1
|
Li Y, Minic Z, Hüttmann N, Khraibah A, Storey KB, Berezovski MV. Proteomic analysis of Rana sylvatica reveals differentially expressed proteins in liver in response to anoxia, dehydration or freezing stress. Sci Rep 2024; 14:15388. [PMID: 38965296 PMCID: PMC11224343 DOI: 10.1038/s41598-024-65417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Ectothermic animals that live in seasonally cold regions must adapt to seasonal variation and specific environmental conditions. During the winter, some amphibians hibernate on land and encounter limited environmental water, deficient oxygen, and extremely low temperatures that can cause the whole body freezing. These stresses trigger physiological and biochemical adaptations in amphibians that allow them to survive. Rana sylvatica, commonly known as the wood frog, shows excellent freeze tolerance. They can slow their metabolic activity to a near halt and endure freezing of 65-70% of their total body water as extracellular ice during hibernation, returning to normal when the temperatures rise again. To investigate the molecular adaptations of freeze-tolerant wood frogs, a comprehensive proteomic analysis was performed on frog liver tissue after anoxia, dehydration, or freezing exposures using a label-free LC-MS/MS proteomic approach. Quantitative proteomic analysis revealed that 87, 118, and 86 proteins were significantly upregulated in dehydrated, anoxic, and frozen groups, suggesting potential protective functions. The presence of three upregulated enzymes, glutathione S-transferase (GST), aldolase (ALDOA), and sorbitol dehydrogenase (SORD), was also validated. For all enzymes, the specific enzymatic activity was significantly higher in the livers of frozen and anoxic groups than in the controls. This study reveals that GST, ALDOA, and SORD might participate in the freeze tolerance mechanism by contributing to regulating cellular detoxification and energy metabolism.
Collapse
Affiliation(s)
- Yingxi Li
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Nico Hüttmann
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Abdullah Khraibah
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
2
|
Gupta A, Storey KB. Coordinated expression of Jumonji and AHCY under OCT transcription factor control to regulate gene methylation in wood frogs during anoxia. Gene 2021; 788:145671. [PMID: 33887369 DOI: 10.1016/j.gene.2021.145671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
Wood frogs (Rana sylvatica) can survive extended periods of whole body freezing. Freezing imparts multiple stresses on cells that include anoxia and dehydration, but these can also be experienced as independent stresses. Under anoxia stress, energy metabolism is suppressed, and pro-survival pathways are prioritized to differentially regulate some transcription factors including OCT1 and OCT4. Jumonji C domain proteins (JMJD1A and JMJD2C) are hypoxia responsive demethylases whose expression is accelerated by OCT1 and OCT4 which act to demethylate genes related to the methionine cycle. The responses by these factors to 24 h anoxia exposure and 4 h aerobic recovery was analyzed in liver and skeletal muscle of wood frogs to assess their involvement in metabolic adaptation to oxygen limitation. Immunoblot results showed a decrease in JMJD1A levels under anoxia in liver and muscle, but an increase was observed in JMJD2C demethylase protein in anoxic skeletal muscle. Protein levels of adenosylhomocysteinase (AHCY) and methionine adenosyl transferase (MAT), enzymes of the methionine cycle, also showed an increase in the reoxygenated liver, whereas the levels decreased in muscle. A transcription factor ELISA showed a decrease in DNA binding by OCT1 in the reoxygenated liver and anoxic skeletal muscle, and transcript levels also showed tissue specific gene expression. The present study provides the first analysis of the role of the OCT1 transcription factor, associated proteins, and lysine demethylases in mediating responses to anoxia by wood frog tissues.
Collapse
Affiliation(s)
- Aakriti Gupta
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada.
