1
|
Gulick AM, Mydy LS, Patel KD. Kinetic analysis of the three-substrate reaction mechanism of an NRPS-independent siderophore (NIS) synthetase. Methods Enzymol 2024; 702:1-19. [PMID: 39155107 PMCID: PMC11331036 DOI: 10.1016/bs.mie.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The biosynthesis of many bacterial siderophores employs a member of a family of ligases that have been defined as NRPS-independent siderophore (NIS) synthetases. These NIS synthetases use a molecule of ATP to produce an amide linkage between a carboxylate and an amine. Commonly used carboxylate substrates include citrate or α-ketoglutarate, or derivatives thereof, while the amines are often hydroxamate derivatives of lysine or ornithine, or their decarboxylated forms cadaverine and putrescine. Enzymes that employ three substrates to catalyze a reaction may proceed through alternate mechanisms. Some enzymes use sequential mechanisms in which all three substrates bind prior to any chemical steps. In such mechanisms, substrates can bind in a random, ordered, or mixed fashion. Alternately, other enzymes employ a ping-pong mechanism in which a chemical step occurs prior to the binding of all three substrates. Here we describe an enzyme assay that will distinguish among these different mechanisms for the NIS synthetase, using IucA, an enzyme involved in the production of aerobactin, as the model system.
Collapse
Affiliation(s)
- Andrew M Gulick
- Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, United States.
| | - Lisa S Mydy
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Ketan D Patel
- Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, United States
| |
Collapse
|
2
|
Hegde P, Orimoloye MO, Sharma S, Engelhart CA, Schnappinger D, Aldrich CC. Polyfluorinated salicylic acid analogs do not interfere with siderophore biosynthesis. Tuberculosis (Edinb) 2023; 140:102346. [PMID: 37119793 PMCID: PMC10247463 DOI: 10.1016/j.tube.2023.102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is a leading cause of infectious disease mortality. The salicylic acid derived small molecule siderophores known as mycobactins are essential in vivo for iron acquisition of Mtb where iron is restricted in the host. Herein, we synthesize and explore the mechanism of action of polyfluorinated salicylic acid derivates, which were previously reported to possess potent antimycobacterial activity. We hypothesized fluorinated salicylic acid derivates may inhibit mycobactin biosynthesis through initial bioactivation and conversion to downstream metabolites that block late steps in assembly of the mycobactins. Enzymatic studies demonstrated that some of the fluorinated salicylic acid derivatives compounds were readily activated by the bifunctional adenylating enzyme MbtA, responsible for incorporation of salicylic acid into the mycobactin biosynthetic pathway; however, they did not inhibit mycobactin biosynthesis as confirmed by LS-MS/MS using an authentic synthetic mycobactin standard. Further mechanistic analysis of the most active derivative (Sal-4) using an MbtA-overexpressing Mtb strain as well as complementation studies with iron and salicylic acid revealed Sal-4 cannot be antagonized by overexpression of MbtA or through supplementation with iron or salicylic acid. Taken together, our results indicate the observed antimycobacterial activity of polyfluorinated salicylic acid derivative is independent of mycobactin biosynthesis.
Collapse
Affiliation(s)
- Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN, 55455, USA
| | - Moyosore O Orimoloye
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN, 55455, USA
| | - Sachin Sharma
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN, 55455, USA
| | - Curtis A Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10021, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10021, USA.
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Timofeeva AM, Galyamova MR, Sedykh SE. Bacterial Siderophores: Classification, Biosynthesis, Perspectives of Use in Agriculture. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223065. [PMID: 36432794 PMCID: PMC9694258 DOI: 10.3390/plants11223065] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 06/07/2023]
Abstract
Siderophores are synthesized and secreted by many bacteria, yeasts, fungi, and plants for Fe (III) chelation. A variety of plant-growth-promoting bacteria (PGPB) colonize the rhizosphere and contribute to iron assimilation by plants. These microorganisms possess mechanisms to produce Fe ions under iron-deficient conditions. Under appropriate conditions, they synthesize and release siderophores, thereby increasing and regulating iron bioavailability. This review focuses on various bacterial strains that positively affect plant growth and development through synthesizing siderophores. Here we discuss the diverse chemical nature of siderophores produced by plant root bacteria; the life cycle of siderophores, from their biosynthesis to the Fe-siderophore complex degradation; three mechanisms of siderophore biosynthesis in bacteria; the methods for analyzing siderophores and the siderophore-producing activity of bacteria and the methods for screening the siderophore-producing activity of bacterial colonies. Further analysis of biochemical, molecular-biological, and physiological features of siderophore synthesis by bacteria and their use by plants will allow one to create effective microbiological preparations for improving soil fertility and increasing plant biomass, which is highly relevant for sustainable agriculture.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
| | - Maria R. Galyamova
- Center for Entrepreneurial Initiatives, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey E. Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Parameterization and Application of the General Amber Force Field to Model Fluoro Substituted Furanose Moieties and Nucleosides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092616. [PMID: 35565967 PMCID: PMC9101125 DOI: 10.3390/molecules27092616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
Abstract
Molecular mechanics force field calculations have historically shown significant limitations in modeling the energetic and conformational interconversions of highly substituted furanose rings. This is primarily due to the gauche effect that is not easily captured using pairwise energy potentials. In this study, we present a refinement to the set of torsional parameters in the General Amber Force Field (gaff) used to calculate the potential energy of mono, di-, and gem-fluorinated nucleosides. The parameters were optimized to reproduce the pseudorotation phase angle and relative energies of a diverse set of mono- and difluoro substituted furanose ring systems using quantum mechanics umbrella sampling techniques available in the IpolQ engine in the Amber suite of programs. The parameters were developed to be internally consistent with the gaff force field and the TIP3P water model. The new set of angle and dihedral parameters and partial charges were validated by comparing the calculated phase angle probability to those obtained from experimental nuclear magnetic resonance experiments.
Collapse
|
5
|
Negatively regulated aerobactin and desferrioxamine E by Fur in Pantoea ananatis are required for full siderophore production and antibacterial activity, but not for virulence. Appl Environ Microbiol 2022; 88:e0240521. [PMID: 35108090 DOI: 10.1128/aem.02405-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pantoea ananatis is an emerging plant pathogen that causes disease in economically important crops such as rice, corn, onion, melon, and pineapple, and it also infects humans and insects. In this study, we identified biosynthetic gene clusters of aerobactin and desferrioxamine E (DFO-E) siderophores using the complete genome of P. ananatis PA13 isolated from rice sheath rot. P. ananatis PA13 exhibited the strongest antibacterial activity against Erwinia amylovora and Yersinia enterocolitica (Enterobacterales). Mutants of aerobactin or DFO-E maintained antibacterial activity against E. amylovora and Y. enterocolitica, as well as in a siderophore activity assay. However, double aerobactin- and DFO-E-gene-deletion mutants completely lost siderophore and antibacterial activity. These results reveal that both siderophore biosynthetic gene clusters are essential for siderophore production and antibacterial activity in P. ananatis PA13. A ferric uptake regulator protein (Fur) mutant exhibited a significant increase in siderophore production, and a Fur-overexpressing strain completely lost antibacterial activity. Expression of the iucA, dfoJ, and foxA genes was significantly increased in the Δfur mutant background, and expression of these genes returned to wild type levels after fur compensation. These results indicate that Fur negatively regulates aerobactin and DFO-E siderophores. However, siderophore production was not required for P. ananatis virulence in plants, but it appears to be involved in the microbial ecology surrounding the plant environment. This study is the first to report the regulation and functional characteristics of siderophore biosynthetic genes in P. ananatis. IMPORTANCE Pantoea ananatis is a bacterium that causes diseases in several economically important crops, as well as in insects and humans. This bacterium has been studied extensively as a potentially dangerous pathogen due to its saprophytic ability. Recently, the types, biosynthetic gene clusters, and origin of the siderophores in the Pantoea genus were determined using genome comparative analyses. However, few genetic studies have investigated the characteristics and functions of siderophores in P. ananatis. The results of this study revealed that the production of aerobactin and desferrioxamine E in the rice pathogen P. ananatis PA13 is negatively regulated by Fur, and that these siderophores are essential for antibacterial activity against Erwinia amylovora and Yersinia enterocolitica (Enterobacterales). However, siderophore production was not required for P. ananatis virulence in plants, but it appears to be involved in the microbial ecology surrounding the plant environment.
