1
|
Kong L, Li X, Liu T, Yao Q, Qin J. Harnessing lactic acid bacteria for nicotinamide mononucleotide biosynthesis: a review of strategies and future directions. Front Microbiol 2024; 15:1492179. [PMID: 39735184 PMCID: PMC11681623 DOI: 10.3389/fmicb.2024.1492179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/22/2024] [Indexed: 12/31/2024] Open
Abstract
Nicotinamide mononucleotide (NMN), one of the crucial precursors of nicotinamide adenine dinucleotide, has garnered considerable interest for its pharmacological and anti-aging effects, conferring potential health and economic benefits for humans. Lactic acid bacteria (LAB) are one of the most important probiotics, which is commonly used in the dairy industry. Due to its probiotic properties, it presents an attractive platform for food-grade NMN production. LAB have also been extensively utilized to enhance the functional properties of pharmaceuticals and cosmetics, making them promising candidates for large-scale up synthesis of NMN. This review provides an in-depth analysis of various metabolic engineering strategies, including enzyme optimization, pathway rewiring, and fermentation process enhancements, to increase NMN yields in LAB. It explores both CRISPR/Cas9 and traditional methods to manipulate key biosynthetic pathways. In particular, this study discussed future research directions, emphasizing the application of synthetic biology, systems biology, and AI-driven optimization to further enhance NMN production. It provides invaluable insights into developing scalable and industrially relevant processes for NMN production to meet the growing market demand.
Collapse
Affiliation(s)
- Linghui Kong
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xinyu Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Taiyu Liu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Qingshou Yao
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jiayang Qin
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
2
|
Zhou J, He C, Yang H, Shu W, Liu Q. Integrative omics analysis reveals insights into small colony variants of Staphylococcus aureus induced by sulfamethoxazole-trimethoprim. BMC Microbiol 2024; 24:212. [PMID: 38877418 PMCID: PMC11179224 DOI: 10.1186/s12866-024-03364-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Long-term treatment with trimethoprim-sulfamethoxazole (SXT) can lead to the formation of small-colony variants (SCVs) of Staphylococcus aureus. However, the mechanism behind SCVs formation remains poorly understood. In this study, we explored the phenotype and omics-based characterization of S. aureus SCVs induced by SXT and shed light on the potential causes of SCV formation. METHODS Stable SCVs were obtained by continuously treating S. aureus isolates using 12/238 µg/ml of SXT, characterized by growth kinetics, antibiotic susceptibility testing, and auxotrophism test. Subsequently, a pair of representative strains (SCV and its parental strain) were selected for genomic, transcriptomic and metabolomic analysis. RESULTS Three stable S. aureus SCVs were successfully screened and proven to be homologous to their corresponding parental strains. Phenotypic tests showed that all SCVs were non-classical mechanisms associated with impaired utilization of menadione, heme and thymine, and exhibited slower growth and higher antibiotic minimum inhibitory concentrations (MICs), compared to their corresponding parental strains. Genomic data revealed 15 missense mutations in 13 genes in the representative SCV, which were involved in adhesion, intramolecular phosphate transfer on ribose, transport pathways, and phage-encoded proteins. The combination analysis of transcriptome and metabolome identified 35 overlapping pathways possible associated with the phenotype switching of S. aureus. These pathways mainly included changes in metabolism, such as purine metabolism, pyruvate metabolism, amino acid metabolism, and ABC transporters, which could play a crucial role in promoting SCVs development by affecting nucleic acid synthesis and energy metabolism in bacteria. CONCLUSION This study provides profound insights into the causes of S. aureus SCV formation induced by SXT. The findings may offer valuable clues for developing new strategies to combat S. aureus SCV infections.
Collapse
Affiliation(s)
- Jingwen Zhou
- Department of Clinical Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Rd, Shanghai, 200071, People's Republic of China
| | - Chunyan He
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Han Yang
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wen Shu
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qingzhong Liu
- Department of Clinical Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Rd, Shanghai, 200071, People's Republic of China.
| |
Collapse
|
3
|
Chen H, Han Y, Hearne A, Monarchino A, Wiseman JS. Purinergic ligands induce extracellular acidification and increased ATP turnover in HepG2 cells. Toxicol In Vitro 2024; 96:105788. [PMID: 38320684 DOI: 10.1016/j.tiv.2024.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
Nucleosides and nucleotides at μM concentrations stimulated a 300% increase in acid secretion in HepG2 cells, which was quantitatively accounted for as increased export of lactate generated by glycogenolysis. Agonist selectivity encompassed nucleosides and nucleotides for all 5 natural nucleobases and, along with antagonist profiles, was inconsistent with a role for purinergic receptors in mediating this activity. Agonist catabolism did not contribute significantly to either low selectivity or lactate production. Lactate production was driven by an increase in ATP turnover of as much as 56%. For some agonists, especially adenosine, ATP turnover decreased precipitously at mM concentrations, correlating with known adenosine-stimulated apoptosis. We propose that nucleoside/nucleotide agonists induce a futile energy cycle via a novel mechanism, which results in increased ATP turnover and initiates a continuum of events that for some agonists culminates in apoptosis.
Collapse
Affiliation(s)
- Haotong Chen
- Edison Biotechnology Institute, Bldg. 25, The Ridges, Ohio University, Athens, OH, USA; QPS Holding LLC, 3 Innovation Way, Newark, DE 19711, United States of America.
| | - Yong Han
- Edison Biotechnology Institute, Bldg. 25, The Ridges, Ohio University, Athens, OH, USA.
| | - Abby Hearne
- Edison Biotechnology Institute, Bldg. 25, The Ridges, Ohio University, Athens, OH, USA.
| | - Anna Monarchino
- Edison Biotechnology Institute, Bldg. 25, The Ridges, Ohio University, Athens, OH, USA.
| | - Jeffrey S Wiseman
- Edison Biotechnology Institute, Bldg. 25, The Ridges, Ohio University, Athens, OH, USA.
| |
Collapse
|
4
|
Bierling TEH, Gumann A, Ottmann SR, Schulz SR, Weckwerth L, Thomas J, Gessner A, Wichert M, Kuwert F, Rost F, Hauke M, Freudenreich T, Mielenz D, Jäck HM, Pracht K. GLUT1-mediated glucose import in B cells is critical for anaplerotic balance and humoral immunity. Cell Rep 2024; 43:113739. [PMID: 38340319 DOI: 10.1016/j.celrep.2024.113739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Glucose uptake increases during B cell activation and antibody-secreting cell (ASC) differentiation, but conflicting findings prevent a clear metabolic profile at different stages of B cell activation. Deletion of the glucose transporter type 1 (GLUT1) gene in mature B cells (GLUT1-cKO) results in normal B cell development, but it reduces germinal center B cells and ASCs. GLUT1-cKO mice show decreased antigen-specific antibody titers after vaccination. In vitro, GLUT1-deficient B cells show impaired activation, whereas established plasmablasts abolish glycolysis, relying on mitochondrial activity and fatty acids. Transcriptomics and metabolomics reveal an altered anaplerotic balance in GLUT1-deficient ASCs. Despite attempts to compensate for glucose deprivation by increasing mitochondrial mass and gene expression associated with glycolysis, the tricarboxylic acid cycle, and hexosamine synthesis, GLUT1-deficient ASCs lack the metabolites for energy production and mitochondrial respiration, limiting protein synthesis. We identify GLUT1 as a critical metabolic player defining the germinal center response and humoral immunity.
Collapse
Affiliation(s)
- Theresa E H Bierling
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Amelie Gumann
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Shannon R Ottmann
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian R Schulz
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Leonie Weckwerth
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jana Thomas
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Magdalena Wichert
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Frederic Kuwert
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Rost
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Manuela Hauke
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tatjana Freudenreich
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Pracht
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
5
|
Sun M, Dai P, Cao Z, Dong J. Purine metabolism in plant pathogenic fungi. Front Microbiol 2024; 15:1352354. [PMID: 38384269 PMCID: PMC10879430 DOI: 10.3389/fmicb.2024.1352354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
In eukaryotic cells, purine metabolism is the way to the production of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) and plays key roles in various biological processes. Purine metabolism mainly consists of de novo, salvage, and catabolic pathways, and some components of these pathways have been characterized in some plant pathogenic fungi, such as the rice blast fungus Magnaporthe oryzae and wheat head blight fungus Fusarium graminearum. The enzymatic steps of the de novo pathway are well-conserved in plant pathogenic fungi and play crucial roles in fungal growth and development. Blocking this pathway inhibits the formation of penetration structures and invasive growth, making it essential for plant infection by pathogenic fungi. The salvage pathway is likely indispensable but requires exogenous purines, implying that purine transporters are functional in these fungi. The catabolic pathway balances purine nucleotides and may have a conserved stage-specific role in pathogenic fungi. The significant difference of the catabolic pathway in planta and in vitro lead us to further explore and identify the key genes specifically regulating pathogenicity in purine metabolic pathway. In this review, we summarized recent advances in the studies of purine metabolism, focusing on the regulation of pathogenesis and growth in plant pathogenic fungi.
Collapse
Affiliation(s)
- Manli Sun
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | | | | | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
6
|
Kafle SR, Kushwaha A, Goswami L, Maharjan A, Kim BS. A holistic approach for process intensification of nicotinamide mononucleotide production via high cell density cultivation under exponential feeding strategy. BIORESOURCE TECHNOLOGY 2023; 390:129911. [PMID: 37871744 DOI: 10.1016/j.biortech.2023.129911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Nicotinamide mononucleotide (NMN) subsists in all living organisms and has drawn tremendous attention as a nutraceutical and pharmaceutical product for several diseases such as Alzheimer's, cancer, aging, and vascular dysfunction. Here, NMN was produced intracellularly in a high cell density bioreactor using an engineered Escherichiacoli strain via exponential feeding of co-substrates. Fed-batch culture via exponential feeding of co-substrate (glucose) and continuous feeding of substrate (nicotinamide) were performed using different cumulative nicotinamide concentrations. The highest concentration of 19.3 g/L NMN with a dry cell weight of 117 g/L was acquired from a cumulative nicotinamide concentration of 7.2 g/L with a conversion of 98 % from nicotinamide in 28 h. Further, liquid chromatography-mass spectrometry analysis validated the NMN production. This approach will be beneficial in achieving simultaneously low cost and ensuring high quality and quantity of NMN production.