| |
Collapse
|
3
|
Breedon SA, Hadj-Moussa H, Storey KB. Nrf2 activates antioxidant enzymes in the anoxia-tolerant red-eared slider turtle, Trachemys scripta elegans. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:426-435. [PMID: 33773070 DOI: 10.1002/jez.2458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/26/2021] [Accepted: 03/13/2021] [Indexed: 12/30/2022]
Abstract
The freshwater red-eared slider turtle, Trachemys scripta elegans, experiences weeks to months of anoxia at the bottom of ice-locked bodies of water in the winter. While this introduces anoxia-reoxygenation cycles similar to the ischemia-reperfusion events that mammals experience, T. s. elegans does not suffer any apparent tissue damage. To survive prolonged anoxia and prevent cellular damage associated with reactive oxygen species, these turtles have developed numerous adaptions, including highly effective antioxidant defenses. Herein, we examined the subcellular localization and protein expression of nuclear factor erythroid-2-related factor 2 (Nrf2), a central transcription factor responsible for modulating cellular antioxidant responses, that was found to be upregulated and localized to the nucleus in anoxic turtles. Additionally, we examined protein levels of glutathione S-transferases (GSTs) and manganese superoxide dismutase (MnSOD) antioxidant enzymes in anoxic liver, kidney, heart, and skeletal muscle tissues. MnSOD levels were significantly higher in heart and muscle during anoxia, and the four GST isozymes (GSTK1, GSTT1, GSTP1, and GSTM3) were elevated in a tissue-specific manner during anoxia and/or aerobic recovery. Together, these results indicate that Nrf2 is likely involved in activating downstream antioxidant genes in response to anoxic stress. These results provide a possible Nrf2-mediated transcriptional mechanism that supports existing findings of enhanced antioxidant defenses that allow T. s. elegans to cope with anoxia-reoxygenation cycles, and subsequent oxidative stress.
Collapse
Affiliation(s)
- Sarah A Breedon
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Hanane Hadj-Moussa
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Ding L, Li W, Liang L, Huang Z, Li N, Zhang J, Shi H, Storey KB, Hong M. Modulation of the intestinal barrier adaptive functions in red-eared slider (Trachemys scripta elegans) invading brackish waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141744. [PMID: 32890802 DOI: 10.1016/j.scitotenv.2020.141744] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/28/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Globally, the increase in sea levels is leading to salinization of freshwater, which might influence the freshwater organisms such as red-eared slider, Trachemys scripta elegans. The turtle can invade brackish water environments, in which it must deal with elevated salinity in the gastrointestinal tract that could impact the intestinal function. The intestinal barrier provides a front-line of organismal defense against the chemical and biological environmental insults. In this study, the adaptive functions of the intestinal barrier including intestinal histomorphology, genes involved in intestinal barrier functions, and the intestinal micro-ecosystem were analyzed in the turtles exposed to freshwater (S0), 5‰ salinity (S5) and 15‰ salinity (S15) water for 30 days. The results showed that the intestine of T. s. elegans maintained normal histomorphological structure in the S5 group, whereas the villus height, crypt depth and the number of goblet cells in the S15 group were lower than that in the S5 and S0 groups. In addition, the relative expression levels of epithelial tight junction-related genes and intestinal immune-related genes in the gut were significantly upregulated in the S15 group, compared to the freshwater group. Mucin-2 gene expression was downregulated, but mucin-1 transcript levels were upregulated in salinity-treated groups. Furthermore, the abundances of phylum Proteobacteria, and genera Morganella and Aeromonas in the intestine were particularly enhanced in the S15 group than the S0 and S5 groups. Taken together, these results indicate that the intestinal barrier plays a protective role in T. s. elegans adaptation to brackish water environments. Our results provide a perspective on the evolution of salinity tolerance and help to evaluate the potential danger of the turtle to other species, and understand the challenges that other species must meet with rising sea levels.
Collapse
Affiliation(s)
- Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Weihao Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Lingyue Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zubin Huang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Na Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
5
|
Phuthong S, Settheetham-Ishida W, Natphopsuk S, Ishida T. Genetic Polymorphism of the Glutathione S-transferase
Pi 1 (GSTP1) and Susceptibility to Cervical Cancer in Human
Papilloma Virus Infected Northeastern Thai Women. Asian Pac J Cancer Prev 2018; 19:381-385. [PMID: 29479986 PMCID: PMC5980923 DOI: 10.22034/apjcp.2018.19.2.381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Objective: We aimed to investigate any association between a genetic polymorphism of the detoxification GSTP1 gene and risk of cervical cancer in northeastern Thailand. Materials and Methods: Genotyping of GSTP1 was performed for 198 squamous cell cervical cancer (SCCA) patients and 198 age-matched healthy controls with the PCR-RFLP method. Results: The respective frequencies of the G allele were 0.33 and 0.26 in the controls and cases, the difference being significant (OR = 0.69 [95% CI: 0.50-0.95, p=0.0192]). Among women infected with high-risk types of HPV, being a heterozygous carrier was associated with a reduced risk of cervical cancer (adjusted OR = 0.32 [95% CI: 0.12-0.91, p=0.031]). Similarly, a decreased risk was observed in heterozygous women with a non-smoking partner (adjusted OR = 0.27 [95% CI: 0.09-0.83, p=0.023]). Conclusions: GSTP1 polymorphism could influence susceptibility to cervical cancer among northeast Thai women; either as a independent factor or in combination with high-risk HPV infection. Dual-testing of HPV and the GSTP1 might prove an effective screening tool for cervical cancer.