Collapse
|
6
|
Sebbane F, Lemaître N. Antibiotic Therapy of Plague: A Review. Biomolecules 2021; 11:724. [PMID: 34065940 PMCID: PMC8151713 DOI: 10.3390/biom11050724] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
Plague-a deadly disease caused by the bacterium Yersinia pestis-is still an international public health concern. There are three main clinical forms: bubonic plague, septicemic plague, and pulmonary plague. In all three forms, the symptoms appear suddenly and progress very rapidly. Early antibiotic therapy is essential for countering the disease. Several classes of antibiotics (e.g., tetracyclines, fluoroquinolones, aminoglycosides, sulfonamides, chloramphenicol, rifamycin, and β-lactams) are active in vitro against the majority of Y. pestis strains and have demonstrated efficacy in various animal models. However, some discrepancies have been reported. Hence, health authorities have approved and recommended several drugs for prophylactic or curative use. Only monotherapy is currently recommended; combination therapy has not shown any benefits in preclinical studies or case reports. Concerns about the emergence of multidrug-resistant strains of Y. pestis have led to the development of new classes of antibiotics and other therapeutics (e.g., LpxC inhibitors, cationic peptides, antivirulence drugs, predatory bacteria, phages, immunotherapy, host-directed therapy, and nutritional immunity). It is difficult to know which of the currently available treatments or therapeutics in development will be most effective for a given form of plague. This is due to the lack of standardization in preclinical studies, conflicting data from case reports, and the small number of clinical trials performed to date.
Collapse
Affiliation(s)
- Florent Sebbane
- Univ. Lille, Inserm, CNRS, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nadine Lemaître
- Univ. Lille, Inserm, CNRS, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
- Laboratoire de Bactériologie-Hygiène, Centre Hospitalier Universitaire Amiens Picardie, UR 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Université de Picardie Jules Verne, F-80000 Amiens, France
| |
Collapse
|
7
|
Shyam M, Shilkar D, Verma H, Dev A, Sinha BN, Brucoli F, Bhakta S, Jayaprakash V. The Mycobactin Biosynthesis Pathway: A Prospective Therapeutic Target in the Battle against Tuberculosis. J Med Chem 2020; 64:71-100. [PMID: 33372516 DOI: 10.1021/acs.jmedchem.0c01176] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The alarming rise in drug-resistant clinical cases of tuberculosis (TB) has necessitated the rapid development of newer chemotherapeutic agents with novel mechanisms of action. The mycobactin biosynthesis pathway, conserved only among the mycolata family of actinobacteria, a group of intracellularly surviving bacterial pathogens that includes Mycobacterium tuberculosis, generates a salicyl-capped peptide mycobactin under iron-stress conditions in host macrophages to support the iron demands of the pathogen. This in vivo essentiality makes this less explored mycobactin biosynthesis pathway a promising endogenous target for novel lead-compounds discovery. In this Perspective, we have provided an up-to-date account of drug discovery efforts targeting selected enzymes (MbtI, MbtA, MbtM, and PPTase) from the mbt gene cluster (mbtA-mbtN). Furthermore, a succinct discussion on non-specific mycobactin biosynthesis inhibitors and the Trojan horse approach adopted to impair iron metabolism in mycobacteria has also been included in this Perspective.
Collapse
Affiliation(s)
- Mousumi Shyam
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India.,Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, U.K
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Harshita Verma
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, U.K
| | - Abhimanyu Dev
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Barij Nayan Sinha
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Federico Brucoli
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, U.K
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, U.K
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| |
Collapse
|
8
|
Inoue H, Yamashita-Muraki S, Fujiwara K, Honda K, Ono H, Nonaka T, Kato Y, Matsuyama T, Sugano S, Suzuki M, Masaoka Y. Fe 2+ Ions Alleviate the Symptom of Citrus Greening Disease. Int J Mol Sci 2020; 21:E4033. [PMID: 32512918 PMCID: PMC7312295 DOI: 10.3390/ijms21114033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022] Open
Abstract
Citrus greening (CG) is among the most devastating citrus diseases worldwide. CG-infected trees exhibit interveinal chlorotic leaves due to iron (Fe) deficiency derived from CG; thus, Fe content is lower in infected leaves than in healthy leaves. In this study, we demonstrated that the foliar application of Fe2+ relieves the symptom of CG infection in citrus trees. We applied Fe2+ and citrate to the leaves of infected rough lemon plants. Following this treatment, a reduction in the number of yellow symptomatic leaves was observed, and their growth was restored. Using chlorophyll content as an index, we screened for effective Fe complexes and found that a high ratio of citrate to Fe2+ in the applied solution led to effects against CG in Shikuwasa trees. A high proportion of Fe2+ to total Fe was another key factor explaining the effectiveness of the solution in CG infection, indicating the importance of Fe2+ absorption into plant cells. We confirmed the proportion of Fe2+ to total Fe through the high correlation of reflectometry data via a triazine reaction and X-ray absorption fine structure analysis. These results demonstrate that the foliar application of a high-Fe2+ citrate solution can restore the growth of CG diseased trees.
Collapse
Affiliation(s)
- Haruhiko Inoue
- Plant Function Research Unit, Division of Plant and Microbial Sciences, National Agriculture and Food Research Organization (NARO), Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8605, Japan; (H.I.); (S.S.)
| | - Sakiko Yamashita-Muraki
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; (S.Y.-M.); (K.F.); (K.H.); (H.O.)
| | - Kanako Fujiwara
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; (S.Y.-M.); (K.F.); (K.H.); (H.O.)
| | - Kayoko Honda
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; (S.Y.-M.); (K.F.); (K.H.); (H.O.)
| | - Hiroki Ono
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; (S.Y.-M.); (K.F.); (K.H.); (H.O.)
| | - Takamasa Nonaka
- Toyota Central R&D Labs., Inc., Yokomichi, Nagakute, Aichi 480-1192, Japan; (T.N.); (Y.K.)
| | - Yuichi Kato
- Toyota Central R&D Labs., Inc., Yokomichi, Nagakute, Aichi 480-1192, Japan; (T.N.); (Y.K.)
| | - Tomoya Matsuyama
- Environment and Energy Innovation Department, Frontier Research and Development Division, Aichi Steel Corporation, Wanowari, Arao-machi, Tokai, Aichi 476-8666, Japan;
| | - Shoji Sugano
- Plant Function Research Unit, Division of Plant and Microbial Sciences, National Agriculture and Food Research Organization (NARO), Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8605, Japan; (H.I.); (S.S.)
| | - Motofumi Suzuki
- Environment and Energy Innovation Department, Frontier Research and Development Division, Aichi Steel Corporation, Wanowari, Arao-machi, Tokai, Aichi 476-8666, Japan;
| | - Yoshikuni Masaoka
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; (S.Y.-M.); (K.F.); (K.H.); (H.O.)
| |
Collapse
|
9
|
Lux MC, Standke LC, Tan DS. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. J Antibiot (Tokyo) 2019; 72:325-349. [PMID: 30982830 PMCID: PMC6594144 DOI: 10.1038/s41429-019-0171-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
Adenylate-forming enzymes are a mechanistic superfamily that are involved in diverse biochemical pathways. They catalyze ATP-dependent activation of carboxylic acid substrates as reactive acyl adenylate (acyl-AMP) intermediates and subsequent coupling to various nucleophiles to generate ester, thioester, and amide products. Inspired by natural products, acyl sulfonyladenosines (acyl-AMS) that mimic the tightly bound acyl-AMP reaction intermediates have been developed as potent inhibitors of adenylate-forming enzymes. This simple yet powerful inhibitor design platform has provided a wide range of biological probes as well as several therapeutic lead compounds. Herein, we provide an overview of the nine structural classes of adenylate-forming enzymes and examples of acyl-AMS inhibitors that have been developed for each.
Collapse
Affiliation(s)
- Michaelyn C Lux
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Lisa C Standke
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Derek S Tan
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Chemical Biology Program, Sloan Kettering Institute, and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
10
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
11
|
Patel K, Butala S, Khan T, Suvarna V, Sherje A, Dravyakar B. Mycobacterial siderophore: A review on chemistry and biology of siderophore and its potential as a target for tuberculosis. Eur J Med Chem 2018; 157:783-790. [PMID: 30142615 DOI: 10.1016/j.ejmech.2018.08.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis is known to secrete low molecular mass compounds called siderophores especially under low iron conditions to chelate iron from host environment. Iron is essential for growth and other essential processes to sustain life of the bacterium in the host. Hence targeting siderophore is considered to be an alternative approach to prevent further virulence of bacterium into the host. This review article presents classification of siderophores, their role in transporting iron into the tubercular cell, biosynthesis of mycobactins, viability of siderophore as a therapeutic target and also focuses on overview on various approaches to target siderophore. The approaches encompass mutation effect on genes involved in siderophore recycling, synthetic as well as natural compounds that can inhibit further spread of bacterium by targeting siderophore.
