1
|
Anti-Ovarian Cancer Conotoxins Identified from Conus Venom. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196609. [PMID: 36235146 PMCID: PMC9573077 DOI: 10.3390/molecules27196609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
Conotoxins constitute a treasury of drug resources and have attracted widespread attention. In order to explore biological candidates from the marine cone snail, we isolated and identified three novel conopeptides named as Vi14b, Vi002, Vi003, three conotoxin variants named as Mr3d.1, Mr3e.1, Tx3a.1, and three known conotoxins (Vi15a, Mr3.8 and TCP) from crude venoms of Conus virgo, Conus marmoreus and Conus texile. Mr3.8 (I-V, II-VI, III-IV) and Tx3a.1 (I-III, II-VI, IV-V) both showed a novel pattern of disulfide connectivity, different from that previously established for the µ- and ψ-conotoxins. Concerning the effect on voltage-gated sodium channels, Mr3e.1, Mr3.8, Tx3a.1, TCP inhibited Nav1.4 or Nav1.8 by 21.51~24.32% of currents at semi-activated state (TP2) at 10 μmol/L. Certain anti-ovarian cancer effects on ID-8 cells were exhibited by Tx3a.1, Mr3e.1 and Vi14b with IC50 values of 24.29 µM, 54.97 µM and 111.6 µM, respectively. This work highlights the role of conotoxin libraries in subsequent drug discovery for ovarian cancer treatment.
Collapse
|
2
|
Laps S, Atamleh F, Kamnesky G, Uzi S, Meijler MM, Brik A. Insight on the Order of Regioselective Ultrafast Formation of Disulfide Bonds in (Antimicrobial) Peptides and Miniproteins. Angew Chem Int Ed Engl 2021; 60:24137-24143. [PMID: 34524726 DOI: 10.1002/anie.202107861] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Indexed: 01/08/2023]
Abstract
Disulfide-rich peptides and proteins are among the most fascinating bioactive molecules. The difficulties associated with the preparation of these targets have prompted the development of various chemical strategies. Nevertheless, the production of these targets remains very challenging or elusive. Recently, we introduced a strategy for one-pot disulfide bond formation, tackling most of the previous limitations. However, the effect of the order of oxidation remained an underexplored issue. Herein we report on the complete synthetic flexibility of the approach with respect to the order of oxidation of three disulfide bonds in targets that lack the knot motif. In contrast, our study reveals an essential order of disulfide bond formation in the EETI-II knotted miniprotein. This synthetic strategy was applied for the synthesis of novel analogues of the plectasin antimicrobial peptide with enhanced activities against methicillin-resistant Staphylococcus aureus (MRSA), a notorious human pathogen.
Collapse
Affiliation(s)
- Shay Laps
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Fatima Atamleh
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Guy Kamnesky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Shaked Uzi
- Department of Chemistry and National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Michael M Meijler
- Department of Chemistry and National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| |
Collapse
|
3
|
Laps S, Atamleh F, Kamnesky G, Uzi S, Meijler MM, Brik A. Insight on the Order of Regioselective Ultrafast Formation of Disulfide Bonds in (Antimicrobial) Peptides and Miniproteins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shay Laps
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Fatima Atamleh
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Guy Kamnesky
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Shaked Uzi
- Department of Chemistry and National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev Be'er Sheva 8410501 Israel
| | - Michael M. Meijler
- Department of Chemistry and National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev Be'er Sheva 8410501 Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200008 Israel
| |
Collapse
|
4
|
Franco A, Dovell S, Möller C, Grandal M, Clark E, Marí F. Structural plasticity of mini-M conotoxins - expression of all mini-M subtypes by Conus regius. FEBS J 2018; 285:887-902. [PMID: 29283511 DOI: 10.1111/febs.14372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/30/2017] [Accepted: 12/20/2017] [Indexed: 12/25/2022]
Abstract
The mini-M conotoxins are peptidic scaffolds found in the venom of cones snails. These scaffolds are tightly folded structures held together by three disulfide bonds with a CC-C-C-CC arrangement (conotoxin framework III) and belong to the M Superfamily of conotoxins. Here, we describe mini-M conotoxins from the venom of Conus regius, a Western Atlantic worm-hunting cone snail species using transcriptomic and peptidomic analyses. These C. regius conotoxins belong to three different subtypes: M1, M2, and M3. The subtypes show little sequence homology, and their loop sizes (intercysteine amino acid chains) vary significantly. The mini-Ms isolated from dissected venom contains preferentially hydroxylated proline residues, thus augmenting the structural reach of this conotoxin class. Using 2D-NMR methods, we have determined the 3D structure of reg3b, an M2 subtype conotoxin, which shows a constrained multi-turn scaffold. The structural diversity found within mini-M conotoxin scaffolds of C. regius is indicative of structural hypervariability of the conotoxin M superfamily that is not seen in other superfamilies. These stable minimalistic scaffolds may be investigated for the development of engineered peptides for therapeutic applications. DATABASES Sequences are available in GenBank under accession numbers MF588935-MF588952. Structural data are available in the RCSB protein database under the accession code 6BX9.
