of actions, structure-activity relationships, characterizations, and their in vitro/in vivo activities and therapeutic potential. The perspectives on the relevant challenges, new opportunities, and future directions in this field are also discussed.
Collapse
Affiliation(s)
- Yi Li
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jianping Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew A Bolinger
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Haiying Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Zhiqing Liu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Allan R Brasier
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin, Madison, WI, USA
| | - Irina V Pinchuk
- Department of Medicine, Penn State Health Milton S. Hershey Medical Center, PA, USA
| | - Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
4
|
Wu X, Xue T, Wang Z, Chen Z, Zhang X, Zhang W, Wang Z. Different Doses of Fingolimod in Relapsing-Remitting Multiple Sclerosis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Pharmacol 2021; 12:621856. [PMID: 34079453 PMCID: PMC8165387 DOI: 10.3389/fphar.2021.621856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/26/2021] [Indexed: 01/14/2023] Open
Abstract
Background: The efficacy and safety of fingolimod for relapsing-remitting multiple sclerosis (RRMS) had been well verified in several large randomized controlled trials (RCTs) during the past decade. However, there are fewer systematic comparisons of different doses of fingolimod and whether the dose of 0.5 mg/d is the optimal one still remains to be solved. Objective: The objective of this systematic review was to evaluate the efficacy and safety of the four existing doses of fingolimod in the treatment of RRMS, especially the dose of 0.5 mg/d. Methods: MEDLINE, EMBASE, Cochrane Library, and clinicaltrials.gov were searched for RCTs which were performed to evaluate different doses of fingolimod and the corresponding control (placebo or DMTs) up to October 2020. Review Manager 5.3 software was used to assess the data. The risk ratio (RR) and mean difference (MD) was analyzed and calculated with a random effect model. Results: We pooled 7184 patients from 11 RCTs. Fingolimod 0.5 mg/d was superior to control group in all eight efficacy outcomes including annualized relapse rate (ARR) (MD -0.22, 95%CI -0.29 to -0.14, p < 0.00001) but surprisingly showed a higher risk of basal-cell carcinoma (RR 4.40, 95%CI 1.58 to 12.24, p = 0.004). Although 1.25 mg/d is more than twice the dose of 0.5 mg/d, the effect size was almost similar between them. Dose of 5 mg/d obtained an unsatisfactory efficacy while showing a greater risk of adverse events than other three doses (RR 1.17, 95%CI 1.05 to 1.30, p = 0.003). Additionally, fingolimod 0.25 mg/d not only showed a better performance in delaying the disease progress of magnetic resonance imaging (MRI), but also achieved a certain degree of patient treatment satisfaction. Conclusion: At present, 0.5 mg/d remains to be the optimal dose of fingolimod for RRMS patients but trials of a lower dose are still of great clinical significance and should be paid more attentions.
Collapse
Affiliation(s)
- Xin Wu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Neurosurgery, Suzhou Ninth People's Hospital, Suzhou, China
| | - Tao Xue
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zilan Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhouqing Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuwei Zhang
- Department of Neurosurgery, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| | - Wei Zhang
- Department of Neurosurgery, Suzhou Ninth People's Hospital, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Gilmore JL, Xiao HY, Dhar TGM, Yang M, Xiao Z, Yang X, Taylor TL, McIntyre KW, Warrack BM, Shi H, Levesque PC, Marino AM, Cornelius G, Mathur A, Shen DR, Pang J, Cvijic ME, Lehman-McKeeman LD, Sun H, Xie J, Salter-Cid L, Carter PH, Dyckman AJ. Bicyclic Ligand-Biased Agonists of S1P 1: Exploring Side Chain Modifications to Modulate the PK, PD, and Safety Profiles. J Med Chem 2021; 64:1454-1480. [PMID: 33492963 DOI: 10.1021/acs.jmedchem.0c01109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sphingosine-1-phosphate (S1P) binds to a family of sphingosine-1-phosphate G-protein-coupled receptors (S1P1-5). The interaction of S1P with these S1P receptors has a fundamental role in many physiological processes in the vascular and immune systems. Agonist-induced functional antagonism of S1P1 has been shown to result in lymphopenia. As a result, agonists of this type hold promise as therapeutics for autoimmune disorders. The previously disclosed differentiated S1P1 modulator BMS-986104 (1) exhibited improved preclinical cardiovascular and pulmonary safety profiles as compared to earlier full agonists of S1P1; however, it demonstrated a long pharmacokinetic half-life (T1/2 18 days) in the clinic and limited formation of the desired active phosphate metabolite. Optimization of this series through incorporation of olefins, ethers, thioethers, and glycols into the alkyl side chain afforded an opportunity to reduce the projected human T1/2 and improve the formation of the active phosphate metabolite while maintaining efficacy as well as the improved safety profile. These efforts led to the discovery of 12 and 24, each of which are highly potent, biased agonists of S1P1. These compounds not only exhibited shorter in vivo T1/2 in multiple species but are also projected to have significantly shorter T1/2 values in humans when compared to our first clinical candidate. In models of arthritis, treatment with 12 and 24 demonstrated robust efficacy.