Collapse
Affiliation(s)
- Kavitkumar Patel
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India.
| | - Sahil Butala
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| | - Vasanti Suvarna
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| | - Atul Sherje
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| | - Bhushan Dravyakar
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| |
Collapse
|
12
|
Dhiman R, Singh R. Recent advances for identification of new scaffolds and drug targets for Mycobacterium tuberculosis. IUBMB Life 2018; 70:905-916. [PMID: 29761628 DOI: 10.1002/iub.1863] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/07/2018] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) is a leading cause of mortality and morbidity with an estimated 1.7 billion people latently infected with the pathogen worldwide. Clinically, TB infection presents itself as an asymptomatic infection, which gradually manifests to life threatening disease. The emergence of various drug resistant strains of Mycobacterium tuberculosis and lengthy duration of chemotherapy are major challenges in the field of TB drug development. Hence, there is an urgent need to develop scaffolds that possess a novel mechanism of action, can shorten the duration of therapy, and are active against both drug resistant and susceptible strains. In this review, we will discuss recent progress made in the field of TB drug development with emphasis on screening methods and drug targets from M. tuberculosis. The current review provides insights into mechanism of action of new scaffolds that are being evaluated in various stages of clinical trials. © 2018 IUBMB Life, 70(9):905-916, 2018.
Collapse
Affiliation(s)
- Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Haryana, India
| |
Collapse
|
13
|
Dawadi S, Boshoff HIM, Park SW, Schnappinger D, Aldrich CC. Conformationally Constrained Cinnolinone Nucleoside Analogues as Siderophore Biosynthesis Inhibitors for Tuberculosis. ACS Med Chem Lett 2018; 9:386-391. [PMID: 29670706 DOI: 10.1021/acsmedchemlett.8b00090] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/16/2018] [Indexed: 12/25/2022] Open
Abstract
5'-O-[N-(Salicyl)sulfamoyl]adenosine (Sal-AMS, 1) is a nucleoside antibiotic that inhibits incorporation of salicylate into siderophores required for bacterial iron acquisition and has potent activity against Mycobacterium tuberculosis (Mtb). Cinnolone analogues exemplified by 5 were designed to replace the acidic acyl-sulfamate functional group of 1 (pKa = 3) by a more stable sulfonamide linkage (pKa = 6.0) in an attempt to address potential metabolic liabilities and improve membrane permeability. We showed 5 potently inhibited the mycobacterial salicylate ligase MbtA (apparent Ki = 12 nM), blocked production of the salicylate-capped siderophores in whole-cell Mtb, and exhibited excellent antimycobacterial activity under iron-deficient conditions (minimum inhibitor concentration, MIC = 2.3 μM). To provide additional confirmation of the mechanism of action, we demonstrated the whole-cell activity of 5 could be fully antagonized by the addition of exogenous salicylate to the growth medium. Although the total polar surface area (tPSA) of 5 still exceeds the nominal threshold value (140 Å) typically required for oral bioavailability, we were pleasantly surprised to observe introduction of the less acidic and conformationally constrained cinnolone moiety conferred improved drug disposition properties as evidenced by the 7-fold increase in volume of distribution in Sprague-Dawley rats.
Collapse
Affiliation(s)
- Surendra Dawadi
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Helena I. M. Boshoff
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, United States
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10021, United States
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10021, United States
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
14
|
Ishikawa F, Tanabe G, Kakeya H. Activity-Based Protein Profiling of Non-ribosomal Peptide Synthetases. Curr Top Microbiol Immunol 2018; 420:321-349. [PMID: 30178264 DOI: 10.1007/82_2018_133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-ribosomal peptide (NRP) natural products are one of the most promising resources for drug discovery and development because of their wide-ranging of therapeutic potential, and their behavior as virulence factors and signaling molecules. The NRPs are biosynthesized independently of the ribosome by enzyme assembly lines known as the non-ribosomal peptide synthetase (NRPS) machinery. Genetic, biochemical, and bioinformatics analyses have provided a detailed understanding of the mechanism of NRPS catalysis. However, proteomic techniques for natural product biosynthesis remain a developing field. New strategies are needed to investigate the proteomes of diverse producer organisms and directly analyze the endogenous NRPS machinery. Advanced platforms should verify protein expression, protein folding, and activities and also enable the profiling of the NRPS machinery in biological samples from wild-type, heterologous, and engineered bacterial systems. Here, we focus on activity-based protein profiling strategies that have been recently developed for studies aimed at visualizing and monitoring the NRPS machinery and also for rapid labeling, identification, and biochemical analysis of NRPS enzyme family members as required for proteomic chemistry in natural product sciences.
Collapse
Affiliation(s)
- Fumihiro Ishikawa
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
15
|
Süssmuth RD, Mainz A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew Chem Int Ed Engl 2017; 56:3770-3821. [PMID: 28323366 DOI: 10.1002/anie.201609079] [Citation(s) in RCA: 554] [Impact Index Per Article: 79.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 01/05/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multienzyme machineries that assemble numerous peptides with large structural and functional diversity. These peptides include more than 20 marketed drugs, such as antibacterials (penicillin, vancomycin), antitumor compounds (bleomycin), and immunosuppressants (cyclosporine). Over the past few decades biochemical and structural biology studies have gained mechanistic insights into the highly complex assembly line of nonribosomal peptides. This Review provides state-of-the-art knowledge on the underlying mechanisms of NRPSs and the variety of their products along with detailed analysis of the challenges for future reprogrammed biosynthesis. Such a reprogramming of NRPSs would immediately spur chances to generate analogues of existing drugs or new compound libraries of otherwise nearly inaccessible compound structures.
Collapse
Affiliation(s)
- Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Andi Mainz
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
16
|
Süssmuth RD, Mainz A. Nicht-ribosomale Peptidsynthese - Prinzipien und Perspektiven. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609079] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roderich D. Süssmuth
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Andi Mainz
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| |
Collapse
|
17
|
Ji C, Sharma I, Pratihar D, Hudson LL, Maura D, Guney T, Rahme LG, Pesci EC, Coleman JP, Tan DS. Designed Small-Molecule Inhibitors of the Anthranilyl-CoA Synthetase PqsA Block Quinolone Biosynthesis in Pseudomonas aeruginosa. ACS Chem Biol 2016; 11:3061-3067. [PMID: 27658001 PMCID: PMC5117135 DOI: 10.1021/acschembio.6b00575] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
The Gram-negative bacterial pathogen Pseudomonas aeruginosa uses three interconnected intercellular
signaling systems regulated
by the transcription factors LasR, RhlR, and MvfR (PqsR), which mediate
bacterial cell–cell communication via small-molecule natural
products and control the production of a variety of virulence factors.
The MvfR system is activated by and controls the biosynthesis of the
quinolone quorum sensing factors HHQ and PQS. A key step in the biosynthesis
of these quinolones is catalyzed by the anthranilyl-CoA synthetase
PqsA. To develop inhibitors of PqsA as novel potential antivirulence
antibiotics, we report herein the design and synthesis of sulfonyladeonsine-based
mimics of the anthranilyl-AMP reaction intermediate that is bound
tightly by PqsA. Biochemical, microbiological, and pharmacological
studies identified two potent PqsA inhibitors, anthranilyl-AMS (1) and anthranilyl-AMSN (2), that decreased HHQ
and PQS production in P. aeruginosa strain
PA14. However, these compounds did not inhibit
production of the virulence factor pyocyanin. Moreover, they exhibited
limited bacterial penetration in compound accumulation studies. This
work provides the most potent PqsA inhibitors reported to date and
sets the stage for future efforts to develop analogues with improved
cellular activity to investigate further the complex relationships
between quinolone biosynthesis and virulence factor production in P. aeruginosa and the therapeutic potential of targeting
PqsA.
Collapse
Affiliation(s)
| | | | | | - L. Lynn Hudson
- Department
of Microbiology and Immunology, The Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, North Carolina 27834, United States
| | - Damien Maura
- Department
of Surgery, Harvard Medical School and Massachusettts General Hospital, 50
Blossom Street, Boston, Massachusetts 02114, United States
| | | | - Laurence G. Rahme
- Department
of Surgery, Harvard Medical School and Massachusettts General Hospital, 50
Blossom Street, Boston, Massachusetts 02114, United States
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Shriners Hospitals for
Children Boston, Boston, Massachusetts 02114, United States
| | - Everett C. Pesci
- Department
of Microbiology and Immunology, The Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, North Carolina 27834, United States
| | - James P. Coleman
- Department
of Microbiology and Immunology, The Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, North Carolina 27834, United States
| | | |
Collapse
|
18
|
Design, synthesis, and biological evaluation of α-hydroxyacyl-AMS inhibitors of amino acid adenylation enzymes. Bioorg Med Chem Lett 2016; 26:5340-5345. [PMID: 27692545 DOI: 10.1016/j.bmcl.2016.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/09/2016] [Indexed: 11/22/2022]
Abstract
Biosynthesis of bacterial natural-product virulence factors is emerging as a promising antibiotic target. Many such natural products are produced by nonribosomal peptide synthetases (NRPS) from amino acid precursors. To develop selective inhibitors of these pathways, we have previously described aminoacyl-AMS (sulfamoyladenosine) macrocycles that inhibit NRPS amino acid adenylation domains but not mechanistically-related aminoacyl-tRNA synthetases. To improve the cell permeability of these inhibitors, we explore herein replacement of the α-amino group with an α-hydroxy group. In both macrocycles and corresponding linear congeners, this leads to decreased biochemical inhibition of the cysteine adenylation domain of the Yersina pestis siderophore synthetase HMWP2, which we attribute to loss of an electrostatic interaction with a conserved active-site aspartate. However, inhibitory activity can be regained by installing a cognate β-thiol moiety in the linear series. This provides a path forward to develop selective, cell-penetrant inhibitors of the biosynthesis of virulence factors to probe their biological functions and potential as therapeutic targets.