Collapse
Affiliation(s)
- Aldo Franco
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, USA
| | - Sanaz Dovell
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, USA
| | - Carolina Möller
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, USA.,Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, Hollings Marine Laboratory, Charleston, SC, USA
| | - Meghan Grandal
- Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, Hollings Marine Laboratory, Charleston, SC, USA.,Department of Drug Discovery, Medical University of South Carolina, Charleston, SC, USA
| | - Evan Clark
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, USA
| | - Frank Marí
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, USA.,Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, Hollings Marine Laboratory, Charleston, SC, USA
| |
Collapse
|
5
|
Robinson SD, Undheim EAB, Ueberheide B, King GF. Venom peptides as therapeutics: advances, challenges and the future of venom-peptide discovery. Expert Rev Proteomics 2017; 14:931-939. [DOI: 10.1080/14789450.2017.1377613] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Samuel D. Robinson
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
- Centre for Advanced Imaging, University of Queensland, St Lucia, Australia
| | | | | | - Glenn F. King
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
| |
Collapse
|
6
|
Albert A, Eksteen JJ, Isaksson J, Sengee M, Hansen T, Vasskog T. General Approach To Determine Disulfide Connectivity in Cysteine-Rich Peptides by Sequential Alkylation on Solid Phase and Mass Spectrometry. Anal Chem 2016; 88:9539-9546. [DOI: 10.1021/acs.analchem.6b02115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | | | - Johan Isaksson
- Department
of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | | | - Terkel Hansen
- Department
of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Terje Vasskog
- Norut Northern Research Institute, 9294 Tromsø, Norway
| |
Collapse
|
7
|
Kancherla AK, Meesala S, Jorwal P, Palanisamy R, Sikdar SK, Sarma SP. A Disulfide Stabilized β-Sandwich Defines the Structure of a New Cysteine Framework M-Superfamily Conotoxin. ACS Chem Biol 2015; 10:1847-60. [PMID: 25961405 DOI: 10.1021/acschembio.5b00226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of a new cysteine framework (-C-CC-C-C-C-) "M"-superfamily conotoxin, Mo3964, shows it to have a β-sandwich structure that is stabilized by inter-sheet cross disulfide bonds. Mo3964 decreases outward K(+) currents in rat dorsal root ganglion neurons and increases the reversal potential of the NaV1.2 channels. The structure of Mo3964 (PDB ID: 2MW7 ) is constructed from the disulfide connectivity pattern, i.e., 1-3, 2-5, and 4-6, that is hitherto undescribed for the "M"-superfamily conotoxins. The tertiary structural fold has not been described for any of the known conus peptides. NOE (549), dihedral angle (84), and hydrogen bond (28) restraints, obtained by measurement of (h3)JNC' scalar couplings, were used as input for structure calculation. The ensemble of structures showed a backbone root mean square deviation of 0.68 ± 0.18 Å, with 87% and 13% of the backbone dihedral (ϕ, ψ) angles lying in the most favored and additional allowed regions of the Ramachandran map. The conotoxin Mo3964 represents a new bioactive peptide fold that is stabilized by disulfide bonds and adds to the existing repertoire of scaffolds that can be used to design stable bioactive peptide molecules.
Collapse
Affiliation(s)
- Aswani K. Kancherla
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Srinu Meesala
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Pooja Jorwal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Ramasamy Palanisamy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Sujit K. Sikdar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Siddhartha P. Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
8
|
Franklin JB, Rajesh RP. A sleep-inducing peptide from the venom of the Indian cone snail Conus araneosus. Toxicon 2015; 103:39-47. [PMID: 26100663 DOI: 10.1016/j.toxicon.2015.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/23/2022]
Abstract
The marine snail Conus araneosus has unusual significance due to its confined distribution to coastal regions of southeast India and Sri Lanka. Due to its relative scarceness, this species has been poorly studied. In this work, we characterized the venom of C. araneosus to identify new venom peptides. We identified 14 novel compounds. We determined amino acid sequences from chemically-modified and unmodified crude venom using liquid chromatography-electrospray ionization mass spectrometry and matrix assisted laser desorption ionization time-of-flight mass spectrometry. Ten sequences showed six Cys residues arranged in a pattern that is most commonly associated with the M-superfamily of conotoxins. Four other sequences had four Cys residues in a pattern that is most commonly associated with the T-superfamily of conotoxins. The post-translationally modified residue (pyroglutamate) was determined at the N-terminus of two sequences, ar3h and ar3i respectively. In addition, two sequences, ar3g and ar3h were C-terminally amidated. At a dose of 2 nmol, peptide ar3j elicited sleep when injected intraperitoneally into mice. To our knowledge, this is the first report of a peptide from a molluscivorous cone snail with sleep-inducing effects in mice. The novel peptides characterized herein extend the repertoire of unique peptides derived from cone snails and may add value to the therapeutic promise of conotoxins.
Collapse
|
9
|
Conotoxin gene superfamilies. Mar Drugs 2014; 12:6058-101. [PMID: 25522317 PMCID: PMC4278219 DOI: 10.3390/md12126058] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/29/2014] [Accepted: 12/04/2014] [Indexed: 12/16/2022] Open
Abstract
Conotoxins are the peptidic components of the venoms of marine cone snails (genus Conus). They are remarkably diverse in terms of structure and function. Unique potency and selectivity profiles for a range of neuronal targets have made several conotoxins valuable as research tools, drug leads and even therapeutics, and has resulted in a concerted and increasing drive to identify and characterise new conotoxins. Conotoxins are translated from mRNA as peptide precursors, and cDNA sequencing is now the primary method for identification of new conotoxin sequences. As a result, gene superfamily, a classification based on precursor signal peptide identity, has become the most convenient method of conotoxin classification. Here we review each of the described conotoxin gene superfamilies, with a focus on the structural and functional diversity present in each. This review is intended to serve as a practical guide to conotoxin superfamilies and to facilitate interpretation of the increasing number of conotoxin precursor sequences being identified by targeted-cDNA sequencing and more recently high-throughput transcriptome sequencing.
Collapse
|
10
|
Rajesh RP. Novel M-Superfamily and T-Superfamily conotoxins and contryphans from the vermivorous snail Conus figulinus. J Pept Sci 2014; 21:29-39. [PMID: 25420928 DOI: 10.1002/psc.2715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 12/23/2022]
Abstract
The venom of Conus figulinus, a vermivorous cone snail, found in the south east coast of India, has been studied in an effort to identify novel peptide toxins. The amino acid sequences of seven peptides have been established using de novo mass spectrometric based sequencing methods. Among these, three peptides belong to the M-Superfamily conotoxins, namely, Fi3a, Fi3b, and Fi3c, and one that belongs to the T-Superfamily, namely, Fi5a. The other three peptides are contryphans, namely, contryphans fib, fic, and fid. Of these Fi3b, Fi3c, Fi5a, and contryphan fib are novel and are reported for the first time from venom of C. figulinus. The details of the sequencing methods and the relationship of these peptides with other 'M'-Superfamily conotoxins from the fish hunting and mollusk hunting clades are discussed. These novel peptides could serve as a lead compounds for the development of neuropharmacologically important drugs.
