1
|
Krishnan H, Ahmed S, Hubbard SR, Miller WT. Catalytic activities of wild-type C. elegans DAF-2 kinase and dauer-associated mutants. FEBS J 2024; 291:5435-5454. [PMID: 39428852 DOI: 10.1111/febs.17303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/08/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
DAF-2, the Caenorhabditis elegans insulin-like receptor homolog, regulates larval development, metabolism, stress response, and lifespan. The availability of numerous daf-2 mutant alleles has made it possible to elucidate the genetic mechanisms underlying these physiological processes. The DAF-2 pathway is significantly conserved with the human insulin/IGF-1 signaling pathway; it includes proteins homologous to human IRS, GRB-2, and PI3K, making it an important model to investigate human pathological conditions. We expressed and purified the kinase domain of wild-type DAF-2 to examine the catalytic activity and substrate specificity of the enzyme. Like the human insulin receptor kinase, DAF-2 kinase phosphorylates tyrosines within specific YxN or YxxM motifs, which are important for recruiting downstream effectors. DAF-2 kinase phosphorylated peptides derived from the YxxM and YxN motifs located in the C-terminal extension of the receptor tyrosine kinase, consistent with the idea that the DAF-2 receptor may possess independent signaling capacity. Unlike the human insulin or IGF-1 receptor kinases, DAF-2 kinase was poorly inhibited by the small-molecule inhibitor linsitinib. We also expressed and purified mutant kinases corresponding to daf-2 alleles that result in partial loss-of-function phenotypes in C. elegans. These mutations caused a complete loss of kinase function in vitro. Our biochemical investigations provide new insights into DAF-2 kinase function, and the approach should be useful for studying other mutations to shed light on DAF-2 signaling in C. elegans physiology.
Collapse
Affiliation(s)
- Harini Krishnan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, NY, USA
| | - Sultan Ahmed
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, NY, USA
| | - Stevan R Hubbard
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NY, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, NY, USA
- Department of Veterans Affairs Medical Center, Northport, NY, USA
| |
Collapse
|
2
|
Gao H, Bianba Z, Mo X, Hu W, Feng Z, Zhou F, Zhang T. Receptor Tyrosine Kinase Signaling Involves Echinococcus-Host Intercommunication: A Potential Therapeutic Target in Hepatic Echinococcosis. Trop Med Infect Dis 2024; 9:175. [PMID: 39195613 PMCID: PMC11360685 DOI: 10.3390/tropicalmed9080175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Echinococcosis, one of the most serious and life-threatening parasitic forms of zoonosis worldwide, is caused by the larvae of Echinococcus granulosus (E. granulosus) and Echinococcus multilocularis (E. multilocularis). Various drugs are being applied clinically to treat zoonosis; however, their therapeutic efficacy remains a great challenge, especially with albendazole as the preferred drug of choice. Receptor tyrosine kinase (RTK) signaling controls normal cellular proliferation, differentiation, and metabolism in humans and mammals, which are intermediate hosts of E. granulosus and E. multilocularis. Disruption of RTK signaling can cause various forms of carcinogenesis and exacerbate the progression of certain forms of parasitic disease. As a result, a significant number of studies on tyrosine kinase inhibitors (TKIs) have been conducted for the treatment of cancer and parasitic infection, with some TKIs already approved for clinical use for cancer. Notably, RTK signaling has been identified in the parasites E. granulosus and E. multilocularis; however, the mechanisms of RTK signaling response in Echinococcus-host intercommunication are not fully understood. Thus, understanding the RTK signaling response in Echinococcus-host intercommunication and the potential effect of RTK signaling is crucial for identifying new drug targets for echinococcosis. The present review illustrates that RTK signaling in the host is over-activated following infection by E. granulosus or E. multilocularis and can further facilitate the development of metacestodes in vitro. In addition, some TKIs exert strong parasitostatic effects on E. granulosus or E. multilocularis, both in vitro and/or in vivo, through downregulation of RTK signaling molecules. The summarized findings suggest that RTK signaling may be a promising drug target and that TKIs could be potential anti-Echinococcus drugs warranting further research.
Collapse
Affiliation(s)
- Haijun Gao
- Chengdu Fifth People’s Hospital (Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine; The Second Clinical Medical College), Chengdu 611130, China;
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.M.); (W.H.); (Z.F.)
| | - Zhuoma Bianba
- National Health Commission Key Laboratory of Echinococcosis Prevention and Control, Xizang Center for Disease Control and Prevention, Lhasa 850000, China;
| | - Xiaojin Mo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.M.); (W.H.); (Z.F.)
- National Health Commission Key Laboratory of Echinococcosis Prevention and Control, Xizang Center for Disease Control and Prevention, Lhasa 850000, China;
| | - Wei Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.M.); (W.H.); (Z.F.)
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Zheng Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.M.); (W.H.); (Z.F.)
| | - Fangye Zhou
- Chengdu Fifth People’s Hospital (Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine; The Second Clinical Medical College), Chengdu 611130, China;
| | - Ting Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.M.); (W.H.); (Z.F.)