Collapse
|
19
|
Kasai S, Konno S, Ishikawa F, Kakeya H. Functional profiling of adenylation domains in nonribosomal peptide synthetases by competitive activity-based protein profiling. Chem Commun (Camb) 2016; 51:15764-7. [PMID: 26365322 DOI: 10.1039/c5cc04953a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe competitive activity-based protein profiling (ABPP) to accelerate the functional prediction and assessment of adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) in proteomic environments. Using a library of sulfamoyloxy-linked aminoacyl-AMP analogs, the competitive ABPP technique offers a simple and rapid assay system for adenylating enzymes and provides insight into enzyme substrate candidates and enzyme active-site architecture.
Collapse
Affiliation(s)
- Shota Kasai
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - Sho Konno
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - Fumihiro Ishikawa
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
20
|
Krajczyk A, Zeidler J, Januszczyk P, Dawadi S, Boshoff HI, Barry CE, Ostrowski T, Aldrich CC. 2-Aryl-8-aza-3-deazaadenosine analogues of 5'-O-[N-(salicyl)sulfamoyl]adenosine: Nucleoside antibiotics that block siderophore biosynthesis in Mycobacterium tuberculosis. Bioorg Med Chem 2016; 24:3133-43. [PMID: 27265685 DOI: 10.1016/j.bmc.2016.05.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 11/16/2022]
Abstract
A series of 5'-O-[N-(salicyl)sulfamoyl]-2-aryl-8-aza-3-deazaadenosines were designed to block mycobactin biosynthesis in Mycobacterium tuberculosis (Mtb) through inhibition of the essential adenylating enzyme MbtA. The synthesis of the 2-aryl-8-aza-3-deazaadenosine nucleosides featured sequential copper-free palladium-catalyzed Sonogashira coupling of a precursor 4-cyano-5-iodo-1,2,3-triazolonucleoside with terminal alkynes and a Minakawa-Matsuda annulation reaction. These modified nucleosides were shown to inhibit MbtA with apparent Ki values ranging from 6.1 to 25nM and to inhibit Mtb growth under iron-deficient conditions with minimum inhibitory concentrations ranging from 12.5 to >50μM.
Collapse
Affiliation(s)
- Anna Krajczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Joanna Zeidler
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Piotr Januszczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Surendra Dawadi
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Helena I Boshoff
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Clifton E Barry
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Tomasz Ostrowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
21
|
Microbial siderophore-based iron assimilation and therapeutic applications. Biometals 2016; 29:377-88. [PMID: 27146331 DOI: 10.1007/s10534-016-9935-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/23/2016] [Indexed: 10/21/2022]
Abstract
Siderophores are structurally diverse, complex natural products that bind metals with extraordinary specificity and affinity. The acquisition of iron is critical for the survival and virulence of many pathogenic microbes and diverse strategies have evolved to synthesize, import and utilize iron. There has been a substantial increase of known siderophore scaffolds isolated and characterized in the past decade and the corresponding biosynthetic gene clusters have provided insight into the varied pathways involved in siderophore biosynthesis, delivery and utilization. Additionally, therapeutic applications of siderophores and related compounds are actively being developed. The study of biosynthetic pathways to natural siderophores augments the understanding of the complex mechanisms of bacterial iron acquisition, and enables a complimentary approach to address virulence through the interruption of siderophore biosynthesis or utilization by targeting the key enzymes to the siderophore pathways.
Collapse
|
22
|
Dawadi S, Kawamura S, Rubenstein A, Remmel R, Aldrich CC. Synthesis and pharmacological evaluation of nucleoside prodrugs designed to target siderophore biosynthesis in Mycobacterium tuberculosis. Bioorg Med Chem 2016; 24:1314-21. [PMID: 26875934 PMCID: PMC4769951 DOI: 10.1016/j.bmc.2016.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 11/22/2022]
Abstract
The nucleoside antibiotic, 5'-O-[N-(salicyl)sulfamoyl]adenosine (1), possesses potent whole-cell activity against Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis (TB). This compound is also active in vivo, but suffers from poor drug disposition properties that result in poor bioavailability and rapid clearance. The synthesis and evaluation of a systematic series of lipophilic ester prodrugs containing linear and α-branched alkanoyl groups from two to twelve carbons at the 3'-position of a 2'-fluorinated analog of 1 is reported with the goal to improve oral bioavailability. The prodrugs were stable in simulated gastric fluid (pH 1.2) and under physiological conditions (pH 7.4). The prodrugs were also remarkably stable in mouse, rat, and human serum (relative serum stability: human∼rat≫mouse) displaying a parabolic trend in the SAR with hydrolysis rates increasing with chain length up to eight carbons (t1/2=1.6 h for octanoyl prodrug 7 in mouse serum) and then decreasing again with higher chain lengths. The permeability of the prodrugs was also assessed in a Caco-2 cell transwell model. All of the prodrugs were found to have reduced permeation in the apical-to-basolateral direction and enhanced permeation in the basolateral-to-apical direction relative to the parent compound 2, resulting in efflux ratios 5-28 times greater than 2. Additionally, Caco-2 cells were found to hydrolyze the prodrugs with SAR mirroring the serum stability results and a preference for hydrolysis on the apical side. Taken together, these results suggest that the described prodrug strategy will lead to lower than expected oral bioavailability of 2 and highlight the contribution of intestinal esterases for prodrug hydrolysis.
Collapse
Affiliation(s)
- Surendra Dawadi
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Shuhei Kawamura
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Anja Rubenstein
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Rory Remmel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
23
|
Ishikawa F, Kakeya H. A Competitive Enzyme-Linked Immunosorbent Assay System for Adenylation Domains in Nonribosomal Peptide Synthetases. Chembiochem 2016; 17:474-8. [PMID: 26748933 DOI: 10.1002/cbic.201500553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Indexed: 12/16/2022]
Abstract
We describe a proof-of-concept study of a competitive enzyme-linked immunosorbent assay (ELISA) system for the adenylation (A) domains of nonribosomal peptide synthetases (NRPSs) with active-site-directed probes coupled to a 5'-O-N-(aminoacyl)sulfamoyladenosine scaffold. A biotin functionality immobilizes the probes onto a streptavidin-coated solid support. Dissociation constants were determined with a series of ligands, including enzyme substrates and a library of sulfamoyloxy-linked aminoacyl/aryl-AMP analogues. As it enables direct readout of protein-ligand interaction, the competitive ELISA technique provided information on comparative structure- activity relationships and insights into the enzyme active-site architecture of NRPS A-domains. These studies indicate that the ELISA technique can accelerate the discovery of small-molecule inhibitors of the A-domains with new scaffolds that perturb the production of NRPS-related virulence factors.
Collapse
Affiliation(s)
- Fumihiro Ishikawa
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
24
|
Abstract
The nonribosomal peptide synthetases are modular enzymes that catalyze synthesis of important peptide products from a variety of standard and non-proteinogenic amino acid substrates. Within a single module are multiple catalytic domains that are responsible for incorporation of a single residue. After the amino acid is activated and covalently attached to an integrated carrier protein domain, the substrates and intermediates are delivered to neighboring catalytic domains for peptide bond formation or, in some modules, chemical modification. In the final module, the peptide is delivered to a terminal thioesterase domain that catalyzes release of the peptide product. This multi-domain modular architecture raises questions about the structural features that enable this assembly line synthesis in an efficient manner. The structures of the core component domains have been determined and demonstrate insights into the catalytic activity. More recently, multi-domain structures have been determined and are providing clues to the features of these enzyme systems that govern the functional interaction between multiple domains. This chapter describes the structures of NRPS proteins and the strategies that are being used to assist structural studies of these dynamic proteins, including careful consideration of domain boundaries for generation of truncated proteins and the use of mechanism-based inhibitors that trap interactions between the catalytic and carrier protein domains.