Collapse
Affiliation(s)
- John L Gilmore
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Hai-Yun Xiao
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - T G Murali Dhar
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Michael Yang
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Zili Xiao
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Xiaoxia Yang
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Tracy L Taylor
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Kim W McIntyre
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Bethanne M Warrack
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Hong Shi
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Paul C Levesque
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Anthony M Marino
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Georgia Cornelius
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Arvind Mathur
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Ding Ren Shen
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Jian Pang
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Mary Ellen Cvijic
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Lois D Lehman-McKeeman
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Huadong Sun
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Jenny Xie
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Luisa Salter-Cid
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Percy H Carter
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Alaric J Dyckman
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
6
|
Hodeify R, Chakkour M, Rida R, Kreydiyyeh S. PGE2 upregulates the Na+/K+ ATPase in HepG2 cells via EP4 receptors and intracellular calcium. PLoS One 2021; 16:e0245400. [PMID: 33444342 PMCID: PMC7808645 DOI: 10.1371/journal.pone.0245400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022] Open
Abstract
The Na+/K+ ATPase is a key regulator of the hepatocytes ionic homeostasis, which when altered may lead to many liver disorders. We demonstrated recently, a significant stimulation of the Na+/K+ ATPase in HepG2 cells treated with the S1P analogue FTY 720P, that was mediated through PGE2. The mechanism by which the prostaglandin exerts its effect was not investigated, and is the focus of this work. The type of receptors involved was determined using pharmacological inhibitors, while western blot analysis, fluorescence imaging of GFP-tagged Na+/K+ ATPase, and time-lapse imaging on live cells were used to detect changes in membrane abundance of the Na+/K+ ATPase. The activity of the ATPase was assayed by measuring the amount of inorganic phosphate liberated in the presence and absence of ouabain. The enhanced activity of the ATPase was not observed when EP4 receptors were blocked but still appeared in presence inhibitors of EP1, EP2 and EP3 receptors. The involvement of EP4 was confirmed by the stimulation observed with EP4 agonist. The stimulatory effect of PGE2 did not appear in presence of Rp-cAMP, an inhibitor of PKA, and was imitated by db-cAMP, a PKA activator. Chelating intracellular calcium with BAPTA-AM abrogated the effect of db-cAMP as well as that of PGE2, but PGE2 treatment in a calcium-free PBS medium did not, suggesting an involvement of intracellular calcium, that was confirmed by the results obtained with 2-APB treatment. Live cell imaging showed movement of GFP–Na+/K+ ATPase-positive vesicles to the membrane and increased abundance of the ATPase at the membrane after PGE2 treatment. It was concluded that PGE2 acts via EP4, PKA, and intracellular calcium.
Collapse
Affiliation(s)
- Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Mohamed Chakkour
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon
| | - Reem Rida
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon
| | - Sawsan Kreydiyyeh
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon
- * E-mail:
| |
Collapse
|
7
|
Xiao Z, Yang MG, Dhar TGM, Xiao HY, Gilmore JL, Marcoux D, McIntyre KW, Taylor TL, Shi H, Levesque PC, Marino AM, Cornelius G, Mathur A, Shen DR, Cvijic ME, Lehman-McKeeman LD, Sun H, Xie JH, Carter PH, Dyckman AJ. Aryl Ether-Derived Sphingosine-1-Phosphate Receptor (S1P 1) Modulators: Optimization of the PK, PD, and Safety Profiles. ACS Med Chem Lett 2020; 11:1766-1772. [PMID: 32944145 DOI: 10.1021/acsmedchemlett.0c00333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Efforts aimed at increasing the in vivo potency and reducing the elimination half-life of 1 and 2 led to the identification of aryl ether and thioether-derived bicyclic S1P1 differentiated modulators 3-6. The effects of analogs 3-6 on lymphocyte reduction in the rat (desired pharmacology) along with pulmonary- and cardiovascular-related effects (undesired pharmacology) are described. Optimization of the overall properties in the aryl ether series yielded 3d, and the predicted margin of safety against the cardiovascular effects of 3d would be large enough for human studies. Importantly, compared to 1 and 2, compound 3d had a better profile in both potency (ED50 < 0.05 mg/kg) and predicted human half-life (t 1/2 ∼ 5 days).
Collapse
Affiliation(s)
- Zili Xiao
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Michael G. Yang
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - T. G. Murali Dhar
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Hai-Yun Xiao
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - John L. Gilmore
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - David Marcoux
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Kim W. McIntyre
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Tracy L. Taylor
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Hong Shi
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Paul C. Levesque
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Anthony M. Marino
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Georgia Cornelius
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Arvind Mathur
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Ding Ren Shen
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Mary Ellen Cvijic
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Lois D. Lehman-McKeeman
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Huadong Sun
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Jenny H. Xie
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Percy H. Carter
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Alaric J. Dyckman
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
8
|
Clinical effectiveness of reduced fingolimod dose in relapsing remitting multiple sclerosis-a Portuguese cohort. Neurol Sci 2020; 42:1039-1043. [PMID: 32719903 DOI: 10.1007/s10072-020-04629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Fingolimod is an oral daily treatment for relapsing remitting multiple sclerosis (RRMS). A decrease in lymphocytes count is a common side effect, whereby clinicians occasionally propose a reduced dose rather than its discontinuation. However, current data on the effectiveness of these regimens are scarce and contradictory. Our objective was to investigate if the fingolimod effectiveness is maintained with reduction in dosing frequency. METHODS Retrospective and observational study of RRMS patients taking fingolimod-nondaily (FTY-ND) for at least 6 months. Propensity score-based matching was performed to select patients taking daily dose (FTY-ED) with comparable baseline characteristics: age, sex, disease duration, annualized relapse rate (ARR), and expanded disability status scale (EDSS). Afterwards, clinical and laboratorial assessment was evaluated in both groups. RESULTS Thirty-six patients were included in each group (FTY-ED vs. FTY-ND). Decrease in lymphocytes count was the main reason for switching to FTY-ND (88.9%). Previous treatment with natalizumab was inversely associated with risk of reducing dose (OR 0.253, 95%CI = 0.08-0.807, p = 0.016). There were no significant differences in clinical disease activity between patients FTY-ED vs. FTY-ND: mean ARR 0.4 vs. 0.3 (p = 0.247), median EDSS 2.0 vs. 2.0 (p = 0.687), and proportion of patients with EDSS increase 8.3% vs. 13.9% (p = 0.453). FTY-ND was overall well tolerated and was associated with an increase in the mean lymphocytes count (362 ± 103 cells/mm3 to 541 ± 183 cells/mm3, p < 0.001). CONCLUSION These data suggest that the effectiveness of FTY is maintained despite the reduction of the dose, minimizing the most common adverse events. These findings warrant further confirmation, ideally with randomized clinical trials.
