1
|
Lu H, Zhu Z, Fields L, Zhang H, Li L. Mass Spectrometry Structural Proteomics Enabled by Limited Proteolysis and Cross-Linking. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39300771 DOI: 10.1002/mas.21908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
The exploration of protein structure and function stands at the forefront of life science and represents an ever-expanding focus in the development of proteomics. As mass spectrometry (MS) offers readout of protein conformational changes at both the protein and peptide levels, MS-based structural proteomics is making significant strides in the realms of structural and molecular biology, complementing traditional structural biology techniques. This review focuses on two powerful MS-based techniques for peptide-level readout, namely limited proteolysis-mass spectrometry (LiP-MS) and cross-linking mass spectrometry (XL-MS). First, we discuss the principles, features, and different workflows of these two methods. Subsequently, we delve into the bioinformatics strategies and software tools used for interpreting data associated with these protein conformation readouts and how the data can be integrated with other computational tools. Furthermore, we provide a comprehensive summary of the noteworthy applications of LiP-MS and XL-MS in diverse areas including neurodegenerative diseases, interactome studies, membrane proteins, and artificial intelligence-based structural analysis. Finally, we discuss the factors that modulate protein conformational changes. We also highlight the remaining challenges in understanding the intricacies of protein conformational changes by LiP-MS and XL-MS technologies.
Collapse
Affiliation(s)
- Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zexin Zhu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Santorelli L, Caterino M, Costanzo M. Dynamic Interactomics by Cross-Linking Mass Spectrometry: Mapping the Daily Cell Life in Postgenomic Era. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:633-649. [PMID: 36445175 DOI: 10.1089/omi.2022.0137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The majority of processes that occur in daily cell life are modulated by hundreds to thousands of dynamic protein-protein interactions (PPI). The resulting protein complexes constitute a tangled network that, with its continuous remodeling, builds up highly organized functional units. Thus, defining the dynamic interactome of one or more proteins allows determining the full range of biological activities these proteins are capable of. This conceptual approach is poised to gain further traction and significance in the current postgenomic era wherein the treatment of severe diseases needs to be tackled at both genomic and PPI levels. This also holds true for COVID-19, a multisystemic disease affecting biological networks across the biological hierarchy from genome to proteome to metabolome. In this overarching context and the current historical moment of the COVID-19 pandemic where systems biology increasingly comes to the fore, cross-linking mass spectrometry (XL-MS) has become highly relevant, emerging as a powerful tool for PPI discovery and characterization. This expert review highlights the advanced XL-MS approaches that provide in vivo insights into the three-dimensional protein complexes, overcoming the static nature of common interactomics data and embracing the dynamics of the cell proteome landscape. Many XL-MS applications based on the use of diverse cross-linkers, MS detection methods, and predictive bioinformatic tools for single proteins or proteome-wide interactions were shown. We conclude with a future outlook on XL-MS applications in the field of structural proteomics and ways to sustain the remarkable flexibility of XL-MS for dynamic interactomics and structural studies in systems biology and planetary health.
Collapse
Affiliation(s)
- Lucia Santorelli
- Department of Oncology and Hematology-Oncology, University of Milano, Milan, Italy.,IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| |
Collapse
|
3
|
Kukačka Z, Rosůlek M, Jelínek J, Slavata L, Kavan D, Novák P. LinX: A Software Tool for Uncommon Cross-Linking Chemistry. J Proteome Res 2021; 20:2021-2027. [PMID: 33657806 DOI: 10.1021/acs.jproteome.0c00858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical cross-linking mass spectrometry has become a popular tool in structural biology. Although several algorithms exist that efficiently analyze data-dependent mass spectrometric data, the algorithm to identify and quantify intermolecular cross-links located at the interaction interface of homodimer molecules was missing. The algorithm in LinX utilizes high mass accuracy for ion identification. In contrast with standard data-dependent analysis, LinX enables the elucidation of cross-linked peptides originating from the interaction interface of homodimers labeled by 14N/15N, including their ratio or cross-links from protein-nucleic acid complexes. The software is written in Java language, and its source code and a detailed user's guide are freely available at https://github.com/KukackaZ/LinX or https://ms-utils.org/LinX. Data are accessible via the ProteomeXchange server with the data set identifier PXD023522.
Collapse
Affiliation(s)
- Zdeněk Kukačka
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Michal Rosůlek
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic
| | - Jan Jelínek
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.,Department of Software Engineering, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12000 Prague 2, Czech Republic
| | - Lukáš Slavata
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic
| | - Daniel Kavan
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic
| | - Petr Novák
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic
| |
Collapse
|
4
|
Chakrabarty JK, Sadananda SC, Bhat A, Naik AJ, Ostwal DV, Chowdhury SM. High Confidence Identification of Cross-Linked Peptides by an Enrichment-Based Dual Cleavable Cross-Linking Technology and Data Analysis tool Cleave-XL. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:173-182. [PMID: 32031390 DOI: 10.1021/jasms.9b00111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cleavable cross-linking technology requires further MS/MS of the cleavable fragments for unambiguous identification of cross-linked peptides. These spectra are sometimes very ambiguous due to the sensitivity and complex fragmentation pattern of the peptides with the cross-linked residues. We recently reported a dual cleavable cross-linking technology (DUCCT), which can enhance the confidence in the identification of cross-linked peptides. The heart of this strategy is a novel dual mass spectrometry cleavable cross linker that can be cleaved preferentially by two differential tandem mass spectrometry methods, collision induced dissociation and electron transfer dissociation (CID and ETD). Different signature ions from two different mass spectra for the same cross-linked peptide helped identify the cross-linked peptides with high confidence. In this study, we developed an enrichment-based photocleavable DUCCT (PC-DUCCT-biotin), where cross-linked products were enriched from biological samples using affinity purification, and subsequently, two sequential tandem (CID and ETD) mass spectrometry processes were utilized. Furthermore, we developed a prototype software called Cleave-XL to analyze cross-linked products generated by DUCCT. Photocleavable DUCCT was demonstrated in standard peptides and proteins. Efficiency of the software tools to search and compare CID and ETD data of photocleavable DUCCT biotin in standard peptides and proteins as well as regular DUCCT in protein complexes from immune cells were tested. The software is efficient in pinpointing cross-linked sites using CID and ETD cross-linking data. We believe this new DUCCT and associated software tool Cleave-XL will advance high confidence identification of protein cross-linking sites and automated identification of low-resolution protein structures.
Collapse
Affiliation(s)
- Jayanta K Chakrabarty
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Sandhya C Sadananda
- Department of Computer Science , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Apeksha Bhat
- Department of Computer Science , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Aishwarya J Naik
- Department of Computer Science , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Dhanashri V Ostwal
- Department of Computer Science , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Saiful M Chowdhury
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , Texas 76019 , United States
| |
Collapse
|
5
|
Yu F, Li N, Yu W. Exhaustively Identifying Cross-Linked Peptides with a Linear Computational Complexity. J Proteome Res 2017; 16:3942-3952. [PMID: 28825304 DOI: 10.1021/acs.jproteome.7b00338] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chemical cross-linking coupled to mass spectrometry is a powerful tool to study protein-protein interactions and protein conformations. Two linked peptides are ionized and fragmented to produce a tandem mass spectrum. In such an experiment, a tandem mass spectrum contains ions from two peptides. The peptide identification problem becomes a peptide-peptide pair identification problem. Currently, most tools do not search all possible pairs due to the quadratic time complexity. Consequently, missed findings are unavoidable. In our previous work, we developed a tool named ECL to search all pairs of peptides exhaustively. Unfortunately, it is very slow due to the quadratic computational complexity, especially when the database is large. Furthermore, ECL uses a score function without statistical calibration, while researchers1-3 have proposed that it is inappropriate to directly compare uncalibrated scores because different spectra have different random score distributions. Here we propose an advanced version of ECL, named ECL2. It achieves a linear time and space complexity by taking advantage of the additive property of a score function. It can search a data set containing tens of thousands of spectra against a database containing thousands of proteins in a few hours. Comparison with other five state-of-the-art tools shows that ECL2 is much faster than pLink, StavroX, ProteinProspector, and ECL. Kojak is the only one that is faster than ECL2, but Kojak does not exhaustively search all possible peptide pairs. The comparison shows that ECL2 has the highest sensitivity among the state-of-the-art tools. The experiment using a large-scale in vivo cross-linking data set demonstrates that ECL2 is the only tool that can find the peptide-spectrum matches (PSMs) passing the false discovery rate/q-value threshold. The result illustrates that the exhaustive search and a well-calibrated score function are useful to find PSMs from a huge search space.