Collapse
|
25
|
Ishikawa F, Suzuki T, Dohmae N, Kakeya H. A Multiple-Labeling Strategy for Nonribosomal Peptide Synthetases Using Active-Site-Directed Proteomic Probes for Adenylation Domains. Chembiochem 2015; 16:2590-4. [PMID: 26467472 DOI: 10.1002/cbic.201500481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Indexed: 11/07/2022]
Abstract
Genetic approaches have greatly contributed to our understanding of nonribosomal peptide biosynthetic machinery; however, proteomic investigations are limited. Here, we developed a highly sensitive detection strategy for multidomain nonribosomal peptide synthetases (NRPSs) by using a multiple-labeling technique with active-site-directed probes for adenylation domains. When applied to gramicidin S-producing and -nonproducing strains of Aneurinibacillus migulanus (DSM 5759 and DSM 2895, respectively), the multiple technique sensitively detected an active multidomain NRPS (GrsB) in lysates obtained from the organisms. This functional proteomics method revealed an unknown inactive precursor (or other inactive form) of GrsB in the nonproducing strain. This method provides a new option for the direct detection, functional analysis, and high-resolution identification of low-abundance active NRPS enzymes in native proteomic environments.
Collapse
Affiliation(s)
- Fumihiro Ishikawa
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
26
|
Nelson KM, Viswanathan K, Dawadi S, Duckworth BP, Boshoff HI, Barry CE, Aldrich CC. Synthesis and Pharmacokinetic Evaluation of Siderophore Biosynthesis Inhibitors for Mycobacterium tuberculosis. J Med Chem 2015; 58:5459-75. [PMID: 26110337 DOI: 10.1021/acs.jmedchem.5b00391] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MbtA catalyzes the first committed biosynthetic step of the mycobactins, which are important virulence factors associated with iron acquisition in Mycobacterium tuberculosis. MbtA is a validated therapeutic target for antitubercular drug development. 5'-O-[N-(Salicyl)sulfamoyl]adenosine (1) is a bisubstrate inhibitor of MbtA and exhibits exceptionally potent biochemical and antitubercular activity. However, 1 suffers from suboptimal drug disposition properties resulting in a short half-life (t(1/2)), low exposure (AUC), and low bioavailability (F). Four strategies were pursued to address these liabilities including the synthesis of prodrugs, increasing the pK(a) of the acyl-sulfonyl moiety, modulation of the lipophilicity, and strategic introduction of fluorine into 1. Complete pharmacokinetic (PK) analysis of all compounds was performed. The most successful modifications involved fluorination of the nucleoside that provided substantial improvements in t(1/2) and AUC. Increasing the pK(a) of the acyl-sulfonyl linker yielded incremental enhancements, while modulation of the lipophilicity and prodrug approaches led to substantially poorer PK parameters.
Collapse
Affiliation(s)
- Kathryn M Nelson
- †Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kishore Viswanathan
- ‡Department of Medicinal Chemistry, University of Minnesota, 8-174 WDH, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Surendra Dawadi
- ‡Department of Medicinal Chemistry, University of Minnesota, 8-174 WDH, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Benjamin P Duckworth
- †Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Helena I Boshoff
- §Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, United States
| | - Clifton E Barry
- §Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, United States
| | - Courtney C Aldrich
- †Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, United States.,‡Department of Medicinal Chemistry, University of Minnesota, 8-174 WDH, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
27
|
Dawadi S, Viswanathan K, Boshoff HI, Barry CE, Aldrich CC. Investigation and conformational analysis of fluorinated nucleoside antibiotics targeting siderophore biosynthesis. J Org Chem 2015; 80:4835-50. [PMID: 25916415 PMCID: PMC4674167 DOI: 10.1021/acs.joc.5b00550] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibiotic resistance represents one of the greatest threats to public health. The adenylation inhibitor 5'-O-[N-(salicyl)sulfamoyl]adenosine (SAL-AMS) is the archetype for a new class of nucleoside antibiotics that target iron acquisition in pathogenic microorganisms and is especially effective against Mycobacterium tuberculosis, the causative agent of tuberculosis. Strategic incorporation of fluorine at the 2' and 3' positions of the nucleoside was performed by direct fluorination to enhance activity and improve drug disposition properties. The resulting SAL-AMS analogues were comprehensively assessed for biochemical potency, whole-cell antitubercular activity, and in vivo pharmacokinetic parameters. Conformational analysis suggested a strong preference of fluorinated sugar rings for either a 2'-endo, 3'-exo (South), or a 3'-endo,2'-exo (North) conformation. The structure-activity relationships revealed a strong conformational bias for the C3'-endo conformation to maintain potent biochemical and whole-cell activity, whereas improved pharmacokinetic properties were associated with the C2'-endo conformation.
Collapse
Affiliation(s)
- Surendra Dawadi
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Kishore Viswanathan
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Helena I. Boshoff
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Clifton E. Barry
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
28
|
Lamb AL. Breaking a pathogen's iron will: Inhibiting siderophore production as an antimicrobial strategy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1054-70. [PMID: 25970810 DOI: 10.1016/j.bbapap.2015.05.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 04/29/2015] [Accepted: 05/06/2015] [Indexed: 12/24/2022]
Abstract
The rise of antibiotic resistance is a growing public health crisis. Novel antimicrobials are sought, preferably developing nontraditional chemical scaffolds that do not inhibit standard targets such as cell wall synthesis or the ribosome. Iron scavenging has been proposed as a viable target, because bacterial and fungal pathogens must overcome the nutritional immunity of the host to be virulent. This review highlights the recent work toward exploiting the biosynthetic enzymes of siderophore production for the design of next generation antimicrobials.
Collapse
Affiliation(s)
- Audrey L Lamb
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
29
|
Shields-Cutler RR, Crowley JR, Hung CS, Stapleton AE, Aldrich CC, Marschall J, Henderson JP. Human Urinary Composition Controls Antibacterial Activity of Siderocalin. J Biol Chem 2015; 290:15949-60. [PMID: 25861985 DOI: 10.1074/jbc.m115.645812] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 11/06/2022] Open
Abstract
During Escherichia coli urinary tract infections, cells in the human urinary tract release the antimicrobial protein siderocalin (SCN; also known as lipocalin 2, neutrophil gelatinase-associated lipocalin/NGAL, or 24p3). SCN can interfere with E. coli iron acquisition by sequestering ferric iron complexes with enterobactin, the conserved E. coli siderophore. Here, we find that human urinary constituents can reverse this relationship, instead making enterobactin critical for overcoming SCN-mediated growth restriction. Urinary control of SCN activity exhibits wide ranging individual differences. We used these differences to identify elevated urinary pH and aryl metabolites as key biochemical host factors controlling urinary SCN activity. These aryl metabolites are well known products of intestinal microbial metabolism. Together, these results identify an innate antibacterial immune interaction that is critically dependent upon individualistic chemical features of human urine.
Collapse
Affiliation(s)
- Robin R Shields-Cutler
- From the Division of Infectious Diseases, Department of Medicine, Center for Women's Infectious Disease Research, and
| | - Jan R Crowley
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Chia S Hung
- From the Division of Infectious Diseases, Department of Medicine, Center for Women's Infectious Disease Research, and
| | - Ann E Stapleton
- the Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington 98195
| | - Courtney C Aldrich
- the Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, and
| | - Jonas Marschall
- From the Division of Infectious Diseases, Department of Medicine, the Department of Infectious Diseases, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Jeffrey P Henderson
- From the Division of Infectious Diseases, Department of Medicine, Center for Women's Infectious Disease Research, and
| |
Collapse
|
30
|
Meneely KM, Luo Q, Riley AP, Taylor B, Roy A, Stein RL, Prisinzano TE, Lamb AL. Expanding the results of a high throughput screen against an isochorismate-pyruvate lyase to enzymes of a similar scaffold or mechanism. Bioorg Med Chem 2014; 22:5961-9. [PMID: 25282647 DOI: 10.1016/j.bmc.2014.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/27/2014] [Accepted: 09/05/2014] [Indexed: 01/31/2023]
Abstract
Antibiotic resistance is a growing health concern, and new avenues of antimicrobial drug design are being actively sought. One suggested pathway to be targeted for inhibitor design is that of iron scavenging through siderophores. Here we present a high throughput screen to the isochorismate-pyruvate lyase of Pseudomonas aeruginosa, an enzyme required for the production of the siderophore pyochelin. Compounds identified in the screen are high nanomolar to low micromolar inhibitors of the enzyme and produce growth inhibition in PAO1 P. aeruginosa in the millimolar range under iron-limiting conditions. The identified compounds were also tested for enzymatic inhibition of Escherichia coli chorismate mutase, a protein of similar fold and similar chemistry, and of Yersinia enterocolitica salicylate synthase, a protein of differing fold but catalyzing the same lyase reaction. In both cases, subsets of the inhibitors from the screen were found to be inhibitory to enzymatic activity (mutase or synthase) in the micromolar range and capable of growth inhibition in their respective organisms (E. coli or Y. enterocolitica).
