1
|
Garner AM, Moura AJ, Narvaez CA, Stark AY, Russell MP. Repeated Hyposalinity Pulses Immediately and Persistently Impair the Sea Urchin Adhesive System. Integr Comp Biol 2024; 64:257-269. [PMID: 38444171 DOI: 10.1093/icb/icae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Climate change will increase the frequency and intensity of extreme climatic events (e.g., storms) that result in repeated pulses of hyposalinity in nearshore ecosystems. Sea urchins inhabit these ecosystems and are stenohaline (restricted to salinity levels ∼32‰), thus are particularly susceptible to hyposalinity events. As key benthic omnivores, sea urchins use hydrostatic adhesive tube feet for numerous functions, including attachment to and locomotion on the substratum as they graze for food. Hyposalinity severely impacts sea urchin locomotor and adhesive performance but several ecologically relevant and climate change-related questions remain. First, do sea urchin locomotion and adhesion acclimate to repeated pulses of hyposalinity? Second, how do tube feet respond to tensile forces during single and repeated hyposalinity events? Third, do the negative effects of hyposalinity exposure persist following a return to normal salinity levels? To answer these questions, we repeatedly exposed green sea urchins (Strongylocentrotus droebachiensis) to pulses of three different salinities (control: 32‰, moderate hyposalinity: 22‰, severe hyposalinity: 16‰) over the course of two months and measured locomotor performance, adhesive performance, and tube foot tensile behavior. We also measured these parameters 20 h after sea urchins returned to normal salinity levels. We found no evidence that tube feet performance and properties acclimate to repeated pulses of hyposalinity, at least over the timescale examined in this study. In contrast, hyposalinity has severe consequences on locomotion, adhesion, and tube foot tensile behavior, and these impacts are not limited to the hyposalinity exposure. Our results suggest both moderate and severe hyposalinity events have the potential to increase sea urchin dislodgment and reduce movement, which may impact sea urchin distribution and their role in marine communities.
Collapse
Affiliation(s)
- Austin M Garner
- Department of Biology, Villanova University, Villanova, PA 19085, USA
- Department of Biology & BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Andrew J Moura
- Department of Biology, Villanova University, Villanova, PA 19085, USA
- Department of Biology & BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Carla A Narvaez
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, Rhode Island College, Providence, RI 02908, USA
| | - Alyssa Y Stark
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Michael P Russell
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| |
Collapse
|
2
|
Santos E, Montanha GS, Agostinho LF, Polezi S, Marques JPR, de Carvalho HWP. Foliar Calcium Absorption by Tomato Plants: Comparing the Effects of Calcium Sources and Adjuvant Usage. PLANTS (BASEL, SWITZERLAND) 2023; 12:2587. [PMID: 37514202 PMCID: PMC10385325 DOI: 10.3390/plants12142587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
The deficiency of calcium (Ca) reduces the quality and shelf life of fruits. In this scenario, although foliar spraying of Ca2+ has been used, altogether with soil fertilization, as an alternative to prevent deficiencies, little is known regarding its absorption dynamics by plant leaves. Herein, in vivo microprobe X-ray fluorescence was employed aiming to monitor the foliar absorption of CaCl2, Ca-citrate complex, and Ca3(PO4)2 nanoparticles with and without using adjuvant. We also investigated whether Sr2+ can be employed as Ca2+ proxy in foliar absorption studies. Moreover, the impact of treatments on the cuticle structure was evaluated by scanning electron microscopy. For this study, 45-day-old tomato (Solanum lycopersicum L., cv. Micro-Tom) plants were used as a model species. After 100 h, the leaves absorbed 90, 18, and 4% of aqueous CaCl2, Ca-citrate, and Ca3(PO4)2 nanoparticles, respectively. The addition of adjuvant increased the absorption of Ca-citrate to 28%, decreased that of CaCl2 to 77%, and did not affect Ca3(PO4)2. CaCl2 displayed an exponential decay absorption profile with half-lives of 15 h and 5 h without and with adjuvant, respectively. Ca-citrate and Ca3(PO4)2 exhibited absorption profiles that were closer to a linear behavior. Sr2+ was a suitable Ca2+ tracer because of its similar absorption profiles. Furthermore, the use of adjuvant affected the epicuticular crystal structure. Our findings reveal that CaCl2 was the most efficient Ca2+ source. The effects caused by adjuvant suggest that CaCl2 and Ca-citrate were absorbed mostly through hydrophilic and lipophilic pathways.
Collapse
Affiliation(s)
- Eduardo Santos
- Group of Specialty Fertilizers and Plant Nutrition, Laboratory of Nuclear Instrumentation, Centre for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba 13400-970, Brazil
| | - Gabriel Sgarbiero Montanha
- Group of Specialty Fertilizers and Plant Nutrition, Laboratory of Nuclear Instrumentation, Centre for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba 13400-970, Brazil
- Laboratory of Functional Genomics and Proteomics of Model Systems, Department of Biology and Biotechnology, Sapienza University of Rome, Via dei Sardi, 70, 00185 Rome, Italy
| | - Luís Fernando Agostinho
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias, 11, Piracicaba 13418-900, Brazil
| | - Samira Polezi
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias, 11, Piracicaba 13418-900, Brazil
| | - João Paulo Rodrigues Marques
- Group of Specialty Fertilizers and Plant Nutrition, Laboratory of Nuclear Instrumentation, Centre for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba 13400-970, Brazil
- Department of Basic Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, Brazil
| | - Hudson Wallace Pereira de Carvalho
- Group of Specialty Fertilizers and Plant Nutrition, Laboratory of Nuclear Instrumentation, Centre for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba 13400-970, Brazil
| |
Collapse
|
3
|
Moura AJ, Garner AM, Narvaez CA, Cucchiara JP, Stark AY, Russell MP. Hyposalinity reduces coordination and adhesion of sea urchin tube feet. J Exp Biol 2023; 226:jeb245750. [PMID: 37326213 PMCID: PMC10323246 DOI: 10.1242/jeb.245750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Climate change will increase the frequency and intensity of low-salinity (hyposalinity) events in coastal marine habitats. Sea urchins are dominant herbivores in these habitats and are generally intolerant of salinity fluctuations. Their adhesive tube feet are essential for survival, effecting secure attachment and locomotion in high wave energy habitats, yet little is known about how hyposalinity impacts their function. We exposed green sea urchins (Strongylocentrotus droebachiensis) to salinities ranging from ambient (32‰) to severe (14‰) and assessed tube feet coordination (righting response, locomotion) and adhesion [disc tenacity (force per unit area)]. Righting response, locomotion and disc tenacity decreased in response to hyposalinity. Severe reductions in coordinated tube foot activities occurred at higher salinities than those that affected adhesion. The results of this study suggest moderate hyposalinities (24-28‰) have little effect on S. droebachiensis dislodgement risk and survival post-dislodgment, while severe hyposalinity (below 24‰) likely reduces movement and prevents recovery from dislodgment.
Collapse
Affiliation(s)
- Andrew J. Moura
- Department of Biology, Villanova University, Villanova, PA 19085, USA
- Department of Biology and BioInspired Syracuse, Syracuse University, Syracuse, NY 13244, USA
| | - Austin M. Garner
- Department of Biology, Villanova University, Villanova, PA 19085, USA
- Department of Biology and BioInspired Syracuse, Syracuse University, Syracuse, NY 13244, USA
| | - Carla A. Narvaez
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, Rhode Island College, Providence, RI 02908, USA
| | - Jack P. Cucchiara
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Alyssa Y. Stark
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | | |
Collapse
|
4
|
Bkaily G, Jacques D. Calcium Homeostasis, Transporters, and Blockers in Health and Diseases of the Cardiovascular System. Int J Mol Sci 2023; 24:ijms24108803. [PMID: 37240147 DOI: 10.3390/ijms24108803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Calcium is a highly positively charged ionic species. It regulates all cell types' functions and is an important second messenger that controls and triggers several mechanisms, including membrane stabilization, permeability, contraction, secretion, mitosis, intercellular communications, and in the activation of kinases and gene expression. Therefore, controlling calcium transport and its intracellular homeostasis in physiology leads to the healthy functioning of the biological system. However, abnormal extracellular and intracellular calcium homeostasis leads to cardiovascular, skeletal, immune, secretory diseases, and cancer. Therefore, the pharmacological control of calcium influx directly via calcium channels and exchangers and its outflow via calcium pumps and uptake by the ER/SR are crucial in treating calcium transport remodeling in pathology. Here, we mainly focused on selective calcium transporters and blockers in the cardiovascular system.
Collapse
Affiliation(s)
- Ghassan Bkaily
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Danielle Jacques
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
5
|
Basu J, Madhulika S, Murmu KC, Mohanty S, Samal P, Das A, Mahapatra S, Saha S, Sinha I, Prasad P. Molecular and epigenetic alterations in normal and malignant myelopoiesis in human leukemia 60 (HL60) promyelocytic cell line model. Front Cell Dev Biol 2023; 11:1060537. [PMID: 36819104 PMCID: PMC9932920 DOI: 10.3389/fcell.2023.1060537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
In vitro cell line model systems are essential in supporting the research community due to their low cost, uniform culturing conditions, homogeneous biological resources, and easy experimental design to study the cause and effect of a gene or a molecule. Human leukemia 60 (HL60) is an in-vitro hematopoietic model system that has been used for decades to study normal myeloid differentiation and leukemia biology. Here, we show that IMDM supplemented with 20% FBS is an optimal culturing condition and induces effective myeloid differentiation compared with RPMI supplemented with 10% FBS when HL60 is induced with 1α,25-dihydroxyvitamin D3 (Vit D3) and all-trans retinoic acid (ATRA). The chromatin organization is compacted, and the repressive epigenetic mark H3K27me3 is enhanced upon HL60-mediated terminal differentiation. Differential gene expression analysis obtained from RNA sequencing in HL60 cells during myeloid differentiation showed the induction of pathways involved in epigenetic regulation, myeloid differentiation, and immune regulation. Using high-throughput transcriptomic data (GSE74246), we show the similarities (genes that did not satisfy |log2FC|>1 and FDR<0.05) and differences (FDR <0.05 and |log2FC|>1) between granulocyte-monocyte progenitor vs HL60 cells, Vit D3 induced monocytes (vMono) in HL60 cells vs primary monocytes (pMono), and HL60 cells vs leukemic blasts at the transcriptomic level. We found striking similarities in biological pathways between these comparisons, suggesting that the HL60 model system can be effectively used for studying myeloid differentiation and leukemic aberrations. The differences obtained could be attributed to the fact that the cellular programs of the leukemic cell line and primary cells are different. We validated several gene expression patterns for different comparisons with CD34+ cells derived from cord blood for myeloid differentiation and AML patients. In addition to the current knowledge, our study further reveals the significance of using HL60 cells as in vitro model system under optimal conditions to understand its potential as normal myeloid differentiation model as well as leukemic model at the molecular level.