Collapse
Affiliation(s)
- Fengchao Yu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology , Hong Kong, China
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology , Hong Kong, China.,Division of Biomedical Engineering, The Hong Kong University of Science and Technology , Hong Kong, China
| | - Weichuan Yu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology , Hong Kong, China.,Division of Biomedical Engineering, The Hong Kong University of Science and Technology , Hong Kong, China
| |
Collapse
|
6
|
Yu F, Li N, Yu W. ECL: an exhaustive search tool for the identification of cross-linked peptides using whole database. BMC Bioinformatics 2016; 17:217. [PMID: 27206479 PMCID: PMC4874008 DOI: 10.1186/s12859-016-1073-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 05/07/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chemical cross-linking combined with mass spectrometry (CX-MS) is a high-throughput approach to studying protein-protein interactions. The number of peptide-peptide combinations grows quadratically with respect to the number of proteins, resulting in a high computational complexity. Widely used methods including xQuest (Rinner et al., Nat Methods 5(4):315-8, 2008; Walzthoeni et al., Nat Methods 9(9):901-3, 2012), pLink (Yang et al., Nat Methods 9(9):904-6, 2012), ProteinProspector (Chu et al., Mol Cell Proteomics 9:25-31, 2010; Trnka et al., 13(2):420-34, 2014) and Kojak (Hoopmann et al., J Proteome Res 14(5):2190-198, 2015) avoid searching all peptide-peptide combinations by pre-selecting peptides with heuristic approaches. However, pre-selection procedures may cause missing findings. The most intuitive approach is searching all possible candidates. A tool that can exhaustively search a whole database without any heuristic pre-selection procedure is therefore desirable. RESULTS We have developed a cross-linked peptides identification tool named ECL. It can exhaustively search a whole database in a reasonable period of time without any heuristic pre-selection procedure. Tests showed that searching a database containing 5200 proteins took 7 h. ECL identified more non-redundant cross-linked peptides than xQuest, pLink, and ProteinProspector. Experiments showed that about 30 % of these additional identified peptides were not pre-selected by Kojak. We used protein crystal structures from the protein data bank to check the intra-protein cross-linked peptides. Most of the distances between cross-linking sites were smaller than 30 Å. CONCLUSIONS To the best of our knowledge, ECL is the first tool that can exhaustively search all candidates in cross-linked peptides identification. The experiments showed that ECL could identify more peptides than xQuest, pLink, and ProteinProspector. A further analysis indicated that some of the additional identified results were thanks to the exhaustive search.
Collapse
Affiliation(s)
- Fengchao Yu
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Weichuan Yu
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
7
|
Protein Structural Analysis via Mass Spectrometry-Based Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:397-431. [PMID: 27975228 DOI: 10.1007/978-3-319-41448-5_19] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Modern mass spectrometry (MS) technologies have provided a versatile platform that can be combined with a large number of techniques to analyze protein structure and dynamics. These techniques include the three detailed in this chapter: (1) hydrogen/deuterium exchange (HDX), (2) limited proteolysis, and (3) chemical crosslinking (CX). HDX relies on the change in mass of a protein upon its dilution into deuterated buffer, which results in varied deuterium content within its backbone amides. Structural information on surface exposed, flexible or disordered linker regions of proteins can be achieved through limited proteolysis, using a variety of proteases and only small extents of digestion. CX refers to the covalent coupling of distinct chemical species and has been used to analyze the structure, function and interactions of proteins by identifying crosslinking sites that are formed by small multi-functional reagents, termed crosslinkers. Each of these MS applications is capable of revealing structural information for proteins when used either with or without other typical high resolution techniques, including NMR and X-ray crystallography.
Collapse
|
8
|
Argo AS, Shi C, Liu F, Goshe MB. Performing protein crosslinking using gas-phase cleavable chemical crosslinkers and liquid chromatography-tandem mass spectrometry. Methods 2015; 89:64-73. [DOI: 10.1016/j.ymeth.2015.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/12/2015] [Accepted: 06/09/2015] [Indexed: 12/13/2022] Open
|
9
|
Sinz A, Arlt C, Chorev D, Sharon M. Chemical cross-linking and native mass spectrometry: A fruitful combination for structural biology. Protein Sci 2015; 24:1193-209. [PMID: 25970732 PMCID: PMC4534171 DOI: 10.1002/pro.2696] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/14/2015] [Accepted: 04/29/2015] [Indexed: 12/31/2022]
Abstract
Mass spectrometry (MS) is becoming increasingly popular in the field of structural biology for analyzing protein three-dimensional-structures and for mapping protein-protein interactions. In this review, the specific contributions of chemical crosslinking and native MS are outlined to reveal the structural features of proteins and protein assemblies. Both strategies are illustrated based on the examples of the tetrameric tumor suppressor protein p53 and multisubunit vinculin-Arp2/3 hybrid complexes. We describe the distinct advantages and limitations of each technique and highlight synergistic effects when both techniques are combined. Integrating both methods is especially useful for characterizing large protein assemblies and for capturing transient interactions. We also point out the future directions we foresee for a combination of in vivo crosslinking and native MS for structural investigation of intact protein assemblies.
Collapse
Affiliation(s)
- Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-WittenbergD-06120, Halle, Germany
| | - Christian Arlt
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-WittenbergD-06120, Halle, Germany
| | - Dror Chorev
- Department of Biological Chemistry, Weizmann Institute of ScienceRehovot, 76100, Israel
| | - Michal Sharon
- Department of Biological Chemistry, Weizmann Institute of ScienceRehovot, 76100, Israel
| |
Collapse
|
10
|
Fan SB, Meng JM, Lu S, Zhang K, Yang H, Chi H, Sun RX, Dong MQ, He SM. Using pLink to Analyze Cross-Linked Peptides. ACTA ACUST UNITED AC 2015; 49:8.21.1-8.21.19. [PMID: 25754995 DOI: 10.1002/0471250953.bi0821s49] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
pLink is a search engine for high-throughput identification of cross-linked peptides from their tandem mass spectra, which is the data-analysis step in chemical cross-linking of proteins coupled with mass spectrometry analysis. pLink has accumulated more than 200 registered users from all over the world since its first release in 2012. After 2 years of continual development, a new version of pLink has been released, which is at least 40 times faster, more versatile, and more user-friendly. Also, the function of the new pLink has been expanded to identifying endogenous protein cross-linking sites such as disulfide bonds and SUMO (Small Ubiquitin-like MOdifier) modification sites. Integrated into the new version are two accessory tools: pLabel, to annotate spectra of cross-linked peptides for visual inspection and publication, and pConfig, to assist users in setting up search parameters. Here, we provide detailed guidance on running a database search for identification of protein cross-links using the 2014 version of pLink.
Collapse
Affiliation(s)
- Sheng-Bo Fan
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Jia-Ming Meng
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Shan Lu
- National Institute of Biological Sciences, Beijing, China
| | - Kun Zhang
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Hao Yang
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Hao Chi
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China
| | - Rui-Xiang Sun
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
| | - Si-Min He
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China
| |
Collapse
|
11
|
Götze M, Pettelkau J, Fritzsche R, Ihling CH, Schäfer M, Sinz A. Automated assignment of MS/MS cleavable cross-links in protein 3D-structure analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:83-97. [PMID: 25261217 DOI: 10.1007/s13361-014-1001-1] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 05/03/2023]
Abstract
CID-MS/MS cleavable cross-linkers hold an enormous potential for an automated analysis of cross-linked products, which is essential for conducting structural proteomics studies. The created characteristic fragment ion patterns can easily be used for an automated assignment and discrimination of cross-linked products. To date, there are only a few software solutions available that make use of these properties, but none allows for an automated analysis of cleavable cross-linked products. The MeroX software fills this gap and presents a powerful tool for protein 3D-structure analysis in combination with MS/MS cleavable cross-linkers. We show that MeroX allows an automatic screening of characteristic fragment ions, considering static and variable peptide modifications, and effectively scores different types of cross-links. No manual input is required for a correct assignment of cross-links and false discovery rates are calculated. The self-explanatory graphical user interface of MeroX provides easy access for an automated cross-link search platform that is compatible with commonly used data file formats, enabling analysis of data originating from different instruments. The combination of an MS/MS cleavable cross-linker with a dedicated software tool for data analysis provides an automated workflow for 3D-structure analysis of proteins. MeroX is available at www.StavroX.com .
Collapse
Affiliation(s)
- Michael Götze
- Institute for Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany,
| | | | | | | | | | | |
Collapse
|
12
|
Pettelkau J, Ihling CH, Frohberg P, van Werven L, Jahn O, Sinz A. Reliable identification of cross-linked products in protein interaction studies by 13C-labeled p-benzoylphenylalanine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1628-1641. [PMID: 25031183 DOI: 10.1007/s13361-014-0944-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
We describe the use of the (13)C-labeled artificial amino acid p-benzoyl-L-phenylalanine (Bpa) to improve the reliability of cross-linked product identification. Our strategy is exemplified for two protein-peptide complexes. These studies indicate that in many cases the identification of a cross-link without additional stable isotope labeling would result in an ambiguous assignment of cross-linked products. The use of a (13)C-labeled photoreactive amino acid is considered to be preferred over the use of deuterated cross-linkers as retention time shifts in reversed phase chromatography can be ruled out. The observation of characteristic fragment ions additionally increases the reliability of cross-linked product assignment. Bpa possesses a broad reactivity towards different amino acids and the derived distance information allows mapping of spatially close amino acids and thus provides more solid structural information of proteins and protein complexes compared to the longer deuterated amine-reactive cross-linkers, which are commonly used for protein 3D-structure analysis and protein-protein interaction studies.