Collapse
|
9
|
Katayama K, Arai Y, Murata K, Saito S, Nagata T, Takashima K, Yoshida A, Masumura M, Koda S, Okada H, Muto T. Discovery and structure-activity relationships of spiroindolines as novel inducers of oligodendrocyte progenitor cell differentiation. Bioorg Med Chem 2020; 28:115348. [PMID: 32046916 DOI: 10.1016/j.bmc.2020.115348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/21/2022]
Abstract
A novel series of spiroindoline derivatives was discovered for use as inducers of oligodendrocyte progenitor cell (OPC) differentiation, resulting from optimization of screening hit 1. Exploration of structure-activity relationships led to compound 18, which showed improved potency (rOPC EC50 = 0.0032 μM). Furthermore, oral administration of compound 18 significantly decreased clinical severity in an experimental autoimmune encephalomyelitis (EAE) model.
Collapse
Affiliation(s)
- Katsushi Katayama
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Yoshikazu Arai
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kenji Murata
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shoichi Saito
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tsutomu Nagata
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kouhei Takashima
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Ayako Yoshida
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Makoto Masumura
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shuichi Koda
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hiroyuki Okada
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tsuyoshi Muto
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
10
|
Ahmed N. Cardioprotective mechanism of FTY720 in ischemia reperfusion injury. J Basic Clin Physiol Pharmacol 2019; 30:jbcpp-2019-0063. [PMID: 31469655 DOI: 10.1515/jbcpp-2019-0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/06/2019] [Indexed: 12/17/2022]
Abstract
Cardioprotection is a very challenging area in the field of cardiovascular sciences. Myocardial damage accounts for nearly 50% of injury due to reperfusion, yet there is no effective strategy to prevent this to reduce the burden of heart failure. During last couple of decades, by combining genetic and bimolecular studies, many new drugs have been developed to treat hypertension, heart failure, and cancer. The use of percutaneous coronary intervention has reduced the mortality and morbidity of acute coronary syndrome dramatically. However, there is no standard therapy available that can mitigate cardiac reperfusion injury, which contributes to up to half of myocardial infarcts. Literature shows that the activation of sphingosine receptors, which are G protein-coupled receptors, induces cardioprotection both in vitro and in vivo. The exact mechanism of this protection is not clear yet. In this review, we discuss the mechanism of ischemia reperfusion injury and the role of the FDA-approved sphingosine 1 phosphate drug fingolimod in cardioprotection.
Collapse
Affiliation(s)
- Naseer Ahmed
- The Aga Khan University, Medical College, Karachi, Pakistan, Phone: +92 21 3486 4465
| |
Collapse
|
11
|
Martín-Montañez E, Pavia J, Valverde N, Boraldi F, Lara E, Oliver B, Hurtado-Guerrero I, Fernandez O, Garcia-Fernandez M. The S1P mimetic fingolimod phosphate regulates mitochondrial oxidative stress in neuronal cells. Free Radic Biol Med 2019; 137:116-130. [PMID: 31035004 DOI: 10.1016/j.freeradbiomed.2019.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 12/17/2022]
Abstract
Fingolimod is one of the few oral drugs available for the treatment of multiple sclerosis (MS), a chronic, inflammatory, demyelinating and neurodegenerative disease. The mechanism of action proposed for this drug is based in the phosphorylation of the molecule to produce its active metabolite fingolimod phosphate (FP) which, in turns, through its interaction with S1P receptors, triggers the functional sequestration of T lymphocytes in lymphoid nodes. On the other hand, part if not most of the damage produced in MS and other neurological disorders seem to be mediated by reactive oxygen species (ROS), and mitochondria is one of the main sources of ROS. In the present work, we have evaluated the anti-oxidant profile of FP in a model of mitochondrial oxidative damage induced by menadione (Vitk3) on neuronal cultures. We provide evidence that incubation of neuronal cells with FP alleviates the Vitk3-induced toxicity, due to a decrease in mitochondrial ROS production. It also decreases regulated cell death triggered by imbalance in oxidative stress (restore values of advanced oxidation protein products and total thiol levels). Also restores mitochondrial function (cytochrome c oxidase activity, mitochondrial membrane potential and oxygen consumption rate) and morphology. Furthermore, increases the expression and activity of protective factors (increases Nrf2, HO1 and Trx2 expression and GST and NQO1 activity), being some of these effects modulated by its interaction with the S1P receptor. FP seems to increase mitochondrial stability and restore mitochondrial dynamics under conditions of oxidative stress, making this drug a potential candidate for the treatment of neurodegenerative diseases other than MS.
Collapse
Affiliation(s)
- E Martín-Montañez
- Department of Pharmacology and Paediatrics, Faculty of Medicine, Malaga University, Malaga, Spain.
| | - J Pavia
- Department of Pharmacology and Paediatrics, Faculty of Medicine, Malaga University, Malaga, Spain.
| | - N Valverde
- Department of Human Physiology, Faculty of Medicine, Malaga University, Malaga, Spain
| | - F Boraldi
- Department of Life Sciences, University of Modena e Reggio Emilia, Modena, Italy
| | - E Lara
- Department of Human Physiology, Faculty of Medicine, Malaga University, Malaga, Spain
| | - B Oliver
- Neuroscience Unit, Biomedical Research Institute of Malaga (IBIMA), Malaga University Hospital, Malaga, Spain
| | - I Hurtado-Guerrero
- Neuroscience Unit, Biomedical Research Institute of Malaga (IBIMA), Malaga University Hospital, Malaga, Spain
| | - O Fernandez
- Department of Pharmacology and Paediatrics, Faculty of Medicine, Malaga University, Malaga, Spain.
| | - M Garcia-Fernandez
- Department of Human Physiology, Faculty of Medicine, Malaga University, Malaga, Spain.