Collapse
Affiliation(s)
- Saroj Raj Kafle
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Anoth Maharjan
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
7
|
Miller A, York EM, Stopka SA, Martínez-François JR, Hossain MA, Baquer G, Regan MS, Agar NYR, Yellen G. Spatially resolved metabolomics and isotope tracing reveal dynamic metabolic responses of dentate granule neurons with acute stimulation. Nat Metab 2023; 5:1820-1835. [PMID: 37798473 PMCID: PMC10626993 DOI: 10.1038/s42255-023-00890-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 08/09/2023] [Indexed: 10/07/2023]
Abstract
Neuronal activity creates an intense energy demand that must be met by rapid metabolic responses. To investigate metabolic adaptations in the neuron-enriched dentate granule cell (DGC) layer within its native tissue environment, we employed murine acute hippocampal brain slices, coupled with fast metabolite preservation and followed by mass spectrometry (MS) imaging, to generate spatially resolved metabolomics and isotope-tracing data. Here we show that membrane depolarization induces broad metabolic changes, including increased glycolytic activity in DGCs. Increased glucose metabolism in response to stimulation is accompanied by mobilization of endogenous inosine into pentose phosphates via the action of purine nucleotide phosphorylase (PNP). The PNP reaction is an integral part of the neuronal response to stimulation, because inhibition of PNP leaves DGCs energetically impaired during recovery from strong activation. Performing MS imaging on brain slices bridges the gap between live-cell physiology and the deep chemical analysis enabled by MS.
Collapse
Affiliation(s)
- Anne Miller
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Elisa M York
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Md Amin Hossain
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gerard Baquer
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael S Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
9
|
Miller A, York E, Stopka S, Martínez-François J, Hossain MA, Baquer G, Regan M, Agar N, Yellen G. Spatially resolved metabolomics and isotope tracing reveal dynamic metabolic responses of dentate granule neurons with acute stimulation. RESEARCH SQUARE 2023:rs.3.rs-2276903. [PMID: 37546759 PMCID: PMC10402263 DOI: 10.21203/rs.3.rs-2276903/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Neuronal activity creates an intense energy demand that must be met by rapid metabolic responses. To investigate metabolic adaptations in the neuron-enriched dentate granule cell (DGC) layer within its native tissue environment, we employed murine acute hippocampal brain slices coupled with fast metabolite preservation, followed by mass spectrometry imaging (MALDI-MSI) to generate spatially resolved metabolomics and isotope tracing data. Here we show that membrane depolarization induces broad metabolic changes, including increased glycolytic activity in DGCs. Increased glucose metabolism in response to stimulation is accompanied by mobilization of endogenous inosine into pentose phosphates, via the action of purine nucleotide phosphorylase (PNP). The PNP reaction is an integral part of the neuronal response to stimulation, as inhibiting PNP leaves DGCs energetically impaired during recovery from strong activation. Performing MSI on brain slices bridges the gap between live cell physiology and the deep chemical analysis enabled by mass spectrometry.
Collapse
|
10
|
Li Z, Hu J, Sun Q, Zhang X, Chang R, Wang Y. A novel elicitor protein phosphopentomutase from Bacillus velezensis LJ02 enhances tomato resistance to Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2022; 13:1064589. [PMID: 36523612 PMCID: PMC9746712 DOI: 10.3389/fpls.2022.1064589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
The loss of tomatoes caused by Botrytis cinerea (B. cinerea) is one of the crucial issues restricting the tomato yield. This study screened the elicitor protein phosphopentomutase from Bacillus velezensis LJ02 (BvEP) which improves the tomato resistance to B. cinerea. Phosphatemutase was reported to play a crucial role in the nucleoside synthesis of various microorganisms. However, there is no report on improving plant resistance by phosphopentomutase, and the related signaling pathway in the immune response has not been elucidated. High purity recombinant BvEP protein have no direct inhibitory effect on B. cinerea in vitro,and but induce the hypersensitivity response (HR) in Nicotiana tabacum. Tomato leaves overexpressing BvEP were found to be significantly more resistant to B. cinerea by Agrobacterium-mediated genetic transformation. Several defense genes, including WRKY28 and PTI5 of PAMP-triggered immunity (PTI), UDP and UDP1 of effector-triggered immunity (ETI), Hin1 and HSR203J of HR, PR1a of systemic acquired resistance (SAR) and the SAR related gene NPR1 were all up-regulated in transgenic tomato leaves overexpressing BvEP. In addition, it was found that transient overexpression of BvEP reduced the rotting rate and lesion diameter of tomato fruits caused by B. cinerea, and increased the expression of PTI, ETI, SAR-related genes, ROS content, SOD and POD activities in tomato fruits, while there was no significant effect on the weight loss and TSS, TA and Vc contents of tomato fruits. This study provides new insights into innovative breeding of tomato disease resistance and has great significance for loss reduction and income enhancement in the tomato industry.
Collapse
Affiliation(s)
- Zhuoran Li
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| | - Jianan Hu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| | - Qi Sun
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| | - Xi Zhang
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| | - Ruokui Chang
- College of Engineering and Technology Architecture, Tianjin Agricultural University, Tianjin, China
| | - Yuanhong Wang
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
11
|
Moschini R, Balestri F, Cappiello M, Signore G, Mura U, Del-Corso A. Ribose Intake as Food Integrator: Is It a Really Convenient Practice? Biomolecules 2022; 12:biom12121775. [PMID: 36551203 PMCID: PMC9776227 DOI: 10.3390/biom12121775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Reports concerning the beneficial effects of D-ribose administration in cardiovascular and muscle stressful conditions has led to suggestions for the use of ribose as an energizing food supplement for healthy people. However, this practice still presents too many critical issues, suggesting that caution is needed. In fact, there are many possible negative effects of this sugar that we believe are underestimated, if not neglected, by the literature supporting the presentation of the product to the market. Here, the risks deriving from the use of free ribose as ATP source, forcing ribose-5-phosphate to enter into the pentose phosphate pathway, is emphasized. On the basis of the remarkable glycation capacity of ribose, the easily predictable cytotoxic effect of the molecule is also highlighted.
Collapse
Affiliation(s)
- Roberta Moschini
- Biochemistry Unit, Department of Biology, University of Pisa, Via San Zeno, 51, 56127 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Francesco Balestri
- Biochemistry Unit, Department of Biology, University of Pisa, Via San Zeno, 51, 56127 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Mario Cappiello
- Biochemistry Unit, Department of Biology, University of Pisa, Via San Zeno, 51, 56127 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Giovanni Signore
- Biochemistry Unit, Department of Biology, University of Pisa, Via San Zeno, 51, 56127 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Umberto Mura
- Biochemistry Unit, Department of Biology, University of Pisa, Via San Zeno, 51, 56127 Pisa, Italy
- Correspondence:
| | - Antonella Del-Corso
- Biochemistry Unit, Department of Biology, University of Pisa, Via San Zeno, 51, 56127 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
12
|
Kim IS, Jo EK. Inosine: A bioactive metabolite with multimodal actions in human diseases. Front Pharmacol 2022; 13:1043970. [PMID: 36467085 PMCID: PMC9708727 DOI: 10.3389/fphar.2022.1043970] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 08/04/2023] Open
Abstract
The nucleoside inosine is an essential metabolite for purine biosynthesis and degradation; it also acts as a bioactive molecule that regulates RNA editing, metabolic enzyme activity, and signaling pathways. As a result, inosine is emerging as a highly versatile bioactive compound and second messenger of signal transduction in cells with diverse functional abilities in different pathological states. Gut microbiota remodeling is closely associated with human disease pathogenesis and responses to dietary and medical supplementation. Recent studies have revealed a critical link between inosine and gut microbiota impacting anti-tumor, anti-inflammatory, and antimicrobial responses in a context-dependent manner. In this review, we summarize the latest progress in our understanding of the mechanistic function of inosine, to unravel its immunomodulatory actions in pathological settings such as cancer, infection, inflammation, and cardiovascular and neurological diseases. We also highlight the role of gut microbiota in connection with inosine metabolism in different pathophysiological conditions. A more thorough understanding of the mechanistic roles of inosine and how it regulates disease pathologies will pave the way for future development of therapeutic and preventive modalities for various human diseases.
Collapse
Affiliation(s)
- In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Eun-Kyoung Jo
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| |
Collapse
|
13
|
The Power of Biocatalysts for Highly Selective and Efficient Phosphorylation Reactions. Catalysts 2022. [DOI: 10.3390/catal12111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reactions involving the transfer of phosphorus-containing groups are of key importance for maintaining life, from biological cells, tissues and organs to plants, animals, humans, ecosystems and the whole planet earth. The sustainable utilization of the nonrenewable element phosphorus is of key importance for a balanced phosphorus cycle. Significant advances have been achieved in highly selective and efficient biocatalytic phosphorylation reactions, fundamental and applied aspects of phosphorylation biocatalysts, novel phosphorylation biocatalysts, discovery methodologies and tools, analytical and synthetic applications, useful phosphoryl donors and systems for their regeneration, reaction engineering, product recovery and purification. Biocatalytic phosphorylation reactions with complete conversion therefore provide an excellent reaction platform for valuable analytical and synthetic applications.
