1
|
Weishaupt AK, Gremme A, Meiners T, Schwantes V, Sarnow K, Thiel A, Schwerdtle T, Aschner M, Hayen H, Bornhorst J. Dysfunctional copper homeostasis in Caenorhabditis elegans affects genomic and neuronal stability. REDOX BIOCHEMISTRY AND CHEMISTRY 2024; 10:100043. [PMID: 39726988 PMCID: PMC11671132 DOI: 10.1016/j.rbc.2024.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
While copper (Cu) is an essential trace element for biological systems due to its redox properties, excess levels may lead to adverse effects partly due to overproduction of reactive species. Thus, a tightly regulated Cu homeostasis is crucial for health. Cu dyshomeostasis and elevated labile Cu levels are associated with oxidative stress and neurodegenerative disorders, but the underlying mechanisms have yet to be fully characterized. Here, we used Caenorhabditis elegans loss-of-function mutants of the Cu chaperone ortholog atox-1 and the Cu binding protein ortholog ceruloplasmin to model Cu dyshomeostasis, as they display a shifted ratio of total Cu towards labile Cu. We applied highly selective and sensitive techniques to quantify metabolites associated to oxidative stress with focus on mitochondrial integrity, oxidative DNA damage and neurodegeneration all in the context of a disrupted Cu homeostasis. Our novel data reveal elevated oxidative stress, compromised mitochondria displaying reduced ATP levels and cardiolipin content. Cu dyshomeostasis further induced oxidative DNA damage and impaired DNA damage response as well as neurodegeneration characterized by behavior and neurotransmitter analysis. Our study underscores the essentiality of a tightly regulated Cu homeostasis as well as mitochondrial integrity for both genomic and neuronal stability.
Collapse
Affiliation(s)
- Ann-Kathrin Weishaupt
- Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Germany
- TraceAge – DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Anna Gremme
- Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Germany
| | - Torben Meiners
- Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Germany
| | - Vera Schwantes
- Institute of Inorganic and Analytical Chemistry, University of Münster, Germany
| | - Karsten Sarnow
- Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Germany
| | - Alicia Thiel
- Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Germany
| | - Tanja Schwerdtle
- TraceAge – DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Germany
| | - Julia Bornhorst
- Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Germany
- TraceAge – DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| |
Collapse
|
2
|
Yang LL, Zhang XK, Cao Y, Shi LY, Xie SY, Yang YJ, Wu SJ, Sun HZ, Tang XJ, Yuan DL, Zhang D, Xu XF, Li Q, Ying XY. PARP1 acetylation at K119 is essential in regulating the progression and proliferation of cervical cancer cells. Med Oncol 2024; 41:273. [PMID: 39400626 DOI: 10.1007/s12032-024-02315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/27/2024] [Indexed: 10/15/2024]
Abstract
Cervical cancer, CC, is one of the malignant cancers in women worldwide. Many studies about the genesis and progression of CC have been done at genomic, transcriptional, translational, and epigenetic levels. However, much less is done at post-translational modification (PTM) level. We first used pan-PTM antibodies to compare the pan PTM levels between clinical normal cervical tissues and CC tissues; we then sent the selected samples for label-free identification of acetylation sites. Next, we employed WT or K119A mutant PARP1-EGFP-STREPII plasmid transfection in Hela cells and examined various indexes including colony formation, wound healing, ROS generation, early apoptosis, and immunofluorescence and quantification of proliferation markers (Ki67, PCNA, and p-P53). Last, we examined the levels of multiple important kinases regulating cervical cancer progression. We found that pan-acetylation was the most downregulated in clinical CC samples, whereas the acetylation of PARP1, Poly(ADP-ribose) polymerase-1, was upregulated at K119. Next, we showed that PARP1-WT overexpression significantly suppressed the proliferation and progression in CC cell line Hela, while K119A overexpression didn't show any impact. Finally, PARP1-WT overexpression significantly decreased p-ERK1/2 while didn't affect the phosphorylation levels of other important kinases such as AKT, MTOR, and RPS6. This study discovered a new type of PTM of PARP1 in CC, and showed that PARP1 acetylation at K119 is essential in regulating the proliferation and progression of CC through ERK1/2. Further studies are required to investigate how PARP1 acetylation impact its function.
Collapse
Affiliation(s)
- Li-Li Yang
- The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjia Garden, Nanjing, 210029, China
- Taizhou People's Hospital Affiliated to Nanjing Medical University, 366 Taihu Road, Taizhou, 225300, China
| | - Xue-Ke Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Ying Cao
- The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjia Garden, Nanjing, 210029, China
| | - Li-Ya Shi
- Reproductive Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200082, China
- Obstetrics and Gynecology, Shanghai East Hospital Ji'an Hospital, Ji'an, 343006, China
| | - Shi-Ya Xie
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, China
| | - Yan-Jie Yang
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, China
| | - Shao-Jun Wu
- Taizhou People's Hospital Affiliated to Nanjing Medical University, 366 Taihu Road, Taizhou, 225300, China
| | - Hong-Zhan Sun
- Taizhou People's Hospital Affiliated to Nanjing Medical University, 366 Taihu Road, Taizhou, 225300, China
| | - Xue-Jun Tang
- The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjia Garden, Nanjing, 210029, China
| | - Dong-Lan Yuan
- Taizhou People's Hospital Affiliated to Nanjing Medical University, 366 Taihu Road, Taizhou, 225300, China.
| | - Dong Zhang
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, China.
| | - Xiao-Feng Xu
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
| | - Qian Li
- Department of Gynecology, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Lane, Mochou Road, Nanjing, 210018, China.
| | - Xiao-Yan Ying
- The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjia Garden, Nanjing, 210029, China.
| |
Collapse
|
3
|
Guo L. F-ATP synthase inhibitory factor 1 and mitochondria-organelle interactions: New insight and implications. Pharmacol Res 2024; 208:107393. [PMID: 39233058 DOI: 10.1016/j.phrs.2024.107393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mitochondria are metabolic hub, and act as primary sites for reactive oxygen species (ROS) and metabolites generation. Mitochondrial Ca2+ uptake contributes to Ca2+ storage. Mitochondria-organelle interactions are important for cellular metabolic adaptation, biosynthesis, redox balance, cell fate. Organelle communications are mediated by Ca2+/ROS signals, vesicle transport and membrane contact sites. The permeability transition pore (PTP) is an unselective channel that provides a release pathway for Ca2+/ROS, mtDNA and metabolites. F-ATP synthase inhibitory factor 1 (IF1) participates in regulation of PTP opening and is required for the translocation of transcriptional factors c-Myc/PGC1α to mitochondria to stimulate metabolic switch. IF1, a mitochondrial specific protein, has been suggested to regulate other organelles including nucleus, endoplasmic reticulum and lysosomes. IF1 may be able to mediate mitochondria-organelle interactions and cellular physiology through regulation of PTP activity.
Collapse
Affiliation(s)
- Lishu Guo
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
4
|
Lin C, Liu C, Hu P, Zou Z, Sun G. Design, synthesis, biological evaluation of novel piperidine-based derivatives as potent poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. Bioorg Chem 2024; 148:107455. [PMID: 38772289 DOI: 10.1016/j.bioorg.2024.107455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a crucial member of DNA repair enzymes responsible for repairing DNA single-strand breaks. Developing PARP inhibitors based on synthetic lethality strategies is an effective approach for treating breast cancer and other diseases. In this study, a series of novel piperidine-based benzamide derivatives were designed and synthesized using structure-based drug design principles. The anticancer activities of these compounds were evaluated against five human cancer cell lines (MDA-MB-436, CAPAN-1, SW-620, HepG2, SKOV3, and PC3) and the preliminary structure-activity relationships were delineated. Among the compounds, 6a and 15d demonstrated potent antiproliferative effects against MDA-MB-436 cells with IC50 values of 8.56 ± 1.07 μM and 6.99 ± 2.62 μM, respectively. Furthermore, both compounds exhibited excellent inhibitory activity against PARP-1, with IC50 values of 8.33 nM and 12.02 nM, respectively. Mechanistic investigations revealed that 6a and 15d effectively inhibited colony formation and cell migration of HCT116 cells. Moreover, they induced apoptosis by upregulating the expression of Bax and cleaved Caspase-3, while downregulating the expression of Caspase-3 and Bcl-2 in HCT116 cells. Based on its impressive pharmacodynamic data in vitro, we conducted a study to evaluate the efficacy of 15d in a xenograft tumor model in mice when used in combination with cytotoxic agents. Collectively, these findings suggest that 15d could be promising drug candidates worthy of further investigation.
Collapse
Affiliation(s)
- Chao Lin
- Yantai Institute of Materia Medica, Shandong 264000, China
| | - Chang Liu
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Panpan Hu
- School of Anesthesiology, Naval Medical University, Shanghai, 200433 , China
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai , 200433 , China; School of Anesthesiology, Naval Medical University, Shanghai, 200433 , China.
| | - Geng Sun
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai , 200433 , China; School of Anesthesiology, Naval Medical University, Shanghai, 200433 , China.
| |
Collapse
|
5
|
Paschek K, Lee M, Semenov DA, Henning TK. Prebiotic Vitamin B 3 Synthesis in Carbonaceous Planetesimals. Chempluschem 2024; 89:e202300508. [PMID: 37847591 DOI: 10.1002/cplu.202300508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Aqueous chemistry within carbonaceous planetesimals is promising for synthesizing prebiotic organic matter essential to all life. Meteorites derived from these planetesimals delivered these life building blocks to the early Earth, potentially facilitating the origins of life. Here, we studied the formation of vitamin B3 as it is an important precursor of the coenzyme NAD(P)(H), which is essential for the metabolism of all life as we know it. We propose a new reaction mechanism based on known experiments in the literature that explains the synthesis of vitamin B3. It combines the sugar precursors glyceraldehyde or dihydroxyacetone with the amino acids aspartic acid or asparagine in aqueous solution without oxygen or other oxidizing agents. We performed thermochemical equilibrium calculations to test the thermodynamic favorability. The predicted vitamin B3 abundances resulting from this new pathway were compared with measured values in asteroids and meteorites. We conclude that competition for reactants and decomposition by hydrolysis are necessary to explain the prebiotic content of meteorites. In sum, our model fits well into the complex network of chemical pathways active in this environment.
Collapse
Affiliation(s)
- Klaus Paschek
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany
| | - Mijin Lee
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany
| | - Dmitry A Semenov
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, House F, D-81377, Munich, Germany
| | - Thomas K Henning
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany
| |
Collapse
|
6
|
Wu Y, Wu M, Zheng X, Yu H, Mao X, Jin Y, Wang Y, Pang A, Zhang J, Zeng S, Xu T, Chen Y, Zhang B, Lin N, Dai H, Wang Y, Yao X, Dong X, Huang W, Che J. Discovery of a potent and selective PARP1 degrader promoting cell cycle arrest via intercepting CDC25C-CDK1 axis for treating triple-negative breast cancer. Bioorg Chem 2024; 142:106952. [PMID: 37952486 DOI: 10.1016/j.bioorg.2023.106952] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023]
Abstract
PARP1 is a multifaceted component of DNA repair and chromatin remodeling, making it an effective therapeutic target for cancer therapy. The recently reported proteolytic targeting chimera (PROTAC) could effectively degrade PARP1 through the ubiquitin-proteasome pathway, expanding the therapeutic application of PARP1 blocking. In this study, a series of nitrogen heterocyclic PROTACs were designed and synthesized through ternary complex simulation analysis based on our previous work. Our efforts have resulted in a potent PARP1 degrader D6 (DC50 = 25.23 nM) with high selectivity due to nitrogen heterocyclic linker generating multiple interactions with the PARP1-CRBN PPI surface, specifically. Moreover, D6 exhibited strong cytotoxicity to triple negative breast cancer cell line MDA-MB-231 (IC50 = 1.04 µM). And the proteomic results showed that the antitumor mechanism of D6 was found that intensifies DNA damage by intercepting the CDC25C-CDK1 axis to halt cell cycle transition in triple-negative breast cancer cells. Furthermore, in vivo study, D6 showed a promising PK property with moderate oral absorption activity. And D6 could effectively inhibit tumor growth (TGI rate = 71.4 % at 40 mg/kg) without other signs of toxicity in MDA-MB-321 tumor-bearing mice. In summary, we have identified an original scaffold and potent PARP1 PROTAC that provided a novel intervention strategy for the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Yiquan Wu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingfei Wu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Zheng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310058, China
| | - Hengyuan Yu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinfei Mao
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuyuan Jin
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310058, China
| | - Yanhong Wang
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Ao Pang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingyu Zhang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shenxin Zeng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310058, China
| | - Tengfei Xu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong Chen
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Zhang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Nengming Lin
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Haibin Dai
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Yuwei Wang
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau 999078, China
| | - Xiaojun Yao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310058, China.