- National Health Commission Key Laboratory of Echinococcosis Prevention and Control, Xizang Center for Disease Control and Prevention, Lhasa 850000, China;
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
3
|
Wu D, Yang Y, Yang Y, Li L, Fu S, Wang L, Tan L, Lu X, Zhang W, Di W. An insulin-like signalling pathway model for Fasciola gigantica. BMC Vet Res 2024; 20:252. [PMID: 38851737 PMCID: PMC11162077 DOI: 10.1186/s12917-024-04107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND The insulin/insulin-like signalling (IIS) pathway is common in mammals and invertebrates, and the IIS pathway is unknown in Fasciola gigantica. In the present study, the IIS pathway was reconstructed in F. gigantica. We defined the components involved in the IIS pathway and investigated the transcription profiles of these genes for all developmental stages of F. gigantica. In addition, the presence of these components in excretory and secretory products (ESPs) was predicted via signal peptide annotation. RESULTS The core components of the IIS pathway were detected in F. gigantica. Among these proteins, one ligand (FgILP) and one insulin-like molecule binding protein (FgIGFBP) were analysed. Interestingly, three receptors (FgIR-1/FgIR-2/FgIR-3) were detected, and a novel receptor, FgIR-3, was screened, suggesting novel functions. Fg14-3-3ζ, Fgirs, and Fgpp2a exhibited increased transcription in 42-day-old juveniles and 70-day-old juveniles, while Fgilp, Fgigfb, Fgsgk-1, Fgakt-1, Fgir-3, Fgpten, and Fgaap-1 exhibited increased transcription in metacercariae. FgILP, FgIGFBP, FgIR-2, FgIR-3, and two transcription factors (FgHSF-1 and FgSKN-1) were predicted to be present in FgESPs, indicating their exogenous roles. CONCLUSIONS This study helps to elucidate the signal transduction pathway of IIS in F. gigantica, which will aid in understanding the interaction between flukes and hosts, as well as in understanding fluke developmental regulation, and will also lay a foundation for further characterisation of the IIS pathways of trematodes.
Collapse
Affiliation(s)
- Dongqi Wu
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Yuqing Yang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Yankun Yang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Liang Li
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Shishi Fu
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Lei Wang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Li Tan
- Wuhan Keqian Biology Limited Company, Wuhan, Hubei, China
| | - Xiuhong Lu
- Nanning Animal Disease Prevention and Control Center, Nanning, Guangxi, China
| | - Weiyu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
4
|
Maharjan S, Kirk RS, Lawton SP, Walker AJ. Human growth factor-mediated signalling through lipid rafts regulates stem cell proliferation, development and survival of Schistosoma mansoni. Open Biol 2024; 14:230262. [PMID: 38195062 PMCID: PMC10776228 DOI: 10.1098/rsob.230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/16/2023] [Indexed: 01/11/2024] Open
Abstract
Although the mechanisms by which schistosomes grow and develop in humans are poorly defined, their unique outer tegument layer, which interfaces with host blood, is considered vital to homeostasis of the parasite. Here, we investigated the importance of tegument lipid rafts to the biology of Schistosoma mansoni in the context of host-parasite interactions. We demonstrate the temporal clustering of lipid rafts in response to human epidermal growth factor (EGF) during early somule development, concomitant with the localization of anteriorly orientated EGF receptors (EGFRs) and insulin receptors, mapped using fluorescent EGF/insulin ligand. Methyl-β-cyclodextrin (MβCD)-mediated depletion of cholesterol from lipid rafts abrogated the EGFR/IR binding at the parasite surface and led to modulation of protein kinase C, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase and Akt signalling pathways within the parasite. Furthermore, MβCD-mediated lipid raft disruption, and blockade of EGFRs using canertinib, profoundly reduced somule motility and survival, and attenuated stem cell proliferation and somule growth and development particularly to the fast-growing liver stage. These findings provide a novel paradigm for schistosome development and vitality in the host, driven through host-parasite interactions at the tegument, that might be exploitable for developing innovative therapeutic approaches to combat human schistosomiasis.