Collapse
Affiliation(s)
- Sophida Phuthong
- Department of Physiology, Khon Kaen University, Khon Kaen, Thailand.
| | | | | | | |
Collapse
|
6
|
How widespread is preparation for oxidative stress in the animal kingdom? Comp Biochem Physiol A Mol Integr Physiol 2016; 200:64-78. [DOI: 10.1016/j.cbpa.2016.01.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 11/19/2022]
|
7
|
Turtle anoxia tolerance: Biochemistry and gene regulation. Biochim Biophys Acta Gen Subj 2015; 1850:1188-96. [DOI: 10.1016/j.bbagen.2015.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/01/2015] [Indexed: 12/16/2022]
|
8
|
Treidel LA, Carter AW, Bowden RM. Temperature experienced during incubation affects antioxidant capacity but not oxidative damage in hatchling red-eared slider turtles (Trachemys scripta elegans). J Exp Biol 2015; 219:561-70. [DOI: 10.1242/jeb.128843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/01/2015] [Indexed: 11/20/2022]
Abstract
Our understanding of how oxidative stress resistance phenotypes are affected by the developmental environment is limited. One component of the developmental environment, which is likely central to early life oxidative stress among ectothermic and oviparous species, is that of temperature. We investigated how incubation temperature manipulations affect oxidative damage and total antioxidant capacity (TAC) in red-eared slider turtle (Trachemys scripta elegans) hatchlings. First, to determine if temperature fluctuations elicit oxidative stress, eggs from clutches were randomly assigned to either a constant (29.5°C) or daily fluctuating temperature incubation (28.7±3°C) treatment. Second, to assess the effect of temperature fluctuation frequency on oxidative stress, eggs were incubated in one of three fluctuating incubation regimes; 28.7±3°C fluctuations every 12 (Hyper), 24 (Normal), or 48 hours (Hypo). Third, we tested the influence of average incubation temperature by incubating eggs in a daily fluctuating incubation temperature regime with a mean temperature of 26.5°C (Low), 27.1°C (Medium), or 27.7°C (High). Although the accumulation of oxidative damage in hatchlings was unaffected by any thermal manipulation, TAC was affected by both temperature fluctuation frequency and average incubation temperature. Individuals incubated with a low frequency of temperature fluctuations had reduced TAC, while incubation at a lower average temperature was associated with enhanced TAC. These results indicate that while sufficient to prevent oxidative damage, TAC is influenced by developmental thermal environments, potentially due to temperature mediated changes in metabolic rate. The observed differences in TAC may have important future consequences for hatchling fitness and overwinter survival.
Collapse
Affiliation(s)
- L. A. Treidel
- School of Biological Sciences, Illinois State University Normal IL, 61761, USA
| | - A. W. Carter
- School of Biological Sciences, Illinois State University Normal IL, 61761, USA
| | - R. M. Bowden
- School of Biological Sciences, Illinois State University Normal IL, 61761, USA
| |
Collapse
|
9
|
Venancio LPR, Silva MIA, da Silva TL, Moschetta VAG, de Campos Zuccari DAP, Almeida EA, Bonini-Domingos CR. Pollution-induced metabolic responses in hypoxia-tolerant freshwater turtles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 97:1-9. [PMID: 23993649 DOI: 10.1016/j.ecoenv.2013.06.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 06/02/2023]
Abstract
The physiological control to support the absence of O2 for long periods of diving, and oxidative damage impact caused by the whole process of hypoxia/reperfusion in freshwater turtles is well known. However, effects of contaminants may act as co-varying stressors and cause biological damage, disrupting the hypoxia/reperfusion oxidative damage control. In order to investigate the action of environmental stressors present in domestic or industrial wastewater effluent, we performed a biochemical analysis of biotransformation enzymes, oxidative stress, as well as neuromuscular, physiological and morphological parameters in Phrynops geoffroanus, an hypoxic-tolerant freshwater turtle endemic of South America, using animals sampled in urban area, contaminated by sewage and industrial effluents and animals sampled in control area. Here we demonstrate the physiological and biochemical impact caused by pollution, and the effect that these changes cause in antioxidant activity. Animals from the urban area exhibited higher EROD (ethoxyresorufin-O-deethylase, CYP1A1), GST (glutathione S-transferase), G6PDH (glucose-6-phosphate deshydrogenase), AChE (acetilcholinesterase) activities and also TEAC (trolox-equivalent antioxidant capacity) and TBARS (thiobarbituric acid reactive substances) values. We examined whether two morphometric indices (K - condition factor and HIS - hepatosomatic index) which help in assessing the general condition and possible liver disease, respectively, were modified. The K of the urban animals was significantly decreased compared to the control animals, but the HIS value was increased in animals from the urban area, supporting the idea of an impact in physiology and life quality in the urban freshwater turtles. We propose that this freshwater turtle specie have the ability to enhance its antioxidants defenses in order to protect from tissue damage caused by hypoxia and reperfusion, but also that caused by environmental contamination and that the oxidative damage control in hypoxic conditions has resulted in an adaptive condition in hypoxic-tolerant freshwater turtle species, in order to better tolerate the release of contaminated effluents resulting from human activity.