| |
Collapse
|
12
|
Gilmore JL, Xiao HY, Dhar TGM, Yang MG, Xiao Z, Xie J, Lehman-McKeeman LD, Gong L, Sun H, Lecureux L, Chen C, Wu DR, Dabros M, Yang X, Taylor TL, Zhou XD, Heimrich EM, Thomas R, McIntyre KW, Borowski V, Warrack BM, Li Y, Shi H, Levesque PC, Yang Z, Marino AM, Cornelius G, D’Arienzo CJ, Mathur A, Rampulla R, Gupta A, Pragalathan B, Shen DR, Cvijic ME, Salter-Cid LM, Carter PH, Dyckman AJ. Identification and Preclinical Pharmacology of ((1R,3S)-1-Amino-3-((S)-6-(2-methoxyphenethyl)-5,6,7,8-tetrahydronaphthalen-2-yl)cyclopentyl)methanol (BMS-986166): A Differentiated Sphingosine-1-phosphate Receptor 1 (S1P1) Modulator Advanced into Clinical Trials. J Med Chem 2019; 62:2265-2285. [DOI: 10.1021/acs.jmedchem.8b01695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- John L. Gilmore
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Hai-Yun Xiao
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - T. G. Murali Dhar
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Michael G. Yang
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Zili Xiao
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Jenny Xie
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Lois D. Lehman-McKeeman
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Lei Gong
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Huadong Sun
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Lloyd Lecureux
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Cliff Chen
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Dauh-Rurng Wu
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Marta Dabros
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Xiaoxia Yang
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Tracy L. Taylor
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Xia D. Zhou
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Elizabeth M. Heimrich
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Rochelle Thomas
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Kim W. McIntyre
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Virna Borowski
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Bethanne M. Warrack
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Yuwen Li
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Hong Shi
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Paul C. Levesque
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Zheng Yang
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Anthony M. Marino
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Georgia Cornelius
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Celia J. D’Arienzo
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Arvind Mathur
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Richard Rampulla
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Anuradha Gupta
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Bala Pragalathan
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Ding Ren Shen
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Mary Ellen Cvijic
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Luisa M. Salter-Cid
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Percy H. Carter
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Alaric J. Dyckman
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
13
|
Pilote S, Simard C, Drolet B. Fingolimod (Gilenya ® ) in multiple sclerosis: bradycardia, atrioventricular blocks, and mild effect on the QTc interval. Something to do with the L-type calcium channel? Fundam Clin Pharmacol 2017; 31:392-402. [PMID: 28299825 DOI: 10.1111/fcp.12284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/03/2017] [Accepted: 03/13/2017] [Indexed: 11/28/2022]
Abstract
Cardiac arrhythmias and ECG abnormalities including bradycardia, prolongation of the QT interval, and atrioventricular (AV) conduction blocks have been extensively observed with fingolimod, the first marketed oral drug for treating the relapsing-remitting form of multiple sclerosis. This study was aiming to further elucidate the effects of fingolimod on cardiac electrophysiology at three different levels: (i) in vitro, (ii) ex vivo, and (iii) in vivo. (i) Patch-clamp experiments in whole cell configuration were performed on Cav 1.2-transfected tsA201 cells exposed to fingolimod-phosphate 100 or 500 nmol/L (n = 27 cells, total) to measure drug effect on L-type calcium current (ICaL ). (ii) Langendorff perfusion experiments were undertaken on male Hartley guinea-pigs isolated hearts (n = 4) exposed to fingolimod 10 and 100 nmol/L to evaluate drug-induced effects on monophasic action potential duration measured at 90% repolarization (MAPD90 ). (iii) Implanted cardiac telemeters were used to record ECGs in guinea-pigs (n = 7) treated with a single dose of fingolimod 0.0625 mg/kg suspension, administered as an oral gavage. (i) In vitro cellular experiments showed that fingolimod-phosphate causes a concentration-dependent reduction in ICaL . (ii) Ex vivo Langendorff experiments revealed that fingolimod had no significant effect on MAPD90 . (iii) Fingolimod caused significant prolongations of the RR, PR, QT, and QTcF intervals in vivo. Reversible AV blocks were also observed in 7/7 animals. Fingolimod possesses ICaL -blocking properties, further contributing to its AV conduction-slowing effects. These properties are also consistent with its mitigated effect on the QT interval in humans, despite previously shown HERG-blocking effect.
Collapse
Affiliation(s)
- Sylvie Pilote
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), 2725, Chemin Sainte-Foy, Québec, QC, Canada, G1V 4G5
| | - Chantale Simard
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), 2725, Chemin Sainte-Foy, Québec, QC, Canada, G1V 4G5.,Faculté de Pharmacie, Université Laval, 1050 Avenue de la médecine, Québec, QC, Canada, G1V 0A6
| | - Benoit Drolet
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), 2725, Chemin Sainte-Foy, Québec, QC, Canada, G1V 4G5.,Faculté de Pharmacie, Université Laval, 1050 Avenue de la médecine, Québec, QC, Canada, G1V 0A6
| |
Collapse
|
14
|
D’Amico E, Zanghì A, Leone C, Tumani H, Patti F. Treatment-Related Progressive Multifocal Leukoencephalopathy in Multiple Sclerosis: A Comprehensive Review of Current Evidence and Future Needs. Drug Saf 2016; 39:1163-1174. [DOI: 10.1007/s40264-016-0461-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Gilmore JL, Sheppeck JE, Watterson SH, Haque L, Mukhopadhyay P, Tebben AJ, Galella MA, Shen DR, Yarde M, Cvijic ME, Borowski V, Gillooly K, Taylor T, McIntyre KW, Warrack B, Levesque PC, Li JP, Cornelius G, D’Arienzo C, Marino A, Balimane P, Salter-Cid L, Barrish JC, Pitts WJ, Carter PH, Xie J, Dyckman AJ. Discovery and Structure–Activity Relationship (SAR) of a Series of Ethanolamine-Based Direct-Acting Agonists of Sphingosine-1-phosphate (S1P1). J Med Chem 2016; 59:6248-64. [DOI: 10.1021/acs.jmedchem.6b00373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John L. Gilmore
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - James E. Sheppeck
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Scott H. Watterson
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Lauren Haque
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Parag Mukhopadhyay
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Andrew J. Tebben
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Michael A. Galella
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Ding Ren Shen
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Melissa Yarde
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Mary Ellen Cvijic
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Virna Borowski
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kathleen Gillooly
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Tracy Taylor
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kim W. McIntyre
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Bethanne Warrack
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Paul C. Levesque
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Julia P. Li