Collapse
|
11
|
Xu S, Shao X, Yan M, Chi C, Lu A, Wang C. Identification of Two Novel O2-Conotoxins from Conus generalis. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Akondi KB, Muttenthaler M, Dutertre S, Kaas Q, Craik DJ, Lewis RJ, Alewood PF. Discovery, synthesis, and structure-activity relationships of conotoxins. Chem Rev 2014; 114:5815-47. [PMID: 24720541 PMCID: PMC7610532 DOI: 10.1021/cr400401e] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Sébastien Dutertre
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
13
|
Nguyen B, Caer JPL, Mourier G, Thai R, Lamthanh H, Servent D, Benoit E, Molgó J. Characterization of a novel Conus bandanus conopeptide belonging to the M-superfamily containing bromotryptophan. Mar Drugs 2014; 12:3449-65. [PMID: 24905483 PMCID: PMC4071585 DOI: 10.3390/md12063449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/07/2014] [Accepted: 05/22/2014] [Indexed: 01/29/2023] Open
Abstract
A novel conotoxin (conopeptide) was biochemically characterized from the crude venom of the molluscivorous marine snail, Conus bandanus (Hwass in Bruguière, 1792), collected in the south-central coast of Vietnam. The peptide was identified by screening bromotryptophan from chromatographic fractions of the crude venom. Tandem mass spectrometry techniques were used to detect and localize different post-translational modifications (PTMs) present in the BnIIID conopeptide. The sequence was confirmed by Edman’s degradation and mass spectrometry revealing that the purified BnIIID conopeptide had 15 amino acid residues, with six cysteines at positions 1, 2, 7, 11, 13, and 14, and three PTMs: bromotryptophan, γ-carboxy glutamate, and amidated aspartic acid, at positions “4”, “5”, and “15”, respectively. The BnIIID peptide was synthesized for comparison with the native peptide. Homology comparison with conopeptides having the III-cysteine framework (–CCx1x2x3x4Cx1x2x3Cx1CC–) revealed that BnIIID belongs to the M-1 family of conotoxins. This is the first report of a member of the M-superfamily containing bromotryptophan as PTM.
Collapse
Affiliation(s)
- Bao Nguyen
- Neurobiology and Development Laboratory, Research Unit # 3294, Institute of Neurobiology Alfred Fessard # 2118, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| | - Jean-Pierre Le Caer
- Research Unit # 2301, Natural Product Chemistry Institute, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| | - Gilles Mourier
- Molecular Engineering of Proteins, Institute of Biology and Technology Saclay, Atomic Energy Commission, Gif sur Yvette Cedex 91191, France.
| | - Robert Thai
- Molecular Engineering of Proteins, Institute of Biology and Technology Saclay, Atomic Energy Commission, Gif sur Yvette Cedex 91191, France.
| | - Hung Lamthanh
- Neurobiology and Development Laboratory, Research Unit # 3294, Institute of Neurobiology Alfred Fessard # 2118, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| | - Denis Servent
- Molecular Engineering of Proteins, Institute of Biology and Technology Saclay, Atomic Energy Commission, Gif sur Yvette Cedex 91191, France.
| | - Evelyne Benoit
- Neurobiology and Development Laboratory, Research Unit # 3294, Institute of Neurobiology Alfred Fessard # 2118, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| | - Jordi Molgó
- Neurobiology and Development Laboratory, Research Unit # 3294, Institute of Neurobiology Alfred Fessard # 2118, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| |
Collapse
|
14
|
Anand P, Grigoryan A, Bhuiyan MH, Ueberheide B, Russell V, Quinoñez J, Moy P, Chait BT, Poget SF, Holford M. Sample limited characterization of a novel disulfide-rich venom peptide toxin from terebrid marine snail Terebra variegata. PLoS One 2014; 9:e94122. [PMID: 24713808 PMCID: PMC3979744 DOI: 10.1371/journal.pone.0094122] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/13/2014] [Indexed: 12/19/2022] Open
Abstract
Disulfide-rich peptide toxins found in the secretions of venomous organisms such as snakes, spiders, scorpions, leeches, and marine snails are highly efficient and effective tools for novel therapeutic drug development. Venom peptide toxins have been used extensively to characterize ion channels in the nervous system and platelet aggregation in haemostatic systems. A significant hurdle in characterizing disulfide-rich peptide toxins from venomous animals is obtaining significant quantities needed for sequence and structural analyses. Presented here is a strategy for the structural characterization of venom peptide toxins from sample limited (4 ng) specimens via direct mass spectrometry sequencing, chemical synthesis and NMR structure elucidation. Using this integrated approach, venom peptide Tv1 from Terebra variegata was discovered. Tv1 displays a unique fold not witnessed in prior snail neuropeptides. The novel structural features found for Tv1 suggest that the terebrid pool of peptide toxins may target different neuronal agents with varying specificities compared to previously characterized snail neuropeptides.