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Sengupta S, Levy DL. Organelle Communication with the Nucleus. Results Probl Cell Differ 2024; 73:3-23. [PMID: 39242372 PMCID: PMC11409190 DOI: 10.1007/978-3-031-62036-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Compartmentalization of cellular components is critical to the spatiotemporal and environmental regulation of biochemical activities inside a cell, ensures the proper division of cellular labor and resources, and increases the efficiency of metabolic processes. However, compartmentalization also poses a challenge as organelles often need to communicate across these compartments to complete reaction pathways. These communication signals are often critical aspects of the cellular response to changing environmental conditions. A central signaling hub in the cell, the nucleus communicates with mitochondria, lysosomes, the endoplasmic reticulum, and the Golgi body to ensure optimal organellar and cellular performance. Here we review different mechanisms by which these organelles communicate with the nucleus, focusing on anterograde and retrograde signaling of mitochondria, localization-based signaling of lysosomes, the unfolded protein response of the endoplasmic reticulum, and evidence for nucleus-Golgi signaling. We also include a brief overview of some less well-characterized mechanisms of communication between non-nuclear organelles.
Collapse
Affiliation(s)
- Sourabh Sengupta
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
8
|
Chen H, Hu Y, Zhuang Z, Wang D, Ye Z, Jing J, Cheng X. Advancements and Obstacles of PARP Inhibitors in Gastric Cancer. Cancers (Basel) 2023; 15:5114. [PMID: 37958290 PMCID: PMC10647262 DOI: 10.3390/cancers15215114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Gastric cancer (GC) is a common and aggressive cancer of the digestive system, exhibiting high aggressiveness and significant heterogeneity. Despite advancements in improving survival rates over the past few decades, GC continues to carry a worrisome prognosis and notable mortality. As a result, there is an urgent need for novel therapeutic approaches to address GC. Recent targeted sequencing studies have revealed frequent mutations in DNA damage repair (DDR) pathway genes in many GC patients. These mutations lead to an increased reliance on poly (adenosine diphosphate-ribose) polymerase (PARP) for DNA repair, making PARP inhibitors (PARPi) a promising treatment option for GC. This article presents a comprehensive overview of the rationale and development of PARPi, highlighting its progress and challenges in both preclinical and clinical research for treating GC.
Collapse
Affiliation(s)
- Hongjie Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; (H.C.); (Y.H.); (D.W.)
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Yangchan Hu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; (H.C.); (Y.H.); (D.W.)
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Zirui Zhuang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou 310024, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dingyi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; (H.C.); (Y.H.); (D.W.)
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Zu Ye
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| | - Ji Jing
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
9
|
Zhuang Y, Haugrud AB, Schaefer MA, Messerli SM, Miskimins WK. Ability of metformin to deplete NAD+ contributes to cancer cell susceptibility to metformin cytotoxicity and is dependent on NAMPT expression. Front Oncol 2023; 13:1225220. [PMID: 37583931 PMCID: PMC10424729 DOI: 10.3389/fonc.2023.1225220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/07/2023] [Indexed: 08/17/2023] Open
Abstract
Background Nicotinamide adenine dinucleotide (NAD+) is vital for not only energy metabolism but also signaling pathways. A major source of NAD+ depletion is the activation of poly (ADP-ribose) polymerase (PARP) in response to DNA damage. We have previously demonstrated that metformin can cause both caspase-dependent cell death and PARP-dependent cell death in the MCF7 breast cancer cells but not in the MDA-MB-231 (231) breast cancer cells while in high-glucose media. We hypothesize that depletion of NAD+ in MCF7 cells via activation of PARP contributes to the cell death caused by metformin. Nicotinamide phosphoribosyltransferase (NAMPT), a key rate-limiting step in converting nicotinamide (vitamin B3) into NAD+, is essential for regenerating NAD+ for normal cellular processes. Evidence shows that overexpression of NAMPT is associated with tumorigenesis. We hypothesize that NAMPT expression may determine the extent to which cancer cells are sensitive to metformin. Results In this study, we found that metformin significantly decreases NAD+ levels over time, and that this could be delayed by PARP inhibitors. Pretreatment with NAD+ in MCF7 cells also prevents cell death and the enlargement of mitochondria and protects mitochondria from losing membrane potential caused by metformin. This leads to MCF7 cell resistance to metformin cytotoxicity in a manner similar to 231 cells. By studying the differences in NAD+ regulation in these two breast cancer cell lines, we demonstrate that NAMPT is expressed at higher levels in 231 cells than in MCF7 cells. When NAMPT is genetically repressed in 231 cells, they become much more sensitive to metformin-induced cell death. Conversely, overexpressing NAMPT in HEK-293 (293) cells causes the cells to be more resistant to metformin's growth inhibitory effects. The addition of a NAMPT activator also decreased the sensitivity of MCF7 cells to metformin, while the NAMPT activator, P7C3, protects against metformin-induced cytotoxicity. Conclusions Depletion of cellular NAD+ is a key aspect of sensitivity of cancer cells to the cytotoxic effects of metformin. NAMPT plays a key role in maintaining sufficient levels of NAD+, and cells that express elevated levels of NAMPT are resistant to killing by metformin.
Collapse
Affiliation(s)
- Yongxian Zhuang
- Cancer Biology and Immunotherapies, Sanford Research, Sioux Falls, SD, United States
| | - Allison B. Haugrud
- Cancer Biology and Immunotherapies, Sanford Research, Sioux Falls, SD, United States
| | - Meg A. Schaefer
- Cancer Biology and Immunotherapies, Sanford Research, Sioux Falls, SD, United States
- Sanford Program for Undergraduate Research (SPUR) Program, Sanford Research, Sioux Falls, SD, United States
| | - Shanta M. Messerli
- Cancer Biology and Immunotherapies, Sanford Research, Sioux Falls, SD, United States
| | - W. Keith Miskimins
- Cancer Biology and Immunotherapies, Sanford Research, Sioux Falls, SD, United States
| |
Collapse
|
10
|
Song D, Lian Y, Zhang L. The potential of activator protein 1 (AP-1) in cancer targeted therapy. Front Immunol 2023; 14:1224892. [PMID: 37483616 PMCID: PMC10361657 DOI: 10.3389/fimmu.2023.1224892] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Activator protein-1 (AP-1) is a transcription factor that consists of a diverse group of members including Jun, Fos, Maf, and ATF. AP-1 involves a number of processes such as proliferation, migration, and invasion in cells. Dysfunctional AP-1 activity is associated with cancer initiation, development, invasion, migration and drug resistance. Therefore, AP-1 is a potential target for cancer targeted therapy. Currently, some small molecule inhibitors targeting AP-1 have been developed and tested, showing some anticancer effects. However, AP-1 is complex and diverse in its structure and function, and different dimers may play different roles in different type of cancers. Therefore, more research is needed to reveal the specific mechanisms of AP-1 in cancer, and how to select appropriate inhibitors and treatment strategies. Ultimately, this review summarizes the potential of combination therapy for cancer.
Collapse
Affiliation(s)
- Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Yan Lian
- Department of Obstetrics, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
11
|
Bianchi AR, La Pietra A, Guerretti V, De Maio A, Capriello T, Ferrandino I. Synthesis and Degradation of Poly(ADP-ribose) in Zebrafish Brain Exposed to Aluminum. Int J Mol Sci 2023; 24:ijms24108766. [PMID: 37240112 DOI: 10.3390/ijms24108766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Poly(ADPribosyl)ation is a post-translational protein modification, catalyzed by poly(ADP-ribose) polymerase (PARPs) enzymes, responsible for ADP-ribose polymer synthesis (PAR) from NAD+. PAR turnover is assured by poly(ADPR) glycohydrolase (PARGs) enzymes. In our previous study, the altered histology of zebrafish brain tissue, resulting in demyelination and neurodegeneration also with poly(ADPribosyl)ation hyperactivation, was demonstrated after aluminum (Al) exposure for 10 and 15 days. On the basis of this evidence, the aim of the present research was to study the synthesis and degradation of poly(ADP-ribose) in the brain of adult zebrafish exposed to 11 mg/L of Al for 10, 15, and 20 days. For this reason, PARP and PARG expression analyses were carried out, and ADPR polymers were synthesized and digested. The data showed the presence of different PARP isoforms, among which a human PARP1 counterpart was also expressed. Moreover, the highest PARP and PARG activity levels, responsible for the PAR production and its degradation, respectively, were measured after 10 and 15 days of exposure. We suppose that PARP activation is related to DNA damage induced by Al, while PARG activation is needed to avoid PAR accumulation, which is known to inhibit PARP and promote parthanatos. On the contrary, PARP activity decrease at longer exposure times suggests that neuronal cells could adopt the stratagem of reducing polymer synthesis to avoid energy expenditure and allow cell survival.
Collapse
Affiliation(s)
- Anna Rita Bianchi
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
| | - Alessandra La Pietra
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
| | - Valeria Guerretti
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
| | - Anna De Maio
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
| | - Teresa Capriello
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
| | - Ida Ferrandino
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
| |
Collapse
|
12
|
Wang C, Liu A, Chen J, Liu S, Wei W. Sensitive detection of PARP-1 activity by electrochemical impedance spectroscopy based on biomineralization. Anal Chim Acta 2023; 1249:340937. [PMID: 36868772 DOI: 10.1016/j.aca.2023.340937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Poly(ADP)ribose polymerase-1 (PARP-1) has attracted much attention as a tumor marker in recent years. Based on the large negative charge and hyperbranched structure of PARP-1 amplified products (PAR), many detection methods have been established. Herein, we proposed a label-free electrochemical impedance detection method based on the large amount of phosphate groups (PO43-) on the surface of PAR. Although EIS method has high sensitivity, it is not sensitive enough to discern PAR effectively. Therefore, biomineralization was incorporated to increase the resistance value (Rct) distinctly because of the poor electrical conductivity of CaP. During biomineralization process, plentiful Ca2+ was captured by PO43- of PAR through electrostatic interaction, resulting in an increasing Rct of modified ITO electrode. In contrast, when PRAP-1 was absent, only a little Ca2+ was adsorbed on the phosphate backbone of the activating dsDNA. As a result, the biomineralization effect was slight and only a negligible Rct change occurred. Experiment results showed that Rct was associated closely with the activity of PARP-1. There was a linear correlation between them when the activity value was in the range of 0.005-1.0 U. The calculated detection limit was 0.003 U. Results of real samples detection and the recovery experiments were satisfactory, indicating the method has an excellent application prospect.