Collapse
Affiliation(s)
- Kathleen M Meneely
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States
| | - Qianyi Luo
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States
| | - Andrew P Riley
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Dr, Lawrence, KS 66045, United States
| | - Byron Taylor
- High Throughput Screening Facility, University of Kansas, 2034 Becker Dr, Lawrence, KS 66047, United States
| | - Anuradha Roy
- High Throughput Screening Facility, University of Kansas, 2034 Becker Dr, Lawrence, KS 66047, United States
| | - Ross L Stein
- High Throughput Screening Facility, University of Kansas, 2034 Becker Dr, Lawrence, KS 66047, United States
| | - Thomas E Prisinzano
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Dr, Lawrence, KS 66045, United States
| | - Audrey L Lamb
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States.
| |
Collapse
|
31
|
Wurst JM, Drake EJ, Theriault JR, Jewett IT, VerPlank L, Perez JR, Dandapani S, Palmer M, Moskowitz SM, Schreiber SL, Munoz B, Gulick AM. Identification of inhibitors of PvdQ, an enzyme involved in the synthesis of the siderophore pyoverdine. ACS Chem Biol 2014; 9:1536-44. [PMID: 24824984 PMCID: PMC4215858 DOI: 10.1021/cb5001586] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Pseudomonas aeruginosa produces the peptide siderophore
pyoverdine, which is used to acquire essential Fe3+ ions
from the environment. PvdQ, an Ntn hydrolase, is required for the
biosynthesis of pyoverdine. PvdQ knockout strains
are not infectious in model systems, suggesting that disruption of
siderophore production via PvdQ inhibition could be exploited as a
target for novel antibacterial agents, by preventing cells from acquiring
iron in the low iron environments of most biological settings. We
have previously described a high-throughput screen to identify inhibitors
of PvdQ that identified inhibitors with IC50 values of
∼100 μM. Here, we describe the discovery of ML318, a
biaryl nitrile inhibitor of PvdQ acylase. ML318 inhibits PvdQ in vitro (IC50 = 20 nM) by binding in the acyl-binding
site, as confirmed by the X-ray crystal structure of PvdQ bound to
ML318. Additionally, the PvdQ inhibitor is active in a whole cell
assay, preventing pyoverdine production and limiting the growth of P. aeruginosa under iron-limiting conditions.
Collapse
Affiliation(s)
| | - Eric J. Drake
- Hauptman−Woodward Medical Research Institute, New
York 14203, United States
- Department
of Structural Biology, University at Buffalo, Buffalo, New York 14203, United States
| | | | - Ivan T. Jewett
- The Broad Institute, Cambridge, Massachusetts 02142, United States
| | - Lynn VerPlank
- The Broad Institute, Cambridge, Massachusetts 02142, United States
| | - Jose R. Perez
- The Broad Institute, Cambridge, Massachusetts 02142, United States
| | | | - Michelle Palmer
- The Broad Institute, Cambridge, Massachusetts 02142, United States
| | - Samuel M. Moskowitz
- Department
of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department
of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - Benito Munoz
- The Broad Institute, Cambridge, Massachusetts 02142, United States
| | - Andrew M. Gulick
- Hauptman−Woodward Medical Research Institute, New
York 14203, United States
- Department
of Structural Biology, University at Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
32
|
Engelhart CA, Aldrich CC. Synthesis of chromone, quinolone, and benzoxazinone sulfonamide nucleosides as conformationally constrained inhibitors of adenylating enzymes required for siderophore biosynthesis. J Org Chem 2013; 78:7470-81. [PMID: 23805993 DOI: 10.1021/jo400976f] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MbtA catalyzes the first committed step of mycobactin biosynthesis in Mycobacterium tuberculosis (Mtb) and is responsible for the incorporation of salicylic acid into the mycobactin siderophores. 5'-O-[N-(Salicyl)sulfamoyl]adenosine (Sal-AMS) is an extremely potent nucleoside inhibitor of MbtA that possesses excellent activity against whole-cell Mtb but suffers from poor bioavailability. In an effort to improve the bioavailability, we have designed four conformationally constrained analogues of Sal-AMS that remove two rotatable bonds and the ionized sulfamate group on the basis of computational and structural studies. Herein we describe the synthesis, biochemical, and microbiological evaluation of chromone-, quinolone-, and benzoxazinone-3-sulfonamide derivatives of Sal-AMS. We developed new chemistry to assemble these three heterocycles from common β-ketosulfonamide intermediates. The synthesis of the chromone- and quinolone-3-sulfonamide intermediates features formylation of a β-ketosulfonamide employing dimethylformamide dimethyl acetal to afford an enaminone that can react intramolecularly with a phenol or intermolecularly with a primary amine via addition-elimination reaction(s). The benzoxazinone-3-sulfonamide was prepared by nitrosation of a β-ketosulfonamide followed by intramolecular nucleophilic aromatic substitution. Mitsunobu coupling of these bicyclic sulfonamides with a protected adenosine derivative followed by global deprotection provides a concise synthesis of the respective inhibitors.
Collapse
Affiliation(s)
- Curtis A Engelhart
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
33
|
Zhang K, Nelson KM, Bhuripanyo K, Grimes KD, Zhao B, Aldrich CC, Yin J. Engineering the substrate specificity of the DhbE adenylation domain by yeast cell surface display. ACTA ACUST UNITED AC 2013; 20:92-101. [PMID: 23352143 DOI: 10.1016/j.chembiol.2012.10.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/19/2012] [Accepted: 10/25/2012] [Indexed: 01/30/2023]
Abstract
The adenylation (A) domains of nonribosomal peptide synthetases (NRPSs) activate aryl acids or amino acids to launch their transfer through the NRPS assembly line for the biosynthesis of many medicinally important natural products. In order to expand the substrate pool of NRPSs, we developed a method based on yeast cell surface display to engineer the substrate specificities of the A-domains. We acquired A-domain mutants of DhbE that have 11- and 6-fold increases in k(cat)/K(m) with nonnative substrates 3-hydroxybenzoic acid and 2-aminobenzoic acid, respectively and corresponding 3- and 33-fold decreases in k(cat)/K(m) values with the native substrate 2,3-dihydroxybenzoic acid, resulting in a dramatic switch in substrate specificity of up to 200-fold. Our study demonstrates that yeast display can be used as a high throughput selection platform to reprogram the "nonribosomal code" of A-domains.
Collapse
Affiliation(s)
- Keya Zhang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev 2013; 26:185-230. [PMID: 23554414 PMCID: PMC3623377 DOI: 10.1128/cmr.00059-12] [Citation(s) in RCA: 633] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hosts and bacteria have coevolved over millions of years, during which pathogenic bacteria have modified their virulence mechanisms to adapt to host defense systems. Although the spread of pathogens has been hindered by the discovery and widespread use of antimicrobial agents, antimicrobial resistance has increased globally. The emergence of resistant bacteria has accelerated in recent years, mainly as a result of increased selective pressure. However, although antimicrobial resistance and bacterial virulence have developed on different timescales, they share some common characteristics. This review considers how bacterial virulence and fitness are affected by antibiotic resistance and also how the relationship between virulence and resistance is affected by different genetic mechanisms (e.g., coselection and compensatory mutations) and by the most prevalent global responses. The interplay between these factors and the associated biological costs depend on four main factors: the bacterial species involved, virulence and resistance mechanisms, the ecological niche, and the host. The development of new strategies involving new antimicrobials or nonantimicrobial compounds and of novel diagnostic methods that focus on high-risk clones and rapid tests to detect virulence markers may help to resolve the increasing problem of the association between virulence and resistance, which is becoming more beneficial for pathogenic bacteria.
Collapse
|
35
|
Neres J, Engelhart CA, Drake EJ, Wilson DJ, Fu P, Boshoff HI, Barry CE, Gulick AM, Aldrich CC. Non-nucleoside inhibitors of BasE, an adenylating enzyme in the siderophore biosynthetic pathway of the opportunistic pathogen Acinetobacter baumannii. J Med Chem 2013; 56:2385-405. [PMID: 23437866 DOI: 10.1021/jm301709s] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Siderophores are small-molecule iron chelators produced by bacteria and other microorganisms for survival under iron limiting conditions such as found in a mammalian host. Siderophore biosynthesis is essential for the virulence of many important Gram-negative pathogens including Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli. We performed high-throughput screening against BasE, which is involved in siderophore biosynthesis in A. baumannii, and identified 6-phenyl-1-(pyridin-4-ylmethyl)-1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid 15. Herein we report the synthesis, biochemical, and microbiological evaluation of a systematic series of analogues of the HTS hit 15. Analogue 67 is the most potent analogue with a KD of 2 nM against BasE. Structural characterization of the inhibitors with BasE reveals that they bind in a unique orientation in the active site, occupying all three substrate binding sites, and thus can be considered as multisubstrate inhibitors. These results provide a foundation for future studies aimed at increasing both enzyme potency and antibacterial activity.