Collapse
Affiliation(s)
- Prachi Anand
- Department of Chemistry and Biochemistry, City University of New York- Hunter College and Graduate Center, New York, New York, United States of America
| | - Alexandre Grigoryan
- Department of Chemistry and Biochemistry, City University of New York- Hunter College and Graduate Center, New York, New York, United States of America
| | - Mohammed H. Bhuiyan
- Department of Chemistry, College of Staten Island and Graduate Center, City University of New York, Staten Island, New York, United States of America
| | - Beatrix Ueberheide
- NYU Langone Medical Center, New York University, New York, New York, United States of America
| | - Victoria Russell
- Department of Chemistry and Biochemistry, City University of New York- Hunter College and Graduate Center, New York, New York, United States of America
| | - Jose Quinoñez
- Department of Chemistry and Biochemistry, City University of New York- Hunter College and Graduate Center, New York, New York, United States of America
| | - Patrick Moy
- Department of Chemistry and Biochemistry, City University of New York- Hunter College and Graduate Center, New York, New York, United States of America
| | - Brian T. Chait
- The Rockefeller University, New York, New York, United States of America
| | - Sébastien F. Poget
- Department of Chemistry, College of Staten Island and Graduate Center, City University of New York, Staten Island, New York, United States of America
| | - Mandë Holford
- Department of Chemistry and Biochemistry, City University of New York- Hunter College and Graduate Center, New York, New York, United States of America
- The American Museum of Natural History, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
High accuracy mass spectrometry comparison of Conus bandanus and Conus marmoreus venoms from the South Central Coast of Vietnam. Toxicon 2013; 75:148-59. [DOI: 10.1016/j.toxicon.2013.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/10/2013] [Accepted: 06/11/2013] [Indexed: 11/20/2022]
|
16
|
Zhou M, Wang L, Wu Y, Zhu X, Feng Y, Chen Z, Li Y, Sun D, Ren Z, Xu A. Characterizing the evolution and functions of the M-superfamily conotoxins. Toxicon 2013; 76:150-9. [PMID: 24080356 DOI: 10.1016/j.toxicon.2013.09.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 08/28/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
Conotoxins from cone snails are valuable in physiology research and therapeutic applications. Evolutionary mechanisms of conotoxins have been investigated in several superfamilies, but there is no phylogenetic analysis on M-superfamily conotoxins. In this study, we characterized identical sequences, gene structure, novel cysteine frameworks, functions and evolutionary mechanisms of M-superfamily conotoxins. Identical M-superfamily conotoxins can be found in different Conus species from the analysis of novel 467 M-superfamily conotoxin sequences and other published M-superfamily conotoxins sequences. M-superfamily conotoxin genes consist of two introns and three exons from the results of genome walking. Eighteen cysteine frameworks were identified from the M-superfamily conotoxins, and 10 of the 18 may be generated from framework III. An analysis between diet types and phylogeny of the M-superfamily conotoxins indicate that M-superfamily conotoxins might not evolve in a concerted manner but were subject to birth-and-death evolution. Codon usage analysis shows that position-specific codon conservation is not restricted to cysteines, but also to other conserved residues. By analysing primary structures and physiological functions of M-superfamily conotoxins, we proposed a hypothesis that insertions and deletions, especially insertions in the third cysteine loop, are involved in the creation of new functions and structures of the M-superfamily conotoxins.
Collapse
Affiliation(s)
- Maojun Zhou
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Peigneur S, Van Der Haegen A, Möller C, Waelkens E, Diego-García E, Marí F, Naudé R, Tytgat J. Unraveling the peptidome of the South African cone snails Conus pictus and Conus natalis. Peptides 2013; 41:8-16. [PMID: 22776330 DOI: 10.1016/j.peptides.2012.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/02/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
Abstract
Venoms from cone snails (genus Conus) can be seen as an untapped cocktail of biologically active compounds, being increasingly recognized as an emerging source of peptide-based therapeutics. Cone snails are considered to be specialized predators that have evolved the most sophisticated peptide chemistry and neuropharmacology system for their own biological purposes by producing venoms which contains a structural and functional diversity of neurotoxins. These neurotoxins or conotoxins are often small cysteine-rich peptides which have shown to be highly selective ligands for a wide range of ion channels and receptors. Local habitat conditions have constituted barriers preventing the spreading of Conus species occurring along the coast of South Africa. Due to their scarceness, these species remain, therefore, extremely poorly studied. In this work, the venoms of two South African cone snails, Conus pictus, a vermivorous snail and Conus natalis, a molluscivorous snail, have been characterized in depth. In total, 26 novel peptides were identified. Comparing the venoms of both snails, interesting differences were observed regarding venom composition and molecular characteristics of these components.
Collapse
Affiliation(s)
- Steve Peigneur
- Laboratory of Toxicology, University of Leuven (KU Leuven), Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Akcan M, Cao Y, Chongxu F, Craik DJ. The three-dimensional solution structure of mini-M conotoxin BtIIIA reveals a disconnection between disulfide connectivity and peptide fold. Bioorg Med Chem 2013; 21:3590-6. [PMID: 23490156 DOI: 10.1016/j.bmc.2013.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/07/2013] [Accepted: 02/12/2013] [Indexed: 11/17/2022]
Abstract
Conotoxins are bioactive peptides from the venoms of marine snails and have been divided into several superfamilies based on homologies in their precursor sequences. The M-superfamily conotoxins can be further divided into five branches based on the number of residues in the third loop of the peptide sequence. Recently two M-1 branch conotoxins (tx3a and mr3e) with a C1-C5, C2-C4, C3-C6 disulfide connectivity and one M-2 branch conotoxin (mr3a) with a C1-C6, C2-C4, C3-C5 disulfide connectivity were described. Here we report the disulfide connectivity, chemical synthesis and the three-dimensional NMR structure of the novel 14-residue conotoxin BtIIIA, extracted from the venom of Conus betulinus. It has the same disulfide connectivity as mr3a, which puts it in the M-2 branch conotoxins but has a distinctly different structure from other M-2 branch conotoxins. 105 NOE distance restraints and seven dihedral angle restraints were used for the structure calculations. The three-dimensional structure was determined with CYANA based on torsion angle dynamics and refinement in a water solvent box was carried out with CNS. Fifty structures were calculated and the 20 lowest energy structures superimposed with a RMSD of 0.49±0.16 Å. Even though it has the M-2 branch disulfide connectivity, BtIIIA was found to have a 'flying bird' backbone motif depiction that is found in the M-1 branch conotoxin mr3e. This study shows that conotoxins with the same cysteine framework can have different disulfide connectivities and different peptide folds.