Collapse
Affiliation(s)
- Shradha Maharjan
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Ruth S. Kirk
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Scott P. Lawton
- Centre for Epidemiology and Planetary Health, SRUC School of Veterinary Medicine, Scotland's Rural College, West Mains Road, Edinburgh EH9 3JG, UK
| | - Anthony J. Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
5
|
Zhu P, Wu K, Zhang C, Batool SS, Li A, Yu Z, Huang J. Advances in new target molecules against schistosomiasis: A comprehensive discussion of physiological structure and nutrient intake. PLoS Pathog 2023; 19:e1011498. [PMID: 37498810 PMCID: PMC10374103 DOI: 10.1371/journal.ppat.1011498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Schistosomiasis, a severe parasitic disease, is primarily caused by Schistosoma mansoni, Schistosoma japonicum, or Schistosoma haematobium. Currently, praziquantel is the only recommended drug for human schistosome infection. However, the lack of efficacy of praziquantel against juvenile worms and concerns about the emergence of drug resistance are driving forces behind the research for an alternative medication. Schistosomes are obligatory parasites that survive on nutrients obtained from their host. The ability of nutrient uptake depends on their physiological structure. In short, the formation and maintenance of the structure and nutrient supply are mutually reinforcing and interdependent. In this review, we focus on the structural features of the tegument, esophagus, and intestine of schistosomes and their roles in nutrient acquisition. Moreover, we introduce the significance and modes of glucose, lipids, proteins, and amino acids intake in schistosomes. We linked the schistosome structure and nutrient supply, introduced the currently emerging targets, and analyzed the current bottlenecks in the research and development of drugs and vaccines, in the hope of providing new strategies for the prevention and control of schistosomiasis.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Kaijuan Wu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaobin Zhang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Syeda Sundas Batool
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Anqiao Li
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
6
|
Derakhshani A, Mousavi SM, Rezaei M, Afgar A, Keyhani AR, Mohammadi MA, Dabiri S, Fasihi Harandi M. Natural history of Echinococcus granulosus microcyst development in long term in vitro culture and molecular and morphological changes induced by insulin and BMP-4. Front Vet Sci 2023; 9:1068602. [PMID: 36699324 PMCID: PMC9868913 DOI: 10.3389/fvets.2022.1068602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Cystic echinococcosis (CE) caused by the cestode Echinococcus granulosus is a disease of worldwide public health and economic importance. The determinants and underlying cellular mechanisms of CE development and fate in intermediate hosts are largely unknown. Hormones and cytokines such as insulin and BMP-4 are the key players in the development, differentiation, and apoptosis. In this study, we evaluated the long term natural history of E. granulosus microcysts in an vitro setting and the molecular and morphological changes induced by the growth factors, insulin and BMP4 during the development of metacestode stage of E. granulosus. Methods E. granulosus protoscoleces were cultivated and the parasite development was followed in the long term mono-phasic culture for 105 days and the morphometric, molecular and immunohistochemical changes were evaluated, including the microcysts number and size, microcysts development and deformation rates as well as the markers of calcification (Alizarin Red staining) and apoptosis (BAX, BCL2, Caspase-3, Caspase-8 and TNF-α expression) in the microcysts. Also the biological, histological and molecular consequences of insulin and BMP-4 treatment on the parasite development were evaluated. Results Insulin and BMP-4 treatment of microcysts resulted in significant increase in microcyst formation, increased size, reduced apoptosis and deformation of the microcysts. Alizarin red staining of the microcysts treated with the insulin and BMP-4 confirmed that calcium deposition is significantly lower than the untreated microcysts. Also Alizarin Red staining and Immunohistochemistry of the microcysts indicates that calcium accumulation in deformed microcysts is higher than the normal ones on day 105. The microcysts began to wrinkle and the germinal layer was partially detached from the laminated layer on day 84. Conclusion Results of the present study suggest that the degenerative changes in hydatid cysts can be slowed down by insulin and BMP-4, indicating that cellular factors and host hormones could contribute to the longevity of hydatid cysts. Significant evidences are provided suggesting that the microcysts cultivated in vitro can undergo calcification and apoptotic processes similar to what have been observed in the natural hydatid infection in the intermediate hosts.
Collapse
Affiliation(s)
- Ali Derakhshani
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Mohammad Mousavi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Rezaei
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Reza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Ali Mohammadi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Department of Pathology, Afzalipour Medical School, Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Majid Fasihi Harandi ✉
| |
Collapse
|
7
|
Paloma Álvarez-Rendón J, Manuel Murillo-Maldonado J, Rafael Riesgo-Escovar J. The insulin signaling pathway a century after its discovery: Sexual dimorphism in insulin signaling. Gen Comp Endocrinol 2023; 330:114146. [PMID: 36270337 DOI: 10.1016/j.ygcen.2022.114146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
Since practically a century ago, the insulin pathway was discovered in both vertebrates and invertebrates, implying an evolutionarily ancient origin. After a century of research, it is now clear that the insulin signal transduction pathway is a critical, flexible and pleiotropic pathway, evolving into multiple anabolic functions besides glucose homeostasis. It regulates paramount aspects of organismal well-being like growth, longevity, intermediate metabolism, and reproduction. Part of this diversification has been attained by duplications and divergence of both ligands and receptors riding on a common general signal transduction system. One of the aspects that is strikingly different is its usage in reproduction, particularly in male versus female development and fertility within the same species. This review highlights sexual divergence in metabolism and reproductive tract differences, the occurrence of sexually "exaggerated" traits, and sex size differences that are due to the sexes' differential activity/response to the insulin signaling pathway.
Collapse
Affiliation(s)
- Jéssica Paloma Álvarez-Rendón
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Juan Manuel Murillo-Maldonado
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Juan Rafael Riesgo-Escovar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Mexico.
| |
Collapse
|
8
|
Fifty years of the schistosome tegument: discoveries, controversies, and outstanding questions. Int J Parasitol 2021; 51:1213-1232. [PMID: 34767805 DOI: 10.1016/j.ijpara.2021.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022]
Abstract
The unique multilaminate appearance of the tegument surface of schistosomes was first described in 1973, in one of the earliest volumes of the International Journal for Parasitology. The present review, published almost 50 years later, traces the development of our knowledge of the tegument, starting with those earliest cytological advances, particularly the surface plasma membrane-membranocalyx complex, through an era of protein discovery to the modern age of protein characterization, aided by proteomics. More recently, analysis of single cell transcriptomes of schistosomes is providing insight into the organisation of the cell bodies that support the surface syncytium. Our understanding of the tegument, notably the nature of the proteins present within the plasma membrane and membranocalyx, has provided insights into how the schistosomes interact with their hosts but many aspects of how the tegument functions remain unanswered. Among the unresolved aspects are those concerned with maintenance and renewal of the surface membrane complex, and whether surface proteins and membrane components are recycled. Current controversies arising from investigations about whether the tegument is a source of extracellular vesicles during parasitism, and if it is covered with glycolytic enzymes, are evaluated in the light of cytological and proteomic knowledge of the layer.