Collapse
Affiliation(s)
- João Neres
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Duckworth BP, Wilson DJ, Nelson KM, Boshoff HI, Barry CE, Aldrich CC. Development of a selective activity-based probe for adenylating enzymes: profiling MbtA Involved in siderophore biosynthesis from Mycobacterium tuberculosis. ACS Chem Biol 2012; 7:1653-8. [PMID: 22796950 DOI: 10.1021/cb300112x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MbtA is an adenylating enzyme from Mycobacterium tuberculosis that catalyzes the first step in the biosynthesis of the mycobactins. A bisubstrate inhibitor of MbtA (Sal-AMS) was previously described that displays potent antitubercular activity under iron-replete as well as iron-deficient growth conditions. This finding is surprising since mycobactin biosynthesis is not required under iron-replete conditions and suggests off-target inhibition of additional biochemical pathways. As a first step toward a complete understanding of the mechanism of action of Sal-AMS, we have designed and validated an activity-based probe (ABP) for studying Sal-AMS inhibition in M. tuberculosis. This probe labels pure MbtA as well as MbtA in mycobacterial lysate, and labeling can be completely inhibited by preincubation with Sal-AMS. Furthermore, this probe provides a prototypical core scaffold for the creation of ABPs to profile any of the other 66 adenylating enzymes in Mtb or the multitude of adenylating enzymes in other pathogenic bacteria.
Collapse
Affiliation(s)
| | | | | | - Helena I. Boshoff
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, United States
| | - Clifton E. Barry
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, United States
| | | |
Collapse
|
37
|
Duckworth BP, Nelson KM, Aldrich CC. Adenylating enzymes in Mycobacterium tuberculosis as drug targets. Curr Top Med Chem 2012; 12:766-96. [PMID: 22283817 DOI: 10.2174/156802612799984571] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 11/08/2011] [Indexed: 11/22/2022]
Abstract
Adenylation or adenylate-forming enzymes (AEs) are widely found in nature and are responsible for the activation of carboxylic acids to intermediate acyladenylates, which are mixed anhydrides of AMP. In a second reaction, AEs catalyze the transfer of the acyl group of the acyladenylate onto a nucleophilic amino, alcohol, or thiol group of an acceptor molecule leading to amide, ester, and thioester products, respectively. Mycobacterium tuberculosis encodes for more than 60 adenylating enzymes, many of which represent potential drug targets due to their confirmed essentiality or requirement for virulence. Several strategies have been used to develop potent and selective AE inhibitors including highthroughput screening, fragment-based screening, and the rationale design of bisubstrate inhibitors that mimic the acyladenylate. In this review, a comprehensive analysis of the mycobacterial adenylating enzymes will be presented with a focus on the identification of small molecule inhibitors. Specifically, this review will cover the aminoacyl tRNAsynthetases (aaRSs), MenE required for menaquinone synthesis, the FadD family of enzymes including the fatty acyl- AMP ligases (FAAL) and the fatty acyl-CoA ligases (FACLs) involved in lipid metabolism, and the nonribosomal peptide synthetase adenylation enzyme MbtA that is necessary for mycobactin synthesis. Additionally, the enzymes NadE, GuaA, PanC, and MshC involved in the respective synthesis of NAD, guanine, pantothenate, and mycothiol will be discussed as well as BirA that is responsible for biotinylation of the acyl CoA-carboxylases.
Collapse
|
38
|
Redwan IN, Ingemyr HJ, Ljungdahl T, Lawson CP, Grøtli M. Solid-Phase Synthesis of 5′-O-[N-(Acyl)sulfamoyl]adenosine Derivatives. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Sohail MN. Plant pathogenic bacteria are not that dependent on their siderophores as mammalian pathogenic bacteria for their virulence. Pak J Biol Sci 2012; 15:212-214. [PMID: 22816181 DOI: 10.3923/pjbs.2012.212.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
40
|
Miller MC, DeMoll E. Extraction, purification, and identification of yersiniabactin, the siderophore of Yersinia pestis. ACTA ACUST UNITED AC 2012; Chapter 5:Unit5B.3. [PMID: 22045585 DOI: 10.1002/9780471729259.mc05b03s23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This unit describes in detail the extraction, purification, and identification of Yersiniabactin the siderophore of Yersinia pestis. Iron is essential for bacterial growth. Although relatively abundant, access to iron is limited in nature by low solubility. This problem is exacerbated for pathogenic bacteria, which must also defeat the host organism's innate defenses, including mechanisms to sequester iron. One solution to these problems is production of water soluble, small molecules with high affinities for iron called siderophores. This protocol has been fine tuned for Yersiniabactin purification but may be easily modified for use in isolating other siderophores or similar molecules.
Collapse
Affiliation(s)
- M Clarke Miller
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | | |
Collapse
|
41
|
Buchko GW, Kim CY, Terwilliger TC, Myler PJ. Solution structure of Rv2377c-founding member of the MbtH-like protein family. Tuberculosis (Edinb) 2011; 90:245-51. [PMID: 20434955 DOI: 10.1016/j.tube.2010.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/06/2010] [Accepted: 04/08/2010] [Indexed: 11/25/2022]
Abstract
The Mycobacterium tuberculosis protein Rv2377c (71 residues, MW=8.4kDa) has been characterized using nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy. Rv2377c was the first identified member of the MbtH-like family of proteins. MbtH-like proteins have been implicated in siderophore biosynthesis, however, their precise biochemical function remain unknown. Size exclusion chromatography and NMR spectroscopy show that Rv2377c is a monomer in solution. Circular dichroism spectroscopy indicates that Rv2377c unfolds upon heating and will reversibly fold into its native conformation upon cooling. Using NMR-based methods the solution structure of Rv2377c was determined and some of the dynamic properties of the protein studied. The protein contains a three-strand, anti-parallel beta-sheet (beta3:beta1:beta2) nestled against one C-terminal alpha-helix (S44-N55). Weak or absent amide cross peaks in the (1)H-(15)N HSQC spectrum for many of the beta1 and beta2 residues suggest intermediate motion on the ms to mus time scale at the beta1:beta2 interface. Amide cross peaks in the (1)H-(15)N HSQC spectrum are absent for all but one residue at the C-terminus (W56-D71), a region that includes a highly conserved sequence WXDXR, suggesting this region is intrinsically disordered. The latter observation differs with the crystal structure of another MbtH-like protein, PA2412 from Pseudomonas aeruginosa, where a second ordered alpha-helix was observed at the extreme C-terminus.
Collapse
Affiliation(s)
- Garry W Buchko
- Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | | | |
Collapse
|
42
|
Lu X, Zhou R, Sharma I, Li X, Kumar G, Swaminathan S, Tonge PJ, Tan DS. Stable analogues of OSB-AMP: potent inhibitors of MenE, the o-succinylbenzoate-CoA synthetase from bacterial menaquinone biosynthesis. Chembiochem 2011; 13:129-36. [PMID: 22109989 DOI: 10.1002/cbic.201100585] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Indexed: 12/15/2022]
Abstract
MenE, the o-succinylbenzoate (OSB)-CoA synthetase from bacterial menaquinone biosynthesis, is a promising new antibacterial target. Sulfonyladenosine analogues of the cognate reaction intermediate, OSB-AMP, have been developed as inhibitors of the MenE enzymes from Mycobacterium tuberculosis (mtMenE), Staphylococcus aureus (saMenE) and Escherichia coli (ecMenE). Both a free carboxylate and a ketone moiety on the OSB side chain are required for potent inhibitory activity. OSB-AMS (4) is a competitive inhibitor of mtMenE with respect to ATP (K(i) =5.4±0.1 nM) and a noncompetitive inhibitor with respect to OSB (K(i) =11.2±0.9 nM). These data are consistent with a Bi Uni Uni Bi Ping-Pong kinetic mechanism for these enzymes. In addition, OSB-AMS inhibits saMenE with K(i)(app) =22±8 nM and ecMenE with K(i)(OSB) =128±5 nM. Putative active-site residues, Arg222, which may interact with the OSB aromatic carboxylate, and Ser302, which may bind the OSB ketone oxygen, have been identified through computational docking of OSB-AMP with the unliganded crystal structure of saMenE. A pH-dependent interconversion of the free keto acid and lactol forms of the inhibitors is also described, along with implications for inhibitor design.