Collapse
Affiliation(s)
- Chenchen Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, State Key Laboratory of Bioelectronics, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Anran Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, State Key Laboratory of Bioelectronics, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jin Chen
- The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, State Key Laboratory of Bioelectronics, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, State Key Laboratory of Bioelectronics, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
13
|
Rahman A, Belur Ningegowda N, Kammathalli Siddappa M, Kumar Jain S, Malleshappa Kumaraswamy H, Achur R, Devappa Satyanarayan N, Malavalli Mahadevan K. Palladium‐Catalysed C−C Bond Forming 4‐Cyanophenyl‐nicotinamide Conjugates; Anti‐Pancreatic Cancer Screening on Capan‐1 Cell Line. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202204309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/22/2023] [Indexed: 01/04/2025]
Abstract
AbstractPancreatic cancer is the most severe, as a consequence of asymptomatic nature and ineffective therapies among all malignancies. Nicotinamides are effective ring systems in the treatment of pancreatic cancer with their wide range of applications. In the present investigation, nicotinamide and 4‐cyanophenyl ring systems are brought together to obtain greater potency. For the process of investigation, PARP1 protein is targeted and evaluated by docking at the active site to determine the protein‐ligand interaction, revealed the potential with the binding affinity of −9.0 to −11.0 Kcal/mol to inhibit the poly ADP‐ribose polymerase 1 (PARP1) pathway. The MTT‐assay assessment of a synthesized series has been performed against Capan‐1 pancreatic cancer cell line. The nicotinamide compounds demonstrated a significant inhibitory effect over Capan‐1 cell line, and 6‐(4‐cyanophenyl)‐N‐(3‐phenylpropyl)nicotinamide exhibited as a potential lead for the development of novel chemotherapeutics against pancreatic cancer.
Collapse
Affiliation(s)
- Abdul Rahman
- Department of Pharmaceutical Chemistry Kuvempu University Post Graduate Centre, Kadur 577548 Chikkamagaluru Karnataka India
| | - Nippu Belur Ningegowda
- Department of Pharmaceutical Chemistry Kuvempu University Post Graduate Centre, Kadur 577548 Chikkamagaluru Karnataka India
| | | | - Sandeep Kumar Jain
- Laboratory of Experimental Medicine Department of Biotechnology Kuvempu University 577451 Shankaragatta Karnataka India
| | | | - Rajeshwara Achur
- Department of Biochemistry Kuvempu University Shankargatta 577451 Shimoga Karnataka India
| | - Nayak Devappa Satyanarayan
- Department of Pharmaceutical Chemistry Kuvempu University Post Graduate Centre, Kadur 577548 Chikkamagaluru Karnataka India
| | - Kittappa Malavalli Mahadevan
- Kittappa Malavalli Mahadevand Department of Chemistry Kuvempu University Post Graduate Centre, Kadur 577548 Chikkamagaluru Karnataka India
| |
Collapse
|
14
|
Soltani S, Sharifi-Zahabi E, Sangsefidi ZS, Ahmadi Vasmehjani A, Meshkini F, Clayton ZS, Abdollahi S. The effect of resveratrol supplementation on biomarkers of liver health: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2023; 37:1153-1166. [PMID: 36642444 DOI: 10.1002/ptr.7719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/25/2022] [Accepted: 12/18/2022] [Indexed: 01/17/2023]
Abstract
This study aimed to evaluate the effect of resveratrol on liver biomarkers in adult participants, using systematic review and meta-analysis of randomized controlled trials. PubMed, Scopus, Web of Science and Cochran Library was searched, up to October 2021. The pooled effects were calculated using a random-effects model and expressed as weighted mean difference and 95% confidence interval. The methodological quality of studies as well as certainty of evidence were assessed by standard tools. Thirty-seven relevant trials were found. Although overall analysis found no significant change, subgroup analysis showed a significant improvement in alanine aminotransferase (ALT; -7.79 U/L) and glutamyl transferase (-6.0 U/L) in patients with liver disorders, and ALT (-2.22 U/L) in younger adults; however, high-dose supplementation (>1,000 mg/day) appeared to increase alkaline phosphatase concentration (+5.07 U/L). ALT also increased in older adults (+2.33 U/L) following resveratrol supplementation. We found resveratrol did not have a significant effect on liver health in the general population. However, resveratrol could be effective in patients with liver disorders. Our findings also suggest that high-dose resveratrol administration and supplementation in older adults should be performed with caution. Further high-quality clinical trials are also needed to firmly establish the clinical efficacy of resveratrol.
Collapse
Affiliation(s)
- Sepideh Soltani
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elham Sharifi-Zahabi
- School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Sadat Sangsefidi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Azam Ahmadi Vasmehjani
- Department of Nutrition, School of Public Health, Shahid Sadughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Meshkini
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zachary Stephen Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Shima Abdollahi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
15
|
Zhang W, Guo J, Chen Q. Role of PARP-1 in Human Cytomegalovirus Infection and Functional Partners Encoded by This Virus. Viruses 2022; 14:2049. [PMID: 36146855 PMCID: PMC9501325 DOI: 10.3390/v14092049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that threats the majority of the world's population. Poly (ADP-ribose) polymerase 1 (PARP-1) and protein poly (ADP-ribosyl)ation (PARylation) regulates manifold cellular functions. The role of PARP-1 and protein PARylation in HCMV infection is still unknown. In the present study, we found that the pharmacological and genetic inhibition of PARP-1 attenuated HCMV replication, and PARG inhibition favors HCMV replication. PARP-1 and its enzymatic activity were required for efficient HCMV replication. HCMV infection triggered the activation of PARP-1 and induced the translocation of PARP-1 from nucleus to cytoplasm. PARG was upregulated in HCMV-infected cells and this upregulation was independent of viral DNA replication. Moreover, we found that HCMV UL76, a true late protein of HCMV, inhibited the overactivation of PARP-1 through direct binding to the BRCT domain of PARP-1. In addition, UL76 also physically interacted with poly (ADP-ribose) (PAR) polymers through the RG/RGG motifs of UL76 which mediates its recruitment to DNA damage sites. Finally, PARP-1 inhibition or depletion potentiated HCMV-triggered induction of type I interferons. Our results uncovered the critical role of PARP-1 and PARP-1-mediated protein PARylation in HCMV replication.
Collapse
Affiliation(s)
| | | | - Qiang Chen
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| |
Collapse
|
16
|
Ruszkiewicz JA, Bürkle A, Mangerich A. Fueling genome maintenance: On the versatile roles of NAD + in preserving DNA integrity. J Biol Chem 2022; 298:102037. [PMID: 35595095 PMCID: PMC9194868 DOI: 10.1016/j.jbc.2022.102037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
NAD+ is a versatile biomolecule acting as a master regulator and substrate in various cellular processes, including redox regulation, metabolism, and various signaling pathways. In this article, we concisely and critically review the role of NAD+ in mechanisms promoting genome maintenance. Numerous NAD+-dependent reactions are involved in the preservation of genome stability, the cellular DNA damage response, and other pathways regulating nucleic acid metabolism, such as gene expression and cell proliferation pathways. Of note, NAD+ serves as a substrate to ADP-ribosyltransferases, sirtuins, and potentially also eukaryotic DNA ligases, all of which regulate various aspects of DNA integrity, damage repair, and gene expression. Finally, we critically analyze recent developments in the field as well as discuss challenges associated with therapeutic actions intended to raise NAD+ levels.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
17
|
Kenanoglu S, Kandemir N, Akalin H, Gokce N, Gol MF, Gultekin M, Koseoglu E, Mirza M, Dundar M. Evaluation of Utilizing the Distinct Genes as Predictive Biomarkers in Late-Onset Alzheimer's Disease. Glob Med Genet 2022; 9:110-117. [PMID: 35707770 PMCID: PMC9192179 DOI: 10.1055/s-0042-1743570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by a devastating decline in cognitive activities among all types of dementia, and it severely affects the quality of life. Late-onset AD (LOAD) occurs after the age of 65 years and develops sporadically. Although aging comes first along the main risk factors underlying LOAD, disease-causing susceptibility genes have been associated with disease pathogenesis. In our study, we included the genes
PARP1
,
POLB
,
HTRA2
,
SLC1A2
,
HS1BP3
, and
DRD3
to be investigated in LOAD patients based on their expression levels. Within this framework, we aimed to determine the possible functions of these genes in the pathophysiology of the disease. We investigated whether the utilization of these genes as biomarkers in the early diagnosis of LOAD may help the treatment scheme to be applied in the clinic. We involved 50 individuals in the study and collected peripheral blood samples from the patients and control groups for molecular genetic analysis. Subsequently, RNA was extracted from the peripheral blood samples, and expression analyzes were performed using qualitative reverse transcription polymerase chain reaction. The results obtained were evaluated by using proper statistical methods. Our results demonstrated that there was no difference between patient and control groups in terms of
HTRA2
,
DRD3
,
HS1BP3
, and
POLB
genes. The expression levels of the
SLC1A2
and
PARP1
genes were significantly lower in the patient group compared with the control group. In conclusion, we presume that the
PARP1
and
SLC1A2
genes can be utilized as molecular biomarkers for LOAD.
Collapse
Affiliation(s)
- Sercan Kenanoglu
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nefise Kandemir
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Department of Medical Genetics, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Hilal Akalin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nuriye Gokce
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet F. Gol
- Department of Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Murat Gultekin
- Department of Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Emel Koseoglu
- Department of Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Meral Mirza
- Department of Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Munis Dundar
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
18
|
Li Z, Wang-Heaton H, Cartwright BM, Makinwa Y, Hilton BA, Musich PR, Shkriabai N, Kvaratskhelia M, Guan S, Chen Q, Yu X, Zou Y. ATR prevents Ca 2+ overload-induced necrotic cell death through phosphorylation-mediated inactivation of PARP1 without DNA damage signaling. FASEB J 2021; 35:e21373. [PMID: 33811702 PMCID: PMC8252533 DOI: 10.1096/fj.202001636rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/10/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022]
Abstract
Hyperactivation of PARP1 is known to be a major cause of necrotic cell death by depleting NAD+/ATP pools during Ca2+ overload which is associated with many ischemic diseases. However, little is known about how PARP1 hyperactivity is regulated during calcium overload. In this study we show that ATR kinase, well known for its role in DNA damage responses, suppresses ionomycin, glutamate, or quinolinic acid‐induced necrotic death of cells including SH‐SY5Y neuronal cells. We found that the inhibition of necrosis requires the kinase activity of ATR. Specifically, ATR binds to and phosphorylates PARP1 at Ser179 after the ionophore treatments. This site‐specific phosphorylation inactivates PARP1, inhibiting ionophore‐induced necrosis. Strikingly, all of this occurs in the absence of detectable DNA damage and signaling up to 8 hours after ionophore treatment. Furthermore, little AIF was released from mitochondria/cytoplasm for nuclear import, supporting the necrotic type of cell death in the early period of the treatments. Our results reveal a novel ATR‐mediated anti‐necrotic mechanism in the cellular stress response to calcium influx without DNA damage signaling.