Collapse
Affiliation(s)
- Jhinuk Basu
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,RCB, Regional Centre for Biotechnology, Faridabad, India
| | - Swati Madhulika
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,RCB, Regional Centre for Biotechnology, Faridabad, India
| | - Krushna Chandra Murmu
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,RCB, Regional Centre for Biotechnology, Faridabad, India
| | - Smrutishree Mohanty
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,RCB, Regional Centre for Biotechnology, Faridabad, India
| | - Priyanka Samal
- IMS and SUM Hospital, Siksha ‘O' Anusandhan University, Bhubaneswar, India
| | - Asima Das
- Department of Obstetrics and Gynecology, KIMS, Bhubaneswar, India
| | - Soumendu Mahapatra
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,Kalinga Institute of Industrial Technology (KIIT), School of Biotechnology, Bhubaneswar, India
| | - Subha Saha
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Indranil Sinha
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Punit Prasad
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,*Correspondence: Punit Prasad,
| |
Collapse
|
6
|
Ca 2+-Sensitive Potassium Channels. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020885. [PMID: 36677942 PMCID: PMC9861210 DOI: 10.3390/molecules28020885] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
The Ca2+ ion is used ubiquitously as an intracellular signaling molecule due to its high external and low internal concentration. Many Ca2+-sensing ion channel proteins have evolved to receive and propagate Ca2+ signals. Among them are the Ca2+-activated potassium channels, a large family of potassium channels activated by rises in cytosolic calcium in response to Ca2+ influx via Ca2+-permeable channels that open during the action potential or Ca2+ release from the endoplasmic reticulum. The Ca2+ sensitivity of these channels allows internal Ca2+ to regulate the electrical activity of the cell membrane. Activating these potassium channels controls many physiological processes, from the firing properties of neurons to the control of transmitter release. This review will discuss what is understood about the Ca2+ sensitivity of the two best-studied groups of Ca2+-sensitive potassium channels: large-conductance Ca2+-activated K+ channels, KCa1.1, and small/intermediate-conductance Ca2+-activated K+ channels, KCa2.x/KCa3.1.
Collapse
|
7
|
Orhan C, Er B, Deeh PBD, Bilgic AA, Ojalvo SP, Komorowski JR, Sahin K. Different Sources of Dietary Magnesium Supplementation Reduces Oxidative Stress by Regulation Nrf2 and NF-κB Signaling Pathways in High-Fat Diet Rats. Biol Trace Elem Res 2021; 199:4162-4170. [PMID: 33409912 DOI: 10.1007/s12011-020-02526-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/29/2020] [Indexed: 12/31/2022]
Abstract
Magnesium (Mg) is an essential mineral required for many physiological processes, including ionic balances in ocular tissues. We compared the effects of different Mg-chelates (Mg oxide, MgO vs. Mg picolinate, MgPic) on retinal function in a high-fat diet (HFD) rats. Forty-two rats were divided into six groups and treated orally for 8 weeks as follows: Control, MgO, MgPic, HFD, HFD + MgO, and HFD + MgPic. Mg was administered at 500 mg of elemental Mg/kg of diet. HFD intake increased the levels of retinal MDA and NF-κB, INOS, ICAM, and VEGF but downregulated Nrf2. However, in rats supplemented with MgO and MgPic, the retinal MDA level was decreased, compared with the control and HFD rats. Activities of antioxidant enzymes (SOD, CAT, and GPx) were increased in HFD animals given Mg-chelates (p < 0.001), MgPic being the most effective. Mg supplementation significantly decreased the expression levels of NF-κB, INOS, ICAM, and VEGF in HFD rats while increasing the level of Nrf2 (p < 0.001). Mg supplementation significantly decreased the levels of NF-κB, INOS, ICAM, and VEGF and increased Nrf2 level in HFD rats (p < 0.001), with stronger effects seen from MgPic. Mg attenuated retinal oxidative stress and neuronal inflammation and could be considered as an effective treatment for ocular diseases.
Collapse
Affiliation(s)
- Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Besir Er
- Department of Molecular Biology, Faculty of Science, Firat University, Elazig, Turkey
| | | | - Ahmet Alp Bilgic
- Department of Ophthalmology, Sabuncuoglu Serefeddin Research and Training Hospital, Amasya University, Amasya, Turkey
| | | | | | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey.
| |
Collapse
|
8
|
Synthesis and Biological Assessment of 4,1-Benzothiazepines with Neuroprotective Activity on the Ca 2+ Overload for the Treatment of Neurodegenerative Diseases and Stroke. Molecules 2021; 26:molecules26154473. [PMID: 34361628 PMCID: PMC8347512 DOI: 10.3390/molecules26154473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
In excitable cells, mitochondria play a key role in the regulation of the cytosolic Ca2+ levels. A dysregulation of the mitochondrial Ca2+ buffering machinery derives in serious pathologies, where neurodegenerative diseases highlight. Since the mitochondrial Na+/Ca2+ exchanger (NCLX) is the principal efflux pathway of Ca2+ to the cytosol, drugs capable of blocking NCLX have been proposed to act as neuroprotectants in neuronal damage scenarios exacerbated by Ca2+ overload. In our search of optimized NCLX blockers with augmented drug-likeness, we herein describe the synthesis and pharmacological characterization of new benzothiazepines analogues to the first-in-class NCLX blocker CGP37157 and its further derivative ITH12575, synthesized by our research group. As a result, we found two new compounds with an increased neuroprotective activity, neuronal Ca2+ regulatory activity and improved drug-likeness and pharmacokinetic properties, such as clog p or brain permeability, measured by PAMPA experiments.
Collapse
|
9
|
Kahil K, Varsano N, Sorrentino A, Pereiro E, Rez P, Weiner S, Addadi L. Cellular pathways of calcium transport and concentration toward mineral formation in sea urchin larvae. Proc Natl Acad Sci U S A 2020; 117:30957-30965. [PMID: 33229583 PMCID: PMC7733801 DOI: 10.1073/pnas.1918195117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sea urchin larvae have an endoskeleton consisting of two calcitic spicules. The primary mesenchyme cells (PMCs) are the cells that are responsible for spicule formation. PMCs endocytose sea water from the larval internal body cavity into a network of vacuoles and vesicles, where calcium ions are concentrated until they precipitate in the form of amorphous calcium carbonate (ACC). The mineral is subsequently transferred to the syncytium, where the spicule forms. Using cryo-soft X-ray microscopy we imaged intracellular calcium-containing particles in the PMCs and acquired Ca-L2,3 X-ray absorption near-edge spectra of these Ca-rich particles. Using the prepeak/main peak (L2'/ L2) intensity ratio, which reflects the atomic order in the first Ca coordination shell, we determined the state of the calcium ions in each particle. The concentration of Ca in each of the particles was also determined by the integrated area in the main Ca absorption peak. We observed about 700 Ca-rich particles with order parameters, L2'/ L2, ranging from solution to hydrated and anhydrous ACC, and with concentrations ranging between 1 and 15 M. We conclude that in each cell the calcium ions exist in a continuum of states. This implies that most, but not all, water is expelled from the particles. This cellular process of calcium concentration may represent a widespread pathway in mineralizing organisms.
Collapse
Affiliation(s)
- Keren Kahil
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Neta Varsano
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Andrea Sorrentino
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Peter Rez
- Department of Physics, Arizona State University, Tempe, AZ 85287
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Lia Addadi
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel;
| |
Collapse
|
10
|
Liu MY, Hua WK, Chiou YY, Chen CJ, Yao CL, Lai YT, Lin CH, Lin WJ. Calcium-dependent methylation by PRMT1 promotes erythroid differentiation through the p38α MAPK pathway. FEBS Lett 2019; 594:301-316. [PMID: 31541584 DOI: 10.1002/1873-3468.13614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
Abstract
Protein arginine methyltransferase 1 (PRMT1) stimulates erythroid differentiation, but the signaling events upstream are yet to be identified. Ca2+ plays crucial roles during erythroid differentiation. Here, we show that Ca2+ enhances methylation during induced erythroid differentiation and that Ca2+ directly upregulates the catalytic activity of recombinant PRMT1 by increasing Vmax toward the substrate heterogeneous nuclear ribonucleoprotein A2. We demonstrate that PRMT1 is essential and responsible for the effect of Ca2+ on differentiation. Depletion of Ca2+ suppresses PRMT1-mediated activation of p38α and p38α-stimulated differentiation. Furthermore, Ca2+ stimulates methylation of p38α by PRMT1. This study uncovers a novel regulatory mechanism for PRMT1 by Ca2+ and identifies the PRMT1/p38α axis as an intracellular mediator of Ca2+ signaling during erythroid differentiation.
Collapse
Affiliation(s)
- Mei-Yin Liu
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Kai Hua
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Ying Chiou
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Ju Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Yi-Ting Lai
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wey-Jinq Lin
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
11
|
Soto E, Ortega-Ramírez A, Vega R. Protons as Messengers of Intercellular Communication in the Nervous System. Front Cell Neurosci 2018; 12:342. [PMID: 30364044 PMCID: PMC6191491 DOI: 10.3389/fncel.2018.00342] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/14/2018] [Indexed: 12/18/2022] Open
Abstract
In this review, evidence demonstrating that protons (H+) constitute a complex, regulated intercellular signaling mechanisms are presented. Given that pH is a strictly regulated variable in multicellular organisms, localized extracellular pH changes may constitute significant signals of cellular processes that occur in a cell or a group of cells. Several studies have demonstrated that the low pH of synaptic vesicles implies that neurotransmitter release is always accompanied by the co-release of H+ into the synaptic cleft, leading to transient extracellular pH shifts. Also, evidence has accumulated indicating that extracellular H+ concentration regulation is complex and implies a source of protons in a network of transporters, ion exchangers, and buffer capacity of the media that may finally establish the extracellular proton concentration. The activation of membrane transporters, increased production of CO2 and of metabolites, such as lactate, produce significant extracellular pH shifts in nano- and micro-domains in the central nervous system (CNS), constituting a reliable signal for intercellular communication. The acid sensing ion channels (ASIC) function as specific signal sensors of proton signaling mechanism, detecting subtle variations of extracellular H+ in a range varying from pH 5 to 8. The main question in relation to this signaling system is whether it is only synaptically restricted, or a volume modulator of neuron excitability. This signaling system may have evolved from a metabolic activity detection mechanism to a highly localized extracellular proton dependent communication mechanism. In this study, evidence showing the mechanisms of regulation of extracellular pH shifts and of the ASICs and its function in modulating the excitability in various systems is reviewed, including data and its role in synaptic neurotransmission, volume transmission and even segregated neurotransmission, leading to a reliable extracellular signaling mechanism.