Collapse
Affiliation(s)
- Xuequan Lu
- Molecular Pharmacology and Chemistry Program and Tri-Institutional Research Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Jones AM, Wildermuth MC. The phytopathogen Pseudomonas syringae pv. tomato DC3000 has three high-affinity iron-scavenging systems functional under iron limitation conditions but dispensable for pathogenesis. J Bacteriol 2011; 193:2767-75. [PMID: 21441525 PMCID: PMC3133136 DOI: 10.1128/jb.00069-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 03/11/2011] [Indexed: 11/20/2022] Open
Abstract
High-affinity iron scavenging through the use of siderophores is a well-established virulence determinant in mammalian pathogenesis. However, few examples have been reported for plant pathogens. Here, we use a genetic approach to investigate the role of siderophores in Pseudomonas syringae pv. tomato DC3000 (DC3000) virulence in tomato. DC3000, an agronomically important pathogen, has two known siderophores for high-affinity iron scavenging, yersiniabactin and pyoverdin, and we uncover a third siderophore, citrate, required for growth when iron is limiting. Though growth of a DC3000 triple mutant unable to either synthesize or import these siderophores is severely restricted in iron-limited culture, it is fully pathogenic. One explanation for this phenotype is that the DC3000 triple mutant is able to directly pirate plant iron compounds such as heme/hemin or iron-nicotianamine, and our data indicate that DC3000 can import iron-nicotianamine with high affinity. However, an alternative explanation, supported by data from others, is that the pathogenic environment of DC3000 (i.e., leaf apoplast) is not iron limited but is iron replete, with available iron of >1 μM. Growth of the triple mutant in culture is restored to wild-type levels by supplementation with a variety of iron chelates at >1 μM, including iron(III) dicitrate, a dominant chelate of the leaf apoplast. This suggests that lower-affinity iron import would be sufficient for DC3000 iron nutrition in planta and is in sharp contrast to the high-affinity iron-scavenging mechanisms required in mammalian pathogenesis.
Collapse
Affiliation(s)
| | - Mary C. Wildermuth
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| |
Collapse
|
44
|
|
45
|
Bosello M, Robbel L, Linne U, Xie X, Marahiel MA. Biosynthesis of the siderophore rhodochelin requires the coordinated expression of three independent gene clusters in Rhodococcus jostii RHA1. J Am Chem Soc 2011; 133:4587-95. [PMID: 21381663 DOI: 10.1021/ja1109453] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work we report the isolation, structural characterization, and the genetic analysis of the biosynthetic origin of rhodochelin, a unique mixed-type catecholate-hydroxamate siderophore isolated from Rhodococcus jostii RHA1. Rhodochelin structural elucidation was accomplished via MS(n)- and NMR-analysis and revealed the tetrapeptide to contain an unusual ester bond between an L-δ-N-formyl-δ-N-hydroxyornithine moiety and the side chain of a threonine residue. Gene deletions within three putative biosynthetic gene clusters abolish rhodochelin production, proving that the ORFs responsible for rhodochelin biosynthesis are located in different chromosomal loci. These results demonstrate the efficient cross-talk between distantly located secondary metabolite gene clusters and outline new insights into the comprehension of natural product biosynthesis.
Collapse
Affiliation(s)
- Mattia Bosello
- Biochemistry, Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse D-35043 Marburg, Germany
| | | | | | | | | |
Collapse
|
46
|
Drake EJ, Duckworth BP, Neres J, Aldrich CC, Gulick AM. Biochemical and structural characterization of bisubstrate inhibitors of BasE, the self-standing nonribosomal peptide synthetase adenylate-forming enzyme of acinetobactin synthesis. Biochemistry 2010; 49:9292-305. [PMID: 20853905 DOI: 10.1021/bi101226n] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The human pathogen Acinetobacter baumannii produces a siderophore called acinetobactin that is derived from one molecule each of threonine, histidine, and 2,3-dihydroxybenzoic acid (DHB). The activity of several nonribosomal peptide synthetase (NRPS) enzymes is used to combine the building blocks into the final molecule. The acinetobactin synthesis pathway initiates with a self-standing adenylation enzyme, BasE, that activates the DHB molecule and covalently transfers it to the pantetheine cofactor of an aryl-carrier protein of BasF, a strategy that is shared with many siderophore-producing NRPS clusters. In this reaction, DHB reacts with ATP to form the aryl adenylate and pyrophosphate. In a second partial reaction, the DHB is transferred to the carrier protein. Inhibitors of BasE and related enzymes have been identified that prevent growth of bacteria on iron-limiting media. Recently, a new inhibitor of BasE has been identified via high-throughput screening using a fluorescence polarization displacement assay. We present here biochemical and structural studies to examine the binding mode of this inhibitor. The kinetics of the wild-type BasE enzyme is shown, and inhibition studies demonstrate that the new compound exhibits competitive inhibition against both ATP and 2,3-dihydroxybenzoate. Structural examination of BasE bound to this inhibitor illustrates a novel binding mode in which the phenyl moiety partially fills the enzyme pantetheine binding tunnel. Structures of rationally designed bisubstrate inhibitors are also presented.
Collapse
Affiliation(s)
- Eric J Drake
- Hauptman-Woodward Institute and Department of Structural Biology, University at Buffalo, Buffalo, NY 14203-1102, USA
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Sikora AL, Wilson DJ, Aldrich CC, Blanchard JS. Kinetic and inhibition studies of dihydroxybenzoate-AMP ligase from Escherichia coli. Biochemistry 2010; 49:3648-57. [PMID: 20359185 DOI: 10.1021/bi100350c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inhibition of siderophore biosynthetic pathways in pathogenic bacteria represents a promising strategy for antibacterial drug development. Escherichia coli synthesize and secrete the small molecule iron chelator siderophore, enterobactin, in response to intracellular iron depletion. Here we describe a detailed kinetic analysis of EntE, one of six enzymes in the enterobactin synthetase gene cluster. EntE catalyzes the ATP-dependent condensation of 2,3-dihydroxybenzoic acid (DHB) and phosphopantetheinylated EntB (holo-EntB) to form covalently arylated EntB, a product that is vital for the final assembly of enterobactin. Initial velocity studies show that EntE proceeds via a bi-uni-uni-bi ping-pong kinetic mechanism with a k(cat) equal to 2.8 s(-1) and K(m) values of 2.5, 430, and 2.9 microM for DHB, ATP, and holo-EntB-ArCP, respectively. Inhibition and direct binding experiments suggest that, during the first half-reaction (adenylation), DHB binds first to the free enzyme, followed by ATP and the release of pyrophosphate to form the adenylate intermediate. During the second half-reaction (ligation), phosphopantetheinylated EntB binds to the enzyme followed by the release of products, AMP and arylated EntB. Two hydrolytically stable adenylate analogues, 5'-O-[N-(salicyl)sulfamoyl]adenosine (Sal-AMS) and 5'-O-[N-(2,3-dihydroxybenzoyl)sulfamoyl]adenosine (DHB-AMS), are shown to act as slow-onset tight-binding inhibitors of the enzyme with (app)K(i) values of 0.9 and 3.8 nM, respectively. Direct binding experiments, via isothermal titration calorimetry, reveal low picomolar dissociation constants for both analogues with respect to EntE. The tight binding of Sal-AMS and DHB-AMS to EntE suggests that these compounds may be developed further as effective antibiotics targeted to this enzyme.
Collapse
Affiliation(s)
- Alison L Sikora
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
49
|
Moraski GC, Chang M, Villegas-Estrada A, Franzblau SG, Möllmann U, Miller MJ. Structure–activity relationship of new anti-tuberculosis agents derived from oxazoline and oxazole benzyl esters. Eur J Med Chem 2010. [DOI: 10.1016/j.ejmech.2009.12.074 pmid: 20116900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
50
|
Moraski GC, Chang M, Villegas-Estrada A, Franzblau SG, Möllmann U, Miller MJ. Structure-activity relationship of new anti-tuberculosis agents derived from oxazoline and oxazole benzyl esters. Eur J Med Chem 2010; 45:1703-16. [PMID: 20116900 PMCID: PMC2843756 DOI: 10.1016/j.ejmech.2009.12.074] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 12/21/2009] [Accepted: 12/23/2009] [Indexed: 11/29/2022]
Abstract
During the syntheses and studies of natural iron chelators (mycobactins), we serendipitously discovered that a simple, small molecule, oxazoline-containing intermediate 3 displayed surprising anti-tuberculosis activity (MIC of 7.7 microM, average). Herein we report elaboration of SAR around this hit as well as the syntheses and evaluation of a hundred oxazoline- and oxazole-containing compounds derived from an efficient three step process: 1) formation of beta-hydroxy amides with serine or threonine; 2) cyclization to afford oxazolines; and 3) dehydration to give the corresponding oxazoles. A number of compounds prepared by this method were shown to possess impressive activity against Mycobacterium tuberculosis, extremely low toxicity and therefore high therapeutic indexes, as well as activity against even the more recalcitrant non-replicating form of M. tuberculosis. The uniqueness of their structures and their simplicity should allow them to be further optimized to meet ADME (absorption, distribution, metabolism, excretion) requirements. The syntheses of eight of the most potent in vitro compounds were scaled up and the compounds were tested in an in vivo mouse infection model to evaluate their efficacy before engaging upon more elaborate compound design and optimization.
Collapse
Affiliation(s)
- Garrett C. Moraski
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46656
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46656
| | - Adriel Villegas-Estrada
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46656
| | - Scott G. Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Ute Möllmann
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Marvin J. Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46656
| |
Collapse
|