Collapse
Affiliation(s)
- Zhengke Li
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Hui Wang-Heaton
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Brian M Cartwright
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Yetunde Makinwa
- Department of Cancer Biology, University of Toledo College of Medicine, Toledo, OH, USA
| | - Benjamin A Hilton
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Phillip R Musich
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Nikolozi Shkriabai
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mamuka Kvaratskhelia
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Shengheng Guan
- Department of Pharmaceutical Chemistry and Mass Spectrometry Facility, University of California, San Francisco, CA, USA
| | - Qian Chen
- Department of Cancer Genetics and Epigenetics, City of Hope, Duarte, CA, USA
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, City of Hope, Duarte, CA, USA
| | - Yue Zou
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Department of Cancer Biology, University of Toledo College of Medicine, Toledo, OH, USA
| |
Collapse
|
19
|
Jeong KY, Park M. Poly adenosine diphosphate-ribosylation, a promising target for colorectal cancer treatment. World J Gastrointest Oncol 2021. [PMID: 34163574 DOI: 10.4251/wjgo.v13.i6.574.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of colorectal cancer (CRC) can result from changes in a variety of cellular systems within the tumor microenvironment. Particularly, it is primarily associated with genomic instability that is the gradual accumulation of genetic and epigenetic changes consisting of a characteristic set of mutations crucial for pathways in CRC progression. Based on this background, the potential to focus on poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP)-1 and poly-ADP ribosylation (PARylation) as the main causes of malignant formation of CRC may be considered. One of the important functions of PARP-1 and PARylation is its deoxyribonucleic acid (DNA) repair function, which plays a pivotal role in the DNA damage response and prevention of DNA damage maintaining the redox homeostasis involved in the regulation of oxidation and superoxide. PARP-1 and PARylation can also alter epigenetic markers and chromatin structure involved in transcriptional regulation for the oncogenes or tumor suppressor genes by remodeling histone and chromatin enzymes. Given the high importance of these processes in CRC, it can be considered that PARP-1 and PARylation are at the forefront of the pathological changes required for CRC progression. Therefore, this review addresses the current molecular biological features for understanding the multifactorial function of PARP-1 and PARylation in CRC related to the aforementioned roles; furthermore, it presents a summary of recent approaches with PARP-1 inhibition in non-clinical and clinical studies targeting CRC. This understanding could help embrace the importance of targeting PARP-1 and PARylation in the treatment of CRC, which may present the potential to identify various research topics that can be challenged both non-clinically and clinically.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea.
| | - Minhee Park
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| |
Collapse
|
20
|
Jeong KY, Park M. Poly adenosine diphosphate-ribosylation, a promising target for colorectal cancer treatment. World J Gastrointest Oncol 2021; 13:574-588. [PMID: 34163574 PMCID: PMC8204356 DOI: 10.4251/wjgo.v13.i6.574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
The development of colorectal cancer (CRC) can result from changes in a variety of cellular systems within the tumor microenvironment. Particularly, it is primarily associated with genomic instability that is the gradual accumulation of genetic and epigenetic changes consisting of a characteristic set of mutations crucial for pathways in CRC progression. Based on this background, the potential to focus on poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP)-1 and poly-ADP ribosylation (PARylation) as the main causes of malignant formation of CRC may be considered. One of the important functions of PARP-1 and PARylation is its deoxyribonucleic acid (DNA) repair function, which plays a pivotal role in the DNA damage response and prevention of DNA damage maintaining the redox homeostasis involved in the regulation of oxidation and superoxide. PARP-1 and PARylation can also alter epigenetic markers and chromatin structure involved in transcriptional regulation for the oncogenes or tumor suppressor genes by remodeling histone and chromatin enzymes. Given the high importance of these processes in CRC, it can be considered that PARP-1 and PARylation are at the forefront of the pathological changes required for CRC progression. Therefore, this review addresses the current molecular biological features for understanding the multifactorial function of PARP-1 and PARylation in CRC related to the aforementioned roles; furthermore, it presents a summary of recent approaches with PARP-1 inhibition in non-clinical and clinical studies targeting CRC. This understanding could help embrace the importance of targeting PARP-1 and PARylation in the treatment of CRC, which may present the potential to identify various research topics that can be challenged both non-clinically and clinically.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| | - Minhee Park
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| |
Collapse
|
21
|
Evers MS, Roullier-Gall C, Morge C, Sparrow C, Gobert A, Alexandre H. Vitamins in wine: Which, what for, and how much? Compr Rev Food Sci Food Saf 2021; 20:2991-3035. [PMID: 33884746 DOI: 10.1111/1541-4337.12743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/01/2022]
Abstract
Vitamins are essential compounds to yeasts, and notably in winemaking contexts. Vitamins are involved in numerous yeast metabolic pathways, including those of amino acids, fatty acids, and alcohols, which suggests their notable implication in fermentation courses, as well as in the development of aromatic compounds in wines. Although they are major components in the course of those microbial processes, their significance and impact have not been extensively studied in the context of winemaking and wine products, as most of the studies focusing on the subject in the past decades have relied on relatively insensitive and imprecise analytical methods. Therefore, this review provides an extensive overview of the current knowledge regarding the impacts of vitamins on grape must fermentations, wine-related yeast metabolisms, and requirements, as well as on the profile of wine sensory characteristics. We also highlight the methodologies and techniques developed over time to perform vitamin analysis in wines, and assess the importance of precisely defining the role played by vitamins in winemaking processes, to ensure finer control of the fermentation courses and product characteristics in a highly complex matrix.
Collapse
Affiliation(s)
- Marie Sarah Evers
- Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France.,SAS Sofralab, Magenta, France
| | - Chloé Roullier-Gall
- Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| | | | | | | | - Hervé Alexandre
- Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| |
Collapse
|
22
|
Maluchenko NV, Koshkina DO, Feofanov AV, Studitsky VM, Kirpichnikov MP. Poly(ADP-Ribosyl) Code Functions. Acta Naturae 2021; 13:58-69. [PMID: 34377556 PMCID: PMC8327145 DOI: 10.32607/actanaturae.11089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/10/2020] [Indexed: 01/14/2023] Open
Abstract
Poly(ADP-ribosyl)ation plays a key role in cellular metabolism. Covalent poly(ADP-ribosyl)ation affects the activity of the proteins engaged in DNA repair, chromatin structure regulation, gene expression, RNA processing, ribosome biogenesis, and protein translation. Non-covalent PAR-dependent interactions are involved in the various types of cellular response to stress and viral infection, such as inflammation, hormonal signaling, and the immune response. The review discusses how structurally different poly(ADP-ribose) (PAR) molecules composed of identical monomers can differentially participate in various cellular processes acting as the so-called "PAR code." The article describes the ability of PAR polymers to form functional biomolecular clusters through a phase-separation in response to various signals. This phase-separation contributes to rapid spatial segregation of biochemical processes and effective recruitment of the necessary components. The cellular PAR level is tightly controlled by a network of regulatory proteins: PAR code writers, readers, and erasers. Impaired PAR metabolism is associated with the development of pathological processes causing oncological, cardiovascular, and neurodegenerative diseases. Pharmacological correction of the PAR level may represent a new approach to the treatment of various diseases.
Collapse
Affiliation(s)
- N. V. Maluchenko
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
| | - D. O. Koshkina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
| | - A. V. Feofanov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - V. M. Studitsky
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
- Fox Chase Cancer Center, Philadelphia, PA, 19111-2497 USA
| | - M. P. Kirpichnikov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
23
|
Song D, He H, Sinha I, Hases L, Yan F, Archer A, Haldosen LA, Zhao C, Williams C. Blocking Fra-1 sensitizes triple-negative breast cancer to PARP inhibitor. Cancer Lett 2021; 506:23-34. [PMID: 33652085 DOI: 10.1016/j.canlet.2021.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
The AP-1 member Fra-1 is overexpressed in TNBC and plays crucial roles in tumor progression and treatment resistance. In a previous large-scale screen, we identified PARP1 to be among 118 proteins that interact with endogenous chromatin-bound Fra-1 in TNBC cells. PARP1 inhibitor (olaparib) is currently in clinical use for treatment of BRCA-mutated TNBC breast cancer. Here, we demonstrate that the Fra-1-PARP1 interaction impacts the efficacy of olaparib treatment. We show that PARP1 interacts with and downregulates Fra-1, thereby reducing AP-1 transcriptional activity. Olaparib treatment, or silencing of PARP1, consequently, increases Fra-1 levels and enhances its transcriptional activity. Increased Fra-1 can have adverse effect, including treatment resistance. We also found that a large fraction of PARP1-regulated genes was dependent on Fra-1. We show that by inhibiting Fra-1/AP-1, non-BRCA-mutated TNBC cells can become sensitized to olaparib treatment. We identify that high PARP1 expression is indicative of a poor clinical outcome in breast cancer patients overall (P = 0.01), but not for HER-2 positive patients. In conclusion, by exploring the functionality of the Fra-1 and PARP1 interaction, we propose that targeting Fra-1 could serve as a combinatory therapeutic approach to improve olaparib treatment outcome for TNBC patients.
Collapse
Affiliation(s)
- Dandan Song
- Department of Biosciences and Nutrition, Karolinska Institutet, S-141 83 Huddinge, Sweden.
| | - Huan He
- School of Public Health, Jilin University, Changchun, 130021, China.
| | - Indranil Sinha
- Department of Women's and Children's Health, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | - Linnea Hases
- Department of Biosciences and Nutrition, Karolinska Institutet, S-141 83 Huddinge, Sweden; Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Solna, Sweden.
| | - Feifei Yan
- Department of Biosciences and Nutrition, Karolinska Institutet, S-141 83 Huddinge, Sweden.
| | - Amena Archer
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Solna, Sweden.
| | - Lars-Arne Haldosen
- Department of Biosciences and Nutrition, Karolinska Institutet, S-141 83 Huddinge, Sweden.
| | - Chunyan Zhao
- Department of Biosciences and Nutrition, Karolinska Institutet, S-141 83 Huddinge, Sweden.
| | - Cecilia Williams
- Department of Biosciences and Nutrition, Karolinska Institutet, S-141 83 Huddinge, Sweden; Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Solna, Sweden.
| |
Collapse
|
24
|
Ghanem A, Melzer AM, Zaal E, Neises L, Baltissen D, Matar O, Glennemeier-Marke H, Almouhanna F, Theobald J, Abu El Maaty MA, Berkers C, Wölfl S. Ascorbate kills breast cancer cells by rewiring metabolism via redox imbalance and energy crisis. Free Radic Biol Med 2021; 163:196-209. [PMID: 33359260 DOI: 10.1016/j.freeradbiomed.2020.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/15/2020] [Accepted: 12/14/2020] [Indexed: 01/10/2023]
Abstract
The idea to use megadoses of ascorbate (vitamin C) for cancer treatment has recently been revived. Despite clear efficacy in animal experimentation, our understanding of the cellular and molecular mechanisms of this treatment is still limited and suggests a combined oxidative and metabolic mechanism behind the selective cytotoxicity of ascorbate towards cancerous cells. To gain more insight into the cellular effects of high doses of ascorbate, we performed a detailed analysis of metabolic changes and cell survival of both luminal and basal-like breast cancer cells treated with ascorbate and revealed a distinctive metabolic shift virtually reversing the Warburg effect and triggering a severe disruption of redox homeostasis. High doses of ascorbate were cytotoxic against MCF7 and MDA-MB231 cells representing luminal and basal-like breast cancer phenotypes. Cell death was dependent on ascorbate-induced oxidative stress and accumulation of ROS, DNA damage, and depletion of essential intracellular co-factors including NAD+/NADH, associated with a multifaceted metabolic rewiring. This included a sharp disruption of glycolysis at the triose phosphate level, a rapid drop in ATP levels, and redirection of metabolites toward lipid droplet accumulation and increased metabolites and enzymatic activity in the pentose phosphate pathway (PPP). High doses of ascorbate also inhibited the TCA cycle and increased oxygen consumption. Together the severe disruptions of the intracellular metabolic homeostasis on multiple levels "redox crisis and energetic catastrophe" consequently trigger a rapid irreversible cell death.