Collapse
Affiliation(s)
- Muharrem Akcan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | |
Collapse
|
19
|
Dutertre S, Jin AH, Kaas Q, Jones A, Alewood PF, Lewis RJ. Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom. Mol Cell Proteomics 2012; 12:312-29. [PMID: 23152539 DOI: 10.1074/mcp.m112.021469] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cone snails produce highly complex venom comprising mostly small biologically active peptides known as conotoxins or conopeptides. Early estimates that suggested 50-200 venom peptides are produced per species have been recently increased at least 10-fold using advanced mass spectrometry. To uncover the mechanism(s) responsible for generating this impressive diversity, we used an integrated approach combining second-generation transcriptome sequencing with high sensitivity proteomics. From the venom gland transcriptome of Conus marmoreus, a total of 105 conopeptide precursor sequences from 13 gene superfamilies were identified. Over 60% of these precursors belonged to the three gene superfamilies O1, T, and M, consistent with their high levels of expression, which suggests these conotoxins play an important role in prey capture and/or defense. Seven gene superfamilies not previously identified in C. marmoreus, including five novel superfamilies, were also discovered. To confirm the expression of toxins identified at the transcript level, the injected venom of C. marmoreus was comprehensively analyzed by mass spectrometry, revealing 2710 and 3172 peptides using MALDI and ESI-MS, respectively, and 6254 peptides using an ESI-MS TripleTOF 5600 instrument. All conopeptides derived from transcriptomic sequences could be matched to masses obtained on the TripleTOF within 100 ppm accuracy, with 66 (63%) providing MS/MS coverage that unambiguously confirmed these matches. Comprehensive integration of transcriptomic and proteomic data revealed for the first time that the vast majority of the conopeptide diversity arises from a more limited set of genes through a process of variable peptide processing, which generates conopeptides with alternative cleavage sites, heterogeneous post-translational modifications, and highly variable N- and C-terminal truncations. Variable peptide processing is expected to contribute to the evolution of venoms, and explains how a limited set of ∼ 100 gene transcripts can generate thousands of conopeptides in a single species of cone snail.
Collapse
Affiliation(s)
- Sébastien Dutertre
- The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Large-scale discovery of conopeptides and conoproteins in the injectable venom of a fish-hunting cone snail using a combined proteomic and transcriptomic approach. J Proteomics 2012; 75:5215-25. [DOI: 10.1016/j.jprot.2012.06.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 01/25/2023]
|
21
|
Ye M, Hong J, Zhou M, Huang L, Shao X, Yang Y, Sigworth FJ, Chi C, Lin D, Wang C. A novel conotoxin, qc16a, with a unique cysteine framework and folding. Peptides 2011; 32:1159-65. [PMID: 21524672 PMCID: PMC3547678 DOI: 10.1016/j.peptides.2011.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/08/2011] [Accepted: 04/09/2011] [Indexed: 10/18/2022]
Abstract
A novel conotoxin, qc16a, was identified from the venom of vermivorous Conus quercinus. qc16a has only 11 amino acid residues, DCQPCGHNVCC, with a unique cysteine pattern. Its disulfide connectivity was determined to be I-IV, II-III. The NMR structure shows that qc16a adopts a ribbon conformation with a simple beta-turn motif formed by residues Gly6, His7 and Asn8. qc16a causes depression symptom in mice when injected intracranially. Point mutation results showed that Asp1, His7 and Asn8 are all essential for the activity of qc16a. Electrophysiologically, qc16a has no strong effect on the whole-cell currents of neurons and the currents of Drosophila Shaker channels, human BK channels and Na(V)1.7 channels. Its specific target still remains to be identified.
Collapse
Affiliation(s)
- Mingyu Ye
- Institute of Protein Research, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jing Hong
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Mi Zhou
- Institute of Protein Research, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lijun Huang
- Institute of Protein Research, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaoxia Shao
- Institute of Protein Research, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Youshan Yang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Fred J. Sigworth
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Chengwu Chi
- Institute of Protein Research, Tongji University, 1239 Siping Road, Shanghai 200092, China
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Donghai Lin
- The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- To whom correspondence should be addressed: Chunguang Wang, Institute of Protein Research, Tongji University, 1239 Siping Road, Shanghai 200092, China, Tel: 86-21-65984347, Fax: 86-21-65988403; ; or Donghai Lin, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China, Tel: 86-592-2186078, Fax: 86-592-2186078;
| | - Chunguang Wang
- Institute of Protein Research, Tongji University, 1239 Siping Road, Shanghai 200092, China
- To whom correspondence should be addressed: Chunguang Wang, Institute of Protein Research, Tongji University, 1239 Siping Road, Shanghai 200092, China, Tel: 86-21-65984347, Fax: 86-21-65988403; ; or Donghai Lin, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China, Tel: 86-592-2186078, Fax: 86-592-2186078;
| |
Collapse
|
22
|
Peng C, Ye M, Wang Y, Shao X, Yuan D, Liu J, Hawrot E, Wang C, Chi C. A new subfamily of conotoxins belonging to the A-superfamily. Peptides 2010; 31:2009-16. [PMID: 20691232 PMCID: PMC3721517 DOI: 10.1016/j.peptides.2010.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 07/13/2010] [Accepted: 07/22/2010] [Indexed: 11/20/2022]
Abstract
Two novel conotoxins from vermivorous cone snails Conus pulicarius and Conus tessulatus, designated as Pu14.1 and ts14a, were identified by cDNA cloning and peptide purification, respectively. The signal sequence of Pu14.1 is identical to that of α-conotoxins, while its predicted mature peptide, pu14a, shares high sequence similarity with ts14a, with only one residue different in their first intercysteine loop, which contains 10 residues and is rich in proline. Both pu14a and ts14a contain four separate cysteines in framework 14 (C-C-C-C). Peptide pu14a was chemically synthesized, air oxidized, and the connectivity of its two disulfide bonds was determined to be C1-C3, C2-C4, which is the same as found in α-conotoxins. The synthetic pu14a induced a sleeping symptom in mice and was toxic to freshwater goldfish upon intramuscular injection. Using the Xenopus oocyte heterologous expression system, 1μM of pu14a demonstrated to inhibit the rat neuronal α3β2-containing as well as the mouse neuromuscular α1β1γδ subtypes of nicotinic acetylcholine receptors, and then rapidly dissociated from the receptors. However, this toxin had no inhibitory effect on potassium channels in mouse superior cervical ganglion neurons. According to the identical signal sequence to α-conotoxins, the unique cysteine framework and molecular target of pu14a, we propose that pu14a and ts14a may represent a novel subfamily in the A-superfamily, designated as α1-conotoxins.