Collapse
|
9
|
Review: Schistosoma mansoni phosphatidylinositol 3 kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110632. [PMID: 34119651 DOI: 10.1016/j.cbpb.2021.110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/19/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Schistosoma mansoni worms are under a milieu of external and internal signaling pathways. The life-cycle stages are exposed to enormous stimuli within the mammalian and the snail hosts and as free-living stages in the fresh water. Furthermore, there is a unique interplay between the male and the female worms involving many stimuli from the male essential for full development of the female. PI3K/Akt/mTOR is an evolutionarily divergent signal transduction pathway universal to nearly every multicellular organism. This work reviews the Schistosoma mansoni PI3K/Akt/mTOR signal pathways and the involvement of the signal in the worms' physiology concerning the uptake of glucose, reproduction and survival. The inhibitors of the signal pathway used against Schistosoma mansoni were summarized. Given the importance of the PI3K/Akt/mTOR signal pathway, its inhibition could be a promising control strategy against schistosomiasis.
Collapse
|
10
|
Al-Naseri A, Al-Absi S, El Ridi R, Mahana N. A comprehensive and critical overview of schistosomiasis vaccine candidates. J Parasit Dis 2021; 45:557-580. [PMID: 33935395 PMCID: PMC8068781 DOI: 10.1007/s12639-021-01387-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
A digenetic platyhelminth Schistosoma is the causative agent of schistosomiasis, one of the neglected tropical diseases that affect humans and animals in numerous countries in the Middle East, sub-Saharan Africa, South America and China. Several control methods were used for prevention of infection or treatment of acute and chronic disease. Mass drug administration led to reduction in heavy-intensity infections and morbidity, but failed to decrease schistosomiasis prevalence and eliminate transmission, indicating the need to develop anti-schistosome vaccine to prevent infection and parasite transmission. This review summarizes the efficacy and protective capacity of available schistosomiasis vaccine candidates with some insights and future prospects.
Collapse
Affiliation(s)
- Aya Al-Naseri
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| | - Samar Al-Absi
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| | - Noha Mahana
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| |
Collapse
|
11
|
Shen J, Xiang S, Peng M, Zhou Z, Wu Z. Mechanisms of Resistance to Schistosoma japonicum Infection in Microtus fortis, the Natural Non-permissive Host. Front Microbiol 2020; 11:2092. [PMID: 33013763 PMCID: PMC7494751 DOI: 10.3389/fmicb.2020.02092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Human schistosomiasis, which is caused by schistosomes, is a zoonosis that is difficult to control because of the many reservoir hosts. However, Microtus fortis is the only mammal that is naturally resistant to Schistosoma japonicum infection known in China, in which S. japonicum growth and development were arrested on day 12, and the worms eliminated on day 20 post-infection. In this review, we present an overview of the established and purported mechanisms of resistance to S. japonicum infection in M. fortis in comparison to Rattus norvegicus, a semi-permissive host. Clarifying the mechanism of this efficient resistance can help us to better understand host-parasite interaction and to provide better methods to control schistosomiasis.
Collapse
Affiliation(s)
- Jia Shen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Suoyu Xiang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Mei Peng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhijun Zhou
- Department of Laboratory Animal Science, Xiangya Medical College, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
12
|
Han Y, Feng J, Ren Y, Wu L, Li H, Liu J, Jin Y. Differential expression of microRNA between normally developed and underdeveloped female worms of Schistosoma japonicum. Vet Res 2020; 51:126. [PMID: 32977838 PMCID: PMC7519503 DOI: 10.1186/s13567-020-00851-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
Eggs produced by bisexual infected mature female worms (MF) of Schistosoma japonicum are important in the transmission of the parasite and responsible for the pathogenesis of schistosomiasis. The single-sex infected female worms (SF) cannot mature and do not produce normal eggs; also they do not induce severe damage to the host. In this study, the microRNA (miRNA) expression profiles of 25d MF and 25d SF were investigated through Solexa deep-sequencing technology to explore the developmental mechanisms of schistosome female worms. There were 36 differentially expressed miRNA, 20 up-regulated and 16 down-regulated found in MF/SF worms, including some development related miRNA such as bantam (ban), let-7, miR-124, miR-8, miR-1, miR-7. There were 166 target genes of up-regulated miRNA and 201 target genes of down-regulated miRNA after comparing the target gene prediction software results with RNA-Seq transcriptome results. Analysis of the target genes shows that different ones are involved in MF and SF worms in Gene Ontology terms, with a similar situation in KEGG. This observation indicates that different genes regulated by differentially expressed miRNA take part in MF and SF and lead to differential sexual status. This means that the sexual status of female worms is regulated by miRNA.