Collapse
Affiliation(s)
- Enrique Soto
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Rosario Vega
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
12
|
Mobasheri A, Matta C, Uzielienè I, Budd E, Martín-Vasallo P, Bernotiene E. The chondrocyte channelome: A narrative review. Joint Bone Spine 2018; 86:29-35. [PMID: 29452304 DOI: 10.1016/j.jbspin.2018.01.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/31/2018] [Indexed: 12/24/2022]
Abstract
Chondrocytes are the main cells in the extracellular matrix (ECM) of articular cartilage and possess a highly differentiated phenotype that is the hallmark of the unique physiological functions of this specialised load-bearing connective tissue. The plasma membrane of articular chondrocytes contains a rich and diverse complement of membrane proteins, known as the membranome, which defines the cell surface phenotype of the cells. The membranome is a key target of pharmacological agents and is important for chondrocyte function. It includes channels, transporters, enzymes, receptors, and anchors for intracellular, cytoskeletal and ECM proteins and other macromolecular complexes. The chondrocyte channelome is a sub-compartment of the membranome and includes a complete set of ion channels and porins expressed in these cells. Many of these are multi-functional proteins with "moonlighting" roles, serving as channels, receptors and signalling components of larger molecular assemblies. The aim of this review is to summarise our current knowledge of the fundamental aspects of the chondrocyte channelome, discuss its relevance to cartilage biology and highlight its possible role in the pathogenesis of osteoarthritis (OA). Excessive and inappropriate mechanical loads, an inflammatory micro-environment, alternative splicing of channel components or accumulation of basic calcium phosphate crystals can result in an altered chondrocyte channelome impairing its function. Alterations in Ca2+ signalling may lead to defective synthesis of ECM macromolecules and aggravated catabolic responses in chondrocytes, which is an important and relatively unexplored aspect of the complex and poorly understood mechanism of OA development.
Collapse
Affiliation(s)
- Ali Mobasheri
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Queen's Medical Centre, Nottingham, United Kingdom; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ilona Uzielienè
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Emma Budd
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Pablo Martín-Vasallo
- Department of Biochemistry and Molecular Biology, University of La Laguna, Tenerife, Spain
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
13
|
Li XJ, Xie L, Pan FS, Wang Y, Liu H, Tang YR, Hutnik CM. A feasibility study of using biodegradable magnesium alloy in glaucoma drainage device. Int J Ophthalmol 2018; 11:135-142. [PMID: 29376002 DOI: 10.18240/ijo.2018.01.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022] Open
Abstract
Technological advances in glaucoma have challenged the traditional treatment paradigm. Historically incisional surgery has been used in cases of advanced disease and/or uncontrolled intraocular pressures resistant to medical or laser interventions. More recently, perhaps due to advancements in imaging, surgery has been suggested to be beneficial earlier in the treatment paradigm. Despite these trends, surgical manipulation of the tissues and unpredictability of wound healing continue to result in surgical failure. Magnesium is an essential element for human body and plays a critically important role in maintaining the functional and structural integrity of several tissues, including the eye. Due to several of its advantageous properties such as non-toxicity, biodegradability, and high biological compatibility, magnesium alloy has attracted great attention as a novel biomaterial. Biodegradable cardiovascular stents made of magnesium alloy have already been introduced into clinical practice. The purpose of this review is to determine if bioabsorbable magnesium alloys can be utilized as a promising candidate for the development of a new generation of glaucoma surgical assistive devices.
Collapse
Affiliation(s)
- Xiang-Ji Li
- Department of Ophthalmology, University of Western Ontario, Ivey Eye Institute, St. Joseph's Hospital, 268 Grosvenor Street, London, ON N6A 4V2, Canada.,Department of Ophthalmology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lin Xie
- Department of Ophthalmology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Fu-Sheng Pan
- Collage of Material Science & Engineering, Chongqing University, Chongqing 400045, China.,National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400045, China
| | - Yong Wang
- Collage of Material Science & Engineering, Chongqing University, Chongqing 400045, China.,National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400045, China
| | - Hong Liu
- Department of Ophthalmology, University of Western Ontario, Ivey Eye Institute, St. Joseph's Hospital, 268 Grosvenor Street, London, ON N6A 4V2, Canada
| | - Yu-Rong Tang
- Department of Ophthalmology, People's Hospital Zhongshan Branch, Chongqing 400013, China
| | - Cindy Ml Hutnik
- Department of Ophthalmology, University of Western Ontario, Ivey Eye Institute, St. Joseph's Hospital, 268 Grosvenor Street, London, ON N6A 4V2, Canada
| |
Collapse
|
14
|
Andreev IM. Emerging evidence for potential role of Ca 2+-ATPase-mediated calcium accumulation in symbiosomes of infected root nodule cells. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:955-960. [PMID: 32480623 DOI: 10.1071/fp17042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/28/2017] [Indexed: 06/11/2023]
Abstract
Symbiosomes are organelle-like compartments responsible for nitrogen fixation in infected nodule cells of legumes, which are formed as a result of symbiotic association of soil bacteria rhizobia with certain plant root cells. They are virtually the only source of reduced nitrogen in the Earth's biosphere, and consequently, are of great importance. It has been proven that the functioning of symbiosomes depends to a large extent on the transport of various metabolites and ions - most likely including Ca2+ - across the symbiosome membrane (SM). Although it has been well established that this cation is involved in the regulation of a broad spectrum of processes in cells of living organisms, its role in the functioning of symbiosomes remains obscure. This is despite available data indicating both its transport through the SM and accumulation within these compartments. This review summarises the results obtained in the course of studies on the given aspects of calcium behaviour in symbiosomes, and on this basis gives a possible explanation of the proper functional role in them of Ca2+.
Collapse
Affiliation(s)
- Igor M Andreev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st. 35, Moscow 127276, Russia. Email
| |
Collapse
|
15
|
Guo Y, Cui L, Jiang S, Wang D, Jiang S, Xie C, Jia Y. S100A1 transgenic treatment of acute heart failure causes proteomic changes in rats. Mol Med Rep 2016; 14:1538-52. [PMID: 27357314 PMCID: PMC4940056 DOI: 10.3892/mmr.2016.5440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 03/23/2016] [Indexed: 12/11/2022] Open
Abstract
S100 Ca2+-binding protein A1 (S100A1) is an important regulator of myocardial contractility. The aim of the present study was to identify the underlying mechanisms of S100A1 activity via profiling the protein expression in rats administered with an S100A1 adenovirus (Ad-S100A1-EGFP) following acute myocardial infarction (AMI). LTQ OrbiTrap mass spectrometry was used to profile the protein expression in the Ad-S100A1-EGFP and control groups post-AMI. Using Protein Analysis Through Evolutionary Relationships (PANTHER) analysis, 134 energy metabolism-associated proteins, which comprised 20 carbohydrate metabolism-associated and 27 lipid metabolism associated proteins, were identified as differentially expressed in the Ad-S100A1-EGFP hearts compared with controls. The majority of the differentially expressed proteins identified were important enzymes involved in energy metabolism. The present study identified 12 Ca2+-binding proteins and 22 cytoskeletal proteins. The majority of the proteins expressed in the Ad-S100A1-EGFP group were upregulated compared with the control group. These results were further validated using western blot analysis. Following AMI, Ca2+ is crucial for the recovery of myocardial function in S100A1 transgenic rats as indicated by the upregulation of proteins associated with energy metabolism and Ca2+-binding. Thus, the current study ascertained that energy production and contractile ability were enhanced after AMI in the ventricular myocardium of the Ad-S100A1-EGFP group.
Collapse
Affiliation(s)
- Yichen Guo
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Lianqun Cui
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Shiliang Jiang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Dongmei Wang
- Department of Radiology, Shandong Jiao Tong Hospital, Jinan, Shandong 250063, P.R. China
| | - Shu Jiang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chen Xie
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yanping Jia
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
16
|
Valiante V, Macheleidt J, Föge M, Brakhage AA. The Aspergillus fumigatus cell wall integrity signaling pathway: drug target, compensatory pathways, and virulence. Front Microbiol 2015; 6:325. [PMID: 25932027 PMCID: PMC4399325 DOI: 10.3389/fmicb.2015.00325] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/31/2015] [Indexed: 01/06/2023] Open
Abstract
Aspergillus fumigatus is the most important airborne fungal pathogen, causing severe infections with invasive growth in immunocompromised patients. The fungal cell wall (CW) prevents the cell from lysing and protects the fungus against environmental stress conditions. Because it is absent in humans and because of its essentiality, the fungal CW is a promising target for antifungal drugs. Nowadays, compounds acting on the CW, i.e., echinocandin derivatives, are used to treat A. fumigatus infections. However, studies demonstrating the clinical effectiveness of echinocandins in comparison with antifungals currently recommended for first-line treatment of invasive aspergillosis are still lacking. Therefore, it is important to elucidate CW biosynthesis pathways and their signal transduction cascades, which potentially compensate the inhibition caused by CW- perturbing compounds. Like in other fungi, the central core of the cell wall integrity (CWI) signaling pathway in A. fumigatus is composed of three mitogen activated protein kinases. Deletion of these genes resulted in severely enhanced sensitivity of the mutants against CW-disturbing compounds and in drastic alterations of the fungal morphology. Additionally, several cross-talk interactions between the CWI pathways and other signaling pathways are emerging, raising the question about their role in the CW compensatory mechanisms. In this review we focused on recent advances in understanding the CWI signaling pathway in A. fumigatus and its role during drug stress response and virulence.