Collapse
Affiliation(s)
- Can Peng
- Institute of Protein Research, Tongji University, Shanghai 200092, China
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Mingyu Ye
- Institute of Protein Research, Tongji University, Shanghai 200092, China
| | - Yanfang Wang
- Institute of Protein Research, Tongji University, Shanghai 200092, China
| | - Xiaoxia Shao
- Institute of Protein Research, Tongji University, Shanghai 200092, China
| | - Duoduo Yuan
- Institute of Protein Research, Tongji University, Shanghai 200092, China
| | - Jing Liu
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown Medical School, Providence, Rhode Island 02912, USA
| | - Edward Hawrot
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown Medical School, Providence, Rhode Island 02912, USA
| | - Chunguang Wang
- Institute of Protein Research, Tongji University, Shanghai 200092, China
- Corresponding author and address: Chengwu Chi, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China. Tel.: +86 21 54921165, Fax: +86 21 54921011, , Chunguang Wang, Institute of Protein Research, College of Life Sciences and Technology, Tongji University, 50 Chifeng Road, Shanghai 200092, China. Tel.: +86 21 65984347, Fax: +86 21 65988403,
| | - Chengwu Chi
- Institute of Protein Research, Tongji University, Shanghai 200092, China
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Corresponding author and address: Chengwu Chi, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China. Tel.: +86 21 54921165, Fax: +86 21 54921011, , Chunguang Wang, Institute of Protein Research, College of Life Sciences and Technology, Tongji University, 50 Chifeng Road, Shanghai 200092, China. Tel.: +86 21 65984347, Fax: +86 21 65988403,
| |
Collapse
|
23
|
Xu J, Wang Y, Zhang B, Wang B, Du W. Stereochemistry of 4-hydroxyproline affects the conformation of conopeptides. Chem Commun (Camb) 2010; 46:5467-9. [PMID: 20428585 DOI: 10.1039/c0cc00075b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cis/trans isomerization of 4-hydroxyproline is shown to remarkably affect the conformation of conopeptides with or without disulfide bonds.
Collapse
Affiliation(s)
- Jia Xu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | | | | | | | | |
Collapse
|
24
|
Wu XC, Zhou M, Peng C, Shao XX, Guo ZY, Chi CW. Novel conopeptides in a form of disulfide-crosslinked dimer. Peptides 2010; 31:1001-6. [PMID: 20307606 DOI: 10.1016/j.peptides.2010.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/04/2010] [Accepted: 03/04/2010] [Indexed: 11/15/2022]
Abstract
In our present work, seven conotoxins and conopeptides were cloned from four cone snail species based on the M-superfamily signal peptides. Among them, two conopeptides, Vt3.1 and Vt3.2, showed unusual sequence characteristics. Both of them contained two cysteines that are separated by just one non-cysteine residue. In vitro, the chemically synthesized Vt3.1 formed dimers with different intermolecular disulfide linkages. Only the dimer with crossed disulfides showed bioactivity when injected into the intraventricular region of mice brains. Therefore, Vt3.1 and Vt3.2 represent a new group of conopeptides that form disulfide-crosslinked dimers in vitro and probably in vivo.
Collapse
Affiliation(s)
- Xue-Chen Wu
- Institute of Protein Research, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | | | | | | | | | | |
Collapse
|
25
|
Kaas Q, Westermann JC, Craik DJ. Conopeptide characterization and classifications: an analysis using ConoServer. Toxicon 2010; 55:1491-509. [PMID: 20211197 DOI: 10.1016/j.toxicon.2010.03.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 02/25/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
Abstract
Cone snails are carnivorous marine gastropods that have evolved potent venoms to capture their prey. These venoms comprise a rich and diverse cocktail of peptide toxins, or conopeptides, whose high diversity has arisen from an efficient hypermutation mechanism, combined with a high frequency of post-translational modifications. Conopeptides bind with high specificity to distinct membrane receptors, ion channels, and transporters of the central and muscular nervous system. As well as serving their natural function in prey capture, conopeptides have been utilized as versatile tools in neuroscience and have proven valuable as drug leads that target the nervous system in humans. This paper examines current knowledge on conopeptide sequences based on an analysis of gene and peptide sequences in ConoServer (http://www.conoserver.org), a specialized database of conopeptide sequences and three-dimensional structures. We describe updates to the content and organization of ConoServer and discuss correlations between gene superfamilies, cysteine frameworks, pharmacological families targeted by conopeptides, and the phylogeny, habitat, and diet of cone snails. The study identifies gaps in current knowledge of conopeptides and points to potential directions for future research.
Collapse
Affiliation(s)
- Quentin Kaas
- The University of Queensland, Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, Brisbane, 4072 QLD, Australia
| | | | | |
Collapse
|
26
|
Jacob RB, McDougal OM. The M-superfamily of conotoxins: a review. Cell Mol Life Sci 2010; 67:17-27. [PMID: 19705062 PMCID: PMC3741454 DOI: 10.1007/s00018-009-0125-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/30/2009] [Accepted: 08/03/2009] [Indexed: 12/19/2022]
Abstract
The focus of this review is the M-superfamily of Conus venom peptides. Disulfide rich peptides belonging to the M-superfamily have three loop regions and the cysteine arrangement: CC-C-C-CC, where the dashes represent loops one, two, and three, respectively. Characterization of M-superfamily peptides has demonstrated that diversity in cystine connectivity occurs between different branches of peptides even though the cysteine pattern remains consistent. This superfamily is subdivided into five branches, M-1 through M-5, based on the number of residues in the third loop region, between the fourth and fifth cysteine residues. M-superfamily peptides appear to be ubiquitous in Conus venom. They are largely unexplained in indigenous biological function, and they represent an active area of research within the scientific community.