Collapse
Affiliation(s)
- Jens Pettelkau
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
13
|
Wang J, Anania VG, Knott J, Rush J, Lill JR, Bourne PE, Bandeira N. Combinatorial approach for large-scale identification of linked peptides from tandem mass spectrometry spectra. Mol Cell Proteomics 2014; 13:1128-36. [PMID: 24493012 DOI: 10.1074/mcp.m113.035758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The combination of chemical cross-linking and mass spectrometry has recently been shown to constitute a powerful tool for studying protein-protein interactions and elucidating the structure of large protein complexes. However, computational methods for interpreting the complex MS/MS spectra from linked peptides are still in their infancy, making the high-throughput application of this approach largely impractical. Because of the lack of large annotated datasets, most current approaches do not capture the specific fragmentation patterns of linked peptides and therefore are not optimal for the identification of cross-linked peptides. Here we propose a generic approach to address this problem and demonstrate it using disulfide-bridged peptide libraries to (i) efficiently generate large mass spectral reference data for linked peptides at a low cost and (ii) automatically train an algorithm that can efficiently and accurately identify linked peptides from MS/MS spectra. We show that using this approach we were able to identify thousands of MS/MS spectra from disulfide-bridged peptides through comparison with proteome-scale sequence databases and significantly improve the sensitivity of cross-linked peptide identification. This allowed us to identify 60% more direct pairwise interactions between the protein subunits in the 20S proteasome complex than existing tools on cross-linking studies of the proteasome complexes. The basic framework of this approach and the MS/MS reference dataset generated should be valuable resources for the future development of new tools for the identification of linked peptides.
Collapse
Affiliation(s)
- Jian Wang
- Bioinformatics Program, University of California, San Diego, La Jolla, California
| | | | | | | | | | | | | |
Collapse
|
14
|
Tinnefeld V, Sickmann A, Ahrends R. Catch me if you can: challenges and applications of cross-linking approaches. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2014; 20:99-116. [PMID: 24881459 DOI: 10.1255/ejms.1259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biomolecular complexes are the groundwork of life and the basis for cell signaling, energy transfer, motion, stability and cellular metabolism. Understanding the underlying complex interactions on the molecular level is an essential step to obtain a comprehensive insight into cellular and systems biology. For the investigation of molecular interactions, various methods, including Förster resonance energy transfer, nuclear magnetic resonance spectroscopy, X-ray crystallography and yeast two-hybrid screening, can be utilized. Nevertheless, the most reliable approach for structural proteomics and the identification of novel protein-binding partners is chemical cross-linking. The rationale is that upon forming a covalent bond between a protein and its interaction partner (protein, lipid, RNA/DNA, carbohydrate) the native complex state is "frozen" and accessible for detailed mass spectrometric analysis. In this review we provide a synopsis on crosslinker design, chemistry, pitfalls, limitations and novel applications in the field, and feature an overview of current software applications.
Collapse
|
15
|
In vitro cross-linking of elastin peptides and molecular characterization of the resultant biomaterials. Biochim Biophys Acta Gen Subj 2013; 1830:2994-3004. [DOI: 10.1016/j.bbagen.2013.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/22/2012] [Accepted: 01/16/2013] [Indexed: 12/26/2022]
|
16
|
Nonconserved Ca(2+)/calmodulin binding sites in Munc13s differentially control synaptic short-term plasticity. Mol Cell Biol 2012; 32:4628-41. [PMID: 22966208 DOI: 10.1128/mcb.00933-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Munc13s are presynaptic proteins that mediate synaptic vesicle priming and thereby control the size of the readily releasable pool of vesicles. During high synaptic activity, Munc13-1 and its closely related homolog, ubMunc13-2, bind Ca(2+)/calmodulin, resulting in enhanced priming activity and in changes of short-term synaptic plasticity characteristics. Here, we studied whether bMunc13-2 and Munc13-3, two remote isoforms of Munc13-1 with a neuronal subtype-specific expression pattern, mediate synaptic vesicle priming and regulate short-term synaptic plasticity in a Ca(2+)/calmodulin-dependent manner. We identified a single functional Ca(2+)/calmodulin binding site in these isoforms and provide structural evidence that all Munc13s employ a common mode of interaction with calmodulin despite the lack of sequence homology between their Ca(2+)/calmodulin binding sites. Electrophysiological analysis showed that, during high-frequency activity, Ca(2+)/calmodulin binding positively regulates the priming activity of bMunc13-2 and Munc13-3, resulting in an increase in the size of the readily releasable pool of vesicles and subsequently in strong short-term synaptic enhancement of neurotransmission. We conclude that Ca(2+)/calmodulin-dependent regulation of priming activity is structurally and functionally conserved in all Munc13 proteins, and that the composition of Munc13 isoforms in a neuron differentially controls its short-term synaptic plasticity characteristics.
Collapse
|
17
|
Mädler S, Boeri Erba E, Zenobi R. MALDI-ToF mass spectrometry for studying noncovalent complexes of biomolecules. Top Curr Chem (Cham) 2012; 331:1-36. [PMID: 22371170 DOI: 10.1007/128_2011_311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been demonstrated to be a valuable tool to investigate noncovalent interactions of biomolecules. The direct detection of noncovalent assemblies is often more troublesome than with electrospray ionization. Using dedicated sample preparation techniques and carefully optimized instrumental parameters, a number of biomolecule assemblies were successfully analyzed. For complexes dissociating under MALDI conditions, covalent stabilization with chemical cross-linking is a suitable alternative. Indirect methods allow the detection of noncovalent assemblies by monitoring the fading of binding partners or altered H/D exchange patterns.
Collapse
Affiliation(s)
- Stefanie Mädler
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | | | | |
Collapse
|
18
|
Götze M, Pettelkau J, Schaks S, Bosse K, Ihling CH, Krauth F, Fritzsche R, Kühn U, Sinz A. StavroX--a software for analyzing crosslinked products in protein interaction studies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:76-87. [PMID: 22038510 DOI: 10.1007/s13361-011-0261-2] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 05/03/2023]
Abstract
Chemical crosslinking in combination with mass spectrometry has matured into an alternative approach to derive low-resolution structural information of proteins and protein complexes. Yet, one of the major drawbacks of this strategy remains the lack of software that is able to handle the large MS datasets that are created after chemical crosslinking and enzymatic digestion of the crosslinking reaction mixtures. Here, we describe a software, termed StavroX, which has been specifically designed for analyzing highly complex crosslinking datasets. The StavroX software was evaluated for three diverse biological systems: (1) the complex between calmodulin and a peptide derived from Munc13, (2) an N-terminal ß-laminin fragment, and (3) the complex between guanylyl cyclase activating protein-2 and a peptide derived from retinal guanylyl cyclase. We show that the StavroX software is advantageous for analyzing crosslinked products due to its easy-to-use graphical user interface and the highly automated analysis of mass spectrometry (MS) and tandem mass spectrometry (MS/MS) data resulting in short times for analysis. StavroX is expected to give a further push to the chemical crosslinking approach as a routine technique for protein interaction studies.
Collapse
Affiliation(s)
- Michael Götze
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Heilmann CJ, Sorgo AG, Siliakus AR, Dekker HL, Brul S, de Koster CG, de Koning LJ, Klis FM. Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile. Microbiology (Reading) 2011; 157:2297-2307. [DOI: 10.1099/mic.0.049395-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ability of Candida albicans to switch from yeast to hyphal growth is essential for its virulence. The walls and especially the covalently attached wall proteins are involved in the primary host–pathogen interactions. Three hyphal induction methods were compared, based on fetal calf serum, the amino sugar N-acetylglucosamine (GlcNAc) and the mammalian cell culture medium Iscove’s modified Dulbecco’s medium (IMDM). GlcNAc and IMDM were preferred, allowing stable hyphal growth over a prolonged period without significant reversion to yeast growth and with high biomass yields. We employed Fourier transform-MS combined with a 15N-metabolically labelled reference culture as internal standard for relative quantification of changes in the wall proteome upon hyphal induction. A total of 21 wall proteins were quantified. Our induction methods triggered a similar response characterized by (i) a category of wall proteins showing strongly increased incorporation levels (Als3, Hwp2, Hyr1, Plb5 and Sod5), (ii) another category with strongly decreased levels (Rhd3, Sod4 and Ywp1) and (iii) a third one enriched for carbohydrate-active enzymes (including Cht2, Crh11, Mp65, Pga4, Phr1, Phr2 and Utr2) and showing only a limited response. This is, to our knowledge, the first systematic, quantitative analysis of the changes in the wall proteome of C. albicans upon hyphal induction. Finally, we propose new wall-protein-derived candidates for vaccine development.
Collapse
Affiliation(s)
- Clemens J. Heilmann
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Alice G. Sorgo
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Adriaan R. Siliakus
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Henk L. Dekker
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Stanley Brul
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Chris G. de Koster
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Leo J. de Koning
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Frans M. Klis
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
20
|
Du X, Chowdhury SM, Manes NP, Wu S, Mayer MU, Adkins JN, Anderson GA, Smith RD. Xlink-identifier: an automated data analysis platform for confident identifications of chemically cross-linked peptides using tandem mass spectrometry. J Proteome Res 2011; 10:923-31. [PMID: 21175198 DOI: 10.1021/pr100848a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chemical cross-linking combined with mass spectrometry provides a powerful method for identifying protein-protein interactions and probing the structure of protein complexes. A number of strategies have been reported that take advantage of the high sensitivity and high resolution of modern mass spectrometers. Approaches typically include synthesis of novel cross-linking compounds, and/or isotopic labeling of the cross-linking reagent and/or protein, and label-free methods. We report Xlink-Identifier, a comprehensive data analysis platform that has been developed to support label-free analyses. It can identify interpeptide, intrapeptide, and deadend cross-links as well as underivatized peptides. The software streamlines data preprocessing, peptide scoring, and visualization and provides an overall data analysis strategy for studying protein-protein interactions and protein structure using mass spectrometry. The software has been evaluated using a custom synthesized cross-linking reagent that features an enrichment tag. Xlink-Identifier offers the potential to perform large-scale identifications of protein-protein interactions using tandem mass spectrometry.