Collapse
Affiliation(s)
- Vito Valiante
- Molecular Biotechnology of Natural Products, Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany
| | - Juliane Macheleidt
- Molecular Biotechnology of Natural Products, Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany
| | - Martin Föge
- Molecular Biotechnology of Natural Products, Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany ; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Germany
| | - Axel A Brakhage
- Molecular Biotechnology of Natural Products, Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany ; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Germany
| |
Collapse
|
17
|
Wang D, Chen M, Chein RJ, Ching WM, Hung CH, Tzou DLM. Cation ion specifically induces a conformational change in trans-dehydroandrosterone - a solid-state NMR study. Steroids 2015; 96:73-80. [PMID: 25637678 DOI: 10.1016/j.steroids.2015.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 01/09/2015] [Accepted: 01/19/2015] [Indexed: 11/23/2022]
Abstract
In this work, we demonstrated that calcium (Ca(+2)) is able to induce a conformational change in trans-dehydroandrosterone (DHEA). To this respect, solid-state NMR spectroscopy was applied to a series of DHEA molecules that were incubated with Ca(+2) under different concentrations. The high-resolution (13)C NMR spectra of the DHEA/Ca(+2) mixtures exhibited two distinct sets of signals; one was attributed to DHEA in the free form, and the second set was due to the DHEA/Ca(+2) complex. Based on chemical shift isotropy and anisotropy analyses, we postulated that Ca(+2) might have associated with the oxygen attached to C17 via a lone-pair of electrons, which induced a conformational change in DHEA. Apart from Ca(+2), we also incubated DHEA with magnesium (Mg(+2)) to determine whether Mg(+2) was able to interact with DHEA in a similar manner to Ca(+2). We found that Mg(+2) was able to induce a conformational change in DHEA deviated from that of Ca(+2). These solid-state NMR observations indicate that DHEA is able to interact with cations, such as Mg(+2) and Ca(+2), with specificity.
Collapse
Affiliation(s)
- Darong Wang
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan, ROC
| | - Meiman Chen
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan, ROC
| | - Rong-Jie Chein
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan, ROC
| | - Wei-Min Ching
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan, ROC
| | - Chen-Hsiung Hung
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan, ROC
| | - Der-Lii M Tzou
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan, ROC.
| |
Collapse
|
18
|
Lassiter MG, Owens EO, Patel MM, Kirrane E, Madden M, Richmond-Bryant J, Hines EP, Davis JA, Vinikoor-Imler L, Dubois JJ. Cross-species coherence in effects and modes of action in support of causality determinations in the U.S. Environmental Protection Agency's Integrated Science Assessment for Lead. Toxicology 2015; 330:19-40. [PMID: 25637851 DOI: 10.1016/j.tox.2015.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/24/2014] [Accepted: 01/26/2015] [Indexed: 01/26/2023]
Abstract
The peer-reviewed literature on the health and ecological effects of lead (Pb) indicates common effects and underlying modes of action across multiple organisms for several endpoints. Based on such observations, the United States (U.S.) Environmental Protection Agency (EPA) applied a cross-species approach in the 2013 Integrated Science Assessment (ISA) for Lead for evaluating the causality of relationships between Pb exposure and specific endpoints that are shared by humans, laboratory animals, and ecological receptors (i.e., hematological effects, reproductive and developmental effects, and nervous system effects). Other effects of Pb (i.e., cardiovascular, renal, and inflammatory responses) are less commonly assessed in aquatic and terrestrial wildlife limiting the application of cross-species comparisons. Determinations of causality in ISAs are guided by a framework for classifying the weight of evidence across scientific disciplines and across related effects by considering aspects such as biological plausibility and coherence. As illustrated for effects of Pb where evidence across species exists, the integration of coherent effects and common underlying modes of action can serve as a means to substantiate conclusions regarding the causal nature of the health and ecological effects of environmental toxicants.
Collapse
Affiliation(s)
- Meredith Gooding Lassiter
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Elizabeth Oesterling Owens
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Molini M Patel
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Ellen Kirrane
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Meagan Madden
- Oak Ridge Institute for Science and Education Research Participation Program, National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Jennifer Richmond-Bryant
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Erin Pias Hines
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - J Allen Davis
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Lisa Vinikoor-Imler
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Jean-Jacques Dubois
- Southern Region Integrated Pest Management Center, North Carolina State University, 1730 Varsity Drive, Suite 110, Raleigh, NC 27606, USA.
| |
Collapse
|
19
|
Colabardini AC, Ries LNA, Brown NA, Savoldi M, Dinamarco TM, von Zeska MR, Goldman MHS, Goldman GH. Protein kinase C overexpression suppresses calcineurin-associated defects in Aspergillus nidulans and is involved in mitochondrial function. PLoS One 2014; 9:e104792. [PMID: 25153325 PMCID: PMC4143261 DOI: 10.1371/journal.pone.0104792] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/11/2014] [Indexed: 12/22/2022] Open
Abstract
In filamentous fungi, intracellular signaling pathways which are mediated by changing calcium levels and/or by activated protein kinase C (Pkc), control fungal adaptation to external stimuli. A rise in intracellular Ca2+ levels activates calcineurin subunit A (CnaA), which regulates cellular calcium homeostasis among other processes. Pkc is primarily involved in maintaining cell wall integrity (CWI) in response to different environmental stresses. Cross-talk between the Ca2+ and Pkc-mediated pathways has mainly been described in Saccharomyces cerevisiae and in a few other filamentous fungi. The presented study describes a genetic interaction between CnaA and PkcA in the filamentous fungus Aspergillus nidulans. Overexpression of pkcA partially rescues the phenotypes caused by a cnaA deletion. Furthermore, CnaA appears to affect the regulation of a mitogen-activated kinase, MpkA, involved in the CWI pathway. Reversely, PkcA is involved in controlling intracellular calcium homeostasis, as was confirmed by microarray analysis. Furthermore, overexpression of pkcA in a cnaA deletion background restores mitochondrial number and function. In conclusion, PkcA and CnaA-mediated signaling appear to share common targets, one of which appears to be MpkA of the CWI pathway. Both pathways also regulate components involved in mitochondrial biogenesis and function. This study describes targets for PkcA and CnaA-signaling pathways in an A. nidulans and identifies a novel interaction of both pathways in the regulation of cellular respiration.
Collapse
Affiliation(s)
- Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - Neil Andrew Brown
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Marcela Savoldi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Taísa Magnani Dinamarco
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Marcia Regina von Zeska
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Helena S. Goldman
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo Henrique Goldman
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol – CTBE, Campinas, São Paulo, Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
20
|
The Ever Changing Moods of Calmodulin: How Structural Plasticity Entails Transductional Adaptability. J Mol Biol 2014; 426:2717-35. [DOI: 10.1016/j.jmb.2014.05.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 11/20/2022]
|
21
|
Serefko A, Szopa A, Wlaź P, Nowak G, Radziwoń-Zaleska M, Skalski M, Poleszak E. Magnesium in depression. Pharmacol Rep 2014; 65:547-54. [PMID: 23950577 DOI: 10.1016/s1734-1140(13)71032-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 01/08/2013] [Indexed: 12/15/2022]
Abstract
Magnesium is one of the most essential mineral in the human body, connected with brain biochemistry and the fluidity of neuronal membrane. A variety of neuromuscular and psychiatric symptoms, including different types of depression, was observed in magnesium deficiency. Plasma/serum magnesium levels do not seem to be the appropriate indicators of depressive disorders, since ambiguous outcomes, depending on the study, were obtained. The emergence of a new approach to magnesium compounds in medical practice has been seen. Apart from being administered as components of dietary supplements, they are also perceived as the effective agents in treatment of migraine, alcoholism, asthma, heart diseases, arrhythmias, renal calcium stones, premenstrual tension syndrome etc. Magnesium preparations have an essential place in homeopathy as a remedy for a range of mental health problems. Mechanisms of antidepressant action of magnesium are not fully understood yet. Most probably, magnesium influences several systems associated with development of depression. The first information on the beneficial effect of magnesium sulfate given hypodermically to patients with agitated depression was published almost 100 years ago. Numerous pre-clinical and clinical studies confirmed the initial observations as well as demonstrated the beneficial safety profile of magnesium supplementation. Thus, magnesium preparations seem to be a valuable addition to the pharmacological armamentarium for management of depression.
Collapse
Affiliation(s)
- Anna Serefko
- Chair and Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| | | | | | | | | | | | | |
Collapse
|
22
|
T-type Ca2+ channels in spermatogenic cells and sperm. Pflugers Arch 2014; 466:819-31. [DOI: 10.1007/s00424-014-1478-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/08/2014] [Indexed: 12/14/2022]
|
23
|
Agarwal R, Iezhitsa L, Agarwal P. Pathogenetic role of magnesium deficiency in ophthalmic diseases. Biometals 2013; 27:5-18. [PMID: 24233809 DOI: 10.1007/s10534-013-9684-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/01/2013] [Indexed: 12/25/2022]
Abstract
Magnesium is one of the most important regulatory cation involved in several biological processes. It is important for maintaining the structural and functional integrity of several vital ocular tissues such as cornea, lens and retina. The magnesium content of lens, especially in its peripheral part, is higher than that in aqueous and vitreous humor. Magnesium has also been shown to play critically important role in retinal functions. Magnesium plays significant role as a cofactor for more than 350 enzymes in the body and regulates neuroexcitability and several ion channels. Membrane associated ATPase functions that are crucial in regulating the intracellular ionic environment, are magnesium-dependent. Moreover, the enzymes involved in ATP production and hydrolysis are also magnesium-dependent. Magnesium deficiency by interfering with ATPase functions causes increased intracellular calcium and sodium and decreases intracellular potassium concentration. Such ionic imbalances in turn alter the other cellular enzymatic reactions and form the basis of the association of magnesium deficiency with ophthalmic diseases such as cataract. In presence of magnesium deficiency, an imbalance between mediators of vasoconstriction and vasorelaxation may underlie the vasospasm, which is one of the pathogenic factors in primary open angle glaucoma. Furthermore, magnesium deficiency is also a contributing factor in increased oxidative stress and inducible NOS stimulation that can further contribute in the initiation and progression of ocular pathologies such as cataract, glaucoma and diabetic retinopathy. In this paper we review the association of disturbances of magnesium homeostasis with several ophthalmic diseases.