Collapse
Affiliation(s)
- Ali Ghanem
- Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Germany
| | - Anna Maria Melzer
- Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Germany
| | - Esther Zaal
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, the Netherlands
| | - Laura Neises
- Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Germany
| | - Danny Baltissen
- Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Germany
| | - Omar Matar
- Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Germany
| | | | - Fadi Almouhanna
- Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Germany
| | - Jannick Theobald
- Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Germany
| | | | - Celia Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, the Netherlands; Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Germany.
| |
Collapse
|
25
|
Cao C, Yang J, Chen Y, Zhou P, Wang Y, Du W, Zhao L, Chen Y. Discovery of SK-575 as a Highly Potent and Efficacious Proteolysis-Targeting Chimera Degrader of PARP1 for Treating Cancers. J Med Chem 2020; 63:11012-11033. [PMID: 32924477 DOI: 10.1021/acs.jmedchem.0c00821] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nuclear protein poly(ADP-ribose) polymerase-1 (PARP1) has a well-established role in the signaling and repair of DNA and is a validated therapeutic target for cancers and other human diseases. Here, we have designed, synthesized, and evaluated a series of small-molecule PARP1 degraders based on the proteolysis-targeting chimera (PROTAC) concept. Our efforts have led to the discovery of highly potent PARP1 degraders, as exemplified by compound 18 (SK-575). SK-575 potently inhibits the growth of cancer cells bearing BRCA1/2 mutations and induces potent and specific degradation of PARP1 in various human cancer cells even at low picomolar concentrations. SK-575 achieves durable tumor growth inhibition in mice when used as a single agent or in combination with cytotoxic agents, such as temozolomide and cisplatin. These data demonstrate that SK-575 is a highly potent and efficacious PARP1 degrader.
Collapse
Affiliation(s)
- Chaoguo Cao
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jie Yang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yong Chen
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Peiting Zhou
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yingwei Wang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wu Du
- Hinova Pharmaceuticals Inc., 4th Floor, Building RongYao A, No. 5, Keyuan South Road, Chengdu 610041, China
| | - Lifeng Zhao
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Yuanwei Chen
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
- Hinova Pharmaceuticals Inc., 4th Floor, Building RongYao A, No. 5, Keyuan South Road, Chengdu 610041, China
| |
Collapse
|
26
|
Huang Z, Chen Y, Zhang Y. Mitochondrial reactive oxygen species cause major oxidative mitochondrial DNA damages and repair pathways. J Biosci 2020. [DOI: 10.1007/s12038-020-00055-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Regulation of poly ADP-ribosylation of VEGF by an interplay between PARP-16 and TNKS-2. Mol Cell Biochem 2020; 471:15-27. [PMID: 32472322 DOI: 10.1007/s11010-020-03746-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/06/2020] [Indexed: 10/24/2022]
Abstract
The biological activity of vascular endothelial growth factor (VEGF), the major cytokine regulating the process of angiogenesis is tightly controlled at multiple levels including processes involving post-translational modification such as ADP-ribosylation and glycosylation. ADP-ribosylation is a reversible NAD+-dependent modification, catalyzed by poly ADP-ribose polymerase (PARP) or ADP-ribosyl transferase (ADPRTs) and has been reported by us and others as a modification that reduces the biological activity of VEGF. The factors responsible for any such modification should occur in the secretory pathway, i.e., in the endoplasmic reticulum and Golgi. Our investigation carried out in this direction revealed that ADP-ribosylation of VEGF requires the interplay between members of poly ADP-ribose polymerase (PARP) family in the secretory pathway, viz., ER associated PARP-16 and Golgi associated Tankyrase-2 (TNKS-2). The data presented in this manuscript suggest that PARP-16 catalysis the priming mono ADP-ribosylation of VEGF which is a prerequisite for poly ADP-ribosylation of VEGF by TNKS-2.
Collapse
|
28
|
Perli T, Wronska AK, Ortiz‐Merino RA, Pronk JT, Daran J. Vitamin requirements and biosynthesis in Saccharomyces cerevisiae. Yeast 2020; 37:283-304. [PMID: 31972058 PMCID: PMC7187267 DOI: 10.1002/yea.3461] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022] Open
Abstract
Chemically defined media for yeast cultivation (CDMY) were developed to support fast growth, experimental reproducibility, and quantitative analysis of growth rates and biomass yields. In addition to mineral salts and a carbon substrate, popular CDMYs contain seven to nine B-group vitamins, which are either enzyme cofactors or precursors for their synthesis. Despite the widespread use of CDMY in fundamental and applied yeast research, the relation of their design and composition to the actual vitamin requirements of yeasts has not been subjected to critical review since their first development in the 1940s. Vitamins are formally defined as essential organic molecules that cannot be synthesized by an organism. In yeast physiology, use of the term "vitamin" is primarily based on essentiality for humans, but the genome of the Saccharomyces cerevisiae reference strain S288C harbours most of the structural genes required for synthesis of the vitamins included in popular CDMY. Here, we review the biochemistry and genetics of the biosynthesis of these compounds by S. cerevisiae and, based on a comparative genomics analysis, assess the diversity within the Saccharomyces genus with respect to vitamin prototrophy.
Collapse
Affiliation(s)
- Thomas Perli
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Anna K. Wronska
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | | | - Jack T. Pronk
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Jean‐Marc Daran
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| |
Collapse
|
29
|
Neumann C, Baesler J, Steffen G, Nicolai MM, Zubel T, Aschner M, Bürkle A, Mangerich A, Schwerdtle T, Bornhorst J. The role of poly(ADP-ribose) polymerases in manganese exposed Caenorhabditis elegans. J Trace Elem Med Biol 2020; 57:21-27. [PMID: 31546209 PMCID: PMC6878993 DOI: 10.1016/j.jtemb.2019.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND AIM When exceeding the homeostatic range, manganese (Mn) might cause neurotoxicity, characteristic of the pathophysiology of several neurological diseases. Although the underlying mechanism of its neurotoxicity remains unclear, Mn-induced oxidative stress contributes to disease etiology. DNA damage caused by oxidative stress may further trigger dysregulation of DNA-damage-induced poly(ADP-ribosyl)ation (PARylation), which is of central importance especially for neuronal homeostasis. Accordingly, this study was designed to assess in the genetically traceable in vivo model Caenorhabditis elegans the role of PARylation as well as the consequences of loss of pme-1 or pme-2 (orthologues of PARP1 and PARP2) in Mn-induced toxicity. METHODS A specific and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to quantify PARylation in worms. Next to monitoring the PAR level, pme-1 and pme-2 gene expression as well as Mn-induced oxidative stress was studied in wildtype worms and the pme deletion mutants. RESULTS AND CONCLUSION While Mn failed to induce PARylation in wildtype worms, toxic doses of Mn led to PAR-induction in pme-1-deficient worms, due to an increased gene expression of pme-2 in the pme-1 deletion mutants. However, this effect could not be observed at sub-toxic Mn doses as well as upon longer incubation times. Regarding Mn-induced oxidative stress, the deletion mutants did not show hypersensitivity. Taken together, this study characterizes worms to model PAR inhibition and addresses the consequences for Mn-induced oxidative stress in genetically manipulated worms.
Collapse
Affiliation(s)
- Catherine Neumann
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Jessica Baesler
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin-Potsdam, Jena, Germany
| | - Gereon Steffen
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Merle Marie Nicolai
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| | - Tabea Zubel
- Department of Biology, University of Konstanz, Universitaetsstraße 10, 78464 Konstanz, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461 Bronx, NY, USA
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, Universitaetsstraße 10, 78464 Konstanz, Germany
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, Universitaetsstraße 10, 78464 Konstanz, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin-Potsdam, Jena, Germany
| | - Julia Bornhorst
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin-Potsdam, Jena, Germany; Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany.
| |
Collapse
|
30
|
Chen Y, Bi Q, Zhu Z, Zhang S, Xu J, Dou X, Mao W. Lycium barbarum polysaccharides exert an antioxidative effect on rat chondrocytes by activating the nuclear factor (erythroid-derived 2)-like 2 signaling pathway. Arch Med Sci 2020; 16:964-973. [PMID: 32542100 PMCID: PMC7286333 DOI: 10.5114/aoms.2018.77036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/28/2017] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Oxidative stress is the main cause of osteoarthritis (OA). Lycium barbarum polysaccharides (LBP) have antioxidant properties. Thus, the potential effect of LBP on H2O2-stimulated chondrocytes was examined. MATERIAL AND METHODS The cell viability was detected by CCK-8. The reactive oxygen species (ROS) production and apoptosis rates were determined by flow cytometric analysis. The DNA damage was detected by comet assay. Real-time polymerase chain reaction (qPCR) and Western blot assays were performed to examine the expression of histone 2A family member X (γH2AX), checkpoint kinase 1 (Chk1), poly ADP-ribose polymerase (PARP), cysteinyl aspartate specific proteinase (caspase)-3/8/9, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and its antioxidant-response element (ARE) dependent factors including heme oxygenase-1 (HO-1) and quinine oxidoreductase-1 (NQO-1). RESULTS Compared to the H2O2 group, LBP inhibited the ROS production and DNA damage caused by H2O2 (p < 0.05), respectively. LBP inhibited the mRNA and protein expressions of γH2AX and Chk1 (p < 0.05). Meanwhile, LBP significantly decreased apoptosis (p < 0.05). And LBP inhibited the expression levels of PARP and Caspase-3/8/9 (p < 0.05). Moreover, LBP increased the expression of Nrf2, HO-1and NQO-1 (p < 0.05). Furthermore, the depletion of Nrf2 that mediated by RNA interference reversed the apoptosis and DNA damage inhibition effect of LBP (p < 0.05). CONCLUSIONS LBP protected chondrocytes through inhibiting DNA damage and apoptosis caused by H2O2, in which the Nrf2/ARE signaling pathway played a positive role. It provided an inspiration for clinical application - developing LBP as a therapeutic agent and Nrf2 as a promising candidate.
Collapse
Affiliation(s)
- Yu Chen
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Qing Bi
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ziguan Zhu
- Department of Hand Surgery and Reconstruction Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shuijun Zhang
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jifeng Xu
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiaofan Dou
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Weihuan Mao
- Department of Orthopedics, The Fifth People’s Hospital of Yuhang District, Hangzhou, China
- Corresponding author: Weihuan Mao, Department of Orthopedics, The Fifth People’s, Hospital of 60 Healthcare Road, Linping St, Yuhang District, Hangzhou City, Zhejiang Province, 311100 Hangzhou, China, Phone: +86 0571 86222034, E-mail:
| |
Collapse
|
31
|
Gao X, Zhao C, Wei K, Hu B, Chen Y, Xu K, Tang B. A differential study on oxidized/reduced ascorbic acid induced tumor cells’ apoptosis under hypoxia. Analyst 2020; 145:6363-6368. [DOI: 10.1039/d0an01011a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The anticancer mechanism for reduced/oxidized ascorbic acid (AA/DHA) is of great significance for clinical cancer therapies.