Collapse
Affiliation(s)
- Xiuxia Du
- Department of Bioinformatics & Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina 28023, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mayne SLN, Patterton HG. Bioinformatics tools for the structural elucidation of multi-subunit protein complexes by mass spectrometric analysis of protein-protein cross-links. Brief Bioinform 2011; 12:660-71. [PMID: 22101029 DOI: 10.1093/bib/bbq087] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multi-subunit protein complexes are involved in many essential biochemical processes including signal transduction, protein synthesis, RNA synthesis, DNA replication and protein degradation. An accurate description of the relative structural arrangement of the constituent subunits in such complexes is crucial for an understanding of the molecular mechanism of the complex as a whole. Many complexes, however, lie in the mega-Dalton range, and are not amenable to X-ray crystallographic or nuclear magnetic resonance analysis. Techniques that are suited to structural studies of such large complexes, such as cryo-electron microscopy, do not provide the resolution required for a mechanistic insight. Mass spectrometry (MS) has increasingly been applied to identify the residues that are involved in chemical cross-links in compound protein assemblies, and have provided valuable insight into the molecular arrangement, orientation and contact surfaces of subunits within such large complexes. This approach is known as MS3D, and involves the MS analysis of cross-linked di-peptides following the enzymatic cleavage of a chemically cross-linked complex. A major challenge of this approach is the identification of the cross-linked di-peptides in a composite mixture of peptides, as well as the identification of the residues involved in the cross-link. These analyses require bioinformatics tools with capabilities beyond that of general, MS-based proteomic analysis software. Many MS3D software tools have appeared, often designed for very specific experimental methods. Here, we provide a review of all major MS3D bioinformatics programmes, reviewing their applicability to different workflows, specific experimental requirements and the computational approach taken by each.
Collapse
Affiliation(s)
- Shannon L N Mayne
- Department of Biotechnology, University of the Free State, Bloemfontein 9300, South Africa
| | | |
Collapse
|
22
|
Heijnis WH, Dekker HL, de Koning LJ, Wierenga PA, Westphal AH, de Koster CG, Gruppen H, van Berkel WJH. Identification of the peroxidase-generated intermolecular dityrosine cross-link in bovine α-lactalbumin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:444-449. [PMID: 21162537 DOI: 10.1021/jf104298y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The peroxidase-mediated oxidation of calcium-depleted bovine α-lactalbumin generates a mixture of covalently bound protein oligomers with interesting foaming properties. Here, we isolated the initially formed covalent α-lactalbumin dimer and studied its mode of cross-linking. Liquid chromatography-Fourier transform mass spectrometry (LC-FTMS) of proteolytic digests revealed the unambiguous identification of a peroxidase-catalyzed covalent link between Tyr18 and Tyr50. This shows that, although the radical reaction is often regarded as a random reaction, the initial product formation is specific. Protein structural modeling indicates that the conjugation reaction between these tyrosines is sterically favored and involves initial noncovalent protein complex formation through charge compensation, facilitating intermolecular cross-linking. The identification of the Tyr18-Tyr50 cross-link supports the view that the peroxidase-mediated oxidation of apo α-lactalbumin is a sequential process, involving the formation of linear trimers and higher order oligomers.
Collapse
Affiliation(s)
- Walter H Heijnis
- Laboratory of Food Chemistry, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu F, Goshe MB. Combinatorial electrostatic collision-induced dissociative chemical cross-linking reagents for probing protein surface topology. Anal Chem 2010; 82:6215-23. [PMID: 20560670 DOI: 10.1021/ac101030w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To ascertain more information on protein domain orientation and complex structure associations using chemical cross-linking, we have developed a combination of electrostatic collision-induced dissociative cross-linking reagents that differentially react with protein surfaces which are effectively analyzed by liquid chromatography-tandem mass spectrometry using ion trap multistage collision-induced dissociation. Implementing our original design and methodology based on disuccinimidyl-succinamyl-aspartyl-proline (SuDP) (Soderblom, E. J.; Goshe, M. B. Anal. Chem 2006, 78, 8059-8068. Soderblom, E. J.; Bobay, B. G.; Cavanagh, J.; Goshe, M. B. Rapid Commun Mass Spectrom 2007, 21, 3395-3408.), disuccinimidyl-succinamyl-valyl-proline (SuVP) was synthesized. The SuDP and SuVP reagents are the same except for the valyl and aspartyl groups which provide a distinctive chemical feature to each reagent. When performing labeling reactions using various protein-to-cross-linker ratios at pH 7.5, the negatively charged SuDP and neutral SuVP were used to label bovine serum albumin and hemoglobin. After protein digestion, the resulting peptides were analyzed using four different ion trap LC/MS(3) acquisition methods incorporating multistage CID. The more polar BSA surface resulted in a number of unique interpeptide and intrapeptide cross-links for each reagent whereas the less polarized surface of hemoglobin produced similar results for both reagents. Based on the identification of dead-end products (i.e., a cross-link modification containing a hydrolyzed end) for each protein, the aminolysis reactivity of each modified lysyl side chain revealed a preference for reacting with each reagent according to its local electrostatic surface environment. Overall, combinatorial application of SuDP and SuVP chemical labeling produces a set of unique interpeptide, intrapeptide, and dead-end cross-linked products that provides protein structural information according to its electrostatic surface topology which has the potential to be used to more comprehensively probe protein structure and dynamics.
Collapse
Affiliation(s)
- Fan Liu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622, USA
| | | |
Collapse
|
24
|
Rappsilber J. The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J Struct Biol 2010; 173:530-40. [PMID: 21029779 PMCID: PMC3043253 DOI: 10.1016/j.jsb.2010.10.014] [Citation(s) in RCA: 322] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/21/2010] [Accepted: 10/21/2010] [Indexed: 11/17/2022]
Abstract
After more than a decade of method development, cross-linking in combination with mass spectrometry and bioinformatics is finally coming of age. This technology now provides improved opportunities for modelling by mapping structural details of functional complexes in solution. The structure of proteins or protein complexes is ascertained by identifying amino acid pairs that are positioned in close proximity to each other. The validity of this technique has recently been benchmarked for large multi-protein complexes, by comparing cross-link data with that from a crystal structure of RNA polymerase II. Here, the specific nature of this cross-linking data will be discussed to assess the technical challenges and opportunities for model building. We believe that once remaining technological challenges of cross-linking/mass spectrometry have been addressed and cross-linking/mass spectrometry data has been incorporated into modelling algorithms it will quickly become an indispensable companion of protein and protein complex modelling and a corner-stone of integrated structural biology.
Collapse
Affiliation(s)
- Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR Scotland, UK.
| |
Collapse
|
25
|
McIlwain S, Draghicescu P, Singh P, Goodlett DR, Noble WS. Detecting cross-linked peptides by searching against a database of cross-linked peptide pairs. J Proteome Res 2010; 9:2488-95. [PMID: 20349954 DOI: 10.1021/pr901163d] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mass spectrometric identification of cross-linked peptides can provide valuable information about the structure of protein complexes. We describe a straightforward database search scheme that identifies and assigns statistical confidence estimates to spectra from cross-linked peptides. The method is well suited to targeted analysis of a single protein complex, without requiring an isotope labeling strategy. Our approach uses a SEQUEST-style search procedure in which the database is comprised of a mixture of single peptides with and without linkers attached and cross-linked products. In contrast to several previous approaches, we generate theoretical spectra that account for all of the expected peaks from a cross-linked product, and we employ an empirical curve-fitting procedure to estimate statistical confidence measures. We show that our fully automated procedure successfully reidentifies spectra from a previous study, and we provide evidence that our statistical confidence estimates are accurate.
Collapse
Affiliation(s)
- Sean McIlwain
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
26
|
Leitner A, Walzthoeni T, Kahraman A, Herzog F, Rinner O, Beck M, Aebersold R. Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics. Mol Cell Proteomics 2010; 9:1634-49. [PMID: 20360032 PMCID: PMC2938055 DOI: 10.1074/mcp.r000001-mcp201] [Citation(s) in RCA: 368] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/30/2010] [Indexed: 12/16/2022] Open
Abstract
Chemical cross-linking of reactive groups in native proteins and protein complexes in combination with the identification of cross-linked sites by mass spectrometry has been in use for more than a decade. Recent advances in instrumentation, cross-linking protocols, and analysis software have led to a renewed interest in this technique, which promises to provide important information about native protein structure and the topology of protein complexes. In this article, we discuss the critical steps of chemical cross-linking and its implications for (structural) biology: reagent design and cross-linking protocols, separation and mass spectrometric analysis of cross-linked samples, dedicated software for data analysis, and the use of cross-linking data for computational modeling. Finally, the impact of protein cross-linking on various biological disciplines is highlighted.