Collapse
Affiliation(s)
- Reed B. Jacob
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725-1520 USA
| | - Owen M. McDougal
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725-1520 USA
| |
Collapse
|
27
|
Huang F, Du W. Solution structure of Hyp10Pro variant of conomarphin, a cysteine-free and d-amino-acid containing conopeptide. Toxicon 2009; 54:153-60. [DOI: 10.1016/j.toxicon.2009.03.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/23/2009] [Accepted: 03/24/2009] [Indexed: 10/20/2022]
|
28
|
Wang L, Liu J, Pi C, Zeng X, Zhou M, Jiang X, Chen S, Ren Z, Xu A. Identification of a novel M-superfamily conotoxin with the ability to enhance tetrodotoxin sensitive sodium currents. Arch Toxicol 2009; 83:925-32. [PMID: 19562324 DOI: 10.1007/s00204-009-0453-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 06/15/2009] [Indexed: 11/25/2022]
Abstract
In this work, a novel M-superfamily conotoxin, designated lt3a, was purified from the crude venom of Conus litteratus. Combined with peptide sequencing, MALDI-TOF mass spectrometry and cDNA cloning techniques, the amino acid sequence of lt3a was supposed to be DgammaCCgamma OQWCDGACDCCS, where O is hydroxyproline and gamma is carboxyglutamate. The Cys framework of lt3a (-CC-C-C-CC-) is similar to that of psi-, mu-, kappaM-conotoxins, which are representatives of M-conotoxins. Peptide lt3a is categorized into M1 branch based on the number of residues in the last Cys loop. Whole cell patch-clamp study on adult rat dorsal root ganglion neurons indicated that lt3a could enhance tetrodotoxin-sensitive sodium currents. This is a previously unknown function of M-superfamily conotoxins.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, 135 Xingangxi Road, 510275 Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Sea anemones produce a variety of toxic peptides and proteins, including many ion channel blockers and modulators, as well as potent cytolysins. This review describes the structures that have been determined to date for the major classes of peptide and protein toxins. In addition, established and emerging methods for structure determination are summarized and the prospects for modelling newly described toxins are evaluated. In common with most other classes of proteins, toxins display conformational flexibility which may play a role in receptor binding and function. The prospects for obtaining atomic resolution structures of toxins bound to their receptors are also discussed.
Collapse
|
30
|
Peng C, Han Y, Sanders T, Chew G, Liu J, Hawrot E, Chi C, Wang C. alpha4/7-conotoxin Lp1.1 is a novel antagonist of neuronal nicotinic acetylcholine receptors. Peptides 2008; 29:1700-7. [PMID: 18588930 PMCID: PMC4826758 DOI: 10.1016/j.peptides.2008.05.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 05/26/2008] [Accepted: 05/27/2008] [Indexed: 11/18/2022]
Abstract
Cone snails comprise approximately 700 species of venomous molluscs which have evolved the ability to generate multiple toxins with varied and exquisite selectivity. alpha-Conotoxin is a powerful tool for defining the composition and function of nicotinic acetylcholine receptors which play a crucial role in excitatory neurotransmission and are important targets for drugs and insecticides. An alpha4/7 conotoxin, Lp1.1, originally identified by cDNA and genomic DNA cloning from Conus leopardus, was found devoid of the highly conserved Pro residue in the first intercysteine loop. To further study this toxin, alpha-Lp1.1 was chemically synthesized and refolded into its globular disulfide isomer. The synthetic Lp1.1 induced seizure and paralysis on freshwater goldfish and selectively reversibly inhibited ACh-evoked currents in Xenopus oocytes expressing rat alpha3beta2 and alpha6alpha3beta2 nAChRs. Comparing the distinct primary structure with other functionally related alpha-conotoxins could indicate structural features in Lp1.1 that may be associated with its unique receptor recognition profile.
Collapse
Affiliation(s)
- Can Peng
- Institute of Protein Research, Tongji University, Shanghai 200092, China
| | - Yuhong Han
- Institute of Protein Research, Tongji University, Shanghai 200092, China
| | - Tanya Sanders
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown Medical School, Providence, Rhode Island 02912, USA
| | - Geoffrey Chew
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown Medical School, Providence, Rhode Island 02912, USA
| | - Jing Liu
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown Medical School, Providence, Rhode Island 02912, USA
| | - Edward Hawrot
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown Medical School, Providence, Rhode Island 02912, USA
| | - Chengwu Chi
- Institute of Protein Research, Tongji University, Shanghai 200092, China
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chunguang Wang
- Institute of Protein Research, Tongji University, Shanghai 200092, China
- Corresponding author and address: Chunguang Wang, Institute of Protein Research, Tongji University 1239 Siping Road, Shanghai 200092, China Tel.: +86-21-65984347 Fax: +86-21-65988403
| |
Collapse
|
31
|
Two different groups of signal sequence in M-superfamily conotoxins. Toxicon 2008; 51:813-22. [DOI: 10.1016/j.toxicon.2007.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Revised: 12/07/2007] [Accepted: 12/07/2007] [Indexed: 11/23/2022]
|
32
|
Han Y, Huang F, Jiang H, Liu L, Wang Q, Wang Y, Shao X, Chi C, Du W, Wang C. Purification and structural characterization of a d-amino acid-containing conopeptide, conomarphin, from Conus marmoreus. FEBS J 2008; 275:1976-87. [DOI: 10.1111/j.1742-4658.2008.06352.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Identification of a novel S-superfamily conotoxin from vermivorous Conus caracteristicus. Toxicon 2008; 51:1331-7. [PMID: 18423793 DOI: 10.1016/j.toxicon.2008.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 02/27/2008] [Accepted: 03/03/2008] [Indexed: 11/21/2022]
Abstract
Conotoxins have been classified into several different superfamilies based on the highly conserved signal peptide sequences of their precursors. However, little is known about the five disulfide bonds containing S-superfamily conotoxins. Only two S-superfamily conotoxins have been identified but their cDNAs are not reported. In this work, we identified a novel S-superfamily conotoxin ca8a from vermivorous Conus caracteristicus. Its sequence shares no homology with those of two other previously reported toxins of the same superfamily, but they have the same cysteine framework, in particular the CX(3)CXC-CXC-CXCXC pattern at the C-terminal part. This implies that these toxins might have the same spatial scaffold, but different local conformation or residue side chains may be the cause of their different biological functions. Furthermore, the cDNA of ca8a was cloned with the RACE method. ca8a has a signal peptide sequence different from those of other conotoxins. This gives a defining feature of S-superfamily conotoxins and led to the cloning of more S-superfamily conotoxins from cone snails of different prey types, which indicates that S-superfamily conotoxins widely exist. These results will certainly enrich our understanding of the highly diversified S-superfamily conotoxins.