Collapse
Affiliation(s)
- Xiaonan Gao
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Congcong Zhao
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Keyan Wei
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Bo Hu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Yuqin Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Kehua Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
32
|
Sutcu HH, Matta E, Ishchenko AA. Role of PARP-catalyzed ADP-ribosylation in the Crosstalk Between DNA Strand Breaks and Epigenetic Regulation. J Mol Biol 2019:S0022-2836(19)30719-3. [PMID: 31866292 DOI: 10.1016/j.jmb.2019.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
Covalent linkage of ADP-ribose units to proteins catalyzed by poly(ADP-ribose) polymerases (PARPs) plays important signaling functions in a plethora of cellular processes including DNA damage response, chromatin organization, and gene transcription. Poly- and mono-ADP-ribosylation of target macromolecules are often responsible both for the initiation and for coordination of these processes in mammalian cells. Currently, the number of cellular targets for ADP-ribosylation is rapidly expanding, and the molecular mechanisms underlying the broad substrate specificity of PARPs present enormous interest. In this review, the roles of PARP-mediated modifications of protein and nucleic acids, the readers of ADP-ribosylated structures, and the origin and function of programmed DNA strand breaks in PARP activation, transcription regulation, and DNA demethylation are discussed.
Collapse
Affiliation(s)
- Haser H Sutcu
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, F-94805, France; Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Elie Matta
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, F-94805, France; Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Alexander A Ishchenko
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, F-94805, France; Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France.
| |
Collapse
|
33
|
Biedermann J, Preussler M, Conde M, Peitzsch M, Richter S, Wiedemuth R, Abou-El-Ardat K, Krüger A, Meinhardt M, Schackert G, Leenders WP, Herold-Mende C, Niclou SP, Bjerkvig R, Eisenhofer G, Temme A, Seifert M, Kunz-Schughart LA, Schröck E, Klink B. Mutant IDH1 Differently Affects Redox State and Metabolism in Glial Cells of Normal and Tumor Origin. Cancers (Basel) 2019; 11:cancers11122028. [PMID: 31888244 PMCID: PMC6966450 DOI: 10.3390/cancers11122028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/13/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023] Open
Abstract
IDH1R132H (isocitrate dehydrogenase 1) mutations play a key role in the development of low-grade gliomas. IDH1wt converts isocitrate to α-ketoglutarate while reducing nicotinamide adenine dinucleotide phosphate (NADP+), whereas IDH1R132H uses α-ketoglutarate and NADPH to generate the oncometabolite 2-hydroxyglutarate (2-HG). While the effects of 2-HG have been the subject of intense research, the 2-HG independent effects of IDH1R132H are still ambiguous. The present study demonstrates that IDH1R132H expression but not 2-HG alone leads to significantly decreased tricarboxylic acid (TCA) cycle metabolites, reduced proliferation, and enhanced sensitivity to irradiation in both glioblastoma cells and astrocytes in vitro. Glioblastoma cells, but not astrocytes, showed decreased NADPH and NAD+ levels upon IDH1R132H transduction. However, in astrocytes IDH1R132H led to elevated expression of the NAD-synthesizing enzyme nicotinamide phosphoribosyltransferase (NAMPT). These effects were not 2-HG mediated. This suggests that IDH1R132H cells utilize NAD+ to restore NADP pools, which only astrocytes could compensate via induction of NAMPT. We found that the expression of NAMPT is lower in patient-derived IDH1-mutant glioma cells and xenografts compared to IDH1-wildtype models. The Cancer Genome Atlas (TCGA) data analysis confirmed lower NAMPT expression in IDH1-mutant versus IDH1-wildtype gliomas. We show that the IDH1 mutation directly affects the energy homeostasis and redox state in a cell-type dependent manner. Targeting the impairments in metabolism and redox state might open up new avenues for treating IDH1-mutant gliomas.
Collapse
Affiliation(s)
- Julia Biedermann
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
| | - Matthias Preussler
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
| | - Marina Conde
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.C.); (R.W.); (G.S.); (A.T.)
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.P.); (S.R.); (G.E.)
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.P.); (S.R.); (G.E.)
| | - Ralf Wiedemuth
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.C.); (R.W.); (G.S.); (A.T.)
| | - Khalil Abou-El-Ardat
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
| | - Alexander Krüger
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany;
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias Meinhardt
- Institute for Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Gabriele Schackert
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.C.); (R.W.); (G.S.); (A.T.)
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - William P. Leenders
- Department of Biochemistry, Radboud University Medical Center, 6525 Nijmegen, The Netherlands;
| | - Christel Herold-Mende
- Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Simone P. Niclou
- Department of Oncology, NorLux Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg; (S.P.N.); (R.B.)
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Rolf Bjerkvig
- Department of Oncology, NorLux Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg; (S.P.N.); (R.B.)
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.P.); (S.R.); (G.E.)
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Achim Temme
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.C.); (R.W.); (G.S.); (A.T.)
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Seifert
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Leoni A. Kunz-Schughart
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany;
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
| | - Evelin Schröck
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Barbara Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center of Genetics (NCG), Laboratoire national de santé (LNS), L-3555 Dudelange, Luxembourg
- Correspondence: ; Tel.: +352-28100-418; Fax: +352-28100-441
| |
Collapse
|
34
|
Alemasova EE, Lavrik OI. Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Nucleic Acids Res 2019; 47:3811-3827. [PMID: 30799503 PMCID: PMC6486540 DOI: 10.1093/nar/gkz120] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation) is posttranslational modification of proteins by linear or branched chains of ADP-ribose units, originating from NAD+. The central enzyme for PAR production in cells and the main target of poly(ADP-ribosyl)ation during DNA damage is poly(ADP-ribose) polymerase 1 (PARP1). PARP1 ability to function as a catalytic and acceptor protein simultaneously made a considerable contribution to accumulation of contradictory data. This topic is directly related to other questions, such as the stoichiometry of PARP1 molecules in auto-modification reaction, direction of the chain growth during PAR elongation and functional coupling of PARP1 with PARylation targets. Besides DNA damage necessary for the folding of catalytically active PARP1, other mechanisms appear to be required for the relevant intensity and specificity of PARylation reaction. Indeed, in recent years, PARP research has been enriched by the discovery of novel PARP1 interaction partners modulating its enzymatic activity. Understanding the details of PARP1 catalytic mechanism and its regulation is especially important in light of PARP-targeted therapy and may significantly aid to PARP inhibitors drug design. In this review we summarize old and up-to-date literature to clarify several points concerning PARylation mechanism and discuss different ways for regulation of PAR synthesis by accessory proteins reported thus far.
Collapse
Affiliation(s)
- Elizaveta E Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
35
|
Peters XQ, Malinga TH, Agoni C, Olotu FA, Soliman MES. Zoning in on Tankyrases: A Brief Review on the Past, Present and Prospective Studies. Anticancer Agents Med Chem 2019; 19:1920-1934. [PMID: 31648650 DOI: 10.2174/1871520619666191019114321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/29/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Tankyrases are known for their multifunctionalities within the poly(ADPribose) polymerases family and playing vital roles in various cellular processes which include the regulation of tumour suppressors. Tankyrases, which exist in two isoforms; Tankyrase 1 and 2, are highly homologous and an integral part of the Wnt β -catenin pathway that becomes overly dysregulated when hijacked by pro-carcinogenic machineries. METHODS In this review, we cover the distinct roles of the Tankyrase isoforms and their involvement in the disease pathogenesis. Also, we provide updates on experimentally and computationally derived antagonists of Tankyrase whilst highlighting the precedence of integrative computer-aided drug design methods towards the discovery of selective inhibitors. RESULTS Despite the high prospects embedded in the therapeutic targeting and blockade of Tankyrase isoforms, the inability of small molecule inhibitors to achieve selective targeting has remained a major setback, even until date. This explains numerous incessant drug design efforts geared towards the development of highly selective inhibitors of the respective Tankyrase isoforms since they mediate distinct aberrancies in disease progression. Therefore, considering the setbacks of conventional drug design methods, can computer-aided approaches actually save the day? CONCLUSION The implementation of computer-aided drug design techniques in Tankyrase research could help complement experimental methods and facilitate ligand/structure-based design and discovery of small molecule inhibitors with enhanced selectivity.
Collapse
Affiliation(s)
- Xylia Q Peters
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Thembeka H Malinga
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
36
|
Tropitzsch A, Müller M, Paquet-Durand F, Mayer F, Kopp HG, Schrattenholz A, Müller A, Löwenheim H. Poly (ADP-Ribose) Polymerase-1 (PARP1) Deficiency and Pharmacological Inhibition by Pirenzepine Protects From Cisplatin-Induced Ototoxicity Without Affecting Antitumor Efficacy. Front Cell Neurosci 2019; 13:406. [PMID: 31551715 PMCID: PMC6746891 DOI: 10.3389/fncel.2019.00406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022] Open
Abstract
Cisplatin remains an indispensable drug for the systemic treatment of many solid tumors. However, a major dose-limiting side-effect is ototoxicity. In some scenarios, such as treatment of germ cell tumors or adjuvant therapy of non-small cell lung cancer, cisplatin cannot be replaced without undue loss of efficacy. Inhibition of polyadenosine diphosphate-ribose polymerase-1 (PARP1), is presently being evaluated as a novel anti-neoplastic principle. Of note, cisplatin-induced PARP1 activation has been related to inner ear cell death. Thus, PARP1 inhibition may exert a protective effect on the inner ear without compromising the antitumor activity of cisplatin. Here, we evaluated PARP1 deficiency and PARP1 pharmacological inhibition as a means to protect the auditory hair cells from cisplatin-mediated ototoxicity. We demonstrate that cisplatin-induced loss of sensory hair cells in the organ of Corti is attenuated in PARP1-deficient cochleae. The PARP inhibitor pirenzepine and its metabolite LS-75 mimicked the protective effect observed in PARP1-deficient cochleae. Moreover, the cytotoxic potential of cisplatin was unchanged by PARP inhibition in two different cancer cell lines. Taken together, the results from our study suggest that the negative side-effects of cisplatin anti-cancer treatment could be alleviated by a PARP inhibition adjunctive therapy.
Collapse
Affiliation(s)
- Anke Tropitzsch
- Department of Otorhinolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center, University of Tübingen Medical Center, Tübingen, Germany
| | - Marcus Müller
- Department of Otorhinolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center, University of Tübingen Medical Center, Tübingen, Germany
| | - François Paquet-Durand
- Cell Death Mechanisms Lab, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Frank Mayer
- Department of Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen Medical Center, Tübingen, Germany
| | - Hans-Georg Kopp
- Department of Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen Medical Center, Tübingen, Germany
| | | | - Andrea Müller
- Department of Otorhinolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center, University of Tübingen Medical Center, Tübingen, Germany
| | - Hubert Löwenheim
- Department of Otorhinolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center, University of Tübingen Medical Center, Tübingen, Germany
| |
Collapse
|
37
|
Soledad RB, Charles S, Samarjit D. The secret messages between mitochondria and nucleus in muscle cell biology. Arch Biochem Biophys 2019; 666:52-62. [PMID: 30935885 PMCID: PMC6538274 DOI: 10.1016/j.abb.2019.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/01/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023]
Abstract
Over two thousand proteins are found in the mitochondrial compartment but the mitochondrial genome codes for only 13 proteins. The majority of mitochondrial proteins are products of nuclear genes and are synthesized in the cytosol, then translocated into the mitochondria. Most of the subunits of the five respiratory chain complexes in the inner mitochondrial membrane, which generate a proton gradient across the membrane and produce ATP, are encoded by nuclear genes. Therefore, it is quite clear that import of nuclear-encoded proteins into the mitochondria is essential for mitochondrial function. Nuclear to mitochondrial communication is well studied. However, there is another arm to this communication, mitochondria to nucleus retrograde signaling. This plays an important role in the maintenance of cellular homeostasis, and is less well studied. Several transcription factors, including Sp1, SIRT3 and GSP2, are activated by altered mitochondrial function. These activated transcription factors then translocate to the nucleus. Based on the mitochondrially generated molecular signal, nuclear genes are targeted, which alters transcription of nuclear genes that code for mitochondrial proteins. This review article will mainly focus on this interactive and bi-directional communication between mitochondria and nucleus, and how this communication plays a significant role in muscle cell biology.