Collapse
|
14
|
Fan TWM, Daneshmandi S, Cassel TA, Uddin MB, Sledziona J, Thompson PT, Lin P, Higashi RM, Lane AN. Polarization and β-Glucan Reprogram Immunomodulatory Metabolism in Human Macrophages and Ex Vivo in Human Lung Cancer Tissues. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1674-1690. [PMID: 36150727 PMCID: PMC9588758 DOI: 10.4049/jimmunol.2200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022]
Abstract
Immunomodulatory (IM) metabolic reprogramming in macrophages (Mϕs) is fundamental to immune function. However, limited information is available for human Mϕs, particularly in response plasticity, which is critical to understanding the variable efficacy of immunotherapies in cancer patients. We carried out an in-depth analysis by combining multiplex stable isotope-resolved metabolomics with reversed phase protein array to map the dynamic changes of the IM metabolic network and key protein regulators in four human donors' Mϕs in response to differential polarization and M1 repolarizer β-glucan (whole glucan particles [WGPs]). These responses were compared with those of WGP-treated ex vivo organotypic tissue cultures (OTCs) of human non-small cell lung cancer. We found consistently enhanced tryptophan catabolism with blocked NAD+ and UTP synthesis in M1-type Mϕs (M1-Mϕs), which was associated with immune activation evidenced by increased release of IL-1β/CXCL10/IFN-γ/TNF-α and reduced phagocytosis. In M2a-Mϕs, WGP treatment of M2a-Mϕs robustly increased glucose utilization via the glycolysis/oxidative branch of the pentose phosphate pathway while enhancing UDP-N-acetyl-glucosamine turnover and glutamine-fueled gluconeogenesis, which was accompanied by the release of proinflammatory IL-1β/TNF-α to above M1-Mϕ's levels, anti-inflammatory IL-10 to above M2a-Mϕ's levels, and attenuated phagocytosis. These IM metabolic responses could underlie the opposing effects of WGP, i.e., reverting M2- to M1-type immune functions but also boosting anti-inflammation. Variable reprogrammed Krebs cycle and glutamine-fueled synthesis of UTP in WGP-treated OTCs of human non-small cell lung cancer were observed, reflecting variable M1 repolarization of tumor-associated Mϕs. This was supported by correlation with IL-1β/TNF-α release and compromised tumor status, making patient-derived OTCs unique models for studying variable immunotherapeutic efficacy in cancer patients.
Collapse
Affiliation(s)
- Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY;
- Markey Cancer Center, University of Kentucky, Lexington, KY; and
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY
| | - Saeed Daneshmandi
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY
| | - Teresa A Cassel
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY
| | - Mohammad B Uddin
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY
| | - James Sledziona
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY
| | - Patrick T Thompson
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY
| | - Penghui Lin
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY
- Markey Cancer Center, University of Kentucky, Lexington, KY; and
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY;
- Markey Cancer Center, University of Kentucky, Lexington, KY; and
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY
| |
Collapse
|
15
|
Wäscher M, Classen T, Pietruszka J. Simple Enzyme Immobilization for Flow Chemistry? An Assessment of Available Strategies for an Acetaldehyde-Dependent Aldolase. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196483. [PMID: 36235018 PMCID: PMC9570893 DOI: 10.3390/molecules27196483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Enzyme immobilization is a technology that enables (bio-)catalysts to be applied in continuous-flow systems. However, there is a plethora of immobilization methods available with individual advantages and disadvantages. Here, we assessed the influence of simple and readily available methods with respect to the performance of 2-deoxy-d-ribose-5-phosphate aldolase (DERA) in continuous-flow conditions. The investigated immobilization strategies cover the unspecific attachment to carriers via epoxides, affinity-based attachment via metal ion affinity, StrepTag™-StrepTactin™ interaction as well as the covalent affinity attachment of an enzyme to a matrix tethered by the HaloTag®. The metal-ion-affinity-based approach outperformed the other methods in terms of immobilized activity and stability under applied conditions. As most enzymes examined today already have a HisTag for purification purposes, effective immobilization may be applied, as simple as a standard purification, if needed.
Collapse
Affiliation(s)
- Martin Wäscher
- Institute for Bioorganic Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas Classen
- Institute for Bio- and Geosciences 1: Bioorganic Chemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jörg Pietruszka
- Institute for Bioorganic Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute for Bio- and Geosciences 1: Bioorganic Chemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
- Correspondence: ; Tel.: +49-(0)2461-61-4158
| |
Collapse
|
16
|
Eoh H, Liu R, Lim J, Lee JJ, Sell P. Central carbon metabolism remodeling as a mechanism to develop drug tolerance and drug resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:958240. [PMID: 36072228 PMCID: PMC9441700 DOI: 10.3389/fcimb.2022.958240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Suboptimal efficacy of the current antibiotic regimens and frequent emergence of antibiotic-resistant Mycobacterium tuberculosis (Mtb), an etiological agent of tuberculosis (TB), render TB the world’s deadliest infectious disease before the COVID-19 outbreak. Our outdated TB treatment method is designed to eradicate actively replicating populations of Mtb. Unfortunately, accumulating evidence suggests that a small population of Mtb can survive antimycobacterial pressure of antibiotics by entering a “persister” state (slowly replicating or non-replicating and lacking a stably heritable antibiotic resistance, termed drug tolerance). The formation of drug-tolerant Mtb persisters is associated with TB treatment failure and is thought to be an adaptive strategy for eventual development of permanent genetic mutation-mediated drug resistance. Thus, the molecular mechanisms behind persister formation and drug tolerance acquisition are a source of new antibiotic targets to eradicate both Mtb persisters and drug-resistant Mtb. As Mtb persisters are genetically identical to antibiotic susceptible populations, metabolomics has emerged as a vital biochemical tool to differentiate these populations by determining phenotypic shifts and metabolic reprogramming. Metabolomics, which provides detailed insights into the molecular basis of drug tolerance and resistance in Mtb, has unique advantages over other techniques by its ability to identify specific metabolic differences between the two genetically identical populations. This review summarizes the recent advances in our understanding of the metabolic adaptations used by Mtb persisters to achieve intrinsic drug tolerance and facilitate the emergence of drug resistance. These findings present metabolomics as a powerful tool to identify previously unexplored antibiotic targets and improved combinations of drug regimens against drug-resistant TB infection.
Collapse
|
17
|
Liao Y, Zhang M, Lin X, Yan F. Diaryl Urea Derivative Molecule Inhibits Cariogenic Streptococcus mutans by Affecting Exopolysaccharide Synthesis, Stress Response, and Nitrogen Metabolism. Front Cell Infect Microbiol 2022; 12:904488. [PMID: 35619645 PMCID: PMC9127343 DOI: 10.3389/fcimb.2022.904488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Different small molecules have been developed to target cariogenic bacteria Streptococcus mutans. Based on target-based designing and in silico screening, a novel diaryl urea derivative, 1,3-bis[3,5-bis(trifluoromethyl)phenyl]urea (BPU), has previously been found effective in inhibiting the growth of S. mutans. However, the exact mechanism remains unclear. This current study aimed to explore the antimicrobial and antibiofilm effects of BPU on S. mutans and locate key enzymes and biological processes affected by the molecule via in silico molecular docking analysis and transcriptomic profile. Our in vitro results confirmed that BPU was capable of inhibiting planktonic growth as well as biofilm formation of S. mutans. The virtual binding analysis predicted that the molecule had strong binding potentials with vital enzymes (3AIC and 2ZID) involved in extracellular exopolysaccharide (EPS) synthesis. The predicted inhibitive binding was further confirmed by in vitro quantification of EPS, which found a decreased amount of EPS in the biofilms. The transcriptomic profile also found differential expression of genes involved in EPS synthesis. Moreover, the transcriptomic profile implied alterations in stress response and nitrogen metabolism in S. mutans treated with BPU. Examination of differentially expressed genes involved in these biological processes revealed that altered gene expression could contribute to impaired growth, biofilm formation, and competitiveness of S. mutans. In conclusion, the novel diaryl urea derivative BPU can inhibit the virulence of S. mutans by affecting different biological processes and serves as a potent anti-caries agent.
Collapse
Affiliation(s)
- Ying Liao
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mengyun Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xingnan Lin
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fuhua Yan
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Khan SR, Kuzminov A. Thymine-starvation-induced chromosomal fragmentation is not required for thymineless death in Escherichia coli. Mol Microbiol 2022; 117:1138-1155. [PMID: 35324030 PMCID: PMC11574965 DOI: 10.1111/mmi.14897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
Abstract
Thymine or thymidine starvation induces robust chromosomal fragmentation in Escherichia coli thyA deoCABD mutants and is proposed to be the cause of thymineless death (TLD). However, fragmentation kinetics challenges the idea that fragmentation causes TLD, by peaking before the onset of TLD and disappearing by the time TLD accelerates. Quantity and kinetics of fragmentation also stay unchanged in hyper-TLD-exhibiting recBCD mutant, making its faster and deeper TLD independent of fragmentation as well. Elimination of fragmentation without affecting cellular metabolism did not abolish TLD in the thyA mutant, but reduced early TLD in the thyA recBCD mutant, suggesting replication-dependent, but undetectable by pulsed-field gel, double-strand breaks contributed to TLD. Chromosomal fragmentation, but not TLD, was eliminated in both the thyA and thyA recBCD mutants harboring deoCABD operon. The expression of a single gene, deoA, encoding thymidine phosphorylase, was sufficient to abolish fragmentation, suggesting thymidine-to-thymine interconversion during T-starvation being a key factor. Overall, this study reveals that chromosomal fragmentation, a direct consequence of T-starvation, is either dispensable or redundant for the overall TLD pathology, including hyper-TLD in the recBCD mutant. Replication forks, unlike chromosomal fragmentation, may provide a minor contribution to TLD, but only in the repair-deficient thyA deoCABD recBCD mutant.
Collapse
Affiliation(s)
- Sharik R. Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
19
|
Chen YT, Yang KX, Dai ZY, Yi H, Peng XX, Li H, Chen ZG. Repressed Central Carbon Metabolism and Its Effect on Related Metabolic Pathways in Cefoperazone/Sulbactam-Resistant Pseudomonas aeruginosa. Front Microbiol 2022; 13:847634. [PMID: 35308347 PMCID: PMC8927769 DOI: 10.3389/fmicb.2022.847634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
Metabolic shift and antibiotic resistance have been reported in Pseudomonas aeruginosa. However, the global metabolic characteristics remain largely unknown. The present study characterizes the central carbon metabolism and its effect on other metabolic pathways in cefoperazone-sulbactam (SCF)-resistant P. aeruginosa (PA-RSCF). GC-MS-based metabolomics shows a repressed central carbon metabolism in PA-RSCF, which is confirmed by measuring expression of genes and activity of enzymes in the metabolism. Furthermore, expression of the genes that encode the enzymes for the first step of fatty acid biosynthesis, glutamate metabolism, and electron transport chain is reduced, confirmed by their enzymatic activity assay, and the key enzyme for riboflavin metabolism is also reduced, indicating the decreased metabolic flux to the four related metabolic pathways. Moreover, the role of the reduced riboflavin metabolism, being related to ROS generation, in SCF resistance is explored. Exogenous H2O2 potentiates SCF-mediated killing in a dose-dependent manner, suggesting that the decreased ROS resulted from the reduced riboflavin metabolism that contributed to the resistance. These results indicate that the repressed central carbon metabolism and related riboflavin metabolism contribute to SCF resistance, but increasing ROS can restore SCF sensitivity. These findings characterize the repressed central carbon metabolism and its effect on other metabolic pathways as the global metabolic features in PA-RSCF.