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Georgia Cornelius
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Celia D’Arienzo
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Anthony Marino
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Praveen Balimane
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Luisa Salter-Cid
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Joel C. Barrish
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - William J. Pitts
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Percy H. Carter
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Jenny Xie
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Alaric J. Dyckman
- Research and Development, Bristol-Myers Squibb,
P.O. Box 4000, Princeton, New Jersey 08543, United States
| |
Collapse
|
16
|
Perga S, Giuliano Albo A, Lis K, Minari N, Falvo S, Marnetto F, Caldano M, Reviglione R, Berchialla P, Capobianco MA, Malentacchi M, Corpillo D, Bertolotto A. Vitamin D Binding Protein Isoforms and Apolipoprotein E in Cerebrospinal Fluid as Prognostic Biomarkers of Multiple Sclerosis. PLoS One 2015; 10:e0129291. [PMID: 26046356 PMCID: PMC4457896 DOI: 10.1371/journal.pone.0129291] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 05/06/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a multifactorial autoimmune disease of the central nervous system with a heterogeneous and unpredictable course. To date there are no prognostic biomarkers even if they would be extremely useful for early patient intervention with personalized therapies. In this context, the analysis of inter-individual differences in cerebrospinal fluid (CSF) proteome may lead to the discovery of biological markers that are able to distinguish the various clinical forms at diagnosis. METHODS To this aim, a two dimensional electrophoresis (2-DE) study was carried out on individual CSF samples from 24 untreated women who underwent lumbar puncture (LP) for suspected MS. The patients were clinically monitored for 5 years and then classified according to the degree of disease aggressiveness and the disease-modifying therapies prescribed during follow up. RESULTS The hierarchical cluster analysis of 2-DE dataset revealed three protein spots which were identified by means of mass spectrometry as Apolipoprotein E (ApoE) and two isoforms of vitamin D binding protein (DBP). These three protein spots enabled us to subdivide the patients into subgroups correlated with clinical classification (MS aggressive forms identification: 80%). In particular, we observed an opposite trend of values for the two protein spots corresponding to different DBP isoforms suggesting a role of a post-translational modification rather than the total protein content in patient categorization. CONCLUSIONS These findings proved to be very interesting and innovative and may be developed as new candidate prognostic biomarkers of MS aggressiveness, if confirmed.
Collapse
Affiliation(s)
- Simona Perga
- Neurology Unit 2 & Regional Referral Multiple Sclerosis Centre (CReSM), San Luigi University Hospital, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), c/o San Luigi University Hospital, Orbassano, Italy
| | - Alessandra Giuliano Albo
- ABLE Biosciences, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
- LIMA, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
| | - Katarzyna Lis
- LIMA, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
| | - Nicoletta Minari
- LIMA, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
| | - Sara Falvo
- ABLE Biosciences, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
- LIMA, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
| | - Fabiana Marnetto
- Neurology Unit 2 & Regional Referral Multiple Sclerosis Centre (CReSM), San Luigi University Hospital, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), c/o San Luigi University Hospital, Orbassano, Italy
| | - Marzia Caldano
- Neurology Unit 2 & Regional Referral Multiple Sclerosis Centre (CReSM), San Luigi University Hospital, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), c/o San Luigi University Hospital, Orbassano, Italy
| | - Raffaella Reviglione
- ABLE Biosciences, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
- LIMA, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
| | - Paola Berchialla
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Marco A. Capobianco
- Neurology Unit 2 & Regional Referral Multiple Sclerosis Centre (CReSM), San Luigi University Hospital, Orbassano, Italy
| | - Maria Malentacchi
- Neurology Unit 2 & Regional Referral Multiple Sclerosis Centre (CReSM), San Luigi University Hospital, Orbassano, Italy
| | - Davide Corpillo
- ABLE Biosciences, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
- LIMA, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
| | - Antonio Bertolotto
- Neurology Unit 2 & Regional Referral Multiple Sclerosis Centre (CReSM), San Luigi University Hospital, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), c/o San Luigi University Hospital, Orbassano, Italy
| |
Collapse
|
17
|
Lee JM, Han MH. Patient experience and practice trends in multiple sclerosis - clinical utility of fingolimod. Patient Prefer Adherence 2015; 9:685-93. [PMID: 26056436 PMCID: PMC4446999 DOI: 10.2147/ppa.s57354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Targeting sphingosine-1-phosphate pathway with orally available immune-modulatory fingolimod (Gilenya™) therapy ameliorates relapsing-remitting multiple sclerosis (RRMS) by decreasing relapse rate as shown in FREEDOMS and TRANSFORMS. Fingolimod has also been shown to be superior to interferon-beta therapy as evidenced by TRANSFORMS. Albeit multiple benefits in treatment of multiple sclerosis including high efficacy and ease of administration, potential untoward effects such as cardiotoxicity, risk of infection, and cancer exist, thus mandating careful screening and frequent monitoring of patients undergoing treatment with fingolimod. This review outlines mechanism of action, observations, side effects, and practice guidelines on use of fingolimod in treatment of RRMS.
Collapse
Affiliation(s)
- Jong-Mi Lee
- Stanford Healthcare, Multiple Sclerosis Center, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - May H Han
- Stanford Healthcare, Multiple Sclerosis Center, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Correspondence: May H Han, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, 1201 Welch Road, Stanford, CA 94305, USA, Email
| |
Collapse
|
18
|
Skidmore J, Heer J, Johnson CN, Norton D, Redshaw S, Sweeting J, Hurst D, Cridland A, Vesey D, Wall I, Ahmed M, Rivers D, Myatt J, Giblin G, Philpott K, Kumar U, Stevens A, Bit RA, Haynes A, Taylor S, Watson R, Witherington J, Demont E, Heightman TD. Optimization of sphingosine-1-phosphate-1 receptor agonists: effects of acidic, basic, and zwitterionic chemotypes on pharmacokinetic and pharmacodynamic profiles. J Med Chem 2014; 57:10424-42. [PMID: 25431977 DOI: 10.1021/jm5010336] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The efficacy of the recently approved drug fingolimod (FTY720) in multiple sclerosis patients results from the action of its phosphate metabolite on sphingosine-1-phosphate S1P1 receptors, while a variety of side effects have been ascribed to its S1P3 receptor activity. Although S1P and phospho-fingolimod share the same structural elements of a zwitterionic headgroup and lipophilic tail, a variety of chemotypes have been found to show S1P1 receptor agonism. Here we describe a study of the tolerance of the S1P1 and S1P3 receptors toward bicyclic heterocycles of systematically varied shape and connectivity incorporating acidic, basic, or zwitterionic headgroups. We compare their physicochemical properties, their performance in in vitro and in vivo pharmacokinetic models, and their efficacy in peripheral lymphocyte lowering. The campaign resulted in the identification of several potent S1P1 receptor agonists with good selectivity vs S1P3 receptors, efficacy at <1 mg/kg oral doses, and developability properties suitable for progression into preclinical development.