Collapse
Affiliation(s)
- Renu Agarwal
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor Darul Ehsan, Malaysia
| | | | | |
Collapse
|
24
|
Shi K, Cui L, Jiang H, Yang L, Xue L. Characterization of the microtubule-binding activity of kinesin-like calmodulin binding protein from Dunaliella salina. Res Microbiol 2013; 164:1028-34. [PMID: 24036153 DOI: 10.1016/j.resmic.2013.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 08/28/2013] [Indexed: 12/17/2022]
Abstract
Although the C-terminal motor and the N-terminal myosin-like domains of KCBP in Dunaliella salina (DsKCBP) are implicated in interaction with the microtubules, its microtubule binding property has not been addressed. It has been shown that several calmodulin isoforms suppress the microtubule binding activity of KCBP, but whether the calmodulin-like protein (CLP) has this ability remains unknown. The results of our previous study showed that there are two microtubule binding sites in DsKCBP, motor domain at the C-terminus and MyTH4-FREM at the N-terminus. In the present study, MyTH4, without the companion of FERM, was identified as the minimal domain responsible for interaction with the microtubules in the N-terminal of DsKCBP. CLP interacted with the calmodulin-binding domain of DsKCBP in the presence of Ca(2+), and inhibited the microtubule-binding activity of motor domain but not MyTH4 domain. Furthermore, MyTH4 domain in the N-terminus of DsKCBP was responsible for binding to the microtubules, and had 10-fold weaker affinity to the microtubules than the motor domain.
Collapse
Affiliation(s)
- Ke Shi
- Laboratory for Cell Biology, The First Affiliated Hospital, Zhengzhou University, Henan 450052, China; Henan Province Academician & Expert workstation, Clinical Research Centre, People's Hospital of Zhengzhou, China
| | | | | | | | | |
Collapse
|
25
|
Khaled M, Jiang ZZ, Zhang LY. Deoxypodophyllotoxin: a promising therapeutic agent from herbal medicine. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:24-34. [PMID: 23792585 DOI: 10.1016/j.jep.2013.06.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 06/06/2013] [Accepted: 06/09/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Recently, biologically active compounds isolated from plants used in herbal medicine have been the center of interest. Deoxypodophyllotoxin (DPT), structurally closely related to the lignan podophyllotoxin, is a potent antitumor and anti-inflammatory agent. However, DPT has not been used clinically yet. Also, DPT from natural sources seems to be unavailable. Hence, it is important to establish alternative resources for the production of such lignan; especially that it is used as a precursor for the semi-synthesis of the cytostatic drugs etoposide phosphate and teniposide. AIMS AND OBJECTIVES The update paper provides an overview of DPT as an effective anticancer natural compound and a leader for cytotoxic drugs synthesis and development in order to highlight the gaps in our knowledge and explore future research needs. APPROACH AND METHODS The present review covers the literature available from 1877 to 2012. The information was collected via electronic search using Chinese papers and the major scientific databases including PubMed, Sciencedirect, Web of Science and Google Scholar using the keywords. All abstracts and full-text articles reporting database on the history and current status of DPT were gathered and analyzed. RESULTS Plants containing DPT have played an important role in traditional medicine. In light of the in vitro pharmacological investigations, DPT is a high valuable medicinal agent that has anti-tumor, anti-proliferative, anti-inflammatory and anti-allergic properties. Further, DPT is an important precursor for the cytotoxic aryltetralin lignan, podophyllotoxin, which is used to obtain semisynthetic derivatives like etoposide and teniposide used in cancer therapy. However, most studies have focused on the in vitro data. Therefore, DPT has not been used clinically yet. CONCLUSIONS DPT has emerged as a potent chemical agent from herbal medicine. Therefore, in vivo studies are needed to carry out clinical trials in humans and enable the development of new anti-cancer agents. In addition, DPT from commercial sources seems to be unavailable due to its rarity from natural sources and cumbersome extraction procedures. Hence, it is important to establish alternative, cost-effective and renewable resources, such plant cell cultures and (semi-) synthesis strategies for the production of DPT.
Collapse
Affiliation(s)
- Meyada Khaled
- Jiangsu Center of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | | | | |
Collapse
|
26
|
Leal SS, Cardoso I, Valentine JS, Gomes CM. Calcium ions promote superoxide dismutase 1 (SOD1) aggregation into non-fibrillar amyloid: a link to toxic effects of calcium overload in amyotrophic lateral sclerosis (ALS)? J Biol Chem 2013; 288:25219-25228. [PMID: 23861388 DOI: 10.1074/jbc.m113.470740] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Imbalance in metal ion homeostasis is a hallmark in neurodegenerative conditions involving protein deposition, and amyotrophic lateral sclerosis (ALS) is no exception. In particular, Ca(2+) dysregulation has been shown to correlate with superoxide dismutase-1 (SOD1) aggregation in a cellular model of ALS. Here we present evidence that SOD1 aggregation is enhanced and modulated by Ca(2+). We show that at physiological pH, Ca(2+) induces conformational changes that increase SOD1 β-sheet content, as probed by far UV CD and attenuated total reflectance-FTIR, and enhances SOD1 hydrophobicity, as probed by ANS fluorescence emission. Moreover, dynamic light scattering analysis showed that Ca(2+) boosts the onset of SOD1 aggregation. In agreement, Ca(2+) decreases SOD1 critical concentration and nucleation time during aggregation kinetics, as evidenced by thioflavin T fluorescence emission. Attenuated total reflectance FTIR analysis showed that Ca(2+) induced aggregates consisting preferentially of antiparallel β-sheets, thus suggesting a modulation effect on the aggregation pathway. Transmission electron microscopy and analysis with conformational anti-fibril and anti-oligomer antibodies showed that oligomers and amyloidogenic aggregates constitute the prevalent morphology of Ca(2+)-induced aggregates, thus indicating that Ca(2+) diverts SOD1 aggregation from fibrils toward amorphous aggregates. Interestingly, the same heterogeneity of conformations is found in ALS-derived protein inclusions. We thus hypothesize that transient variations and dysregulation of cellular Ca(2+) levels contribute to the formation of SOD1 aggregates in ALS patients. In this scenario, Ca(2+) may be considered as a pathogenic effector in the formation of ALS proteinaceous inclusions.
Collapse
Affiliation(s)
- Sónia S Leal
- From the Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. República 127, 2780-756 Oeiras, Portugal
| | - Isabel Cardoso
- the Molecular Neurobiology Unit, Instituto Biologia Molecular e Celular, 4150-180 Porto, Portugal, and
| | - Joan S Valentine
- the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Cláudio M Gomes
- From the Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. República 127, 2780-756 Oeiras, Portugal,.
| |
Collapse
|
27
|
Fodor J, Matta C, Oláh T, Juhász T, Takács R, Tóth A, Dienes B, Csernoch L, Zákány R. Store-operated calcium entry and calcium influx via voltage-operated calcium channels regulate intracellular calcium oscillations in chondrogenic cells. Cell Calcium 2013; 54:1-16. [PMID: 23664335 DOI: 10.1016/j.ceca.2013.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/11/2013] [Accepted: 03/21/2013] [Indexed: 01/01/2023]
Abstract
Chondrogenesis is known to be regulated by calcium-dependent signalling pathways in which temporal aspects of calcium homeostasis are of key importance. We aimed to better characterise calcium influx and release functions with respect to rapid calcium oscillations in cells of chondrifying chicken high density cultures. We found that differentiating chondrocytes express the α1 subunit of voltage-operated calcium channels (VOCCs) at both mRNA and protein levels, and that these ion channels play important roles in generating Ca(2+) influx for oscillations as nifedipine interfered with repetitive calcium transients. Furthermore, VOCC blockade abrogated chondrogenesis and almost completely blocked cell proliferation. The contribution of internal Ca(2+) stores via store-operated Ca(2+) entry (SOCE) seems to be indispensable to both Ca(2+) oscillations and chondrogenesis. Moreover, this is the first study to show the functional expression of STIM1/STIM2 and Orai1, molecules that orchestrate SOCE, in chondrogenic cells. Inhibition of SOCE combined with ER calcium store depletion abolished differentiation and severely diminished proliferation, suggesting the important role of internal pools in calcium homeostasis of differentiating chondrocytes. Finally, we present an integrated model for the regulation of calcium oscillations of differentiating chondrocytes that may have important implications for studies of chondrogenesis induced in various stem cell populations.
Collapse
Affiliation(s)
- János Fodor
- Department of Physiology, Medical and Health Science Centre, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Strauß O. Ca2+-imaging techniques to analyze Ca2+ signaling in cells and to monitor neuronal activity in the retina. Methods Mol Biol 2013; 935:297-308. [PMID: 23150377 DOI: 10.1007/978-1-62703-080-9_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ca(2+) is an important regulator of many cell functions including proliferation, apoptosis, movements, secretion, contraction, excitation, and differentiation. The regulation of these different cell functions is encoded by the specific temporal and spatial distribution of Ca(2+) signals. In degenerative diseases mutations can lead to changes in cell functions in the worst case to apoptosis. Thus analysis of signals arising as changes in intracellular free Ca(2+) represent an important step towards the understanding of mutation-dependent or environmental impact into cell function. The classic approach to study changes in intracellular free Ca(2+) is the measurement of intracellular Ca(2+) by using Ca(2+)-sensitive fluorescence dyes in conjunction with fluorescence microscopy as a method called Ca(2+) imaging. In this chapter the basic method and a short theoretical background will be provided to perform Ca(2+)-imaging experiments. As a model cultured retinal pigment epithelial cells will be used. The basic steps of the method are the loading of the cells with the fluorescence dye by incubation with a membrane permeable ester of the dye. The next step would be the application of an agonist which can be further analyzed by blockers of enzymes or by manipulating the different Ca(2+)-storing compartments which contribute to changes in intracellular free Ca(2+). At the end of an experiment an on-cell type of calibration will be performed to calculate the underlying concentration of intracellular free Ca(2+). Furthermore, the successful calibration of an experiment can be used as a measure of a reliable experiment. In addition to that, three examples for basic experiments will be given which can lead to a first insight into the mechanism underlying changes in cytosolic free Ca(2+)as a second messenger.