Collapse
Affiliation(s)
- Yue-tao Chen
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
| | - Ke-xin Yang
- Department of Pediatrics, Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhen-yuan Dai
- Department of Pediatrics, Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huan Yi
- Department of Pediatrics, Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuan-xian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Hui Li,
| | - Zhuang-gui Chen
- Department of Pediatrics, Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Zhuang-gui Chen,
| |
Collapse
|
20
|
Hélaine V, Gastaldi C, Lemaire M, Clapés P, Guérard-Hélaine C. Recent Advances in the Substrate Selectivity of Aldolases. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Virgil Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Cédric Gastaldi
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Marielle Lemaire
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Pere Clapés
- Biological Chemistry Department, Institute for Advanced Chemistry of Catalonia, IQAC−CSIC, 08034 Barcelona, Spain
| | - Christine Guérard-Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| |
Collapse
|
21
|
McIntosh JA, Benkovics T, Silverman SM, Huffman MA, Kong J, Maligres PE, Itoh T, Yang H, Verma D, Pan W, Ho HI, Vroom J, Knight AM, Hurtak JA, Klapars A, Fryszkowska A, Morris WJ, Strotman NA, Murphy GS, Maloney KM, Fier PS. Engineered Ribosyl-1-Kinase Enables Concise Synthesis of Molnupiravir, an Antiviral for COVID-19. ACS CENTRAL SCIENCE 2021; 7:1980-1985. [PMID: 34963891 PMCID: PMC8704035 DOI: 10.1021/acscentsci.1c00608] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 05/04/2023]
Abstract
Molnupiravir (MK-4482) is an investigational antiviral agent that is under development for the treatment of COVID-19. Given the potential high demand and urgency for this compound, it was critical to develop a short and sustainable synthesis from simple raw materials that would minimize the time needed to manufacture and supply molnupiravir. The route reported here is enabled through the invention of a novel biocatalytic cascade featuring an engineered ribosyl-1-kinase and uridine phosphorylase. These engineered enzymes were deployed with a pyruvate-oxidase-enabled phosphate recycling strategy. Compared to the initial route, this synthesis of molnupiravir is 70% shorter and approximately 7-fold higher yielding. Looking forward, the biocatalytic approach to molnupiravir outlined here is anticipated to have broad applications for streamlining the synthesis of nucleosides in general.
Collapse
Affiliation(s)
- John A. McIntosh
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Tamas Benkovics
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Steven M. Silverman
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Mark A. Huffman
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Jongrock Kong
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Peter E. Maligres
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Tetsuji Itoh
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Hao Yang
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Deeptak Verma
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Weilan Pan
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Hsing-I Ho
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Jonathan Vroom
- Codexis,
Inc., 200 Penobscot Drive, Redwood City, California 94063, United States
| | - Anders M. Knight
- Codexis,
Inc., 200 Penobscot Drive, Redwood City, California 94063, United States
| | - Jessica A. Hurtak
- Codexis,
Inc., 200 Penobscot Drive, Redwood City, California 94063, United States
| | - Artis Klapars
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Anna Fryszkowska
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - William J. Morris
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Neil A. Strotman
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Grant S. Murphy
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Kevin M. Maloney
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Patrick S. Fier
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
22
|
Chang JD, Vaughan EE, Liu CG, Jelinski JW, Terwilliger AL, Maresso AW. Metabolic profiling reveals nutrient preferences during carbon utilization in Bacillus species. Sci Rep 2021; 11:23917. [PMID: 34903830 PMCID: PMC8669014 DOI: 10.1038/s41598-021-03420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022] Open
Abstract
The genus Bacillus includes species with diverse natural histories, including free-living nonpathogenic heterotrophs such as B. subtilis and host-dependent pathogens such as B. anthracis (the etiological agent of the disease anthrax) and B. cereus, a cause of food poisoning. Although highly similar genotypically, the ecological niches of these three species are mutually exclusive, which raises the untested hypothesis that their metabolism has speciated along a nutritional tract. Here, we developed a pipeline for quantitative total assessment of the use of diverse sources of carbon for general metabolism to better appreciate the "culinary preferences" of three distinct Bacillus species, as well as related Staphylococcus aureus. We show that each species has widely varying metabolic ability to utilize diverse sources of carbon that correlated to their ecological niches. This approach was applied to the growth and survival of B. anthracis in a blood-like environment and find metabolism shifts from sugar to amino acids as the preferred source of energy. Finally, various nutrients in broth and host-like environments are identified that may promote or interfere with bacterial metabolism during infection.
Collapse
Affiliation(s)
- James D Chang
- The Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ellen E Vaughan
- The Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Carmen Gu Liu
- The Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph W Jelinski
- The Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Austen L Terwilliger
- The Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony W Maresso
- The Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
23
|
Polyakov KM, Mordkovich NN, Safonova TN, Antipov AN, Okorokova NA, Dorovatovskii PV, Veiko VP. Role of Conformational Changes of Hexameric Bacterial Uridine Phosphorylases in Substrate Binding. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521050199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Current state of and need for enzyme engineering of 2-deoxy-D-ribose 5-phosphate aldolases and its impact. Appl Microbiol Biotechnol 2021; 105:6215-6228. [PMID: 34410440 PMCID: PMC8403123 DOI: 10.1007/s00253-021-11462-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 01/28/2023]
Abstract
Abstract Deoxyribose-5-phosphate aldolases (DERAs, EC 4.1.2.4) are acetaldehyde-dependent, Class I aldolases catalyzing in nature a reversible aldol reaction between an acetaldehyde donor (C2 compound) and glyceraldehyde-3-phosphate acceptor (C3 compound, C3P) to generate deoxyribose-5-phosphate (C5 compound, DR5P). DERA enzymes have been found to accept also other types of aldehydes as their donor, and in particular as acceptor molecules. Consequently, DERA enzymes can be applied in C–C bond formation reactions to produce novel compounds, thus offering a versatile biocatalytic alternative for synthesis. DERA enzymes, found in all kingdoms of life, share a common TIM barrel fold despite the low overall sequence identity. The catalytic mechanism is well-studied and involves formation of a covalent enzyme-substrate intermediate. A number of protein engineering studies to optimize substrate specificity, enzyme efficiency, and stability of DERA aldolases have been published. These have employed various engineering strategies including structure-based design, directed evolution, and recently also machine learning–guided protein engineering. For application purposes, enzyme immobilization and usage of whole cell catalysis are preferred methods as they improve the overall performance of the biocatalytic processes, including often also the stability of the enzyme. Besides single-step enzymatic reactions, DERA aldolases have also been applied in multi-enzyme cascade reactions both in vitro and in vivo. The DERA-based applications range from synthesis of commodity chemicals and flavours to more complicated and high-value pharmaceutical compounds. Key points • DERA aldolases are versatile biocatalysts able to make new C–C bonds. • Synthetic utility of DERAs has been improved by protein engineering approaches. • Computational methods are expected to speed up the future DERA engineering efforts. Graphical abstract ![]()
Collapse
|
25
|
Kortright KE, Doss-Gollin S, Chan BK, Turner PE. Evolution of Bacterial Cross-Resistance to Lytic Phages and Albicidin Antibiotic. Front Microbiol 2021; 12:658374. [PMID: 34220747 PMCID: PMC8245764 DOI: 10.3389/fmicb.2021.658374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022] Open
Abstract
Due to concerns over the global increase of antibiotic-resistant bacteria, alternative antibacterial strategies, such as phage therapy, are increasingly being considered. However, evolution of bacterial resistance to new therapeutics is almost a certainty; indeed, it is possible that resistance to alternative treatments might result in an evolved trade-up such as enhanced antibiotic resistance. Here, we hypothesize that selection for Escherichia coli bacteria to resist phage T6, phage U115, or albicidin, a DNA gyrase inhibitor, should often result in a pleiotropic trade-up in the form of cross-resistance, because all three antibacterial agents interact with the Tsx porin. Selection imposed by any one of the antibacterials resulted in cross-resistance to all three of them, in each of the 29 spontaneous bacterial mutants examined in this study. Furthermore, cross-resistance did not cause measurable fitness (growth) deficiencies for any of the bacterial mutants, when competed against wild-type E. coli in both low-resource and high-resource environments. A combination of whole-genome and targeted sequencing confirmed that mutants differed from wild-type E. coli via change(s) in the tsx gene. Our results indicate that evolution of cross-resistance occurs frequently in E. coli subjected to independent selection by phage T6, phage U115 or albicidin. This study cautions that deployment of new antibacterial therapies such as phage therapy, should be preceded by a thorough investigation of evolutionary consequences of the treatment, to avoid the potential for evolved trade-ups.
Collapse
Affiliation(s)
| | - Simon Doss-Gollin
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Benjamin K. Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Paul E. Turner
- Program in Microbiology, Yale School of Medicine, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| |
Collapse
|
26
|
Banfalvi G. Prebiotic Pathway from Ribose to RNA Formation. Int J Mol Sci 2021; 22:ijms22083857. [PMID: 33917807 PMCID: PMC8068141 DOI: 10.3390/ijms22083857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 01/12/2023] Open
Abstract
At the focus of abiotic chemical reactions is the synthesis of ribose. No satisfactory explanation was provided as to the missing link between the prebiotic synthesis of ribose and prebiotic RNA (preRNA). Hydrogen cyanide (HCN) is assumed to have been the principal precursor in the prebiotic formation of aldopentoses in the formose reaction and in the synthesis of ribose. Ribose as the best fitting aldopentose became the exclusive sugar component of RNA. The elevated yield of ribose synthesis at higher temperatures and its protection from decomposition could have driven the polymerization of the ribose-phosphate backbone and the coupling of nucleobases to the backbone. RNA could have come into being without the involvement of nucleotide precursors. The first nucleoside monophosphate is likely to have appeared upon the hydrolysis of preRNA contributed by the presence of reactive 2′-OH moieties in the preRNA chain. As a result of phosphorylation, nucleoside monophosphates became nucleoside triphosphates, substrates for the selective synthesis of genRNA.