Collapse
Affiliation(s)
- John Skidmore
- Neurology Center of Excellence for Drug Discovery, GlaxoSmithKline , New Frontiers Science Park, Harlow CM19 5AW, U.K
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Alves Galvão MG, Rocha Crispino Santos MA, Alves da Cunha AJL. Amantadine and rimantadine for influenza A in children and the elderly. Cochrane Database Syst Rev 2014; 2014:CD002745. [PMID: 25415374 PMCID: PMC7093890 DOI: 10.1002/14651858.cd002745.pub4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Influenza is an acute respiratory illness caused by influenza A and B viruses. Complications may occur, especially among children and the elderly. OBJECTIVES To assess the effectiveness and safety of amantadine and rimantadine in preventing, treating and shortening the duration of influenza A in children and the elderly. SEARCH METHODS We searched CENTRAL (2014, Issue 9), MEDLINE (1966 to September week 4, 2014) and EMBASE (1980 to October 2014). SELECTION CRITERIA Randomised controlled trials (RCTs) or quasi-RCTs comparing amantadine and/or rimantadine with no intervention, placebo, other antivirals or different doses or schedules of amantadine or rimantadine in children and the elderly with influenza A. DATA COLLECTION AND ANALYSIS Two review authors independently assessed the search results. We extracted and analysed data using the standard Cochrane methodology. MAIN RESULTS We identified 12 studies (2494 participants: 1586 children and 908 elderly) comparing amantadine and rimantadine with placebo, paracetamol (one trial: 69 children) or zanamivir (two trials: 545 elderly) to treat influenza A.Amantadine was effective in preventing influenza A in children (773 participants, risk ratio (RR) 0.11; 95% confidence interval (CI) 0.04 to 0.30). The assumed risk of influenza A in the control group was 10 per 100. The corresponding risk in the rimantadine group was one per 100 (95% CI 0 to 3). Nevertheless, the quality of the evidence was low and the safety of the drug was not well established.For treatment, rimantadine was beneficial in abating fever on day three of treatment in children: one selected study with low risk of bias, moderate evidence quality and 69 participants (RR 0.36; 95% CI 0.14 to 0.91). The assumed risk was 38 per 100. The corresponding risk in the rimantadine group was 14 per 100 (95% CI 5 to 34).Rimantadine did not show any prophylactic effect in the elderly. The quality of evidence was very low: 103 participants (RR 0.45; 95% CI 0.14 to 1.41). The assumed risk was 17 per 100. The corresponding risk in the rimantadine group was 7 per 100 (95% CI 2 to 23).There was no evidence of adverse effects caused by treatment with amantadine or rimantadine.We found no studies assessing amantadine in the elderly. AUTHORS' CONCLUSIONS The quality of the evidence combined with a lack of knowledge about the safety of amantadine and the limited benefits of rimantadine, do not indicate that amantadine and rimantadine compared to control (placebo or paracetamol) could be useful in preventing, treating and shortening the duration of influenza A in children and the elderly.
Collapse
Affiliation(s)
- Márcia G Alves Galvão
- Municipal Secretariat of HealthAvenida Ayrton Senna, 250/ 205Barra da Tijuca. Alfa Barra 1Rio de JaneiroRJBrazil22793‐000
| | | | - Antonio JL Alves da Cunha
- School of Medicine, Federal University of Rio de JaneiroDepartment of PediatricsAv. Carlos Chagas Filho, 373Edificio do CCS ‐ Bloco K ‐ 2o. andar, Sala K49Rio de JaneiroRio de JaneiroBrazil21941‐902
| | | |
Collapse
|
20
|
Luo Q, Sun Y, Gong FY, Liu W, Zheng W, Shen Y, Hua ZC, Xu Q. Blocking initial infiltration of pioneer CD8(+) T-cells into the CNS via inhibition of SHP-2 ameliorates experimental autoimmune encephalomyelitis in mice. Br J Pharmacol 2014; 171:1706-21. [PMID: 24372081 DOI: 10.1111/bph.12565] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/10/2013] [Accepted: 12/17/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE In contrast to T-cell priming in the periphery, therapeutic strategies targeting the initiation step of T-cell trafficking into the CNS have not been extensively investigated. In this study, we examined the effect of NSC-87877, a potent Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2) inhibitor, on experimental autoimmune encephalomyelitis (EAE) and elucidated its unique mechanism of action. EXPERIMENTAL APPROACH C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein35-55 and monitored for clinical severity of disease and histopathological features in the CNS. Levels of cytokines in serum were measured by elisa. Effects of NSC-87877 on expressions of chemokines and cytokines in the CNS were determined by quantitative PCR. KEY RESULTS NSC-87877-treated mice developed conventional TH 1 and TH 17 responses, but were highly resistant to the induction of EAE. NSC-87877 decreased the accumulation of lymphocytes in the CNS and increased the functional expression of chemokine receptor CXCR7 on CD8(+) T-cells. Adoptive transfer of T-cells from 2D2-transgenic mice restored EAE susceptibility in NSC-87877-treated mice, indicating that NSC-87877 only targets the initial migration of pioneer T-cells. Furthermore, T-cell-conditioned SHP-2-deficient mice treated with NSC-87877 were no longer resistant to EAE, suggesting that inhibition of SHP-2 contributes to the amelioration of EAE by NSC-87877. CONCLUSIONS AND IMPLICATIONS NSC-87877 almost completely abolished the development of EAE by blocking the initial infiltration of pioneer CD8(+) T-cells into the uninflamed CNS. These results reveal a critical role for SHP-2 in regulating EAE pathogenesis and indicate that NSC-87877 is a potential candidate for the treatment of relapsing-remitting multiple sclerosis.