Collapse
Affiliation(s)
- Olaf Strauß
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany.
| |
Collapse
|
29
|
Saxena R, Ganguly S, Chattopadhyay A. Comparative analysis of calcium spikes upon activation of serotonin(1A) and purinergic receptors. PLoS One 2012; 7:e51857. [PMID: 23284790 PMCID: PMC3526489 DOI: 10.1371/journal.pone.0051857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/13/2012] [Indexed: 01/11/2023] Open
Abstract
Calcium signaling represents one of the most important signaling cascades in cells and regulates diverse processes such as exocytosis, muscle contraction and relaxation, gene expression and cell growth. G protein-coupled receptors (GPCRs) are the most important family of receptors that activate calcium signaling. Since calcium signaling regulates a large number of physiological responses, it is intriguing that how changes in cytosolic calcium levels by a wide range of stimuli lead to signal-specific physiological responses in the cellular interior. In order to address this issue, we have analyzed temporal calcium profiles induced by two GPCRs, the serotonin(1A) and purinergic receptors. In this work, we have described a set of parameters for the analysis of calcium transients that could provide novel insight into mechanisms responsible for maintaining signal specificity by shaping calcium transients. An interesting feature of calcium signaling that has emerged from our analysis is that the profile of individual transients in a calcium response could play an important role in maintaining downstream signal specificity. In summary, our analysis offers a novel approach to identify differences in calcium response patterns induced by various stimuli.
Collapse
Affiliation(s)
- Roopali Saxena
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | | | | |
Collapse
|
30
|
Reyes-Bermudez A, Miller DJ, Sprungala S. The Neuronal Calcium Sensor protein Acrocalcin: a potential target of calmodulin regulation during development in the coral Acropora millepora. PLoS One 2012; 7:e51689. [PMID: 23284743 PMCID: PMC3524228 DOI: 10.1371/journal.pone.0051689] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/05/2012] [Indexed: 12/28/2022] Open
Abstract
To understand the calcium-mediated signalling pathways underlying settlement and metamorphosis in the Scleractinian coral Acropora millepora, a predicted protein set derived from larval cDNAs was scanned for the presence of EF-hand domains (Pfam Id: PF00036). This approach led to the identification of a canonical calmodulin (AmCaM) protein and an uncharacterised member of the Neuronal Calcium Sensor (NCS) family of proteins known here as Acrocalcin (AmAC). While AmCaM transcripts were present throughout development, AmAC transcripts were not detected prior to gastrulation, after which relatively constant mRNA levels were detected until metamorphosis and settlement. The AmAC protein contains an internal CaM-binding site and was shown to interact in vitro with AmCaM. These results are consistent with the idea that AmAC is a target of AmCaM in vivo, suggesting that this interaction may regulate calcium-dependent processes during the development of Acropora millepora.
Collapse
Affiliation(s)
- Alejandro Reyes-Bermudez
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | - David J. Miller
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
| | - Susanne Sprungala
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
- * E-mail:
| |
Collapse
|
31
|
Permyakov SE, Vologzhannikova AA, Emelyanenko VI, Knyazeva EL, Kazakov AS, Lapteva YS, Permyakova ME, Zhadan AP, Permyakov EA. The impact of alpha-N-acetylation on structural and functional status of parvalbumin. Cell Calcium 2012; 52:366-76. [DOI: 10.1016/j.ceca.2012.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 05/30/2012] [Accepted: 06/01/2012] [Indexed: 01/09/2023]
|
32
|
Liu W, Zheng X, Qu Z, Zhang M, Zhou C, Ma L, Zhang Y. Effect of 935-MHz phone-simulating electromagnetic radiation on endometrial glandular cells during mouse embryo implantation. ACTA ACUST UNITED AC 2012; 32:755-759. [DOI: 10.1007/s11596-012-1030-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Indexed: 01/05/2023]
|
33
|
Njie-Mbye YF, Opere CA, Chitnis M, Ohia SE. Hydrogen sulfide: role in ion channel and transporter modulation in the eye. Front Physiol 2012; 3:295. [PMID: 22934046 PMCID: PMC3429066 DOI: 10.3389/fphys.2012.00295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/08/2012] [Indexed: 01/28/2023] Open
Abstract
Hydrogen sulfide (H2S), a colorless gas with a characteristic smell of rotten eggs, has been portrayed for decades as a toxic environmental pollutant. Since evidence of its basal production in mammalian tissues a decade ago, H2S has attracted substantial interest as a potential inorganic gaseous mediator with biological importance in cellular functions. Current research suggests that, next to its counterparts nitric oxide and carbon monoxide, H2S is an important multifunctional signaling molecule with pivotal regulatory roles in various physiological and pathophysiological processes as diverse as learning and memory, modulation of synaptic activities, cell survival, inflammation, and maintenance of vascular tone in the central nervous and cardiovascular systems. In contrast, there are few reports of a regulatory role of H2S in the eye. Accumulating reports on the pharmacological role of H2S in ocular tissues indicate the existence of a functional trans-sulfuration pathway and a potential physiological role for H2S as a gaseous neuromodulator in the eye. Thus, understanding the role of H2S in vision-related processes is imperative to our expanding knowledge of this molecule as a gaseous mediator in ocular tissues. This review aims to provide a comprehensive and current understanding of the potential role of H2S as a signaling molecule in the eye. This objective is achieved by discussing the involvement of H2S in the regulation of (1) ion channels such as calcium (L-type, T-type, and intracellular stores), potassium (KATP and small conductance channels) and chloride channels, (2) glutamate transporters such as EAAT1/GLAST and the L-cystine/glutamate antiporter. The role of H2S as an important mediator in cellular functions and physiological processes that are triggered by its interaction with ion channels/transporters in the eye will also be discussed.
Collapse
Affiliation(s)
- Ya F Njie-Mbye
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University Houston, TX, USA
| | | | | | | |
Collapse
|
34
|
Dunbar RC, Steill JD, Oomens J. Encapsulation of metal cations by the PhePhe ligand: a cation-π ion cage. J Am Chem Soc 2011; 133:9376-86. [PMID: 21553844 DOI: 10.1021/ja200219q] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Structures and binding thermochemistry are investigated for protonated PhePhe and for complexes of PhePhe with the alkaline-earth ions Ba(2+) and Ca(2+), the alkali-metal ions Li(+), Na(+), K(+), and Cs(+), and the transition-metal ion Ag(+). The two neighboring aromatic side chains open the possibility of a novel encapsulation motif of the metal ion in a double cation-π configuration, which is found to be realized for the alkaline-earth complexes and, in a variant form, for the Ag(+) complex. Experimentally, complexes are formed by electrospray ionization, trapped in an FT-ICR mass spectrometer, and characterized by infrared multiple photon dissociation (IRMPD) spectroscopy using the free electron laser FELIX. Interpretation is assisted by thermochemical and IR spectral calculations using density functional theory (DFT). The IRMPD spectrum of protonated PhePhe is reproduced with good fidelity by the calculated spectrum of the most stable conformation, although the additional presence of the secondmost stable conformation is not excluded. All metal-ion complexes have charge-solvated binding modes, with zwitterion (salt bridge) forms being much less stable. The amide oxygen always coordinates to the metal ion, as well as at least one phenyl ring (cation-π interaction). At least one additional chelation site is always occupied, which may be either the amino nitrogen or the carboxy carbonyl oxygen. The alkaline-earth complexes prefer a highly compact caged structure with both phenyl rings providing cation-π stabilization in a "sandwich" configuration (OORR chelation). The alkali-metal complexes prefer open-cage structures with only one cation-π interaction, except perhaps Cs(+). The Ag(+) complex shows a unique preference for the closed-cage amino-bound NORR structure. Ligand-driven perturbations of normal-mode frequencies are generally found to correlate linearly with metal-ion binding energy.
Collapse
Affiliation(s)
- Robert C Dunbar
- Chemistry Department, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
35
|
Milograna SR, Bell FT, McNamara JC. Signal transduction, plasma membrane calcium movements, and pigment translocation in freshwater shrimp chromatophores. ACTA ACUST UNITED AC 2011; 313:605-17. [PMID: 20683865 DOI: 10.1002/jez.633] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Crustacean color change results from the differential translocation of chromatophore pigments, regulated by neurosecretory peptides like red pigment concentrating hormone (RPCH) that, in the red ovarian chromatophores of the freshwater shrimp Macrobrachium olfersi, triggers pigment aggregation via increased cytosolic cGMP and Ca(2+) of both smooth endoplasmatic reticulum (SER) and extracellular origin. However, Ca(2+) movements during RPCH signaling and the mechanisms that regulate intracellular [Ca(2+)] are enigmatic. We investigate Ca(2+) transporters in the chromatophore plasma membrane and Ca(2+) movements that occur during RPCH signal transduction. Inhibition of the plasma membrane Ca(2+)-ATPase by La(3+) and indirect inhibition of the Na(+)/Ca(2+) exchanger by ouabain induce pigment aggregation, revealing a role for both in Ca(2+) extrusion. Ca(2+) channel blockade by La(3+) or Cd(2+) strongly inhibits slow-phase RPCH-triggered aggregation during which pigments disperse spontaneously. L-type Ca(2+) channel blockade by gabapentin markedly reduces rapid-phase translocation velocity; N- or P/Q-type blockade by ω-conotoxin MVIIC strongly inhibits RPCH-triggered aggregation and reduces velocity, effects revealing RPCH-signaled influx of extracellular Ca(2+). Plasma membrane depolarization, induced by increasing external K(+) from 5 to 50 mM, produces Ca(2+)-dependent pigment aggregation, whereas removal of K(+) from the perfusate causes pigment hyperdispersion, disclosing a clear correlation between membrane depolarization and pigment aggregation; K(+) channel blockade by Ba(2+) also partially inhibits RPCH action. We suggest that, during RPCH signal transduction, Ca(2+) released from the SER, together with K(+) channel closure, causes chromatophore membrane depolarization, leading to the opening of predominantly N- and/or P/Q-type voltage-gated Ca(2+) channels, and a Ca(2+)/cGMP cascade, resulting in pigment aggregation.