Collapse
Affiliation(s)
- Gaspar Banfalvi
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, 1 Egyetem Square, 4010 Debrecen, Hungary
| |
Collapse
|
27
|
Kaspar F, Neubauer P, Kurreck A. Kinetic Analysis of the Hydrolysis of Pentose-1-phosphates through Apparent Nucleoside Phosphorolysis Equilibrium Shifts*. Chemphyschem 2021; 22:283-287. [PMID: 33216411 PMCID: PMC7898831 DOI: 10.1002/cphc.202000901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/17/2020] [Indexed: 11/08/2022]
Abstract
Herein, we report an addition to the toolbox for the monitoring and quantification of the hydrolytic decay of pentose-1-phosphates, which are known to be elusive and difficult to quantify. This communication describes how apparent equilibrium shifts of a nucleoside phosphorolysis reaction can be employed to calculate hydrolytic loss of pentose-1-phosphates based on the measurement of post-hydrolysis equilibrium concentrations of a nucleoside and a nucleobase. To demonstrate this approach, we assessed the stability of the relatively stable ribose-1-phosphate at 98 °C and found half-lives of 1.8-11.7 h depending on the medium pH. This approach can be extended to other sugar phosphates and related reaction systems to quantify the stability of UV-inactive and hard-to-detect reaction products and intermediates.
Collapse
Affiliation(s)
- Felix Kaspar
- Chair of Bioprocess EngineeringTechnische Universität BerlinStraße des 17. Juni 13510632BerlinGermany
- BioNukleo GmbHAckerstraße 7613355BerlinGermany
| | - Peter Neubauer
- Chair of Bioprocess EngineeringTechnische Universität BerlinStraße des 17. Juni 13510632BerlinGermany
| | - Anke Kurreck
- Chair of Bioprocess EngineeringTechnische Universität BerlinStraße des 17. Juni 13510632BerlinGermany
- BioNukleo GmbHAckerstraße 7613355BerlinGermany
| |
Collapse
|
28
|
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020; 45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| |
Collapse
|
29
|
Paredes P, Larama G, Flores L, Leyton A, Ili CG, Asenjo JA, Chisti Y, Shene C. Temperature Differentially Affects Gene Expression in Antarctic Thraustochytrid Oblongichytrium sp. RT2316-13. Mar Drugs 2020; 18:md18110563. [PMID: 33217919 PMCID: PMC7698632 DOI: 10.3390/md18110563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 01/17/2023] Open
Abstract
Oblongichytrium RT2316-13 synthesizes lipids rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The content of these fatty acids in the total lipids depended on growth temperature. Sequencing technology was used in this work to examine the thraustochytrid's response to a decrease in growth temperature from 15 °C to 5 °C. Around 4% (2944) of the genes were differentially expressed (DE) and only a few of the DE genes (533 upregulated; 206 downregulated) had significant matches to those in the SwissProt database. Most of the annotated DE genes were related to cell membrane composition (fatty acids, sterols, phosphatidylinositol), the membrane enzymes linked to cell energetics, and membrane structure (cytoskeletal proteins and enzymes). In RT2316-13, the synthesis of long-chain polyunsaturated fatty acids occurred through ω3- and ω6-pathways. Enzymes of the alternative pathways (Δ8-desaturase and Δ9-elongase) were also expressed. The upregulation of the genes coding for a Δ5-desaturase and a Δ5-elongase involved in the synthesis of EPA and DHA, explained the enrichment of total lipid with these two long-chain fatty acids at the low temperature. This molecular response has the potential to be used for producing microbial lipids with a fatty acids profile similar to that of fish oils.
Collapse
Affiliation(s)
- Paris Paredes
- Department of Chemical Engineering, Center of Food Biotechnology and Bioseparations, BIOREN, and Centre of Biotechnology and Bioengineering (CeBiB), Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile; (P.P.); (L.F.); (A.L.)
| | - Giovanni Larama
- Centro de Modelación y Computación Científica, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Liset Flores
- Department of Chemical Engineering, Center of Food Biotechnology and Bioseparations, BIOREN, and Centre of Biotechnology and Bioengineering (CeBiB), Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile; (P.P.); (L.F.); (A.L.)
| | - Allison Leyton
- Department of Chemical Engineering, Center of Food Biotechnology and Bioseparations, BIOREN, and Centre of Biotechnology and Bioengineering (CeBiB), Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile; (P.P.); (L.F.); (A.L.)
| | - Carmen Gloria Ili
- Centro de Excelencia en Medicina Traslacional—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Av. Alemania 0478, Temuco 4810296, Chile;
| | - Juan A. Asenjo
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, Universidad de Chile, Beauchef 851, Santiago 8370459, Chile;
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand;
| | - Carolina Shene
- Department of Chemical Engineering, Center of Food Biotechnology and Bioseparations, BIOREN, and Centre of Biotechnology and Bioengineering (CeBiB), Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile; (P.P.); (L.F.); (A.L.)
- Correspondence: ; Tel.: +56-45-232-5491
| |
Collapse
|
30
|
Shoji S, Yamaji T, Makino H, Ishii J, Kondo A. Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide. Metab Eng 2020; 65:167-177. [PMID: 33220420 DOI: 10.1016/j.ymben.2020.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022]
Abstract
β-Nicotinamide mononucleotide (NMN) is, one of the nucleotide compounds, a precursor of NAD+ and has recently attracted attention as a nutraceutical. Here, we develop a whole-cell biocatalyst using Escherichia coli, which enabled selective and effective high production of NMN from the inexpensive feedstock substrates glucose and nicotinamide (Nam). Notably, we identify two actively functional transporters (NiaP and PnuC) and a high-activity key enzyme (Nampt), permitting intracellular Nam uptake, efficient conversion of phosphoribosyl pyrophosphate (PRPP; supplied from glucose) and Nam to NMN, and NMN excretion extracellularly. Further, enhancement of the PRPP biosynthetic pathway and optimization of individual gene expression enable drastically higher NMN production than reported thus far. The strain extracellularly produces 6.79 g l-1 of NMN from glucose and Nam, and the reaction selectivity from Nam to NMN is 86%. Our approach will be promising for low-cost, high-quality industrial production of NMN and other nucleotide compounds using microorganisms.
Collapse
Affiliation(s)
- Shinichiro Shoji
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Taiki Yamaji
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Harumi Makino
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Jun Ishii
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| |
Collapse
|
31
|
Götting I, Jendrossek V, Matschke J. A New Twist in Protein Kinase B/Akt Signaling: Role of Altered Cancer Cell Metabolism in Akt-Mediated Therapy Resistance. Int J Mol Sci 2020; 21:ijms21228563. [PMID: 33202866 PMCID: PMC7697684 DOI: 10.3390/ijms21228563] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer resistance to chemotherapy, radiotherapy and molecular-targeted agents is a major obstacle to successful cancer therapy. Herein, aberrant activation of the phosphatidyl-inositol-3-kinase (PI3K)/protein kinase B (Akt) pathway is one of the most frequently deregulated pathways in cancer cells and has been associated with multiple aspects of therapy resistance. These include, for example, survival under stress conditions, apoptosis resistance, activation of the cellular response to DNA damage and repair of radiation-induced or chemotherapy-induced DNA damage, particularly DNA double strand breaks (DSB). One further important, yet not much investigated aspect of Akt-dependent signaling is the regulation of cell metabolism. In fact, many Akt target proteins are part of or involved in the regulation of metabolic pathways. Furthermore, recent studies revealed the importance of certain metabolites for protection against therapy-induced cell stress and the repair of therapy-induced DNA damage. Thus far, the likely interaction between deregulated activation of Akt, altered cancer metabolism and therapy resistance is not yet well understood. The present review describes the documented interactions between Akt, its target proteins and cancer cell metabolism, focusing on antioxidant defense and DSB repair. Furthermore, the review highlights potential connections between deregulated Akt, cancer cell metabolism and therapy resistance of cancer cells through altered DSB repair and discusses potential resulting therapeutic implications.
Collapse
|
32
|
Favero LM, Chideroli RT, Ferrari NA, Azevedo VADC, Tiwari S, Lopera-Barrero NM, Pereira UDP. In silico Prediction of New Drug Candidates Against the Multidrug-Resistant and Potentially Zoonotic Fish Pathogen Serotype III Streptococcus agalactiae. Front Genet 2020; 11:1024. [PMID: 33005185 PMCID: PMC7484375 DOI: 10.3389/fgene.2020.01024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/11/2020] [Indexed: 12/02/2022] Open
Abstract
Streptococcus agalactiae is an invasive multi-host pathogen that causes invasive diseases mainly in newborns, elderly, and individuals with underlying health complications. In fish, S. agalactiae causes streptococcosis, which is characterized by septicemia and neurological signs, and leads to great economic losses to the fish farming industry worldwide. These bacteria can be classified into different serotypes based on capsular antigens, and into different sequence types (ST) based on multilocus sequence typing (MLST). In 2015, serotype III ST283 was identified to be associated with a foodborne invasive disease in non-pregnant immunocompetent humans in Singapore, and the infection was related to raw fish consumption. In addition, a serotype III strain isolated from tilapia in Brazil has been reported to be resistant to five antibiotic classes. This specific serotype can serve as a reservoir of resistance genes and pose a serious threat to public health. Thus, new approaches for the control and treatment of S. agalactiae infections are needed. In the present study, 24 S. agalactiae serotype III complete genomes, isolated from human and fish hosts, were compared. The core genome was identified, and, using bioinformatics tools and subtractive criteria, five proteins were identified as potential drug targets. Furthermore, 5,008 drug-like natural compounds were virtually screened against the identified targets. The ligands with the best binding properties are suggested for further in vitro and in vivo analysis.