Collapse
Affiliation(s)
- Alexander Leitner
- From the Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
- Department of Analytical Chemistry and Food Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Thomas Walzthoeni
- From the Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
- Ph.D. Program in Molecular Life Sciences, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Abdullah Kahraman
- From the Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
| | - Franz Herzog
- From the Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
| | - Oliver Rinner
- From the Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
- Biognosys AG, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
| | - Martin Beck
- From the Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- From the Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
- Faculty of Science, University of Zurich, Zurich, Switzerland, and
- Competence Center for Systems Physiology and Metabolic Diseases, Zurich, Switzerland
| |
Collapse
|
27
|
Müller MQ, Dreiocker F, Ihling CH, Schäfer M, Sinz A. Fragmentation behavior of a thiourea-based reagent for protein structure analysis by collision-induced dissociative chemical cross-linking. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:880-891. [PMID: 20607845 DOI: 10.1002/jms.1775] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The fragmentation behavior of a novel thiourea-based cross-linker molecule specifically designed for collision-induced dissociation (CID) MS/MS experiments is described. The development of this cross-linker is part of our ongoing efforts to synthesize novel reagents, which create either characteristic fragment ions or indicative constant neutral losses (CNLs) during tandem mass spectrometry allowing a selective and sensitive analysis of cross-linked products. The new derivatizing reagent for chemical cross-linking solely contains a thiourea moiety that is flanked by two amine-reactive N-hydroxy succinimide (NHS) ester moieties for reaction with lysines or free N-termini in proteins. The new reagent offers simple synthetic access and easy structural variation of either length or functionalities at both ends. The thiourea moiety exhibits specifically tailored CID fragmentation capabilities--a characteristic CNL of 85 u--ensuring a reliable detection of derivatized peptides by both electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) tandem mass spectrometry and as such possesses a versatile applicability for chemical cross-linking studies. A detailed examination of the CID behavior of the presented thiourea-based reagent reveals that slight structural variations of the reagent will be necessary to ensure its comprehensive and efficient application for chemical cross-linking of proteins.
Collapse
Affiliation(s)
- Mathias Q Müller
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
28
|
Fabris D, Yu ET. Elucidating the higher-order structure of biopolymers by structural probing and mass spectrometry: MS3D. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:841-60. [PMID: 20648672 PMCID: PMC3432860 DOI: 10.1002/jms.1762] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chemical probing represents a very versatile alternative for studying the structure and dynamics of substrates that are intractable by established high-resolution techniques. The implementation of MS-based strategies for the characterization of probing products has not only extended the range of applicability to virtually all types of biopolymers but has also paved the way for the introduction of new reagents that would not have been viable with traditional analytical platforms. As the availability of probing data is steadily increasing on the wings of the development of dedicated interpretation aids, powerful computational approaches have been explored to enable the effective utilization of such information to generate valid molecular models. This combination of factors has contributed to making the possibility of obtaining actual 3D structures by MS-based technologies (MS3D) a reality. Although approaches for achieving structure determination of unknown targets or assessing the dynamics of known structures may share similar reagents and development trajectories, they clearly involve distinctive experimental strategies, analytical concerns and interpretation paradigms. This Perspective offers a commentary on methods aimed at obtaining distance constraints for the modeling of full-fledged structures while highlighting common elements, salient distinctions and complementary capabilities exhibited by methods used in dynamics studies. We discuss critical factors to be addressed for completing effective structural determinations and expose possible pitfalls of chemical methods. We survey programs developed for facilitating the interpretation of experimental data and discuss possible computational strategies for translating sparse spatial constraints into all-atom models. Examples are provided to illustrate how the concerted application of very diverse probing techniques can lead to the solution of actual biological systems.
Collapse
Affiliation(s)
- Daniele Fabris
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, USA.
| | | |
Collapse
|
29
|
Müller MQ, Dreiocker F, Ihling CH, Schäfer M, Sinz A. Cleavable Cross-Linker for Protein Structure Analysis: Reliable Identification of Cross-Linking Products by Tandem MS. Anal Chem 2010; 82:6958-68. [DOI: 10.1021/ac101241t] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mathias Q. Müller
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle (Saale), and Institute for Organic Chemistry, Department of Chemistry, Universität zu Köln, Greinstrasse 4, D-50939 Cologne, Germany
| | - Frank Dreiocker
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle (Saale), and Institute for Organic Chemistry, Department of Chemistry, Universität zu Köln, Greinstrasse 4, D-50939 Cologne, Germany
| | - Christian H. Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle (Saale), and Institute for Organic Chemistry, Department of Chemistry, Universität zu Köln, Greinstrasse 4, D-50939 Cologne, Germany
| | - Mathias Schäfer
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle (Saale), and Institute for Organic Chemistry, Department of Chemistry, Universität zu Köln, Greinstrasse 4, D-50939 Cologne, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle (Saale), and Institute for Organic Chemistry, Department of Chemistry, Universität zu Köln, Greinstrasse 4, D-50939 Cologne, Germany
| |
Collapse
|
30
|
Petrotchenko EV, Borchers CH. ICC-CLASS: isotopically-coded cleavable crosslinking analysis software suite. BMC Bioinformatics 2010; 11:64. [PMID: 20109223 PMCID: PMC2827373 DOI: 10.1186/1471-2105-11-64] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 01/28/2010] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Successful application of crosslinking combined with mass spectrometry for studying proteins and protein complexes requires specifically-designed crosslinking reagents, experimental techniques, and data analysis software. Using isotopically-coded ("heavy and light") versions of the crosslinker and cleavable crosslinking reagents is analytically advantageous for mass spectrometric applications and provides a "handle" that can be used to distinguish crosslinked peptides of different types, and to increase the confidence of the identification of the crosslinks. RESULTS Here, we describe a program suite designed for the analysis of mass spectrometric data obtained with isotopically-coded cleavable crosslinkers. The suite contains three programs called: DX, DXDX, and DXMSMS. DX searches the mass spectra for the presence of ion signal doublets resulting from the light and heavy isotopic forms of the isotopically-coded crosslinking reagent used. DXDX searches for possible mass matches between cleaved and uncleaved isotopically-coded crosslinks based on the established chemistry of the cleavage reaction for a given crosslinking reagent. DXMSMS assigns the crosslinks to the known protein sequences, based on the isotopically-coded and un-coded MS/MS fragmentation data of uncleaved and cleaved peptide crosslinks. CONCLUSION The combination of these three programs, which are tailored to the analytical features of the specific isotopically-coded cleavable crosslinking reagents used, represents a powerful software tool for automated high-accuracy peptide crosslink identification. See: http://www.creativemolecules.com/CM_Software.htm.
Collapse
Affiliation(s)
- Evgeniy V Petrotchenko
- University of Victoria Genome British Columbia Protein Centre, Department of Biochemistry & Microbiology, University of Victoria, #3101-4464 Markham Street, Vancouver Island Technology Park, Victoria, BC, Canada
| | | |
Collapse
|
31
|
Nessen MA, Kramer G, Back J, Baskin JM, Smeenk LEJ, de Koning LJ, van Maarseveen JH, de Jong L, Bertozzi CR, Hiemstra H, de Koster CG. Selective enrichment of azide-containing peptides from complex mixtures. J Proteome Res 2009; 8:3702-11. [PMID: 19402736 PMCID: PMC2761887 DOI: 10.1021/pr900257z] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A general method is described to sequester peptides containing azides from complex peptide mixtures, aimed at facilitating mass spectrometric analysis to study different aspects of proteome dynamics. The enrichment method is based on covalent capture of azide-containing peptides by the azide-reactive cyclooctyne (ARCO) resin and is demonstrated for two different applications. Enrichment of peptides derived from cytochrome c treated with the azide-containing cross-linker bis(succinimidyl)-3-azidomethyl glutarate (BAMG) shows several cross-link containing peptides. Sequestration of peptides derived from an Escherichia coli proteome, pulse labeled with the bio-orthogonal amino acid azidohomoalanine as substitute for methionine, allows identification of numerous newly synthesized proteins. Furthermore, the method is found to be very specific, as after enrichment over 87% of all peptides contain (modified) azidohomoalanine.