Collapse
Affiliation(s)
- Larissa Paola Rodrigues Venancio
- Department of Biology, Centro de Estudo de Quelônios (CEQ) and Laboratório de Hemoglobinas e Genética das Doenças Hematológicas (LHGDH), IBILCE, UNESP - Sao Paulo State University, Sao Jose do Rio Preto, SP 15054-000, Brazil.
| | | | | | | | | | | | | |
Collapse
|
10
|
Semenov DV. Slider turtle, Trachemys scripta elegans, as invasion threat (Reptilia; Testudines). RUSSIAN JOURNAL OF BIOLOGICAL INVASIONS 2010. [DOI: 10.1134/s2075111710040077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Aydemir T, Kavrayan D. Purification and Characterization of Glutathione-S-Transferase from Chicken Erythrocyte. ACTA ACUST UNITED AC 2009; 37:92-100. [DOI: 10.1080/10731190902742489] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Wu S, Dou W, Wu JJ, Wang JJ. Purification and partial characterization of glutathione S-transferase from insecticide-resistant field populations of Liposcelis paeta Pearman (Psocoptera: Liposcelididae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 70:136-150. [PMID: 19140127 DOI: 10.1002/arch.20285] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Enzymes that possess glutathione S-transferase (GST) activity were purified to homogeneity by glutathione-agarose affinity chromatography from three field populations of Liposcelis paeta (Pearman). These populations were collected from Nanyang city of Henan Province (NY), Wuzhou (WZ) and Hezhou (HZ) cities of Guangxi Province, China, and had different susceptibilities to dichlorvos [LC(50)s of the NY (281.48 mg/m(2)), the WZ (285.07 mg/m(2)), and the HZ (243.52 mg/m(2)), respectively]. The specific activities of purified enzymes from these three populations increased 32.24-, 99.81-, and 42.52-fold, respectively. Kinetic analyses showed that the catalytic activity of purified GST from NY population towards GSH was much higher than the others, while WZ population reached the highest in V(max) (CDNB). SDS-polyacrylamide electrophoresis revealed that the purified GST had two subunits with a molecular mass of 23.31 and 20.43 kDa for NY, 53.14 and 20.13 kDa for WZ, and 50.79 and 19.42 kDa for HZ, respectively. The in vitro inhibition studies of GSTs indicated that three kinds of insecticides (chlorpyrifos, carbosulfan, and cypermethrin) and five metallic ions (Zn(2+), Ba(2+), Ca(2+), Hg(2+), Mn(2+), and Mg(2+)) all possessed inhibitory effects on purified GST, and ethacrynic acid (EA, a specific inhibitor of GST) expressed inhibitory effects. In the bioassay, three populations of L. paeta had different susceptibilities to different insecticides, even after they were reared on diets consisting of 25% EA. The GST activities of L. paeta from different areas also showed different temperature and pH stabilities. The differences in GST among the three populations may be attributed partially to the differences in control practices for psocids between Henan and Guangxi Provinces. (c) 2009 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shuang Wu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, P. R. China
| | | | | | | |
Collapse
|
13
|
Holaas E, Bohne VB, Hamre K, Arukwe A. Hepatic retention and toxicological responses during feeding and depuration periods in Atlantic salmon ( Salmo salar ) fed graded levels of the synthetic antioxidant, butylated hydroxytoluene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:11540-9. [PMID: 19007167 DOI: 10.1021/jf8025524] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The human safety aspects of seafood production require the expansion of vital knowledge of both nutrients and possible contaminants along the entire production chain. Thus, production of safer seafood can be achieved by using feed materials that are low in contaminants, while maintaining balanced nutrition, in order to secure optimal fish and consumer health. Our understanding of primary responses of fish health and production related diseases, as well as biological processes that influence carry-over and