Collapse
|
34
|
McDougal OM, Turner MW, Ormond AJ, Poulter CD. Three-Dimensional Structure of Conotoxin tx3a: An m-1 Branch Peptide of the M-Superfamily. Biochemistry 2008; 47:2826-32. [DOI: 10.1021/bi702388b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Owen M. McDougal
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, and Department of Chemistry, University of Utah, Salt Lake City, Utah 84112
| | - Matthew W. Turner
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, and Department of Chemistry, University of Utah, Salt Lake City, Utah 84112
| | - Andrew J. Ormond
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, and Department of Chemistry, University of Utah, Salt Lake City, Utah 84112
| | - C. Dale Poulter
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, and Department of Chemistry, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
35
|
Bulaj G, Olivera BM. Folding of conotoxins: formation of the native disulfide bridges during chemical synthesis and biosynthesis of Conus peptides. Antioxid Redox Signal 2008; 10:141-55. [PMID: 17961068 DOI: 10.1089/ars.2007.1856] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Conopeptides from >700 species of predatory marine Conus snails provide an impressive molecular diversity of cysteine-rich peptides. Most of the estimated 50,000-100,000 distinct conopeptides range in size from 10 to 50 amino acid residues, often with multiple posttranslational modifications. The great majority contain from two to four disulfide bridges. As the biosynthetic and chemical production of this impressive repertoire of disulfide-rich peptides has been investigated, particularly the formation of native disulfide bridges, differences between in vivo and in vitro oxidative folding have become increasingly evident. In this article, we provide an overview of the molecular diversity of conotoxins with an emphasis on the cysteine patterns and disulfide frameworks. The conotoxin folding studies reviewed include regioselective and direct oxidation strategies, recombinant expression, optimization of folding methods, mechanisms of in vitro folding, and preliminary data on the biosynthesis of conotoxins in venom ducts. Despite these studies, how the cone snails efficiently produce properly folded conotoxins remains unanswered. As chemists continue to master oxidative folding techniques, insights gleaned from how conotoxins are folded in vivo will likely lead to the development of the new folding methods, as well as shed some light on fundamental mechanisms relevant to the protein folding problem.
Collapse
Affiliation(s)
- Grzegorz Bulaj
- Department of Medicinal Chemistry, College of Pharmacy, Salt Lake City, Utah 84108, USA.
| | | |
Collapse
|
36
|
Wang ZQ, Han YH, Shao XX, Chi CW, Guo ZY. Molecular cloning, expression and characterization of protein disulfide isomerase from Conus marmoreus. FEBS J 2007; 274:4778-87. [PMID: 17697113 DOI: 10.1111/j.1742-4658.2007.06003.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oxidative folding of disulfide-rich conotoxins is essential for their biological functions. In vivo, disulfide bond formation is mainly catalyzed by protein disulfide isomerase. To elucidate the physiologic roles of protein disulfide isomerase in the folding of conotoxins, we have cloned a novel full-length protein disulfide isomerase from Conus marmoreus. Its ORF encodes a 500 amino acid protein that shares sequence homology with protein disulfide isomerases from other species, and 70% homology with human protein disulfide isomerase. Enzymatic analyses of recombinant C. marmoreus protein disulfide isomerase showed that it shared functional similarities with human protein disulfide isomerase. Using conotoxins tx3a and sTx3.1 as substrate, we analyzed the oxidase and isomerase activities of the C. marmoreus protein disulfide isomerase and found that it was much more efficient than glutathione in catalyzing oxidative folding and disulfide isomerization of conotoxins. We further demonstrated that macromolecular crowding had little effect on the protein disulfide isomerase-catalyzed oxidative folding and disulfide isomerization of conotoxins. On the basis of these data, we propose that the C. marmoreus protein disulfide isomerase plays a key role during in vivo folding of conotoxins.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Institute of Protein Research, Tongji University, Shanghai, China
| | | | | | | | | |
Collapse
|
37
|
Du WH, Han YH, Huang FJ, Li J, Chi CW, Fang WH. Solution structure of an M-1 conotoxin with a novel disulfide linkage. FEBS J 2007; 274:2596-602. [PMID: 17437523 DOI: 10.1111/j.1742-4658.2007.05795.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The M-superfamily of conotoxins has a typical Cys framework (-CC-C-C-CC-), and is one of the eight major superfamilies found in the venom of the cone snail. Depending on the number of residues located in the last Cys loop (between Cys4 and Cys5), the M-superfamily family can be divided into four branches, namely M-1, -2, -3 and -4. Recently, two M-1 branch conotoxins (mr3e and tx3a) have been reported to possess a new disulfide bond arrangement between Cys1 and Cys5, Cys2 and Cys4, and Cys3 and Cys6, which is different from those seen in the M-2 and M-4 branches. Here we report the 3D structure of mr3e determined by 2D (1)H NMR in aqueous solution. Twenty converged structures of this peptide were obtained on the basis of 190 distance constraints obtained from NOE connectivities, as well as six varphi dihedral angle, three hydrogen bond, and three disulfide bond constraints. The rmsd values about the averaged coordinates of the backbone atoms were 0.43 +/- 0.19 A. Although mr3e has the same Cys arrangement as M-2 and M-4 conotoxins, it adopts a distinctive backbone conformation with the overall molecule resembling a 'flying bird'. Thus, different disulfide linkages may be employed by conotoxins with the same Cys framework to result in a more diversified backbone scaffold.
Collapse
Affiliation(s)
- Wei-Hong Du
- Departments of Chemistry, Renmin University of China and Beijing Normal University, Beijing, China
| | | | | | | | | | | |
Collapse
|