Collapse
Affiliation(s)
- Merel A. Nessen
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018WV Amsterdam, The Netherlands and Organic Synthesis, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 129, 1018WS Amsterdam, The Netherlands
| | - Gertjan Kramer
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018WV Amsterdam, The Netherlands and Organic Synthesis, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 129, 1018WS Amsterdam, The Netherlands
| | | | | | - Linde E. J. Smeenk
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018WV Amsterdam, The Netherlands and Organic Synthesis, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 129, 1018WS Amsterdam, The Netherlands
| | - Leo J. de Koning
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018WV Amsterdam, The Netherlands and Organic Synthesis, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 129, 1018WS Amsterdam, The Netherlands
| | - Jan H. van Maarseveen
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018WV Amsterdam, The Netherlands and Organic Synthesis, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 129, 1018WS Amsterdam, The Netherlands
| | - Luitzen de Jong
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018WV Amsterdam, The Netherlands and Organic Synthesis, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 129, 1018WS Amsterdam, The Netherlands
| | | | - Henk Hiemstra
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018WV Amsterdam, The Netherlands and Organic Synthesis, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 129, 1018WS Amsterdam, The Netherlands
| | - Chris G. de Koster
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018WV Amsterdam, The Netherlands and Organic Synthesis, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 129, 1018WS Amsterdam, The Netherlands
| |
Collapse
|
32
|
Mädler S, Bich C, Touboul D, Zenobi R. Chemical cross-linking with NHS esters: a systematic study on amino acid reactivities. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:694-706. [PMID: 19132714 DOI: 10.1002/jms.1544] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Structure elucidation of tertiary or quaternary protein structures by chemical cross-linking and mass spectrometry (MS) has recently gained importance. To locate the cross-linker modification, dedicated software is applied to analyze the mass or tandem mass spectra (MS/MS). Such software requires information on target amino acids to limit the data analysis time. The most commonly used homobifunctional N-hydroxy succinimide (NHS) esters are often described as reactive exclusively towards primary amines, although side reactions with tyrosine and serine have been reported. Our goal was to systematically study the reactivity of NHS esters and derive some general rules for their attack of nucleophilic amino acid side chains in peptides. We therefore studied the cross-linking reactions of synthesized and commercial model peptides with disuccinimidyl suberate (DSS). The first reaction site in all cases was expectedly the alpha-NH(2)-group of the N-terminus or the epsilon-NH(2)-group of lysine. As soon as additional cross-linkers were attached or loops were formed, other amino acids were also involved in the reaction. In addition to the primary amino groups, serine, threonine and tyrosine showed significant reactivity due to the effect of neighboring amino acids by intermediate or permanent Type-1 cross-link formation. The reactivity is highly dependent on the pH and on adjacent amino acids.
Collapse
Affiliation(s)
- Stefanie Mädler
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
33
|
Müller MQ, de Koning LJ, Schmidt A, Ihling C, Syha Y, Rau O, Mechtler K, Schubert-Zsilavecz M, Sinz A. An Innovative Method To Study Target Protein−Drug Interactions by Mass Spectrometry. J Med Chem 2009; 52:2875-9. [DOI: 10.1021/jm9000665] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mathias Q. Müller
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle/Saale, Germany, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, NL-1018 WV Amsterdam, The Netherlands, Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, A-1030 Wien, Austria, and Department of Biochemistry, Chemistry and Pharmacy, Institute of Pharmaceutical Chemistry, Johann-Wolfgang
| | - Leo J. de Koning
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle/Saale, Germany, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, NL-1018 WV Amsterdam, The Netherlands, Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, A-1030 Wien, Austria, and Department of Biochemistry, Chemistry and Pharmacy, Institute of Pharmaceutical Chemistry, Johann-Wolfgang
| | - Andreas Schmidt
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle/Saale, Germany, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, NL-1018 WV Amsterdam, The Netherlands, Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, A-1030 Wien, Austria, and Department of Biochemistry, Chemistry and Pharmacy, Institute of Pharmaceutical Chemistry, Johann-Wolfgang
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle/Saale, Germany, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, NL-1018 WV Amsterdam, The Netherlands, Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, A-1030 Wien, Austria, and Department of Biochemistry, Chemistry and Pharmacy, Institute of Pharmaceutical Chemistry, Johann-Wolfgang
| | - Yvonne Syha
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle/Saale, Germany, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, NL-1018 WV Amsterdam, The Netherlands, Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, A-1030 Wien, Austria, and Department of Biochemistry, Chemistry and Pharmacy, Institute of Pharmaceutical Chemistry, Johann-Wolfgang
| | - Oliver Rau
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle/Saale, Germany, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, NL-1018 WV Amsterdam, The Netherlands, Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, A-1030 Wien, Austria, and Department of Biochemistry, Chemistry and Pharmacy, Institute of Pharmaceutical Chemistry, Johann-Wolfgang
| | - Karl Mechtler
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle/Saale, Germany, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, NL-1018 WV Amsterdam, The Netherlands, Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, A-1030 Wien, Austria, and Department of Biochemistry, Chemistry and Pharmacy, Institute of Pharmaceutical Chemistry, Johann-Wolfgang
| | - Manfred Schubert-Zsilavecz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle/Saale, Germany, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, NL-1018 WV Amsterdam, The Netherlands, Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, A-1030 Wien, Austria, and Department of Biochemistry, Chemistry and Pharmacy, Institute of Pharmaceutical Chemistry, Johann-Wolfgang
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle/Saale, Germany, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, NL-1018 WV Amsterdam, The Netherlands, Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, A-1030 Wien, Austria, and Department of Biochemistry, Chemistry and Pharmacy, Institute of Pharmaceutical Chemistry, Johann-Wolfgang
| |
Collapse
|
34
|
Singh P, Shaffer SA, Scherl A, Holman C, Pfuetzner RA, Larson Freeman TJ, Miller SI, Hernandez P, Appel RD, Goodlett DR. Characterization of protein cross-links via mass spectrometry and an open-modification search strategy. Anal Chem 2008; 80:8799-806. [PMID: 18947195 DOI: 10.1021/ac801646f] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein-protein interactions are key to function and regulation of many biological pathways. To facilitate characterization of protein-protein interactions using mass spectrometry, a new data acquisition/analysis pipeline was designed. The goal for this pipeline was to provide a generic strategy for identifying cross-linked peptides from single LC/MS/MS data sets, without using specialized cross-linkers or custom-written software. To achieve this, each peptide in the pair of cross-linked peptides was considered to be "post-translationally" modified with an unknown mass at an unknown amino acid. This allowed use of an open-modification search engine, Popitam, to interpret the tandem mass spectra of cross-linked peptides. False positives were reduced and database selectivity increased by acquiring precursors and fragments at high mass accuracy. Additionally, a high-charge-state-driven data acquisition scheme was utilized to enrich data sets for cross-linked peptides. This open-modification search based pipeline was shown to be useful for characterizing both chemical as well as native cross-links in proteins. The pipeline was validated by characterizing the known interactions in the chemically cross-linked CYP2E1-b5 complex. Utility of this method in identifying native cross-links was demonstrated by mapping disulfide bridges in RcsF, an outer membrane lipoprotein involved in Rcs phosphorelay.
Collapse
Affiliation(s)
- Pragya Singh
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Heymann M, Paramelle D, Subra G, Forest E, Martinez J, Geourjon C, Deléage G. MSX-3D: a tool to validate 3D protein models using mass spectrometry. Bioinformatics 2008; 24:2782-3. [PMID: 18826958 DOI: 10.1093/bioinformatics/btn510] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
MOTIVATION The technique of chemical cross-linking followed by mass spectrometry has proven to bring valuable information about the protein structure and interactions between proteic subunits. It is an effective and efficient way to experimentally investigate some aspects of a protein structure when NMR and X-ray crystallography data are lacking. RESULTS We introduce MSX-3D, a tool specifically geared to validate protein models using mass spectrometry. In addition to classical peptides identifications, it allows an interactive 3D visualization of the distance constraints derived from a cross-linking experiment. AVAILABILITY Freely available at http://proteomics-pbil.ibcp.fr
Collapse
Affiliation(s)
- Michaël Heymann
- Institut de Biologie et Chimie des Protéines (IBCP) UMR5086 CNRS, Université Lyon 1, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Yu ET, Hawkins A, Kuntz ID, Rahn LA, Rothfuss A, Sale K, Young MM, Yang CL, Pancerella CM, Fabris D. The collaboratory for MS3D: a new cyberinfrastructure for the structural elucidation of biological macromolecules and their assemblies using mass spectrometry-based approaches. J Proteome Res 2008; 7:4848-57. [PMID: 18817429 DOI: 10.1021/pr800443f] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Modern biomedical research is evolving with the rapid growth of diverse data types, biophysical characterization methods, computational tools and extensive collaboration among researchers spanning various communities and having complementary backgrounds and expertise. Collaborating researchers are increasingly dependent on shared data and tools made available by other investigators with common interests, thus forming communities that transcend the traditional boundaries of the single research laboratory or institution. Barriers, however, remain to the formation of these virtual communities, usually due to the steep learning curve associated with becoming familiar with new tools, or with the difficulties associated with transferring data between tools. Recognizing the need for shared reference data and analysis tools, we are developing an integrated knowledge environment that supports productive interactions among researchers. Here we report on our current collaborative environment, which focuses on bringing together structural biologists working in the area of mass spectrometric based methods for the analysis of tertiary and quaternary macromolecular structures (MS3D) called the Collaboratory for MS3D (C-MS3D). C-MS3D is a Web-portal designed to provide collaborators with a shared work environment that integrates data storage and management with data analysis tools. Files are stored and archived along with pertinent meta data in such a way as to allow file handling to be tracked (data provenance) and data files to be searched using keywords and modification dates. While at this time the portal is designed around a specific application, the shared work environment is a general approach to building collaborative work groups. The goal of this is to not only provide a common data sharing and archiving system, but also to assist in the building of new collaborations and to spur the development of new tools and technologies.