Collapse
Affiliation(s)
- Yu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, No.518, Ziyue Road, Minhang District, Shanghai, 200241, PR China
| | - Jintao Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, No.518, Ziyue Road, Minhang District, Shanghai, 200241, PR China
| | - Yuqi Ren
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, No.518, Ziyue Road, Minhang District, Shanghai, 200241, PR China
| | - Luobin Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, No.518, Ziyue Road, Minhang District, Shanghai, 200241, PR China.,College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, No.518, Ziyue Road, Minhang District, Shanghai, 200241, PR China
| | - Jinming Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, No.518, Ziyue Road, Minhang District, Shanghai, 200241, PR China
| | - Yamei Jin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, No.518, Ziyue Road, Minhang District, Shanghai, 200241, PR China.
| |
Collapse
|
13
|
Taenia solium insulin receptors: promising candidates for cysticercosis treatment and prevention. Acta Trop 2020; 209:105552. [PMID: 32485167 DOI: 10.1016/j.actatropica.2020.105552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/23/2022]
Abstract
Insulin signaling pathway is an ancient and highly conserved pathway known to play critical roles in cell growth, control and metabolic regulation. In this study, we identified and characterized two insulin receptor genes (TsIR-1316 and TsIR-4810) from Taenia solium. TsIR-1316 was grouped with E. multilocularis insulin receptor (EmIR-1) and TsIR-4810 was closer to Taenia pisiformis insulin-like growth factor receptor (TpIR) on the same branch with a very high bootstrap value. TsIR-1316 was located on the integument of larvae and adult worms, as well as the ovary of adults and eggs. Alternatively, TsIR-4810 was located in the parenchyma and reproductive organs of the adult worms. By using in vitro cultivation systems with Cysticercus pisiformis as a model, we demonstrated that anti-TsIRs-LBD antibodies could effectively block the insulin signaling pathway, resulting in reduced phosphorylation of the insulin receptor as well as lower levels of glucose uptake and glycogen synthesis. The rabbits immunized with TsIR-1316-LBD, TsIR-4810-LBD and TsIR-1316-LBD + TsIR-4810-LBD produced protection against infection of T. pisiformis as demonstrated by a 94.6%, 96% and 80% reduction of establishment of larvae, respectively. These data suggested that TsIR-1316-LBD and TsIR-4810-LBD are promising vaccine candidates or novel drug targets against swine cysticercosis.
Collapse
|
14
|
Hirst NL, Nebel JC, Lawton SP, Walker AJ. Deep phosphoproteome analysis of Schistosoma mansoni leads development of a kinomic array that highlights sex-biased differences in adult worm protein phosphorylation. PLoS Negl Trop Dis 2020; 14:e0008115. [PMID: 32203512 PMCID: PMC7089424 DOI: 10.1371/journal.pntd.0008115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Although helminth parasites cause enormous suffering worldwide we know little of how protein phosphorylation, one of the most important post-translational modifications used for molecular signalling, regulates their homeostasis and function. This is particularly the case for schistosomes. Herein, we report a deep phosphoproteome exploration of adult Schistosoma mansoni, providing one of the richest phosphoprotein resources for any parasite so far, and employ the data to build the first parasite-specific kinomic array. Complementary phosphopeptide enrichment strategies were used to detect 15,844 unique phosphopeptides mapping to 3,176 proteins. The phosphoproteins were predicted to be involved in a wide range of biological processes and phosphoprotein interactome analysis revealed 55 highly interconnected clusters including those enriched with ribosome, proteasome, phagosome, spliceosome, glycolysis, and signalling proteins. 93 distinct phosphorylation motifs were identified, with 67 providing a ‘footprint’ of protein kinase activity; CaMKII, PKA and CK1/2 were highly represented supporting their central importance to schistosome function. Within the kinome, 808 phosphorylation sites were matched to 136 protein kinases, and 68 sites within 37 activation loops were discovered. Analysis of putative protein kinase-phosphoprotein interactions revealed canonical networks but also novel interactions between signalling partners. Kinomic array analysis of male and female adult worm extracts revealed high phosphorylation of transformation:transcription domain associated protein by both sexes, and CDK and AMPK peptides by females. Moreover, eight peptides including protein phosphatase 2C gamma, Akt, Rho2 GTPase, SmTK4, and the insulin receptor were more highly phosphorylated by female extracts, highlighting their possible importance to female worm function. We envision that these findings, tools and methodology will help drive new research into the functional biology of schistosomes and other helminth parasites, and support efforts to develop new therapeutics for their control. Schistosomes are formidable parasites that cause the debilitating and life-threatening disease human schistosomiasis. We need to better understand the cellular biology of these parasites to develop novel strategies for their control. Within cells, a process called protein phosphorylation controls many aspects of molecular communication or ‘signalling’ and is central to cellular function and homeostasis. Here, using complementary strategies, we have performed the first in-depth characterisation and functional annotation of protein phosphorylation events in schistosomes, providing one of the richest phosphoprotein resources for any parasite to date. Using this knowledge, we have developed a novel tool to simultaneously evaluate signalling processes in these worms and highlight sex-biased differences in adult worm protein phosphorylation. Several proteins were found to be more greatly phosphorylated by female worm extracts, suggesting their possible importance to female worm function. This work will help drive new research into the fundamental biology of schistosomes, as well as related parasites, and will support efforts to develop new drug or vaccine-based therapeutics for their control.