Collapse
Affiliation(s)
- Sarah Ribeiro Milograna
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
36
|
Cervantes-Chávez JA, Ali S, Bakkeren G. Response to environmental stresses, cell-wall integrity, and virulence are orchestrated through the calcineurin pathway in Ustilago hordei. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:219-232. [PMID: 20977307 DOI: 10.1094/mpmi-09-10-0202] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In eukaryotes, several biological processes are regulated through calcium signaling. Calcineurin is a calcium-calmodulin-regulated serine/threonine phosphatase consisting of catalytic subunit A and regulatory subunit B. Phosphatase activity resides in the catalytic subunit, which activates by dephosphorylation downstream components such as transcription factor Crz1. The importance of this pathway to respond to environmental stress has been explored in several fungal pathogens. The basidiomycete Ustilago hordei causes covered smut of barley. We addressed the role of the Ca(2+)-calcineurin activated pathway by deleting UhCna1 and UhCnb1. These genes were not essential in U. hordei but the corresponding mutants displayed a variety of phenotypes when applying environmental stress such as sensitivity to pH, temperature, H₂O₂, mono- and divalent cations; and to genotoxic, acid, or oxidative stresses. Cell-wall integrity was compromised and mutants displayed altered cell morphologies. Mating was delayed but not abolished, and combined sensitivities likely explained a severely reduced virulence toward barley plants. Expression analyses revealed that response to salt stress involved the induction of membrane ATPase genes UhEna1 and UhEna2, which were regulated through the calcineurin pathway. Upregulation of UhFKS1, a 1,3-β-d-glucan synthase gene, correlated with the increased amount of 1,3-β-d-glucan in the calcineurin mutants grown under salt stress.
Collapse
|
37
|
Genome-wide meta-analysis for serum calcium identifies significantly associated SNPs near the calcium-sensing receptor (CASR) gene. PLoS Genet 2010; 6:e1001035. [PMID: 20661308 PMCID: PMC2908705 DOI: 10.1371/journal.pgen.1001035] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 06/17/2010] [Indexed: 12/24/2022] Open
Abstract
Calcium has a pivotal role in biological functions, and serum calcium levels have been associated with numerous disorders of bone and mineral metabolism, as well as with cardiovascular mortality. Here we report results from a genome-wide association study of serum calcium, integrating data from four independent cohorts including a total of 12,865 individuals of European and Indian Asian descent. Our meta-analysis shows that serum calcium is associated with SNPs in or near the calcium-sensing receptor (CASR) gene on 3q13. The top hit with a p-value of 6.3×10-37 is rs1801725, a missense variant, explaining 1.26% of the variance in serum calcium. This SNP had the strongest association in individuals of European descent, while for individuals of Indian Asian descent the top hit was rs17251221 (p = 1.1×10-21), a SNP in strong linkage disequilibrium with rs1801725. The strongest locus in CASR was shown to replicate in an independent Icelandic cohort of 4,126 individuals (p = 1.02×10-4). This genome-wide meta-analysis shows that common CASR variants modulate serum calcium levels in the adult general population, which confirms previous results in some candidate gene studies of the CASR locus. This study highlights the key role of CASR in calcium regulation. Calcium levels in blood serum play an important role in many biological processes. The regulation of serum calcium is under strong genetic control. This study describes the first meta-analysis of a genome-wide association study from four cohorts totaling 12,865 participants of European and Indian Asian descent. Confirming previous results in some candidate gene studies, we find that common polymorphisms at the calcium-sensing receptor (CASR) gene locus are associated with serum calcium concentrations. We show that CASR variants give rise to the strongest signals associated with serum calcium levels in both European and Indian Asian populations, while no other locus reaches genome-wide significance. Our results show that CASR is a key player in genetic regulation of serum calcium in the adult general population.
Collapse
|
38
|
Calcium is required for coelomocyte activation in earthworms. Mol Immunol 2010; 47:2047-56. [PMID: 20439116 DOI: 10.1016/j.molimm.2010.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 11/21/2022]
Abstract
The role of calcium signaling in activation of both innate and adaptive immunity is basically important, however, the evolutionary aspects are not clarified yet. Currently limited data are available about calcium levels of coelomocytes, cellular mediators of earthworm immunity. We aimed to observe basal and induced Ca(2+) levels of coelomocyte subgroups after various stimulations in Eisenia fetida and Allolobophora caliginosa using a Ca(2+)-sensitive dye. E. fetida chloragocytes had the highest basal Ca(2+) levels among subpopulations; however there was no detectable Ca(2+) influx after any stimuli, while coelomocytes showed strong Ca(2+) increase after ionomycin treatment, which could be attenuated using phorbol ester. A. caliginosa coelomocytes showed a weak response to ionophore, while chloragocytes, similar to those in E. fetida, exhibited no changes after this stimulation. Intracellular calcium is mainly stored in the endoplasmic reticulum of coelomocytes as proved by thapsigargin treatments. Among several mitogens only phytohemagglutinin caused increased Ca(2+) level in E. fetida coelomocytes, but not in A. caliginosa coelomocytes. Moreover, the chemoattractant fMLP revealed calcium influx of Eisenia coelomocytes. For the first time we observed various basal Ca(2+) levels and sensibility to Ca(2+) influx inducers (including mitogens and chemoattractant) of coelomocyte subgroups using flow cytometry. These observations suggest that Ca(2+) influx and signal transduction may play crucial roles in the innate immunity of the earthworm.
Collapse
|
39
|
Eby GA, Eby KL. Magnesium for treatment-resistant depression: A review and hypothesis. Med Hypotheses 2010; 74:649-60. [DOI: 10.1016/j.mehy.2009.10.051] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 10/31/2009] [Indexed: 12/15/2022]
|
40
|
Plattner H. Membrane Trafficking in Protozoa. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:79-184. [DOI: 10.1016/s1937-6448(10)80003-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
A Common Structural Basis for pH- and Calmodulin-mediated Regulation in Plant Glutamate Decarboxylase. J Mol Biol 2009; 392:334-51. [DOI: 10.1016/j.jmb.2009.06.080] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/27/2009] [Accepted: 06/29/2009] [Indexed: 01/11/2023]
|
42
|
Nobbio L, Sturla L, Fiorese F, Usai C, Basile G, Moreschi I, Benvenuto F, Zocchi E, De Flora A, Schenone A, Bruzzone S. P2X7-mediated increased intracellular calcium causes functional derangement in Schwann cells from rats with CMT1A neuropathy. J Biol Chem 2009; 284:23146-58. [PMID: 19546221 DOI: 10.1074/jbc.m109.027128] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) is the most frequent inherited neuromuscular disorder, affecting 1 person in 2500. CMT1A, the most common form of CMT, is usually caused by a duplication of chromosome 17p11.2, containing the PMP22 (peripheral myelin protein-22) gene; overexpression of PMP22 in Schwann cells (SC) is believed to cause demyelination, although the underlying pathogenetic mechanisms remain unclear. Here we report an abnormally high basal concentration of intracellular calcium ([Ca(2+)](i)) in SC from CMT1A rats. By the use of specific pharmacological inhibitors and through down-regulation of expression by small interfering RNA, we demonstrate that the high [Ca(2+)](i) is caused by a PMP22-related overexpression of the P2X7 purinoceptor/channel leading to influx of extracellular Ca(2+) into CMT1A SC. Correction of the altered [Ca(2+)](i) in CMT1A SC by small interfering RNA or with pharmacological inhibitors of P2X7 restores functional parameters of SC (migration and release of ciliary neurotrophic factor), which are typically defective in CMT1A SC. More significantly, stable down-regulation of the expression of P2X7 restores myelination in co-cultures of CMT1A SC with dorsal root ganglion sensory neurons. These results establish a pathogenetic link between high [Ca(2+)](i) and impaired SC function in CMT1A and identify overexpression of P2X7 as the molecular mechanism underlying both abnormalities. The development of P2X7 inhibitors is expected to provide a new therapeutic strategy for treatment of CMT1A neuropathy.
Collapse
Affiliation(s)
- Lucilla Nobbio
- Department of Neurosciences, Ophthalmology, and Genetics and Center of Excellence for Biomedical Research, University of Genova, Via De Toni 5, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Plattner H, Sehring IM, Schilde C, Ladenburger E. Chapter 5 Pharmacology of Ciliated Protozoa—Drug (In)Sensitivity and Experimental Drug (Ab)Use. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:163-218. [DOI: 10.1016/s1937-6448(08)01805-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
44
|
Lee K, Song EH, Kim HS, Yoo JH, Han HJ, Jung MS, Lee SM, Kim KE, Kim MC, Cho MJ, Chung WS. Regulation of MAPK phosphatase 1 (AtMKP1) by calmodulin in Arabidopsis. J Biol Chem 2008; 283:23581-8. [PMID: 18579522 PMCID: PMC3259760 DOI: 10.1074/jbc.m801549200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 06/25/2008] [Indexed: 12/29/2022] Open
Abstract
The mitogen-activated protein kinases (MAPKs) are key signal transduction molecules, which respond to various external stimuli. The MAPK phosphatases (MKPs) are known to be negative regulators of MAPKs in eukaryotes. We screened an Arabidopsis cDNA library using horseradish peroxidase-conjugated calmodulin (CaM), and isolated AtMKP1 as a CaM-binding protein. Recently, tobacco NtMKP1 and rice OsMKP1, two orthologs of Arabidopsis AtMKP1, were reported to bind CaM via a single putative CaM binding domain (CaMBD). However, little is known about the regulation of phosphatase activity of plant MKP1s by CaM binding. In this study, we identified two Ca(2+)-dependent CaMBDs within AtMKP1. Specific binding of CaM to two different CaMBDs was verified using a gel mobility shift assay, a competition assay with a Ca(2+)/CaM-dependent enzyme, and a split-ubiquitin assay. The peptides for two CaMBDs, CaMBDI and CaMBDII, bound CaM in a Ca(2+)-dependent manner, and the binding affinity of CaMBDII was found to be higher than that of CaMBDI. CaM overlay assays using mutated CaMBDs showed that four amino acids, Trp(453) and Leu(456) in CaMBDI and Trp(678) and Ile(684) in CaMBDII, play a pivotal role in CaM binding. Moreover, the phosphatase activity of AtMKP1 was increased by CaM in a Ca(2+)-dependent manner. Our results suggest that two important signaling pathways, Ca(2+) signaling and the MAPK signaling cascade, are connected in plants via the regulation of AtMKP1 activity. To our knowledge, this is the first report to show that the biochemical activity of MKP1 in plants is regulated by CaM.