Collapse
Affiliation(s)
- Leonardo Mantovani Favero
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Roberta Torres Chideroli
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Natália Amoroso Ferrari
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Vasco Ariston De Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetic, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sandeep Tiwari
- Institute of Biological Sciences, Department of Genetic, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Ulisses de Pádua Pereira
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| |
Collapse
|
33
|
Wang T, Gnanaprakasam JNR, Chen X, Kang S, Xu X, Sun H, Liu L, Rodgers H, Miller E, Cassel TA, Sun Q, Vicente-Muñoz S, Warmoes MO, Lin P, Piedra-Quintero ZL, Guerau-de-Arellano M, Cassady KA, Zheng SG, Yang J, Lane AN, Song X, Fan TWM, Wang R. Inosine is an alternative carbon source for CD8 +-T-cell function under glucose restriction. Nat Metab 2020; 2:635-647. [PMID: 32694789 PMCID: PMC7371628 DOI: 10.1038/s42255-020-0219-4] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
T cells undergo metabolic rewiring to meet their bioenergetic, biosynthetic and redox demands following antigen stimulation. To fulfil these needs, effector T cells must adapt to fluctuations in environmental nutrient levels at sites of infection and inflammation. Here, we show that effector T cells can utilize inosine, as an alternative substrate, to support cell growth and function in the absence of glucose in vitro. T cells metabolize inosine into hypoxanthine and phosphorylated ribose by purine nucleoside phosphorylase. We demonstrate that the ribose subunit of inosine can enter into central metabolic pathways to provide ATP and biosynthetic precursors, and that cancer cells display diverse capacities to utilize inosine as a carbon source. Moreover, the supplementation with inosine enhances the anti-tumour efficacy of immune checkpoint blockade and adoptive T-cell transfer in solid tumours that are defective in metabolizing inosine, reflecting the capability of inosine to relieve tumour-imposed metabolic restrictions on T cells.
Collapse
Affiliation(s)
- Tingting Wang
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - J N Rashida Gnanaprakasam
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Xuyong Chen
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Siwen Kang
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Xuequn Xu
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Hua Sun
- The Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Lingling Liu
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Hayley Rodgers
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Ethan Miller
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Teresa A Cassel
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Qiushi Sun
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Sara Vicente-Muñoz
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Marc O Warmoes
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Penghui Lin
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Zayda Lizbeth Piedra-Quintero
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Mireia Guerau-de-Arellano
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Kevin A Cassady
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Song Guo Zheng
- Division of Rheumatology and Immunology, Department of Internal Medicine at Ohio State University of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Jun Yang
- Department of Surgery, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Xiaotong Song
- The Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Icell Kealex Therapeutics, Houston, TX, USA.
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| | - Ruoning Wang
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
34
|
Sarfraz I, Rasul A, Hussain G, Shah MA, Zahoor AF, Asrar M, Selamoglu Z, Ji XY, Adem Ş, Sarker SD. 6-Phosphogluconate dehydrogenase fuels multiple aspects of cancer cells: From cancer initiation to metastasis and chemoresistance. Biofactors 2020; 46:550-562. [PMID: 32039535 DOI: 10.1002/biof.1624] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/21/2020] [Indexed: 12/19/2022]
Abstract
Reprogrammed metabolism is key biochemical characteristic of malignant cells, which represents one of the emerging hallmarks of cancer. Currently, there is rising contemplation on oxidative pentose phosphate pathway (PPP) enzymes as potential therapeutic hits due to their affiliation with tumor metabolism. 6-Phosphogluconate dehydrogenase (6PGD), third oxidative decarboxylase of PPP, has received a great deal of attention during recent years due to its critical role in tumorigenesis and redox homeostasis. 6PGD has been reported to overexpress in number of cancer types and its hyperactivation is mediated through post-transcriptional and post-translational modifications by YTH domain family 2 (YTHDF2), Nrf2 (nuclear factor erythroid 2-related factor 2), EGFR (epidermal growth factor receptor) and via direct structural interactions with ME1 (malic enzyme 1). Upregulated expression of 6PGD provides metabolic as well as defensive advantage to cancer cells, thus, promoting their proliferative and metastatic potential. Moreover, enhanced 6PGD expression also performs key role in development of chemoresistance as well as radiation resistance in cancer. This review aims to discuss the historical timeline and cancer-specific role of 6PGD, pharmacological and genetic inhibitors of 6PGD and 6PGD as prognostic biomarker in order to explore its potential for therapeutic interventions. We anticipate that targeting this imperative supplier of NADPH might serve as tempting avenue to combat the deadly disease like cancer.
Collapse
Affiliation(s)
- Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Ghulam Hussain
- Neurochemical Biology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Faculty of Physical Sciences, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Asrar
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Turkey
| | - Xin-Ying Ji
- Henan International Joint Laboratory of Nuclear Protein Regulation, College of Medicine, Henan University, Kaifeng, China
| | - Şevki Adem
- Department of Chemistry, Faculty of Sciences, Çankırı Karatekin University, Çankırı, Turkey
| | - Satyajit D Sarker
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, London, UK
| |
Collapse
|
35
|
Huffman MA, Fryszkowska A, Alvizo O, Borra-Garske M, Campos KR, Canada KA, Devine PN, Duan D, Forstater JH, Grosser ST, Halsey HM, Hughes GJ, Jo J, Joyce LA, Kolev JN, Liang J, Maloney KM, Mann BF, Marshall NM, McLaughlin M, Moore JC, Murphy GS, Nawrat CC, Nazor J, Novick S, Patel NR, Rodriguez-Granillo A, Robaire SA, Sherer EC, Truppo MD, Whittaker AM, Verma D, Xiao L, Xu Y, Yang H. Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science 2019; 366:1255-1259. [DOI: 10.1126/science.aay8484] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
Enzyme-catalyzed reactions have begun to transform pharmaceutical manufacturing, offering levels of selectivity and tunability that can dramatically improve chemical synthesis. Combining enzymatic reactions into multistep biocatalytic cascades brings additional benefits. Cascades avoid the waste generated by purification of intermediates. They also allow reactions to be linked together to overcome an unfavorable equilibrium or avoid the accumulation of unstable or inhibitory intermediates. We report an in vitro biocatalytic cascade synthesis of the investigational HIV treatment islatravir. Five enzymes were engineered through directed evolution to act on non-natural substrates. These were combined with four auxiliary enzymes to construct islatravir from simple building blocks in a three-step biocatalytic cascade. The overall synthesis requires fewer than half the number of steps of the previously reported routes.
Collapse
Affiliation(s)
- Mark A. Huffman
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Anna Fryszkowska
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Oscar Alvizo
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | - Kevin R. Campos
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Keith A. Canada
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Paul N. Devine
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Da Duan
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Jacob H. Forstater
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Shane T. Grosser
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Holst M. Halsey
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Gregory J. Hughes
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Junyong Jo
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Leo A. Joyce
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Joshua N. Kolev
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Jack Liang
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Kevin M. Maloney
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Benjamin F. Mann
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | | | - Mark McLaughlin
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Jeffrey C. Moore
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Grant S. Murphy
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | | | - Jovana Nazor
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Scott Novick
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Niki R. Patel
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | | | - Sandra A. Robaire
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Edward C. Sherer
- Computational and Structural Chemistry, Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Matthew D. Truppo
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Aaron M. Whittaker
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Deeptak Verma
- Computational and Structural Chemistry, Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Li Xiao
- Computational and Structural Chemistry, Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Yingju Xu
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Hao Yang
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| |
Collapse
|
36
|
Tani T, Okamoto K, Fujiwara M, Katayama A, Tsuruoka S. Metabolomics analysis elucidates unique influences on purine / pyrimidine metabolism by xanthine oxidoreductase inhibitors in a rat model of renal ischemia-reperfusion injury. Mol Med 2019; 25:40. [PMID: 31438839 PMCID: PMC6704627 DOI: 10.1186/s10020-019-0109-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
Background Clinically applied as anti-gout drugs, xanthine oxidoreductase (XOR) inhibitors, especially the potent, selective, non-purine-analog XOR inhibitors febuxostat and topiroxostat, exert organ-protective effects. We tested the hypothesis that preservation of tissue concentrations of high-energy phosphates, such as ATP and ADP, contributes to organ-protective effects through CE-TOFMS metabolomics. Methods Rats were subjected to 30 min of renal ischemia-reperfusion (I/R) injury 60 min after oral administration of 10 mg/kg febuxostat, 10 mg/kg topiroxostat, 50 mg/kg allopurinol, or vehicle. Results In non-purine-analog XOR inhibitor-treated groups, renal concentrations of high-energy phosphates were greater before and after I/R injury, and renal adenine compounds were less depleted by I/R injury than in the vehicle and allopurinol groups. These findings were well in accordance with the proposed hypothesis that the recomposition of high-energy phosphates is promoted by non-purine-analog XOR inhibitors via the salvage pathway through blockade of hypoxanthine catabolism, whereas non-specific inhibitory effects of allopurinol on purine/pyrimidine enzymes impede this re-synthesis process. Conclusions This metabolic approach shed light on the physiology of the organ-protective effects of XOR inhibitors. Electronic supplementary material The online version of this article (10.1186/s10020-019-0109-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takashi Tani
- Department of Nephrology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan. .,Department of Metabolism and Nutrition, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Ken Okamoto
- Department of Metabolism and Nutrition, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Megumi Fujiwara
- Department of Metabolism and Nutrition, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Akira Katayama
- Department of Metabolism and Nutrition, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Shuichi Tsuruoka
- Department of Nephrology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| |
Collapse
|
37
|
Masukagami Y, Nijagal B, Mahdizadeh S, Tseng CW, Dayalan S, Tivendale KA, Markham PF, Browning GF, Sansom FM. A combined metabolomic and bioinformatic approach to investigate the function of transport proteins of the important pathogen Mycoplasma bovis. Vet Microbiol 2019; 234:8-16. [PMID: 31213276 DOI: 10.1016/j.vetmic.2019.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 02/05/2023]
Abstract
Mycoplasma bovis is an economically important pathogen of the cattle industry worldwide, and there is an urgent need for a more effective vaccine to control the diseases caused by this organism. Although the M. bovis genome sequence is available, very few gene functions of M. bovis have been experimentally determined, and a better understanding of the genes involved in pathogenesis are required for vaccine development. In this study, we compared the metabolite profiles of wild type M. bovis to a number of strains that each contained a transposon insertion into a putative transporter gene. Transport systems are thought to play an important role in survival of mycoplasmas, as they rely on the host for many nutrients. We also performed 13C-stable isotope labelling on strains with transposon insertions into putative glycerol transporters. Integration of metabolomic and bioinformatic analyses revealed unexpected results (when compared to genome annotation) for two mutants, with a putative amino acid transporter (MBOVPG45_0533) appearing more likely to transport nucleotide sugars, and a second mutant, a putative dicarboxylate/amino acid:cation (Na+ or H+) symporter (DAACS), more likely to function as a biopterin/folate transporter. This study also highlighted the apparent redundancy in some transport and metabolic pathways, such as the glycerol transport systems, even in an organism with a reduced genome. Overall, this study highlights the value of metabolomics for revealing the likely function of a number of transporters of M. bovis.