Collapse
Affiliation(s)
- Natasha L. Hirst
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, United Kingdom
| | - Jean-Christophe Nebel
- School of Computer Science and Mathematics, Kingston University, Penrhyn Road, Kingston upon Thames, United Kingdom
| | - Scott P. Lawton
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, United Kingdom
| | - Anthony J. Walker
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
McKenzie M, Kirk RS, Walker AJ. Glucose Uptake in the Human Pathogen Schistosoma mansoni Is Regulated Through Akt/Protein Kinase B Signaling. J Infect Dis 2019; 218:152-164. [PMID: 29309602 PMCID: PMC5989616 DOI: 10.1093/infdis/jix654] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023] Open
Abstract
Background In Schistosoma mansoni, the facilitated glucose transporter SGTP4, which is expressed uniquely in the apical surface tegumental membranes of the parasite, imports glucose from host blood to support its growth, development, and reproduction. However, the molecular mechanisms that underpin glucose uptake in this blood fluke are not understood. Methods In this study we employed techniques including Western blotting, immunolocalization, confocal laser scanning microscopy, pharmacological assays, and RNA interference to functionally characterize and map activated Akt in S mansoni. Results We find that Akt, which could be activated by host insulin and l-arginine, was active in the tegument layer of both schistosomules and adult worms. Blockade of Akt attenuated the expression and evolution of SGTP4 at the surface of the host-invading larval parasite life-stage, and suppressed SGTP4 expression at the tegument in adults; concomitant glucose uptake by the parasite was also attenuated in both scenarios. Conclusions These findings shed light on crucial mechanistic signaling processes that underpin the energetics of glucose uptake in schistosomes, which may open up novel avenues for antischistosome drug development.
Collapse
Affiliation(s)
- Maxine McKenzie
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Ruth S Kirk
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| |
Collapse
|
16
|
Du X, Jones MK, Nawaratna SSK, Ranasinghe S, Xiong C, Cai P, McManus DP, You H. Gene Expression in Developmental Stages of Schistosoma japonicum Provides Further Insight into the Importance of the Schistosome Insulin-Like Peptide. Int J Mol Sci 2019; 20:ijms20071565. [PMID: 30925781 PMCID: PMC6480100 DOI: 10.3390/ijms20071565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
We showed previously that the Schistosoma japonicum insulin-like peptide (SjILP) binds the worm insulin receptors, thereby, activating the parasite’s insulin pathway and emphasizing its important role in regulating uptake of glucose, a nutrient essential for parasite survival. Here we show that SjILP is differentially expressed in the schistosome life cycle and is especially highly transcribed in eggs, miracidia, and adult female worms. RNA inference was employed to knockdown SjILP in adults in vitro, with suppression confirmed by significantly reduced protein production, declined adenosine diphosphate levels, and reduction in glucose consumption. Immunolocalization showed that SjILP is located to lateral gland cells of mature intra-ovular miracidia in the schistosome egg, and is distributed on the ciliated epithelium and internal cell masses of newly transformed miracidia. In schistosomula, SjILP is present on the tegument in two antero-lateral points, indicating highly polarized expression during cercarial transformation. Analysis of serum from S. japonicum-infected mice by ELISA using a recombinant form of SjILP as an antigen revealed IgG immunoreactivity to this molecule at 7 weeks post-infection indicating it is likely secreted from mature eggs into the host circulation. These findings provide further insights on ILP function in schistosomes and its essential roles in parasite survival and growth in different development stages.
Collapse
Affiliation(s)
- Xiaofeng Du
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland 4006, Australia.
| | - Malcolm K Jones
- School of Veterinary Science, The University of Queensland, Gatton 4343, Australia.
| | - Sujeevi S K Nawaratna
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland 4006, Australia.
- School of Medicine, Griffith University, Gold Coast 4222, Australia.
| | - Shiwanthi Ranasinghe
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland 4006, Australia.
| | - Chunrong Xiong
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214000, China.
| | - Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland 4006, Australia.
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland 4006, Australia.
| | - Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland 4006, Australia.
| |
Collapse
|
17
|
Förster S, Koziol U, Schäfer T, Duvoisin R, Cailliau K, Vanderstraete M, Dissous C, Brehm K. The role of fibroblast growth factor signalling in Echinococcus multilocularis development and host-parasite interaction. PLoS Negl Trop Dis 2019; 13:e0006959. [PMID: 30849083 PMCID: PMC6426264 DOI: 10.1371/journal.pntd.0006959] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/20/2019] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Alveolar echinococcosis (AE) is a lethal zoonosis caused by the metacestode larva of the tapeworm Echinococcus multilocularis. The infection is characterized by tumour-like growth of the metacestode within the host liver, leading to extensive fibrosis and organ-failure. The molecular mechanisms of parasite organ tropism towards the liver and influences of liver cytokines and hormones on parasite development are little studied to date. METHODOLOGY/PRINCIPAL FINDINGS We show that the E. multilocularis larval stage expresses three members of the fibroblast growth factor (FGF) receptor family with homology to human FGF receptors. Using the Xenopus expression system we demonstrate that all three Echinococcus FGF receptors are activated in response to human acidic and basic FGF, which are present in the liver. In all three cases, activation could be prevented by addition of the tyrosine kinase (TK) inhibitor BIBF 1120, which is used to treat human cancer. At physiological concentrations, acidic and basic FGF significantly stimulated the formation of metacestode vesicles from parasite stem cells in vitro and supported metacestode growth. Furthermore, the parasite's mitogen activated protein kinase signalling system was stimulated upon addition of human FGF. The survival of metacestode vesicles and parasite stem cells were drastically affected in vitro in the presence of BIBF 1120. CONCLUSIONS/SIGNIFICANCE Our data indicate that mammalian FGF, which is present in the liver and upregulated during fibrosis, supports the establishment of the Echinococcus metacestode during AE by acting on an evolutionarily conserved parasite FGF signalling system. These data are valuable for understanding molecular mechanisms of organ tropism and host-parasite interaction in AE. Furthermore, our data indicate that the parasite's FGF signalling systems are promising targets for the development of novel drugs against AE.