Collapse
Affiliation(s)
| | - Steenbergen Charles
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Das Samarjit
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
38
|
Pharmacological inhibition of guanosine triphosphate cyclohydrolase1 elevates tyrosine phosphorylation of caveolin1 and cellular senescence. Eur J Pharmacol 2019; 848:1-10. [PMID: 30690003 DOI: 10.1016/j.ejphar.2019.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 01/02/2023]
Abstract
The role of 2,4-diamino-6-hydroxypyrimidine (DAHP), on cellular-senescence remains unclear as differential effects of DAHP have been reported in cardiovascular and cerebrovascular systems. We investigated the effect of pharmacologically-induced guanosine-triphosphate-cyclohydrolase1 (GTPCH1)-inhibition, through DAHP, on cellular-senescence in experimentally-induced diabetic and non-diabetic Wistar rats. Cellular-senescence was evaluated through senescence-associated events, namely, cell-cycle-arrest of peripheral blood mononuclear cells (PBMNCs); myocardial DNA fragmentation, total antioxidant capacity (TAC), telomerase-activity, nicotinamide adenine dinucleotide (NAD+)-content and tyrosine14-phosphorylation of caveolin1 (pY14) in similarly-aged, pubertal Wistar rats with streptozotocin (STZ) and/or DAHP. Oxidative stress (OS) indices such as myocardial biopterin concentrations (tetrahydrobiopterin-BH4 and dihydrobiopterin-BH2) and plasma total nitrite and nitrate (NOx) were determined. DAHP, per se, exhibited distinct senescence; in addition, in STZ+DAHP (the cardiomyopathy model), there was a marked accumulation of cells in G0G1 phase, as evidenced through flow-cytometry analysis, as-well-as fragmented DNA, than the respective controls suggesting the DAHP-mediated onset of senescence in circulating cells and the myocardium, with or without STZ. Concentrations of BH4 and BH2, and NOx were impaired in STZ and/or DAHP, indicating elevated OS in the treatment groups. In the independent treatment groups or the combination treatment, typical senescence indicators including myocardial telomerase-activity, NAD+-content and TAC were significantly reduced, while there was a marked elevation in the concentrations of pY14 as compared to the respective controls, reinforcing the occurrence of senescence in PBMNCs and the myocardium. We postulate that DAHP promotes early onset of cellular-senescence, potentially through OS-mediated cellular events in diabetic or non-diabetic models.
Collapse
|
39
|
Chen SH, Yu X. Targeting dePARylation selectively suppresses DNA repair-defective and PARP inhibitor-resistant malignancies. SCIENCE ADVANCES 2019; 5:eaav4340. [PMID: 30989114 PMCID: PMC6457938 DOI: 10.1126/sciadv.aav4340] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/20/2019] [Indexed: 05/17/2023]
Abstract
While poly(ADP-ribosyl)ation (PARylation) plays an important role in DNA repair, the role of dePARylation in DNA repair remains elusive. Here, we report that a novel small molecule identified from the NCI database, COH34, specifically inhibits poly(ADP-ribose) glycohydrolase (PARG), the major dePARylation enzyme, with nanomolar potency in vitro and in vivo. COH34 binds to the catalytic domain of PARG, thereby prolonging PARylation at DNA lesions and trapping DNA repair factors. This compound induces lethality in cancer cells with DNA repair defects and exhibits antitumor activity in xenograft mouse cancer models. Moreover, COH34 can sensitize tumor cells with DNA repair defects to other DNA-damaging agents, such as topoisomerase I inhibitors and DNA-alkylating agents, which are widely used in cancer chemotherapy. Notably, COH34 also efficiently kills PARP inhibitor-resistant cancer cells. Together, our study reveals the molecular mechanism of PARG in DNA repair and provides an effective strategy for future cancer therapies.
Collapse
|
40
|
Nicotinamide Mononucleotide: Exploration of Diverse Therapeutic Applications of a Potential Molecule. Biomolecules 2019; 9:biom9010034. [PMID: 30669679 PMCID: PMC6359187 DOI: 10.3390/biom9010034] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide mononucleotide (NMN) is a nucleotide that is most recognized for its role as an intermediate of nicotinamide adenine dinucleotide (NAD+) biosynthesis. Although the biosynthetic pathway of NMN varies between eukaryote and prokaryote, two pathways are mainly followed in case of eukaryotic human-one is through the salvage pathway using nicotinamide while the other follows phosphorylation of nicotinamide riboside. Due to the unavailability of a suitable transporter, NMN enters inside the mammalian cell in the form of nicotinamide riboside followed by its subsequent conversion to NMN and NAD+. This particular molecule has demonstrated several beneficial pharmacological activities in preclinical studies, which suggest its potential therapeutic use. Mostly mediated by its involvement in NAD+ biosynthesis, the pharmacological activities of NMN include its role in cellular biochemical functions, cardioprotection, diabetes, Alzheimer's disease, and complications associated with obesity. The recent groundbreaking discovery of anti-ageing activities of this chemical moiety has added a valuable essence in the research involving this molecule. This review focuses on the biosynthesis of NMN in mammalian and prokaryotic cells and mechanism of absorption along with the reported pharmacological activities in murine model.
Collapse
|
41
|
Zhao Q, Lan T, Su S, Rao Y. Induction of apoptosis in MDA-MB-231 breast cancer cells by a PARP1-targeting PROTAC small molecule. Chem Commun (Camb) 2019; 55:369-372. [PMID: 30540295 DOI: 10.1039/c8cc07813k] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP1) is a major member of the PARP superfamily that is involved in DNA damage signalling and other important cellular processes. Here we report the development of a small molecule targeting PARP1 based on the PROTAC strategy. In the MDA-MB-231 cell line, the representative compound 3 can induce significant PARP1 cleavage and programmed cell death.
Collapse
Affiliation(s)
- Qiuye Zhao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| | | | | | | |
Collapse
|
42
|
Kim MK. Novel insight into the function of tankyrase. Oncol Lett 2018; 16:6895-6902. [PMID: 30546421 PMCID: PMC6256358 DOI: 10.3892/ol.2018.9551] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/31/2018] [Indexed: 01/14/2023] Open
Abstract
Tankyrases are multifunctional poly(ADP-ribose) polymerases that regulate a variety of cellular processes, including Wnt signaling, telomere maintenance and mitosis regulation. Tankyrases interact with target proteins and regulate their interactions and stability through poly(ADP-ribosyl) ation. In addition to their roles in telomere maintenance and regulation of mitosis, tankyrase proteins regulate tumor suppressors, including AXIN, phosphatase and tensin homolog and angiomotin. Therefore, tankyrases may be effective targets for cancer treatment. Tankyrase inhibitors could affect a variety of carcinogenic pathways that promote uncontrolled proliferation, including Wnt, AKT, yes-associated protein, telomere maintenance and mitosis regulation. Recently, novel aspects of the function and mechanism of tankyrases have been reported, and a number of tankyrase inhibitors have been identified. A combination of conventional chemotherapy agents with tankyrase inhibitors may have synergistic anticancer effects. Therefore, it is expected that more advanced and improved tankyrase inhibitors will be developed, enabling novel therapeutic strategies against cancer and other tankyrase-associated diseases. The present review discusses tankyrase function and the role of tankyrase inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Mi Kyung Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
43
|
Kulikova VA, Gromyko DV, Nikiforov AA. The Regulatory Role of NAD in Human and Animal Cells. BIOCHEMISTRY (MOSCOW) 2018; 83:800-812. [PMID: 30200865 DOI: 10.1134/s0006297918070040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) and its phosphorylated form NADP are the major coenzymes in the redox reactions of various essential metabolic pathways. NAD+ also serves as a substrate for several families of regulatory proteins, such as protein deacetylases (sirtuins), ADP-ribosyltransferases, and poly(ADP-ribose) polymerases, that control vital cell processes including gene expression, DNA repair, apoptosis, mitochondrial biogenesis, unfolded protein response, and many others. NAD+ is also a precursor for calcium-mobilizing secondary messengers. Proper regulation of these NAD-dependent metabolic and signaling pathways depends on how efficiently cells can maintain their NAD levels. Generally, mammalian cells regulate their NAD supply through biosynthesis from the precursors delivered with the diet: nicotinamide and nicotinic acid (vitamin B3), as well as nicotinamide riboside and nicotinic acid riboside. Administration of NAD precursors has been demonstrated to restore NAD levels in tissues (i.e., to produce beneficial therapeutic effects) in preclinical models of various diseases, such as neurodegenerative disorders, obesity, diabetes, and metabolic syndrome.
Collapse
Affiliation(s)
- V A Kulikova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - D V Gromyko
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - A A Nikiforov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia. .,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| |
Collapse
|
44
|
Wang M, Yuan Z, Xie R, Ma Y, Liu X, Yu X. Structure-function analyses reveal the mechanism of the ARH3-dependent hydrolysis of ADP-ribosylation. J Biol Chem 2018; 293:14470-14480. [PMID: 30045870 PMCID: PMC6139573 DOI: 10.1074/jbc.ra118.004284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/20/2018] [Indexed: 01/07/2023] Open
Abstract
ADP-ribosylation of proteins plays key roles in multiple biological processes, including DNA damage repair. Recent evidence suggests that serine is an important acceptor for ADP-ribosylation, and that serine ADP-ribosylation is hydrolyzed by ADP-ribosylhydrolase 3 (ARH3 or ADPRHL2). However, the structural details in ARH3-mediated hydrolysis remain elusive. Here, we determined the structure of ARH3 in a complex with ADP-ribose (ADPR). Our analyses revealed a group of acidic residues in ARH3 that keep two Mg2+ ions at the catalytic center for hydrolysis of Ser-linked ADP-ribosyl group. In particular, dynamic conformational changes involving Glu41 were observed in the catalytic center. Our observations suggest that Mg2+ ions together with Glu41 and water351 are likely to mediate the cleavage of the glycosidic bond in the serine-ADPR substrate. Moreover, we found that ADPR is buried in a groove and forms multiple hydrogen bonds with the main chain and side chains of ARH3 residues. On the basis of these structural findings, we used site-directed mutagenesis to examine the functional roles of key residues in the catalytic pocket of ARH3 in mediating the hydrolysis of ADP-ribosyl from serine and DNA damage repair. Moreover, we noted that ADPR recognition is essential for the recruitment of ARH3 to DNA lesions. Taken together, our study provides structural and functional insights into the molecular mechanism by which ARH3 hydrolyzes the ADP-ribosyl group from serine and contributes to DNA damage repair.