lowering of contaminants in farmed fish, will contribute to a sustainable production of safer seafood products. Therefore, we have studied the liver deposition and toxicological effects in salmon fed graded levels of BHT during a 12-week feeding followed by a 2-week depuration period using chemical, molecular, and catalytic assays. In general, our data showed that BHT was significantly retained in the liver and selectively modulated toxicological responses in the xenobiotic biotransformation pathways during the feeding period. Specifically, BHT produced consistent dose- and time-specific gene expression patterns for AhR2alpha, AhR2beta, CYP1A1, CYP3A, UGT1, and GSTpi. The effect of BHT on the gene expression of biotransformation enzyme did not parallel enzyme activity levels, suggesting a possible inhibition by parent BHT or its metabolites. As a safety precaution, the production of farmed Atlantic salmon in Norway requires a mandatory 2-week depuration period prior to slaughtering and market delivery to ensure the elimination of veterinary medicaments, additives, and other undesirable components. Comparison of feeding and depuration periods showed that BHT was highly retained in fish liver, as only 8-13% of fed BHT was eliminated during the 2-week depuration period. This is just a part of the total concentration in the whole fish, since BHT may have been distributed and accumulated in other organs. Since BHT or its metabolites putatively inhibited biotransformation enzymes and affected metabolism of the compound, they may have potential for toxicological and adverse health effects for both fish and fish consumers through carry-over processes from the fish products.
Collapse
Affiliation(s)
- Eivind Holaas
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | |
Collapse
|
14
|
Storey KB. Anoxia tolerance in turtles: Metabolic regulation and gene expression. Comp Biochem Physiol A Mol Integr Physiol 2007; 147:263-76. [PMID: 17035057 DOI: 10.1016/j.cbpa.2006.03.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Revised: 03/14/2006] [Accepted: 03/24/2006] [Indexed: 01/08/2023]
Abstract
Freshwater turtles of the Trachemys and Chrysemys genera are champion facultative anaerobes able to survive for several months without oxygen during winter hibernation in cold water. They have been widely used as models to identify and understand the molecular mechanisms of natural anoxia tolerance and the molecular basis of the hypoxic/ischemic injuries that occur in oxygen-sensitive systems and underlie medical problems such as heart attack and stroke. Peter L. Lutz spent much of his career investigating turtle anaerobiosis with a particular focus on the mechanisms of brain ion homeostasis and neurotransmitter responses to anoxia exposure and the mechanisms that suppress brain ion channel function and neuronal excitability during anaerobiosis. Our interests intersected over the mechanisms of metabolic rate depression which is key to long term anoxia survival. Studies in my lab have shown that a key mechanism of metabolic arrest is reversible protein phosphorylation which provides coordinated suppression of the rates of multiple ATP-producing, ATP-utilizing and related cellular processes to allow organisms to enter a stable hypometabolic state. Anoxia tolerance is also supported by selective gene expression as revealed by recent studies using cDNA library and DNA array screening. New studies with both adult T. scripta elegans and hatchling C. picta marginata have identified prominent groups of genes that are up-regulated under anoxia in turtle organs, in several cases suggesting aspects of cell function and metabolic regulation that have not previously been associated with anaerobiosis. These groups of anoxia-responsive genes include mitochondrially-encoded subunits of electron transport chain proteins, iron storage proteins, antioxidant enzymes, serine protease inhibitors, transmembrane solute carriers, neurotransmitter receptors and transporters, and shock proteins.