Collapse
Affiliation(s)
- Eizadora T Yu
- Biosystems Research, Advanced Software R&D, and Exploratory Computer and Software Engineering Departments, Sandia National Laboratories, P.O. Box 969, Livermore, California 94551-0969, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Popolo L, Ragni E, Carotti C, Palomares O, Aardema R, Back JW, Dekker HL, de Koning LJ, de Jong L, de Koster CG. Disulfide Bond Structure and Domain Organization of Yeast β(1,3)-Glucanosyltransferases Involved in Cell Wall Biogenesis. J Biol Chem 2008; 283:18553-65. [DOI: 10.1074/jbc.m801562200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
38
|
Gardner MW, Vasicek LA, Shabbir S, Anslyn EV, Brodbelt JS. Chromogenic cross-linker for the characterization of protein structure by infrared multiphoton dissociation mass spectrometry. Anal Chem 2008; 80:4807-19. [PMID: 18517224 DOI: 10.1021/ac800625x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have developed a new IR chromogenic cross-linker (IRCX) to aid in rapidly distinguishing cross-linked peptides from unmodified species in complex mixtures. By incorporating a phosphate functional group into the cross-linker, one can take advantage of its unique IR absorption properties, affording selective infrared multiphoton dissociation (IRMPD) of the cross-linked peptides. In a mock mixture of unmodified peptides and IRCX-cross-linked peptides (intramolecularly and intermolecularly cross-linked), only the peptides containing the IRCX modification were shown to dissociate upon exposure to 50 ms of 10.6-microm radiation. LC-IRMPD-MS proved to be an effective method to distinguish the cross-linked peptides in a tryptic digest of IRCX-cross-linked ubiquitin. A total of four intermolecular cross-links and two dead-end modifications were identified using IRCX and LC-IRMPD-MS. IRMPD of these cross-linked peptides resulted in secondary dissociation of all primary fragment ions containing the chromophore, producing a series of unmodified b- or y-type ions that allowed the cross-linked peptides to be sequenced without the need for collision-induced dissociation.
Collapse
Affiliation(s)
- Myles W Gardner
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, Texas, USA 78712, USA
| | | | | | | | | |
Collapse
|
39
|
Yang W, Steen H, Freeman MR. Proteomic approaches to the analysis of multiprotein signaling complexes. Proteomics 2008; 8:832-51. [PMID: 18297654 DOI: 10.1002/pmic.200700650] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Signal transduction is one of the most active fields in modern biomedical research. Increasing evidence has shown that signaling proteins associate with each other in characteristic ways to form large signaling complexes. These diverse structures operate to boost signaling efficiency, ensure specificity and increase sensitivity of the biochemical circuitry. Traditional methods of protein analysis are inadequate to fully characterize and understand these structures, which are intricate, contain many components and are highly dynamic. Instead, proteomics technologies are currently being applied to investigate the nature and composition of multimeric signaling complexes. This review presents commonly used and potential proteomic methods of analyzing diverse protein complexes along with a discussion and a brief evaluation of alternative approaches. Challenges associated with proteomic analysis of signaling complexes are also discussed.
Collapse
Affiliation(s)
- Wei Yang
- The Urological Diseases Research Center, Department of Urology, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | |
Collapse
|
40
|
Rinner O, Seebacher J, Walzthoeni T, Mueller L, Beck M, Schmidt A, Mueller M, Aebersold R. Identification of cross-linked peptides from large sequence databases. Nat Methods 2008; 5:315-8. [PMID: 18327264 PMCID: PMC2719781 DOI: 10.1038/nmeth.1192] [Citation(s) in RCA: 313] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 01/30/2008] [Indexed: 12/22/2022]
Abstract
We describe a method to identify cross-linked peptides from complex samples and large protein sequence databases by combining isotopically tagged cross-linkers, chromatographic enrichment, targeted proteomics and a new search engine called xQuest. This software reduces the search space by an upstream candidate-peptide search before the recombination step. We showed that xQuest can identify cross-linked peptides from a total Escherichia coli lysate with an unrestricted database search.
Collapse
Affiliation(s)
- Oliver Rinner
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Wolfgang-Pauli Strasse 16, 8093 Zurich, Switzerland
| | - Jan Seebacher
- Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103-8904
| | - Thomas Walzthoeni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Wolfgang-Pauli Strasse 16, 8093 Zurich, Switzerland
- University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
| | - Lukas Mueller
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Wolfgang-Pauli Strasse 16, 8093 Zurich, Switzerland
| | - Martin Beck
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Wolfgang-Pauli Strasse 16, 8093 Zurich, Switzerland
| | - Alexander Schmidt
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Wolfgang-Pauli Strasse 16, 8093 Zurich, Switzerland
- Faculty of Science, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Markus Mueller
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Wolfgang-Pauli Strasse 16, 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Wolfgang-Pauli Strasse 16, 8093 Zurich, Switzerland
- Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103-8904
- Faculty of Science, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
41
|
Gardner MW, Brodbelt JS. Impact of proline and aspartic acid residues on the dissociation of intermolecularly crosslinked peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:344-357. [PMID: 18083526 DOI: 10.1016/j.jasms.2007.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 11/02/2007] [Accepted: 11/06/2007] [Indexed: 05/25/2023]
Abstract
The dissociation of intermolecularly crosslinked peptides was evaluated for a series of peptides with proline or aspartic acid residues positioned adjacent to the crosslinking sites (lysine residues). The peptides were crosslinked with either disuccinimidyl suberate (DSS) or disuccinimidyl L-tartrate (DST), and the influence of proline and aspartic acid residues on the fragmentation patterns were investigated for precursor ions with and without a mobile proton. Collisionally activated dissociation (CAD) spectra of aspartic acid-containing crosslinked peptide ions, doubly-charged with both protons sequestered, were dominated by cleavage C-terminal to the Asp residue, similar to that of unmodified peptides. The proline-containing crosslinked peptides exhibited a high degree of internal ion formation, with the resulting product ions having an N-terminal proline residue. Upon dissociation of the doubly-charged crosslinked peptides, twenty to fifty percent of the fragment ion abundance was accounted for by multiple cleavage products. Crosslinked peptides possessing a mobile proton yielded almost a full series of b- and y-type fragment ions, with only proline-directed fragments still observed at high abundances. Interestingly, the crosslinked peptides exhibited a tendency to dissociate at the amide bond C-terminal to the crosslinked lysine residue, relative to the N-terminal side. One could envision updating computer algorithms to include these crosslinker specific product ions--particularly for precursor ions with localized protons--that provide complementary and confirmatory information, to offer more confident identification of both the crosslinked peptides and the location of the crosslink, as well as affording predictive guidelines for interpretation of the product-ion spectra of crosslinked peptides.
Collapse
Affiliation(s)
- Myles W Gardner
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
42
|
Nadeau OW, Wyckoff GJ, Paschall JE, Artigues A, Sage J, Villar MT, Carlson GM. CrossSearch, a user-friendly search engine for detecting chemically cross-linked peptides in conjugated proteins. Mol Cell Proteomics 2008; 7:739-49. [PMID: 18281724 DOI: 10.1074/mcp.m800020-mcp200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chemical cross-linking and high resolution MS have been integrated successfully to capture protein interactions and provide low resolution structural data for proteins that are refractive to analyses by NMR or crystallography. Despite the versatility of these combined techniques, the array of products that is generated from the cross-linking and proteolytic digestion of proteins is immense and generally requires the use of labeling strategies and/or data base search algorithms to distinguish actual cross-linked peptides from the many side products of cross-linking. Most strategies reported to date have focused on the analysis of small cross-linked protein complexes (<60 kDa) because the number of potential forms of covalently modified peptides increases dramatically with the number of peptides generated from the digestion of such complexes. We report herein the development of a user-friendly search engine, CrossSearch, that provides the foundation for an overarching strategy to detect cross-linked peptides from the digests of large (>or=170-kDa) cross-linked proteins, i.e. conjugates. Our strategy combines the use of a low excess of cross-linker, data base searching, and Fourier transform ion cyclotron resonance MS to experimentally minimize and theoretically cull the side products of cross-linking. Using this strategy, the (alpha beta gamma delta)(4) phosphorylase kinase model complex was cross-linked to form with high specificity a 170-kDa betagamma conjugate in which we identified residues involved in the intramolecular cross-linking of the 125-kDa beta subunit between its regulatory N terminus and its C terminus. This finding provides an explanation for previously published homodimeric two-hybrid interactions of the beta subunit and suggests a dynamic structural role for the regulatory N terminus of that subunit. The results offer proof of concept for the CrossSearch strategy for analyzing conjugates and are the first to reveal a tertiary structural element of either homologous alpha or beta regulatory subunit of phosphorylase kinase.
Collapse
Affiliation(s)
- Owen W Nadeau
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Jin Lee Y. Mass spectrometric analysis of cross-linking sites for the structure of proteins and protein complexes. MOLECULAR BIOSYSTEMS 2008; 4:816-23. [DOI: 10.1039/b801810c] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Maiolica A, Cittaro D, Borsotti D, Sennels L, Ciferri C, Tarricone C, Musacchio A, Rappsilber J. Structural analysis of multiprotein complexes by cross-linking, mass spectrometry, and database searching. Mol Cell Proteomics 2007; 6:2200-11. [PMID: 17921176 DOI: 10.1074/mcp.m700274-mcp200] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most protein complexes are inaccessible to high resolution structural analysis. We report the results of a combined approach of cross-linking, mass spectrometry, and bioinformatics to two human complexes containing large coiled-coil segments, the NDEL1 homodimer and the NDC80 heterotetramer. An important limitation of the cross-linking approach, so far, was the identification of cross-linked peptides from fragmentation spectra. Our novel approach overcomes the data analysis bottleneck of cross-linking and mass spectrometry. We constructed a purpose-built database to match spectra with cross-linked peptides, define a score that expresses the quality of our identification, and estimate false positive rates. We show that our analysis sheds light on critical structural parameters such as the directionality of the homodimeric coiled coil of NDEL1, the register of the heterodimeric coiled coils of the NDC80 complex, and the organization of a tetramerization region in the NDC80 complex. Our approach is especially useful to address complexes that are difficult in addressing by standard structural methods.