Collapse
Affiliation(s)
- Sabine Förster
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Uriel Koziol
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
- Universidad de la República, Facultad de Ciencias, Sección Biología Celular, Montevideo, Uruguay
| | - Tina Schäfer
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Raphael Duvoisin
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Katia Cailliau
- CNRS UMR 8576, University of Lille, Villeneuve d’Asq, France
| | - Mathieu Vanderstraete
- Center for Infection and Immunology of Lille, Inserm U1019, CNRS-UMR 8204, University of Lille, Lille, France
| | - Colette Dissous
- Center for Infection and Immunology of Lille, Inserm U1019, CNRS-UMR 8204, University of Lille, Lille, France
| | - Klaus Brehm
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| |
Collapse
|
18
|
Herran B, Bertaux J, Grève P. Divergent evolution and clade-specific duplications of the Insulin-like Receptor in malacostracan crustaceans. Gen Comp Endocrinol 2018; 268:34-39. [PMID: 30055146 DOI: 10.1016/j.ygcen.2018.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 06/08/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
The Insulin-like Receptors (IRs) are an important protein family, represented by three members in vertebrates, two of which are well-known for their implication in metabolism (Insulin Receptor) and growth (IGF Receptor). In contrast, little is known about these receptors in invertebrates, in which a single gene generally exists except for a part of insects and other occasional species-specific duplications. In this study, we used publicly available sequences as well as de novo assembled transcriptomes to investigate the IR evolution in malacostracan crustaceans, animals in which the Insulin/IGF pathway is known to be implicated in sexual development through the androgenic gland hormone. We described the evolutionary divergence of malacostracan IRs compared to all the other metazoan sequences, including other pancrustaceans. We also demonstrated two well conserved duplications of IRs: one specific to the whole malacostracan class, another one specific to the decapod order. The potential implications for malacostracan biology are discussed.
Collapse
Affiliation(s)
- Benjamin Herran
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions (EBI), Equipe Ecologie Evolution Symbiose (EES), TSA 51106, 86073 Poitiers Cedex 9, France
| | - Joanne Bertaux
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions (EBI), Equipe Ecologie Evolution Symbiose (EES), TSA 51106, 86073 Poitiers Cedex 9, France.
| | - Pierre Grève
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions (EBI), Equipe Ecologie Evolution Symbiose (EES), TSA 51106, 86073 Poitiers Cedex 9, France.
| |
Collapse
|
19
|
Kinases: Molecular Stage Directors for Schistosome Development and Differentiation. Trends Parasitol 2017; 34:246-260. [PMID: 29276074 DOI: 10.1016/j.pt.2017.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 01/03/2023]
Abstract
Understanding schistosome biology is still a challenging mission. The reproductive biology of this parasitic trematode is closely associated with the pathologic consequences of schistosomiasis, the devastating infectious disease caused by members of the family Schistosomatidae worldwide. Recent studies of signaling mechanisms confirmed the prominent roles of protein kinases (PKs) in directing schistosome biology, and first evidence was obtained for an additional contribution of kinases with substrates different from proteins (non-PKs). This review provides an overview of the Schistosoma mansoni kinome in the context of male-female interaction and summarizes recent studies of kinases controlling development and differentiation. Due to their importance for schistosome biology, kinases represent Achilles' heels and are therefore of high value also for translational research.