Collapse
Affiliation(s)
- Yumiko Masukagami
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| | - Brunda Nijagal
- Metabolomics Australia, The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sara Mahdizadeh
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| | - Chi-Wen Tseng
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| | - Saravanan Dayalan
- Metabolomics Australia, The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kelly A Tivendale
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| | - Philip F Markham
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| | - Fiona M Sansom
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
38
|
Uncovering Novel Pathways for Enhancing Hyaluronan Synthesis in Recombinant Lactococcus lactis: Genome-Scale Metabolic Modeling and Experimental Validation. Processes (Basel) 2019. [DOI: 10.3390/pr7060343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hyaluronan (HA), a glycosaminoglycan with important medical applications, is commercially produced from pathogenic microbial sources. The metabolism of HA-producing recombinant generally regarded as safe (GRAS) systems needs to be more strategically engineered to achieve yields higher than native producers. Here, we use a genome-scale model (GEM) to account for the entire metabolic network of the cell while predicting strategies to improve HA production. We analyze the metabolic network of Lactococcus lactis adapted to produce HA and identify non-conventional strategies to enhance HA flux. We also show experimental verification of one of the predicted strategies. We thus identified an alternate route for enhancement of HA synthesis, originating from the nucleoside inosine, that can function in parallel with the traditionally known route from glucose. Adopting this strategy resulted in a 2.8-fold increase in HA yield. The strategies identified and the experimental results show that the cell is capable of involving a larger subset of metabolic pathways in HA production. Apart from being the first report to use a nucleoside to improve HA production, we demonstrate the role of experimental validation in model refinement and strategy improvisation. Overall, we point out that well-constructed GEMs could be used to derive efficient strategies to improve the biosynthesis of high-value products.
Collapse
|
39
|
Krausch N, Barz T, Sawatzki A, Gruber M, Kamel S, Neubauer P, Cruz Bournazou MN. Monte Carlo Simulations for the Analysis of Non-linear Parameter Confidence Intervals in Optimal Experimental Design. Front Bioeng Biotechnol 2019; 7:122. [PMID: 31179278 PMCID: PMC6543167 DOI: 10.3389/fbioe.2019.00122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 05/07/2019] [Indexed: 12/21/2022] Open
Abstract
Especially in biomanufacturing, methods to design optimal experiments are a valuable technique to fully exploit the potential of the emerging technical possibilities that are driving experimental miniaturization and parallelization. The general objective is to reduce the experimental effort while maximizing the information content of an experiment, speeding up knowledge gain in R&D. The approach of model-based design of experiments (known as MBDoE) utilizes the information of an underlying mathematical model describing the system of interest. A common method to predict the accuracy of the parameter estimates uses the Fisher information matrix to approximate the 90% confidence intervals of the estimates. However, for highly non-linear models, this method might lead to wrong conclusions. In such cases, Monte Carlo sampling gives a more accurate insight into the parameter's estimate probability distribution and should be exploited to assess the reliability of the approximations made through the Fisher information matrix. We first introduce the model-based optimal experimental design for parameter estimation including parameter identification and validation by means of a simple non-linear Michaelis-Menten kinetic and show why Monte Carlo simulations give a more accurate depiction of the parameter uncertainty. Secondly, we propose a very robust and simple method to find optimal experimental designs using Monte Carlo simulations. Although computational expensive, the method is easy to implement and parallelize. This article focuses on practical examples of bioprocess engineering but is generally applicable in other fields.
Collapse
Affiliation(s)
- Niels Krausch
- Department of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Tilman Barz
- Department of Energy, Austrian Institute of Technology GmbH, Vienna, Austria
| | - Annina Sawatzki
- Department of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | | | - Sarah Kamel
- Department of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Peter Neubauer
- Department of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | | |
Collapse
|
40
|
Tyrosine phosphorylation activates 6-phosphogluconate dehydrogenase and promotes tumor growth and radiation resistance. Nat Commun 2019; 10:991. [PMID: 30824700 PMCID: PMC6397164 DOI: 10.1038/s41467-019-08921-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/08/2019] [Indexed: 11/12/2022] Open
Abstract
6-Phosphogluconate dehydrogenase (6PGD) is a key enzyme that converts 6-phosphogluconate into ribulose-5-phosphate with NADP+ as cofactor in the pentose phosphate pathway (PPP). 6PGD is commonly upregulated and plays important roles in many human cancers, while the mechanism underlying such roles of 6PGD remains elusive. Here we show that upon EGFR activation, 6PGD is phosphorylated at tyrosine (Y) 481 by Src family kinase Fyn. This phosphorylation enhances 6PGD activity by increasing its binding affinity to NADP+ and therefore activates the PPP for NADPH and ribose-5-phosphate, which consequently detoxifies intracellular reactive oxygen species (ROS) and accelerates DNA synthesis. Abrogating 6PGD Y481 phosphorylation (pY481) dramatically attenuates EGF-promoted glioma cell proliferation, tumor growth and resistance to ionizing radiation. In addition, 6PGD pY481 is associated with Fyn expression, the malignancy and prognosis of human glioblastoma. These findings establish a critical role of Fyn-dependent 6PGD phosphorylation in EGF-promoted tumor growth and radiation resistance. 6-phosphogluconate dehydrogenase is commonly upregulated in cancers. Here, the authors show that activation of EGFR induces phosphorylation of this enzyme at Y481 to activate the pentose phosphate pathway, which consequently reduces ROS and accelerates DNA synthesis to promote tumor growth and radioresistance.
Collapse
|
41
|
Hu J, Lei W, Wang J, Chen HY, Xu JJ. Regioselective 5'-position phosphorylation of ribose and ribonucleosides: phosphate transfer in the activated pyrophosphate complex in the gas phase. Chem Commun (Camb) 2019; 55:310-313. [PMID: 30468222 DOI: 10.1039/c8cc08510b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we present a rapid, efficient and regioselective phosphorylation method at the 5'-position of unprotected ribose and ribonucleosides with pyrophosphate in the gas phase, which involves the formation of anionic complexes via electrospray ionization and collisional activation to induce phosphorylation within the complexes.
Collapse
Affiliation(s)
- Jun Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | | | | | | | | |
Collapse
|
42
|
The Prodigal Compound: Return of Ribosyl 1,5-Bisphosphate as an Important Player in Metabolism. Microbiol Mol Biol Rev 2018; 83:83/1/e00040-18. [PMID: 30567937 DOI: 10.1128/mmbr.00040-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ribosyl 1,5-bisphosphate (PRibP) was discovered 65 years ago and was believed to be an important intermediate in ribonucleotide metabolism, a role immediately taken over by its "big brother" phosphoribosyldiphosphate. Only recently has PRibP come back into focus as an important player in the metabolism of ribonucleotides with the discovery of the pentose bisphosphate pathway that comprises, among others, the intermediates PRibP and ribulose 1,5-bisphosphate (cf. ribose 5-phosphate and ribulose 5-phosphate of the pentose phosphate pathway). Enzymes of several pathways produce and utilize PRibP not only in ribonucleotide metabolism but also in the catabolism of phosphonates, i.e., compounds containing a carbon-phosphorus bond. Pathways for PRibP metabolism are found in all three domains of life, most prominently among organisms of the archaeal domain, where they have been identified either experimentally or by bioinformatic analysis within all of the four main taxonomic groups, Euryarchaeota, TACK, DPANN, and Asgard. Advances in molecular genetics of archaea have greatly improved the understanding of the physiology of PRibP metabolism, and reconciliation of molecular enzymology and three-dimensional structure analysis of enzymes producing or utilizing PRibP emphasize the versatility of the compound. Finally, PRibP is also an effector of several metabolic activities in many organisms, including higher organisms such as mammals. In the present review, we describe all aspects of PRibP metabolism, with emphasis on the biochemical, genetic, and physiological aspects of the enzymes that produce or utilize PRibP. The inclusion of high-resolution structures of relevant enzymes that bind PRibP provides evidence for the flexibility and importance of the compound in metabolism.
Collapse
|
43
|
Prechtl RM, Janßen D, Behr J, Ludwig C, Küster B, Vogel RF, Jakob F. Sucrose-Induced Proteomic Response and Carbohydrate Utilization of Lactobacillus sakei TMW 1.411 During Dextran Formation. Front Microbiol 2018; 9:2796. [PMID: 30532743 PMCID: PMC6265474 DOI: 10.3389/fmicb.2018.02796] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/31/2018] [Indexed: 01/10/2023] Open
Abstract
Lactobacillus (L.) sakei belongs to the dominating lactic acid bacteria in indigenous meat fermentations, while diverse strains of this species have also been isolated from plant fermentations. We could recently show, that L. sakei TMW 1.411 produces a high molecular weight dextran from sucrose, indicating its potential use as a dextran forming starter culture. However, the general physiological response of L. sakei to sucrose as carbohydrate source has not been investigated yet, especially upon simultaneous dextran formation. To address this lack of knowledge, we sequenced the genome of L. sakei TMW 1.411 and performed a label-free, quantitative proteomics approach to investigate the sucrose-induced changes in the proteomic profile of this strain in comparison to its proteomic response to glucose. In total, 21 proteins were found to be differentially expressed at the applied significance criteria (FDR ≤ 0.01). Among these, 14 were associated with the carbohydrate metabolism including several enzymes, which enable sucrose and fructose uptake, as well as, their subsequent intracellular metabolization, respectively. The plasmid-encoded, extracellular dextransucrase of L. sakei TMW 1.411 was expressed at high levels irrespective of the present carbohydrate and was predominantly responsible for sucrose consumption in growth experiments using sucrose as sole carbohydrate source, while the released fructose from the dextransucrase reaction was more preferably taken up and intracellularly metabolized than sucrose. Genomic comparisons revealed, that operons coding for uptake and intracellular metabolism of sucrose and fructose are chromosomally conserved among L. sakei, while plasmid-located dextransucrase genes are present only in few strains. In accordance with these findings, all 59 different L. sakei strains of our strain collection were able to grow on sucrose as sole carbohydrate source, while eight of them exhibited a mucous phenotype on agar plates indicating dextran formation from sucrose. Our study therefore highlights the intrinsic adaption of L. sakei to plant environments, where sucrose is abundant, and provides fundamental knowledge regarding the use of L. sakei as starter culture for sucrose-based food fermentation processes with in-situ dextran formation.