Collapse
Affiliation(s)
- Mengxi Wang
- From the College of Life Sciences, Hebei University, Baoding, 071000 Hebei, China
| | - Zenglin Yuan
- the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, Shandong, China, and
| | - Rong Xie
- From the College of Life Sciences, Hebei University, Baoding, 071000 Hebei, China, ,the Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010
| | - Yinliang Ma
- From the College of Life Sciences, Hebei University, Baoding, 071000 Hebei, China, ,the Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010
| | - Xiuhua Liu
- From the College of Life Sciences, Hebei University, Baoding, 071000 Hebei, China, , To whom correspondence may be addressed. E-mail:
| | - Xiaochun Yu
- From the College of Life Sciences, Hebei University, Baoding, 071000 Hebei, China, ,the Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, To whom correspondence may be addressed. E-mail:
| |
Collapse
|
45
|
Chen Q, Kassab MA, Dantzer F, Yu X. PARP2 mediates branched poly ADP-ribosylation in response to DNA damage. Nat Commun 2018; 9:3233. [PMID: 30104678 PMCID: PMC6089979 DOI: 10.1038/s41467-018-05588-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/11/2018] [Indexed: 01/12/2023] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a posttranslational modification involved in multiple biological processes, including DNA damage repair. This modification is catalyzed by poly(ADP-ribose) polymerase (PARP) family of enzymes. PARylation is composed of both linear and branched polymers of poly(ADP-ribose) (PAR). However, the biochemical mechanism of polymerization and biological functions of branched PAR chains are elusive. Here we show that PARP2 is preferentially activated by PAR and subsequently catalyzes branched PAR chain synthesis. Notably, the direct binding to PAR by the N-terminus of PARP2 promotes the enzymatic activity of PARP2 toward the branched PAR chain synthesis. Moreover, the PBZ domain of APLF recognizes the branched PAR chain and regulates chromatin remodeling to DNA damage response. This unique feature of PAR-dependent PARP2 activation and subsequent PARylation mediates the participation of PARP2 in DNA damage repair. Thus, our results reveal an important molecular mechanism of branched PAR synthesis and a key biological function of branched PARylation.
Collapse
Affiliation(s)
- Qian Chen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Muzaffer Ahmad Kassab
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Françoise Dantzer
- UMR7242, Biotechnology and Cell Signaling, École Supérieure de Biotechnologie de Strasbourg, CNRS/Strasbourg University, BP10413, 67412, Illkirch, France
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
46
|
Michelena J, Lezaja A, Teloni F, Schmid T, Imhof R, Altmeyer M. Analysis of PARP inhibitor toxicity by multidimensional fluorescence microscopy reveals mechanisms of sensitivity and resistance. Nat Commun 2018; 9:2678. [PMID: 29992957 PMCID: PMC6041334 DOI: 10.1038/s41467-018-05031-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 06/12/2018] [Indexed: 02/06/2023] Open
Abstract
Exploiting the full potential of anti-cancer drugs necessitates a detailed understanding of their cytotoxic effects. While standard omics approaches are limited to cell population averages, emerging single cell techniques currently lack throughput and are not applicable for compound screens. Here, we employed a versatile and sensitive high-content microscopy-based approach to overcome these limitations and quantify multiple parameters of cytotoxicity at the single cell level and in a cell cycle resolved manner. Applied to PARP inhibitors (PARPi) this approach revealed an S-phase-specific DNA damage response after only 15 min, quantitatively differentiated responses to several clinically important PARPi, allowed for cell cycle resolved analyses of PARP trapping, and predicted conditions of PARPi hypersensitivity and resistance. The approach illuminates cellular mechanisms of drug synergism and, through a targeted multivariate screen, could identify a functional interaction between PARPi olaparib and NEDD8/SCF inhibition, which we show is dependent on PARP1 and linked to PARP1 trapping. Methods to study anti-cancer drugs cytotoxicity are often low throughput and rely on population average. Here the authors present an automated image-based cytometry method to quantify multiple cytotoxicity parameters in single cells, and use it to study the effect of PARP inhibitors in cancer cells.
Collapse
Affiliation(s)
- Jone Michelena
- Department of Molecular Mechanisms of Disease, University of Zurich, CH-8057, Zurich, Switzerland
| | - Aleksandra Lezaja
- Department of Molecular Mechanisms of Disease, University of Zurich, CH-8057, Zurich, Switzerland
| | - Federico Teloni
- Department of Molecular Mechanisms of Disease, University of Zurich, CH-8057, Zurich, Switzerland
| | - Thomas Schmid
- Department of Molecular Mechanisms of Disease, University of Zurich, CH-8057, Zurich, Switzerland
| | - Ralph Imhof
- Department of Molecular Mechanisms of Disease, University of Zurich, CH-8057, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, CH-8057, Zurich, Switzerland.
| |
Collapse
|
47
|
Zmuda F, Blair A, Liuzzi MC, Malviya G, Chalmers AJ, Lewis D, Sutherland A, Pimlott SL. An 18F-Labeled Poly(ADP-ribose) Polymerase Positron Emission Tomography Imaging Agent. J Med Chem 2018; 61:4103-4114. [PMID: 29630818 PMCID: PMC6007963 DOI: 10.1021/acs.jmedchem.8b00138] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Indexed: 11/29/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) is involved in repair of DNA breaks and is over-expressed in a wide variety of tumors, making PARP an attractive biomarker for positron emission tomography (PET) and single photon emission computed tomography imaging. Consequently, over the past decade, there has been a drive to develop nuclear imaging agents targeting PARP. Here, we report the discovery of a PET tracer that is based on the potent PARP inhibitor olaparib (1). Our lead PET tracer candidate, [18F]20, was synthesized and evaluated as a potential PARP PET radiotracer in mice bearing subcutaneous glioblastoma xenografts using ex vivo biodistribution and PET-magnetic resonance imaging techniques. Results showed that [18F]20 could be produced in a good radioactivity yield and exhibited specific PARP binding allowing visualization of tumors over-expressing PARP. [18F]20 is therefore a potential candidate radiotracer for in vivo PARP PET imaging.
Collapse
Affiliation(s)
- Filip Zmuda
- WestCHEM,
School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow G12 8QQ, U.K.
- Wolfson
Whol Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, U.K.
| | - Adele Blair
- WestCHEM,
School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow G12 8QQ, U.K.
| | - Maria Clara Liuzzi
- WestCHEM,
School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow G12 8QQ, U.K.
- School of Medicine, College of Medical, Veterinary
and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Gaurav Malviya
- Cancer
Research UK Beatson Institute, Glasgow G61 1BD, U.K.
| | - Anthony J. Chalmers
- Wolfson
Whol Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, U.K.
| | - David Lewis
- Cancer
Research UK Beatson Institute, Glasgow G61 1BD, U.K.
| | - Andrew Sutherland
- WestCHEM,
School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow G12 8QQ, U.K.
| | - Sally L. Pimlott
- West
of Scotland
PET Centre, Greater Glasgow and Clyde NHS
Trust, Glasgow G12 0YN, U.K.
| |
Collapse
|
48
|
Li X, Han H, Zhou MT, Yang B, Ta AP, Li N, Chen J, Wang W. Proteomic Analysis of the Human Tankyrase Protein Interaction Network Reveals Its Role in Pexophagy. Cell Rep 2018; 20:737-749. [PMID: 28723574 DOI: 10.1016/j.celrep.2017.06.077] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/12/2017] [Accepted: 06/23/2017] [Indexed: 11/26/2022] Open
Abstract
Tankyrase 1 (TNKS) and tankyrase 2 (TNKS2) belong to the poly(ADP-ribose) polymerase family of proteins, which use nicotinamide adenine dinucleotide to modify substrate proteins with ADP-ribose modifications. Emerging evidence has revealed the pathological relevance of TNKS and TNKS2, and identified these two enzymes as potential drug targets. However, the cellular functions and regulatory mechanisms of TNKS/2 are still largely unknown. Through a proteomic analysis, we defined the protein-protein interaction network for human TNKS/2 and revealed more than 100 high-confidence interacting proteins with numerous biological functions in this network. Finally, through functional validation, we uncovered a role for TNKS/2 in peroxisome homeostasis and determined that this function is independent of TNKS enzyme activities. Our proteomic study of the TNKS/2 protein interaction network provides a rich resource for further exploration of tankyrase functions in numerous cellular processes.
Collapse
Affiliation(s)
- Xu Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Han Han
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Mao-Tian Zhou
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bing Yang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Albert Paul Ta
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Nan Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
49
|
Omar SS, Aly RG, Badae NM. Vitamin E improves testicular damage in streptozocin-induced diabetic rats, via increasing vascular endothelial growth factor and poly(ADP-ribose) polymerase-1. Andrologia 2017; 50. [PMID: 29164711 DOI: 10.1111/and.12925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2017] [Indexed: 01/05/2023] Open
Abstract
The precise mechanism by which diabetes impairs spermatogenesis and testicular function is not exactly known. Vascular endothelial growth factor (VEGF) and poly(ADP-ribose) polymerase-1 (PARP-1) are important for germ cell homeostasis and repair of DNA respectively. The aim of this study was to investigate the correlation between diabetes-induced testicular damage and testicular VEGF and PARP-1 expression and the possible protective role of vitamin E supplementation. A total of 45 male Wistar albino rats were randomly divided into three groups: Group I (nondiabetic rats), Group II (streptozocin-induced diabetic rats) and Group III (streptozocin-induced diabetic rats treated orally with 0.4 mg/kg vitamin E). Five weeks later, testicular tissue was used for assessment of MDA concentration by colorimetry, histopathological examination and immunostaining for PARP-1 and VEGFIn diabetic rats, testicular weight, seminiferous tubule diameter and germinal epithelial thickness were decreased, basement membrane was thickened and Johnsen score decreased. Reduced VEGF and PARP-1 immunostaining were associated with decreased Johnsen score in diabetic rats. Vitamin E administration was protective against oxidative stress-associated damage evidenced by lower MDA levels, improved testicular weight, spermatogenesis and higher immunostaining for VEGF and PARP-1. Testicular VEGF and PARP-1 might therefore be helpful biomarkers for diabetic testicular damage. Administration of vitamin E may have a protective role against diabetes-induced testicular damage.
Collapse
Affiliation(s)
- S S Omar
- Faculty of Medicine, Department of Dermatology, Venereology & Andrology, Alexandria University, Alexandria, Egypt
| | - R G Aly
- Faculty of Medicine, Department of Pathology, Alexandria University, Alexandria, Egypt
| | - N M Badae
- Faculty of Medicine, Department of Medical Physiology, Alexandria University, Alexandria, Egypt
| |
Collapse
|
50
|
Discovery of potent 2,4-difluoro-linker poly(ADP-ribose) polymerase 1 inhibitors with enhanced water solubility and in vivo anticancer efficacy. Acta Pharmacol Sin 2017; 38:1521-1532. [PMID: 28770827 DOI: 10.1038/aps.2017.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/04/2017] [Indexed: 12/11/2022] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is overexpressed in a variety of cancers, especially in breast and ovarian cancers; tumor cells that are deficient in breast cancer gene 1/2 (BRCA1/2) are highly sensitive to PARP1 inhibition. In this study, we identified a series of 2,4-difluorophenyl-linker analogs (15-55) derived from olaparib as novel PARP1 inhibitors. Four potent analogs 17, 43, 47, and 50 (IC50=2.2-4.4 nmol/L) effectively inhibited the proliferation of Chinese hamster lung fibroblast V-C8 cells (IC50=3.2-37.6 nmol/L) in vitro, and showed specificity toward BRCA-deficient cells (SI=40-510). The corresponding hydrochloride salts 56 and 57 (based on 43 and 47) were highly water soluble in pH=1.0 buffered salt solutions (1628.2 μg/mL, 2652.5 μg/mL). In a BRCA1-mutated xenograft model, oral administration of compound 56 (30 mg·kg-1·d-1, for 21 d) exhibited more prominent tumor growth inhibition (96.6%) compared with the same dose of olaparib (56.3%); in a BRCA2-mutated xenograft model, oral administration of analog 43 (10 mg·kg-1·d-1, for 28 d) significantly inhibited tumor growth (69.0%) and had no negative effects on the body weights. Additionally, compound 56 exhibited good oral bioavailability (F=32.2%), similar to that of olaparib (F=45.4%). Furthermore, the free base 43 of the hydrochloride salt 56 exhibited minimal hERG inhibition activity (IC50=6.64 μmol/L). Collectively, these data demonstrate that compound 56 may be an excellent drug candidate for the treatment of cancer, particularly BRCA-deficient tumors.
Collapse
|