Collapse
Affiliation(s)
- Kyunghee Lee
- Division of Applied Life Science (BK21
Program), Plant Molecular Biology and Biotechnology Research Center and the
Environmental Biotechnology National Core
Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Eun Hyeon Song
- Division of Applied Life Science (BK21
Program), Plant Molecular Biology and Biotechnology Research Center and the
Environmental Biotechnology National Core
Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Ho Soo Kim
- Division of Applied Life Science (BK21
Program), Plant Molecular Biology and Biotechnology Research Center and the
Environmental Biotechnology National Core
Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Jae Hyuk Yoo
- Division of Applied Life Science (BK21
Program), Plant Molecular Biology and Biotechnology Research Center and the
Environmental Biotechnology National Core
Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Hay Ju Han
- Division of Applied Life Science (BK21
Program), Plant Molecular Biology and Biotechnology Research Center and the
Environmental Biotechnology National Core
Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Mi Soon Jung
- Division of Applied Life Science (BK21
Program), Plant Molecular Biology and Biotechnology Research Center and the
Environmental Biotechnology National Core
Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Sang Min Lee
- Division of Applied Life Science (BK21
Program), Plant Molecular Biology and Biotechnology Research Center and the
Environmental Biotechnology National Core
Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Kyung Eun Kim
- Division of Applied Life Science (BK21
Program), Plant Molecular Biology and Biotechnology Research Center and the
Environmental Biotechnology National Core
Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Min Chul Kim
- Division of Applied Life Science (BK21
Program), Plant Molecular Biology and Biotechnology Research Center and the
Environmental Biotechnology National Core
Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Moo Je Cho
- Division of Applied Life Science (BK21
Program), Plant Molecular Biology and Biotechnology Research Center and the
Environmental Biotechnology National Core
Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Woo Sik Chung
- Division of Applied Life Science (BK21
Program), Plant Molecular Biology and Biotechnology Research Center and the
Environmental Biotechnology National Core
Research Center, Gyeongsang National University, Jinju 660-701, Korea
| |
Collapse
|
45
|
Sehring IM, Klotz C, Beisson J, Plattner H. Rapid downregulation of the Ca2+-signal after exocytosis stimulation in Paramecium cells: essential role of a centrin-rich filamentous cortical network, the infraciliary lattice. Cell Calcium 2008; 45:89-97. [PMID: 18653233 DOI: 10.1016/j.ceca.2008.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 04/15/2008] [Accepted: 06/17/2008] [Indexed: 01/18/2023]
Abstract
We analysed in Paramecium tetraurelia cells the role of the infraciliary lattice, a cytoskeletal network containing numerous centrin isoforms tightly bound to large binding proteins, in the re-establishment of Ca2+ homeostasis following exocytosis stimulation. The wild type strain d4-2 has been compared with the mutant cell line Delta-PtCenBP1 which is devoid of the infraciliary lattice ("Delta-PtCenBP1" cells). Exocytosis is known to involve the mobilization of cortical Ca2+-stores and a superimposed Ca2+-influx and was analysed using Fura Red ratio imaging. No difference in the initial signal generation was found between wild type and Delta-PtCenBP1 cells. In contrast, decay time was greatly increased in Delta-PtCenBP1 cells particularly when stimulated, e.g., in presence of 1mM extracellular Ca2+, [Ca2+]o. Apparent halftimes of f/f0 decrease were 8.5 s in wild type and approximately 125 s in Delta-PtCenBP1 cells, requiring approximately 30 s and approximately 180 s, respectively, to re-establish intracellular [Ca2+] homeostasis. Lowering [Ca2+]o to 0.1 and 0.01 mM caused an acceleration of intracellular [Ca2+] decay to t(1/2)=33 s and 28 s, respectively, in Delta-PtCenBP1 cells as compared to 8.1 and 5.6, respectively, for wild type cells. We conclude that, in Paramecium cells, the infraciliary lattice is the most efficient endogenous Ca2+ buffering system allowing the rapid downregulation of Ca2+ signals after exocytosis stimulation.
Collapse
Affiliation(s)
- Ivonne M Sehring
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
46
|
Calcium, troponin, calmodulin, S100 proteins: From myocardial basics to new therapeutic strategies. Biochem Biophys Res Commun 2008; 369:247-64. [PMID: 17964289 DOI: 10.1016/j.bbrc.2007.10.082] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 10/14/2007] [Indexed: 01/15/2023]
|
47
|
Rainaldi M, Yamniuk AP, Murase T, Vogel HJ. Calcium-dependent and -independent binding of soybean calmodulin isoforms to the calmodulin binding domain of tobacco MAPK phosphatase-1. J Biol Chem 2007; 282:6031-42. [PMID: 17202149 DOI: 10.1074/jbc.m608970200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The recent finding of an interaction between calmodulin (CaM) and the tobacco mitogen-activated protein kinase phosphatase-1 (NtMKP1) establishes an important connection between Ca(2+) signaling and the MAPK cascade, two of the most important signaling pathways in plant cells. Here we have used different biophysical techniques, including fluorescence and NMR spectroscopy as well as microcalorimetry, to characterize the binding of soybean CaM isoforms, SCaM-1 and -4, to synthetic peptides derived from the CaM binding domain of NtMKP1. We find that the actual CaM binding region is shorter than what had previously been suggested. Moreover, the peptide binds to the SCaM C-terminal domain even in the absence of free Ca(2+) with the single Trp residue of the NtMKP1 peptides buried in a solvent-inaccessible hydrophobic region. In the presence of Ca(2+), the peptides bind first to the C-terminal lobe of the SCaMs with a nanomolar affinity, and at higher peptide concentrations, a second peptide binds to the N-terminal domain with lower affinity. Thermodynamic analysis demonstrates that the formation of the peptide-bound complex with the Ca(2+)-loaded SCaMs is driven by favorable binding enthalpy due to a combination of hydrophobic and electrostatic interactions. Experiments with CaM proteolytic fragments showed that the two domains bind the peptide in an independent manner. To our knowledge, this is the first report providing direct evidence for sequential binding of two identical peptides of a target protein to CaM. Discussion of the potential biological role of this interaction motif is also provided.
Collapse
Affiliation(s)
- Mario Rainaldi
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | |
Collapse
|
48
|
Structural aspects of calcium-binding proteins and their interactions with targets. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0167-7306(06)41004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
49
|
Bruzzone S, Dodoni G, Kaludercic N, Basile G, Millo E, De Flora A, Di Lisa F, Zocchi E. Mitochondrial dysfunction induced by a cytotoxic adenine dinucleotide produced by ADP-ribosyl cyclases from cADPR. J Biol Chem 2006; 282:5045-5052. [PMID: 17158448 DOI: 10.1074/jbc.m609802200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ADP-ribosyl cyclases were previously shown to produce three new adenine dinucleotides, P1,P2 diadenosine 5'-diphosphate (Ap2A) and two isomers thereof (P18 and P24), from cyclic ADP-ribose (cADPR) and adenine (Basile, G., Taglialatela-Scafati, O., Damonte, G., Armirotti, A., Bruzzone, S., Guida, L., Franco, L., Usai, C., Fattorusso, E., De Flora, A., and Zocchi, E. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 14509-14514). The Ap2A isomer P24, containing an unusual C1'-N3 N-glycosidic bond, is shown here to affect mitochondrial function through (i) opening of the permeability transition pore complex (and consequent proton gradient dissipation) and (ii) inhibition of Complex I of the respiratory chain. Whereas proton gradient dissipation is dependent upon the extracellular Ca(2+) influx triggered by P24, the effect on oxygen consumption is Ca(2+) independent. The proton gradient dissipation induces apoptosis in HeLa cells and thus appears to be responsible for the already described potent cytotoxic effect of P24 on several human cell types. The other products of ADP-ribosyl cyclase activity, Ap2A and cADPR, antagonize P24-induced proton gradient dissipation and cytotoxicity, suggesting that the relative concentration of P24, cADPR, and Ap2A in cyclase-positive cells may affect the balance between cell life and death.
Collapse
Affiliation(s)
- Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV/1, 16132 Genova, Italy and
| | - Giuliano Dodoni
- Department of Biochemistry, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Nina Kaludercic
- Department of Biochemistry, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Giovanna Basile
- Department of Experimental Medicine, Section of Biochemistry, and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV/1, 16132 Genova, Italy and
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV/1, 16132 Genova, Italy and
| | - Antonio De Flora
- Department of Experimental Medicine, Section of Biochemistry, and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV/1, 16132 Genova, Italy and
| | - Fabio Di Lisa
- Department of Biochemistry, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Elena Zocchi
- Department of Experimental Medicine, Section of Biochemistry, and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV/1, 16132 Genova, Italy and.
| |
Collapse
|
50
|
Schaub MC, Hefti MA, Zaugg M. Integration of calcium with the signaling network in cardiac myocytes. J Mol Cell Cardiol 2006; 41:183-214. [PMID: 16765984 DOI: 10.1016/j.yjmcc.2006.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 03/07/2006] [Accepted: 04/04/2006] [Indexed: 12/23/2022]
Abstract
Calcium has evolved as global intracellular messenger for signal transduction in the millisecond time range by reversibly binding to calcium-sensing proteins. In the cardiomyocyte, ion pumps, ion exchangers and channels keep the cytoplasmic calcium level at rest around approximately 100 nM which is more than 10,000-fold lower than outside the cell. Intracellularly, calcium is mainly stored in the sarcoplasmic reticulum, which comprises the bulk of calcium available for the heartbeat. Regulation of cardiac function including contractility and energy production relies on a three-tiered control system, (i) immediate and fast feedback in response to mechanical load on a beat-to-beat basis (Frank-Starling relation), (ii) more sustained regulation involving transmitters and hormones as primary messengers, and (iii) long-term adaptation by changes in the gene expression profile. Calcium signaling over largely different time scales requires its integration with the protein kinase signaling network which is governed by G-protein-coupled receptors, growth factor and cytokine receptors at the surface membrane. Short-term regulation is dominated by the beta-adrenergic system, while long-term regulation with phenotypic remodeling depends on sustained signaling by growth factors, cytokines and calcium. Mechanisms and new developments in intracellular calcium handling and its interrelation with the MAPK signaling pathways are discussed in detail.
Collapse
Affiliation(s)
- Marcus C Schaub
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland.
| | | | | |
Collapse
|