Collapse
Affiliation(s)
- Alessio Maiolica
- FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Anderson GA, Tolic N, Tang X, Zheng C, Bruce JE. Informatics strategies for large-scale novel cross-linking analysis. J Proteome Res 2007; 6:3412-21. [PMID: 17676784 PMCID: PMC2475505 DOI: 10.1021/pr070035z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The detection of protein interactions in biological systems represents a significant challenge for today's technology. Chemical cross-linking provides the potential to impart new chemical bonds in a complex system that result in mass changes in a set of tryptic peptides detected by mass spectrometry. However, system complexity and cross-linking product heterogeneity have precluded widespread chemical cross-linking use for large-scale identification of protein-protein interactions. The development of mass spectrometry identifiable cross-linkers called protein interaction reporters (PIRs) has enabled on-cell chemical cross-linking experiments with product type differentiation. However, the complex datasets resultant from PIR experiments demand new informatics capabilities to allow interpretation. This manuscript details our efforts to develop such capabilities and describes the program X-links, which allows PIR product type differentiation. Furthermore, we also present the results from Monte Carlo simulation of PIR-type experiments to provide false discovery rate estimates for the PIR product type identification through observed precursor and released peptide masses. Our simulations also provide peptide identification calculations based on accurate masses and database complexity that can provide an estimation of false discovery rates for peptide identification. Overall, the calculations show a low rate of false discovery of PIR product types due to random mass matching of approximately 12% with 10 ppm mass measurement accuracy and spectral complexity resulting from 100 peptides. In addition, consideration of a reduced database resulting from stage 1 analysis of Shewanella oneidensis MR-1 containing 367 proteins resulted in a significant reduction of expected identification false discovery rate estimation compared to that from the entire Shewanella oneidensis MR-1 proteome.
Collapse
Affiliation(s)
| | | | | | | | - James E. Bruce
- * To whom correspondence should be addressed. James E. Bruce, Department of Chemistry, Washington State University, Pullman, Washington 99164-4630; Tel, 509-335-2116; Fax, 509-335-8867; E-mail,
| |
Collapse
|
46
|
Fowler CB, Cunningham RE, O'Leary TJ, Mason JT. 'Tissue surrogates' as a model for archival formalin-fixed paraffin-embedded tissues. J Transl Med 2007; 87:836-46. [PMID: 17530029 DOI: 10.1038/labinvest.3700596] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
High-throughput proteomic studies of archival formalin-fixed paraffin-embedded (FFPE) tissues have the potential to be a powerful tool for examining the clinical course of disease. However, advances in FFPE tissue-based proteomics have been hampered by inefficient methods to extract proteins from archival tissue and by an incomplete knowledge of formaldehyde-induced modifications in proteins. To help address these problems, we have developed a procedure for the formation of 'tissue surrogates' to model FFPE tissues. Cytoplasmic proteins, such as lysozyme or ribonuclease A, at concentrations approaching the protein content in whole cells, are fixed with 10% formalin to form gelatin-like plugs. These plugs have sufficient physical integrity to be processed through graded alcohols, xylene, and embedded in paraffin according to standard histological procedures. In this study, we used tissue surrogates formed from one or two proteins to evaluate extraction protocols for their ability to quantitatively extract proteins from the surrogates. Optimal protein extraction was obtained using a combination of heat, a detergent, and a protein denaturant. The addition of a reducing agent did not improve protein recovery; however, recovery varied significantly with pH. Protein extraction of >80% was observed for pH 4 buffers containing 2% (w/v) sodium dodecyl sulfate (SDS) when heated at 100 degrees C for 20 min, followed by incubation at 60 degrees C for 2 h. SDS-polyacrylamide gel electrophoresis of the extracted proteins revealed that the surrogate extracts contained a mixture of monomeric and multimeric proteins, regardless of the extraction protocol employed. Additionally, protein extracts from surrogates containing carbonic anhydrase:lysozyme (1:2 mol/mol) had disproportionate percentages of lysozyme, indicating that selective protein extraction in complex multiprotein systems may be a concern in proteomic studies of FFPE tissues.
Collapse
Affiliation(s)
- Carol B Fowler
- Department of Biophysics, Armed Forces Institute of Pathology, Rockville, MD 20850, USA
| | | | | | | |
Collapse
|
47
|
Kasper PT, Back JW, Vitale M, Hartog AF, Roseboom W, de Koning LJ, van Maarseveen JH, Muijsers AO, de Koster CG, de Jong L. An Aptly Positioned Azido Group in the Spacer of a Protein Cross-Linker for Facile Mapping of Lysines in Close Proximity. Chembiochem 2007; 8:1281-92. [PMID: 17600791 DOI: 10.1002/cbic.200700150] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cross-links between amino acid residues in close proximity can provide distance constraints for the validation of models of the 3D structure proteins. The mapping of cross-links by the identification of linked peptides in proteolytic digests is facilitated by cleavable cross-linkers that enable isolation of the cleavage products while preserving information about the linkage. We present an amine-specific cross-linker, bis(succinimidyl)-3-azidomethyl glutarate (BAMG), that fulfils these requirements. Two parallel reaction pathways are induced by tris(carboxyethyl)phosphine (TCEP) in cross-linked peptides from BAMG-treated cytochrome c. One pathway leads to cleavage of the cross-linked species, while in the other the azido group of BAMG is reduced to an amino group without cleavage. Cross-linked peptides and peptides modified by partially hydrolysed BAMG yield distinct sets of TCEP-induced reaction products. These can be isolated by reversed-phase diagonal chromatography and identified by mass spectrometry to reveal the identity of the parent compounds. The ease with which cross-link-derived reaction products can be isolated and identified indicates that the mapping of cross-links in complex biological assemblies and mixtures of protein complexes might become feasible in the near future.
Collapse
Affiliation(s)
- Piotr T Kasper
- Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Holmes O, Pillozzi S, Deakin JA, Carafoli F, Kemp L, Butler PJG, Lyon M, Gherardi E. Insights into the structure/function of hepatocyte growth factor/scatter factor from studies with individual domains. J Mol Biol 2007; 367:395-408. [PMID: 17258232 DOI: 10.1016/j.jmb.2006.12.061] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/14/2006] [Accepted: 12/19/2006] [Indexed: 11/20/2022]
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF), the ligand for the receptor tyrosine kinase encoded by the c-Met proto-oncogene, is a multidomain protein structurally related to the pro-enzyme plasminogen and with major roles in development, tissue regeneration and cancer. We have expressed the N-terminal (N) domain, the four kringle domains (K1 to K4) and the serine proteinase homology domain (SP) of HGF/SF individually in yeast or mammalian cells and studied their ability to: (i) bind the Met receptor as well as heparan sulphate and dermatan sulphate co-receptors, (ii) activate Met in target cells and, (iii) map their binding sites onto the beta-propeller domain of Met. The N, K1 and SP domains bound Met directly with comparable affinities (K(d)=2.4, 3.3 and 1.4 microM). The same domains also bound heparin with decreasing affinities (N>K1>>SP) but only the N domain bound dermatan sulphate. Three kringle domains (K1, K2 and K4) displayed agonistic activity on target cells. In contrast, the N and SP domains, although capable of Met binding, displayed no or little activity. Further, cross-linking experiments demonstrated that both the N domain and kringles 1-2 bind the beta-chain moiety (amino acid residues 308-514) of the Met beta-propeller. In summary, the K1, K2 and K4 domains of HGF/SF are sufficient for Met activation, whereas the N and SP domains are not, although the latter domains contribute additional binding sites necessary for receptor activation by full length HGF/SF. The results provide new insights into the structure/function of HGF/SF and a basis for engineering the N and K1 domains as receptor antagonists for cancer therapy.
Collapse
Affiliation(s)
- O Holmes
- MRC Centre, Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Akashi S. Structural and Functional Characterization of Biological Macromolecules by Mass Spectrometry. YAKUGAKU ZASSHI 2006; 126:915-29. [PMID: 17016021 DOI: 10.1248/yakushi.126.915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mass spectrometry has widely been used as a tool for identification of proteins in the research fields of biochemistry and clinical chemistry because it can provide accurate information on molecular masses of biological molecules with a small amount of sample in a short time. If mass spectrometry is properly used, it can also give information on the tertiary structure or on the molecular interactions of biological macromolecules. The present paper focuses on the role of mass spectrometry as a tool for the investigation on the tertiary structure of proteins and on the biological molecular interactions that play essential roles in various biological events.
Collapse
Affiliation(s)
- Satoko Akashi
- International Graduate School of Arts and Sciences, Yokohama City University, Japan.
| |
Collapse
|