Collapse
Affiliation(s)
- Kenneth B Storey
- Institute of Biochemistry, College of Natural Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
| |
Collapse
|
15
|
Willmore WG, Storey KB. Purification and properties of glutathione reductase from liver of the anoxia-tolerant turtle, Trachemys scripta elegans. Mol Cell Biochem 2006; 297:139-49. [PMID: 17075686 DOI: 10.1007/s11010-006-9339-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 09/28/2006] [Indexed: 01/25/2023]
Abstract
Glutathione reductase (GR) is a homodimeric flavoprotein that catalyzes the reduction of oxidized glutathione (GSSG) using NADPH as a cofactor. The enzyme is a major component of cellular defense mechanisms against oxidative injury. In this study, GR was purified from the liver of the anoxia-tolerant turtle, Trachemys scripta elegans. The overall fold purifications were 13.3- and 12.1-fold with final specific activities of 5.5 and 1.44 U/mg of protein for control and anoxic turtle GR, respectively. SDS-PAGE of purified turtle liver GR showed a single protein band at approximately 55 kDa. Reverse phase HPLC of turtle GR revealed a single peak that had the same retention time as yeast GR. No new isoform of GR was detected in liver of T. s. elegans during anoxia. The K (m) values of turtle GR for GSSG and NADPH was 44.6 and 6.82 microM, respectively, suggesting a substantially higher affinity of turtle GR toward GSSG than most other vertebrates. Unlike other human GR, NADP(+ )did not inhibit turtle GR activity. The activation energy of turtle GR, calculated from the slope of the Arrhenius plot, was 32.2 +/- 2.64 kJ/mol. Turtle GR had high activity under a broad pH range (having activity between pHs 4 and 10; optimal activity at pH 6.5) and the enzyme maintains activity under the pH drop that occurs under anoxic conditions. The high affinity of turtle GR suggests that turtles have high redox buffering capacity of tissues to protect against oxidative stress encountered during anoxia/reoxygenation.
Collapse
Affiliation(s)
- William G Willmore
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada, K1S 5B6.
| | | |
Collapse
|
16
|
Milton SL, Prentice HM. Beyond anoxia: the physiology of metabolic downregulation and recovery in the anoxia-tolerant turtle. Comp Biochem Physiol A Mol Integr Physiol 2006; 147:277-90. [PMID: 17049896 PMCID: PMC1975785 DOI: 10.1016/j.cbpa.2006.08.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 08/17/2006] [Accepted: 08/21/2006] [Indexed: 01/05/2023]
Abstract
The freshwater turtle Trachemys scripta is among the most anoxia-tolerant of vertebrates, a true facultative anaerobe able to survive without oxygen for days at room temperature to weeks or months during winter hibernation. Our good friend and colleague Peter Lutz devoted nearly 25 years to the study of the physiology of anoxia tolerance in these and other model organisms, promoting not just the basic science but also the idea that understanding the physiology and molecular mechanisms behind anoxia tolerance provides insights into critical survival pathways that may be applicable to the hypoxic/ischemic mammalian brain. Work by Peter and his colleagues focused on the factors which enable the turtle to enter a deep hypometabolic state, including decreases in ion flux ("channel arrest"), increases in inhibitory neuromodulators like adenosine and GABA, and the maintenance of low extracellular levels of excitatory compounds such as dopamine and glutamate. Our attention has recently turned to molecular mechanisms of anoxia tolerance, including the upregulation of such protective factors as heat shock proteins (Hsp72, Hsc73), the reversible downregulation of voltage gated potassium channels, and the modulation of MAP kinase pathways. In this review we discuss three phases of anoxia tolerance, including the initial metabolic downregulation over the first several hours, the long-term maintenance of neuronal function over days to weeks of anoxia, and finally recovery upon reoxygenation, with necessary defenses against reactive oxygen stress.
Collapse
Affiliation(s)
- Sarah L Milton
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | |
Collapse
|
17
|
Lee JH, Lee DH, Yu HE, Kim JH, Lee JS. Isolation and characterization of a novel glutathione S-transferase-activating peptide from the oriental medicinal plant Phellodendron amurense. Peptides 2006; 27:2069-74. [PMID: 16624447 DOI: 10.1016/j.peptides.2006.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/07/2006] [Accepted: 03/08/2006] [Indexed: 11/22/2022]
Abstract
The aim of this study was to elucidate the characteristics of glutathione S-transferase (GST)-activating compounds from medicinal plants. Among 265 kinds of medicinal plants, Phellodendron amurense showed the highest GST activity at 174.8%. The GST-activating compound of P. amurense was maximally extracted when treated with distilled water at 30 degrees C for 12 h. The compound was purified by ultrafiltration, Sephadex G-10 gel filtration chromatography, and reverse-phase HPLC. The purified GST-activating compound from P. amurense was a novel tetrapeptide with an amino acid sequence of Ala-Pro-Trp-Cys and its molecular weight was estimated to be 476 Da. It also displayed a clear detoxicative effect in 1-chloro-2,4-dinitrobenzene treated mice at a dosage of mg/kg body weight.
Collapse
Affiliation(s)
- Ju Hyun Lee
- Department of Life Science and Genetic Engineering, Paichai University, Daejeon 302-735, Republic of Korea
| | | | | | | | | |
Collapse
|