Collapse
Affiliation(s)
- Qiong Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Broadley SA, Barnett MH, Boggild M, Brew BJ, Butzkueven H, Heard R, Hodgkinson S, Kermode AG, Lechner-Scott J, Macdonell RAL, Marriott M, Mason DF, Parratt J, Reddel SW, Shaw CP, Slee M, Spies J, Taylor BV, Carroll WM, Kilpatrick TJ, King J, McCombe PA, Pollard JD, Willoughby E. Therapeutic approaches to disease modifying therapy for multiple sclerosis in adults: an Australian and New Zealand perspective: part 3 treatment practicalities and recommendations. MS Neurology Group of the Australian and New Zealand Association of Neurologists. J Clin Neurosci 2014; 21:1857-65. [PMID: 24993136 DOI: 10.1016/j.jocn.2014.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/28/2014] [Indexed: 11/29/2022]
Abstract
In this third and final part of our review of multiple sclerosis (MS) treatment we look at the practical day-to-day management issues that are likely to influence individual treatment decisions. Whilst efficacy is clearly of considerable importance, tolerability and the potential for adverse effects often play a significant role in informing individual patient decisions. Here we review the issues surrounding switching between therapies, and the evidence to assist guiding the choice of therapy to change to and when to change. We review the current level of evidence with regards to the management of women in their child-bearing years with regards to recommendations about treatment during pregnancy and whilst breast feeding. We provide a summary of recommended pre- and post-treatment monitoring for the available therapies and review the evidence with regards to the value of testing for antibodies which are known to be neutralising for some therapies. We review the occurrence of adverse events, both the more common and troublesome effects and those that are less common but have potentially much more serious outcomes. Ways of mitigating these risks and managing the more troublesome adverse effects are also reviewed. Finally, we make specific recommendations with regards to the treatment of MS. It is an exciting time in the world of MS neurology and the prospects for further advances in coming years are high.
Collapse
Affiliation(s)
- Simon A Broadley
- School of Medicine, Griffith University, Gold Coast Campus, QLD 4222, Australia; Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia.
| | - Michael H Barnett
- Brain and Mind Research Institute, University of Sydney, Camperdown, NSW, Australia
| | - Mike Boggild
- Department of Neurology, The Townsville Hospital, Douglas, QLD, Australia
| | - Bruce J Brew
- Department of Neurology and St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, University of New South Wales, Darlinghurst, NSW, Australia
| | - Helmut Butzkueven
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia; Department of Neurology, Eastern Health and Monash University, 2/5 Arnold Street, Box Hill VIC 3128, Australia
| | - Robert Heard
- Westmead Clinical School, University of Sydney, NSW, Australia
| | - Suzanne Hodgkinson
- South Western Sydney Clinical School, University of New South Wales, NSW, Australia
| | - Allan G Kermode
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, WA, Australia
| | | | | | - Mark Marriott
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Deborah F Mason
- Department of Neurology, Christchurch Hospital, Christchurch, New Zealand
| | - John Parratt
- Central Clinical School, University of Sydney, NSW, Australia
| | - Stephen W Reddel
- Brain and Mind Research Institute, University of Sydney, Camperdown, NSW, Australia
| | | | - Mark Slee
- Flinders Medical Centre, Flinders University, SA, Australia
| | - Judith Spies
- Brain and Mind Research Institute, University of Sydney, Camperdown, NSW, Australia
| | - Bruce V Taylor
- Menzies Research Institute, University of Tasmania, TAS, Australia
| | - William M Carroll
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, WA, Australia
| | | | - John King
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Pamela A McCombe
- University of Queensland Centre for Clinical Research, QLD, Australia
| | - John D Pollard
- Brain and Mind Research Institute, University of Sydney, Camperdown, NSW, Australia
| | - Ernest Willoughby
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | | |
Collapse
|
22
|
Thangada S, Shapiro LH, Silva C, Yamase H, Hla T, Ferrer FA. Treatment with the immunomodulator FTY720 (fingolimod) significantly reduces renal inflammation in murine unilateral ureteral obstruction. J Urol 2014; 191:1508-16. [PMID: 24679864 DOI: 10.1016/j.juro.2013.10.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2013] [Indexed: 02/07/2023]
Abstract
PURPOSE The S1P signaling pathway represents an important potential target for the modulation of tissue inflammation/injury. The immunomodulator FTY720, also known as fingolimod, is a potent agonist for multiple S1P receptors that was approved by the Food and Drug Administration to treat multiple sclerosis. We examined the therapeutic role of FTY720 for renal injury secondary to unilateral ureteral obstruction. MATERIALS AND METHODS CB57BL/6 mice underwent a sham procedure or unilateral ureteral obstruction and were treated with FTY720 by gavage for 1, 3 and 5 days. Control groups received vehicle. Ligated and unligated renal tissue was examined for histopathological changes, inflammatory and fibrotic markers, TGF-β1, α-SMA, and macrophage infiltration by Western blot and immunohistochemistry. Proinflammatory and profibrotic cytokines were profiled by quantitative reverse transcriptase-polymerase chain reaction. RESULTS Pathological evaluation revealed that FTY720 treatment resulted in a significant reduction in inflammatory infiltration in obstructed kidneys compared to controls. Immunohistochemical and Western blot showed that TGF-β1 and α-SMA protein levels were similarly decreased, as was macrophage infiltration into the renal interstitial space, compared to untreated mice. In agreement with these observations quantitative reverse transcriptase-polymerase chain reaction revealed that inflammatory and fibrotic cytokines (MCP-1, IL-1β, CXCL1, TNF-α and TGF-β1) were also significantly decreased in the FTY720 group. CONCLUSIONS This study suggests that in a murine ureteral obstruction model FTY720 significantly inhibited the production of inflammatory cytokines and factors regulating interstitial fibrosis and extracellular matrix accumulation. These findings were associated with decreased evidence of renal injury on pathological examination, suggesting that FTY720 or related compounds may be valuable modulators of obstruction induced renal injury.