Collapse
Affiliation(s)
- Roman M Prechtl
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Dorothee Janßen
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Jürgen Behr
- Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany
| | - Bernhard Küster
- Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany
| | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Frank Jakob
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| |
Collapse
|
44
|
Molecular modeling of conformational dynamics and its role in enzyme evolution. Curr Opin Struct Biol 2018; 52:50-57. [PMID: 30205262 DOI: 10.1016/j.sbi.2018.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
Abstract
With increasing computational power, biomolecular simulations have become an invaluable tool for understanding enzyme mechanisms and the origins of enzyme catalysis. More recently, computational studies have started to focus on understanding how enzyme activity itself evolves, both in terms of enhancing the native or new activities on existing enzyme scaffolds, or completely de novo on previously non-catalytic scaffolds. In this context, both experiment and molecular modeling provided strong evidence for an important role of conformational dynamics in the evolution of enzyme functions. This contribution will present a brief overview of the current state of the art for computationally exploring enzyme conformational dynamics in enzyme evolution, and, using several showcase studies, illustrate the ways molecular modeling can be used to shed light on how enzyme function evolves, at the most fundamental molecular level.
Collapse
|
45
|
β-nicotinamide mononucleotide (NMN) production in Escherichia coli. Sci Rep 2018; 8:12278. [PMID: 30115969 PMCID: PMC6095924 DOI: 10.1038/s41598-018-30792-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a chronic and progressive disease with continuously increasing prevalence, rising financial pressure on the worldwide healthcare systems. Recently, the insulin resistance, hallmark of type 2 diabetes, was cured in mice treated with NAD+ precursor β-nicotinamide mononucleotide (NMN), no toxic effects being reported. However, NMN has a high price tag, more cost effective production methods are needed. This study proposes a biotechnological NMN production method in Escherichia coli. We show that bicistronic expression of recombinant nicotinamide phosphoribosyl transferase (Nampt) and phosphoribosyl pyrophosphate (PRPP) synthetase in the presence of nicotinamide (NAM) and lactose may be a successful strategy for cost effective NMN production. Protein expression vectors carrying NAMPT gene from Haemophilus ducreyi and PRPP synthetase from Bacillus amyloliquefaciens with L135I mutation were transformed in Escherichia coli BL21(DE3)pLysS. NMN production reached a maximum of 15.42 mg per L of bacterial culture (or 17.26 mg per gram of protein) in these cells grown in PYA8 medium supplemented with 0.1% NAM and 1% lactose.
Collapse
|
46
|
Petrović D, Risso VA, Kamerlin SCL, Sanchez-Ruiz JM. Conformational dynamics and enzyme evolution. J R Soc Interface 2018; 15:20180330. [PMID: 30021929 PMCID: PMC6073641 DOI: 10.1098/rsif.2018.0330] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022] Open
Abstract
Enzymes are dynamic entities, and their dynamic properties are clearly linked to their biological function. It follows that dynamics ought to play an essential role in enzyme evolution. Indeed, a link between conformational diversity and the emergence of new enzyme functionalities has been recognized for many years. However, it is only recently that state-of-the-art computational and experimental approaches are revealing the crucial molecular details of this link. Specifically, evolutionary trajectories leading to functional optimization for a given host environment or to the emergence of a new function typically involve enriching catalytically competent conformations and/or the freezing out of non-competent conformations of an enzyme. In some cases, these evolutionary changes are achieved through distant mutations that shift the protein ensemble towards productive conformations. Multifunctional intermediates in evolutionary trajectories are probably multi-conformational, i.e. able to switch between different overall conformations, each competent for a given function. Conformational diversity can assist the emergence of a completely new active site through a single mutation by facilitating transition-state binding. We propose that this mechanism may have played a role in the emergence of enzymes at the primordial, progenote stage, where it was plausibly promoted by high environmental temperatures and the possibility of additional phenotypic mutations.
Collapse
Affiliation(s)
- Dušan Petrović
- Department of Chemistry, BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Valeria A Risso
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | | | - Jose M Sanchez-Ruiz
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| |
Collapse
|
47
|
Metabolome analysis of Escherichia coli ATCC25922 cells treated with high hydrostatic pressure at 400 and 600 MPa. J Biosci Bioeng 2018; 126:611-616. [PMID: 29853298 DOI: 10.1016/j.jbiosc.2018.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/24/2018] [Accepted: 05/08/2018] [Indexed: 11/21/2022]
Abstract
Escherichia coli cells were treated with high hydrostatic pressure (HHP) at 400 and 600 MPa. Metabolites (70-1027 m/z) extracted from HHP-treated cells were analyzed using capillary electrophoresis-time-of-flight mass spectrometry and were compared with those extracted from control cells (not treated with HHP). A total of 133 metabolites were identified and mapped to metabolic pathways, and many of these (42.1%) decreased due to the HHP treatment, including NAD+, NADP+, ATP, and substrates for DNA synthesis. Principal component analysis suggested that the central sugar and nucleic acid metabolic pathways were strongly influenced by HHP. A bottleneck in the central sugar metabolic pathway was observed in HHP-treated cells, which created a metabolic imbalance; metabolites mapped upstream (glucose 6-phosphate, fructose 6-phosphate, and fructose 1,6-diphosphate) were accumulated and those downstream (3-phosphoglycerate, 2-phosphoglycerate, and phosphoenolpyruvate) were depleted. Ribonucleotides were decreased, but the reduction was moderate compared with that of substrates for DNA synthesis; the exception was ATP, which also substantially decreased. The bottleneck in the glycolytic pathway partly explained the exhaustion of ATP. NAD+/NADH ratio of HHP treated cells was comparable with that of untreated control cells.
Collapse
|
48
|
Schulte M, Petrović D, Neudecker P, Hartmann R, Pietruszka J, Willbold S, Willbold D, Panwalkar V. Conformational Sampling of the Intrinsically Disordered C-Terminal Tail of DERA Is Important for Enzyme Catalysis. ACS Catal 2018; 8:3971-3984. [PMID: 30101036 PMCID: PMC6080863 DOI: 10.1021/acscatal.7b04408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/24/2018] [Indexed: 12/13/2022]
Abstract
2-Deoxyribose-5-phosphate aldolase (DERA) catalyzes the reversible conversion of acetaldehyde and glyceraldehyde-3-phosphate into deoxyribose-5-phosphate. DERA is used as a biocatalyst for the synthesis of drugs such as statins and is a promising pharmaceutical target due to its involvement in nucleotide catabolism. Despite previous biochemical studies suggesting the catalytic importance of the C-terminal tyrosine residue found in several bacterial DERAs, the structural and functional basis of its participation in catalysis remains elusive because the electron density for the last eight to nine residues (i.e., the C-terminal tail) is absent in all available crystal structures. Using a combination of NMR spectroscopy and molecular dynamics simulations, we conclusively show that the rarely studied C-terminal tail of E. coli DERA (ecDERA) is intrinsically disordered and exists in equilibrium between open and catalytically relevant closed states, where the C-terminal tyrosine (Y259) enters the active site. Nuclear Overhauser effect distance restraints, obtained due to the presence of a substantial closed state population, were used to derive the solution-state structure of the ecDERA closed state. Real-time NMR hydrogen/deuterium exchange experiments reveal that Y259 is required for efficiency of the proton abstraction step of the catalytic reaction. Phosphate titration experiments show that, in addition to the phosphate-binding residues located near the active site, as observed in the available crystal structures, ecDERA contains previously unknown auxiliary phosphate-binding residues on the C-terminal tail which could facilitate in orienting Y259 in an optimal position for catalysis. Thus, we present significant insights into the structural and mechanistic importance of the ecDERA C-terminal tail and illustrate the role of conformational sampling in enzyme catalysis.
Collapse
Affiliation(s)
- Marianne Schulte
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems 6 (ICS-6): Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dušan Petrović
- Institute of Complex Systems 6 (ICS-6): Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Philipp Neudecker
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems 6 (ICS-6): Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rudolf Hartmann
- Institute of Complex Systems 6 (ICS-6): Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich-Heine-Universität im Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Bio- and Geosciences 1 (IBG-1): Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Sabine Willbold
- Central Institute of Engineering, Electronics and Analytics (ZEA-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems 6 (ICS-6): Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Vineet Panwalkar
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems 6 (ICS-6): Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Glucose 6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme of the pentose phosphate pathway. G6PD is the main source of the essential cellular reductant, NADPH. The purpose of this review is to describe the biochemistry of G6PD and NADPH, cellular factors that regulate G6PD, normal physiologic roles of G6PD, and the pathogenic role altered G6PD/NADPH plays in kidney disease. RECENT FINDINGS NADPH is required for many essential cellular processes such as the antioxidant system, nitric oxide synthase, cytochrome p450 enzymes, and NADPH oxidase. Decreased G6PD activity and, as a result, decreased NADPH level have been associated with diabetic kidney disease, altered nitric oxide production, aldosterone-mediated endothelial dysfunction, and dialysis-associated anemia. Increased G6PD activity is associated with all cancers including kidney cancer. Inherited G6PD deficiency is the most common mutation in the world that is thought to be a relatively mild disorder primarily associated with anemia. Yet, intriguing studies have shown an increased prevalence of diabetes mellitus in G6PD-deficient people. It is not known if G6PD-deficient people are at more risk for other diseases. SUMMARY Much more research needs to be done to determine the role of altered G6PD activity (inherited or acquired) in the pathogenesis of kidney disease.
Collapse
|
50
|
Quality properties and formation of α-dicarbonyl compounds in abalone muscle (Haliotis discus) as affected by tenderization and baking processes. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9765-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|