Collapse
Affiliation(s)
- Shobha Thangada
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut; Department of Urology, Connecticut Children's Medical Center, Hartford, Connecticut
| | - Linda H Shapiro
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut; Department of Urology, Connecticut Children's Medical Center, Hartford, Connecticut
| | - Cynthia Silva
- Department of Nephrology, Connecticut Children's Medical Center, Hartford, Connecticut
| | - Harold Yamase
- Department of Pathology, University of Connecticut Health Center, Farmington, Connecticut
| | - Timothy Hla
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Fernando A Ferrer
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut; Department of Urology, Connecticut Children's Medical Center, Hartford, Connecticut.
| |
Collapse
|
23
|
Ntranos A, Hall O, Robinson DP, Grishkan IV, Schott JT, Tosi DM, Klein SL, Calabresi PA, Gocke AR. FTY720 impairs CD8 T-cell function independently of the sphingosine-1-phosphate pathway. J Neuroimmunol 2014; 270:13-21. [PMID: 24680062 DOI: 10.1016/j.jneuroim.2014.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/24/2014] [Accepted: 03/03/2014] [Indexed: 12/29/2022]
Abstract
Fingolimod (FTY720) is a multiple sclerosis (MS) therapeutic that upon phosphorylation causes the internalization of sphingosine-1-phosphate receptors (S1PR) and traps CCR7+ T-cells in lymph nodes but relatively spares CCR7-effector T-cells. Nonetheless, FTY720-treated patients are more susceptible to viral infections, indicating a CD8 T-cell defect. Thus, the effects of FTY720 on CD8 T-cells were investigated. To this end, we utilized experimental autoimmune encephalomyelitis (EAE) and a murine influenza model. CD8 T-cell trafficking, IFNγ and Granzyme B (GrB) production were assessed by flow cytometry. CD8 T-cell cytotoxic function was assessed in vitro by an LDH release assay. FTY720 not only ameliorated EAE by sequestering T-cells, but also reduced IFNγ and Granzyme B (GrB) in splenic CD8 T-cells. Murine influenza infection was exacerbated and mortality was increased, as FTY720 inhibited CD8 T-cell GrB production and lung infiltration. Remarkably, only the unphosphorylated compound was able to reduce IFNγ and GrB levels in CD8 T-cells and inhibits their cytotoxic function in vitro. The phosphorylated moiety had no effect in vitro, indicating that CD8 T-cell suppression by FTY720 is independent of S1PR modulation. The addition of arachidonic acid rescued CD8 T-cell function, suggesting that this effect may be mediated via inhibition of cytosolic phospholipase A2. Herein, we demonstrate that FTY720 suppresses CD8 T-cells independently of its trafficking effects and S1PR modulation. This provides a novel explanation not only for the increased rate of viral infections in FTY720-treated patients, but also for its efficacy in MS, as CD8 T-cells have emerged as crucial mediators of MS pathogenesis.
Collapse
Affiliation(s)
- Achilles Ntranos
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Olivia Hall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Dionne P Robinson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Inna V Grishkan
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Jason T Schott
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Dominique M Tosi
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA.
| | - Anne R Gocke
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA.
| |
Collapse
|
24
|
Tanasescu R, Constantinescu CS. Pharmacokinetic evaluation of fingolimod for the treatment of multiple sclerosis. Expert Opin Drug Metab Toxicol 2014; 10:621-30. [PMID: 24579791 DOI: 10.1517/17425255.2014.894019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Fingolimod is a sphingosine 1-phosphate receptor modulator with a novel mechanism of action and the first oral drug approved for the treatment of relapsing forms of multiple sclerosis (MS). Fingolimod reduces relapses more effectively than intramuscular interferon β1a and delays disability progression. Associated safety risks are bradyarrhythmia and atrioventricular block following the initial dose, requiring monitoring. AREAS COVERED This article examines the characteristics of fingolimod, its pharmacokinetic properties and the efficacy and tolerability in MS. Information on the pharmacology and mechanisms of action is also provided. EXPERT OPINION Fingolimod is an effective therapy for relapsing forms of MS in a convenient oral dose. Fingolimod may target not only inflammation but potentially also neurodegeneration. Antagonizing astrocyte sphingosine signaling may help explain the reduction in cerebral atrophy observed in Phase III trials. Long-term data about the safety of fingolimod are needed.
Collapse
Affiliation(s)
- Radu Tanasescu
- University of Nottingham, Queen's Medical Centre, Academic Division of Clinical Neurology , C Floor, South Block, Nottingham, NG7 2UH , UK +44 115 8754597/98 ; +44 115 823 1443 ;
| | | |
Collapse
|
25
|
Fazekas F, Berger T, Fabjan TH, Ledinek AH, Jakab G, Komoly S, Kraus J, Kurča E, Kyriakides T, Lisý L, Milanov I, Panayiotou P, Jazbec SS, Taláb R, Traykov L, Turčáni P, Vass K, Vella N, Havrdová E. Fingolimod in the treatment algorithm of relapsing remitting multiple sclerosis: a statement of the Central and East European (CEE) MS Expert Group. Wien Med Wochenschr 2012; 162:354-66. [PMID: 22895849 PMCID: PMC3438392 DOI: 10.1007/s10354-012-0123-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 06/06/2012] [Indexed: 11/28/2022]
Abstract
Fingolimod is the first oral treatment of multiple sclerosis. It is the first-in-class sphingosine 1-phosphate receptor modulator that binds to sphingosine 1-phophate receptors on lymphocytes and via downregulation of the receptor prevents lymphocyte egress from lymphoid tissues into the circulation. This mechanism reduces the infiltration of potentially auto-aggressive lymphocytes into the central nervous system. Two large phase III studies with fingolimod have shown superior efficacy of the drug in two dosages compared to placebo and to weekly intramuscular injections of Interferon beta-1a. Among possible side effects of the drug is a transient bradycardia after the first dose of fingolimod including possible AV blockade and therefore monitoring of pulse rate and blood pressure for 6 h following the first application is needed. During treatment, attention has to be given to specific infections, elevated liver enzymes, and ophthalmologic changes. Recommendations on the use of fingolimod including safety aspects are given in this article.
Collapse
Affiliation(s)
- Franz Fazekas
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|