Collapse
|
20
|
Elhenawy AA, Ashour RH, Nabih N, Shalaby NM, El-karef AA, Abou-El-Wafa HS. Insulin growth factor inhibitor as a potential new anti-schistosoma drug: An in vivo experimental study. Biomed Pharmacother 2017; 95:1346-1358. [PMID: 28946182 DOI: 10.1016/j.biopha.2017.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/10/2017] [Accepted: 09/06/2017] [Indexed: 01/24/2023] Open
|
21
|
Navarrete-Perea J, Isasa M, Paulo JA, Corral-Corral R, Flores-Bautista J, Hernández-Téllez B, Bobes RJ, Fragoso G, Sciutto E, Soberón X, Gygi SP, Laclette JP. Quantitative multiplexed proteomics of Taenia solium cysts obtained from the skeletal muscle and central nervous system of pigs. PLoS Negl Trop Dis 2017; 11:e0005962. [PMID: 28945737 PMCID: PMC5634658 DOI: 10.1371/journal.pntd.0005962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/10/2017] [Accepted: 09/13/2017] [Indexed: 01/01/2023] Open
Abstract
In human and porcine cysticercosis caused by the tapeworm Taenia solium, the larval stage (cysts) can infest several tissues including the central nervous system (CNS) and the skeletal muscles (SM). The cyst’s proteomics changes associated with the tissue localization in the host tissues have been poorly studied. Quantitative multiplexed proteomics has the power to evaluate global proteome changes in response to different conditions. Here, using a TMT-multiplexed strategy we identified and quantified over 4,200 proteins in cysts obtained from the SM and CNS of pigs, of which 891 were host proteins. To our knowledge, this is the most extensive intermixing of host and parasite proteins reported for tapeworm infections.Several antigens in cysticercosis, i.e., GP50, paramyosin and a calcium-binding protein were enriched in skeletal muscle cysts. Our results suggested the occurrence of tissue-enriched antigen that could be useful in the improvement of the immunodiagnosis for cysticercosis. Using several algorithms for epitope detection, we selected 42 highly antigenic proteins enriched for each tissue localization of the cysts. Taking into account the fold changes and the antigen/epitope contents, we selected 10 proteins and produced synthetic peptides from the best epitopes. Nine peptides were recognized by serum antibodies of cysticercotic pigs, suggesting that those peptides are antigens. Mixtures of peptides derived from SM and CNS cysts yielded better results than mixtures of peptides derived from a single tissue location, however the identification of the ‘optimal’ tissue-enriched antigens remains to be discovered. Through machine learning technologies, we determined that a reliable immunodiagnostic test for porcine cysticercosis required at least five different antigenic determinants. Human and porcine cysticercosis caused by Taenia solium is a parasite disease still endemic in developing countries. The cysts can be located in different host tissues, including different organs of the central nervous system and the skeletal muscles. The molecular mechanisms associated with the tissue localization of the cysts are not well understood. Here, we described the proteome changes of the cysts obtained from different host tissues from infected pigs using quantitative multiplex proteomics. We explored the diversity of host proteins identified in the cyst’s protein extracts and we also explored the immune-localization of several host-related proteins within the cysts, and propose their possible function. We identified several proteins and antigens enriched for a given tissue localization. Several synthetic peptides designed from these tissue-enriched antigens were tested trough ELISA. Using a combination of peptide mixtures and machine learning technologies we were able to distinguish non cysticercotic and cysticercotic pig’s sera. The tissue-enriched proteins/antigens could be useful for the development of improved immuno-diagnostic tests capable of discriminate the tissue-localization of the cysts.
Collapse
Affiliation(s)
- José Navarrete-Perea
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marta Isasa
- Dept. of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joao A Paulo
- Dept. of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ricardo Corral-Corral
- Dept. of Biochemistry and Structural Biology, Institute of Cell Physiology, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jeanette Flores-Bautista
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Beatriz Hernández-Téllez
- Dept. of Tissue and Cell Biology, School of Medicine, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Raúl J Bobes
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gladis Fragoso
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Edda Sciutto
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Xavier Soberón
- Instituto Nacional de Medicina Genómica, Ciudad de México, México.,Dept. of Biocatalysis and Cellular Engineering, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, México
| | - Steven P Gygi
- Dept. of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Juan P Laclette
- Dept. of Immunology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
22
|
Du X, McManus DP, Cai P, Hu W, You H. Identification and functional characterisation of a Schistosoma japonicum insulin-like peptide. Parasit Vectors 2017; 10:181. [PMID: 28407789 PMCID: PMC5391603 DOI: 10.1186/s13071-017-2095-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/18/2017] [Indexed: 02/07/2023] Open
Abstract
Background Previous studies have shown that insulin receptors in schistosomes, triggered by host insulin, play an important role in parasite growth, development and fecundity by regulating glucose metabolism. However, limited information is available on the recently identified endogenous insulin-like peptide (ILP) in blood flukes. Results We isolated ILPs from Schistosoma japonicum (SjILP) and S. recognised (SmILP) and present results of their molecular and structural analysis. SjILP shares 63% amino acid identity with SmILP, but only 18% identity with human insulin. There is high cross immunological reactivity between the S. japonicum and S. mansoni ILPs as observed in western blots using an anti-SjILP polyclonal antibody. ADP binding/hydrolysis ability was observed in both SjILP and SmILP, but not in human insulin, suggesting a parasite-specific role for ILP compared with host insulin. Protein binding assays using the Octet-RED system showed SjILP binds S. japonicum IRs (SjIR1 and SjIR2) strongly. An anti-phospho antibody against extracellular signal-regulated kinase (Erk) recognised a 44-kDa target band in an extract of adult worms after stimulation by rSjILP in vitro, suggesting an important role for SjILP in activating SjIRs and in regulating downstream signal transduction. Immunolocalisation showed SjILP is located on the tegument and the underlying musculature, similar to that observed for SjIR1, but it is also present throughout the parenchyma of males and in the vitelline cells of females, the same locations as SjIR2 described in an earlier published study of ours. The same localisation of SjILP and the SjIRs is suggestive of an interaction between the insulin-like peptide and the IRs. In addition to binding host insulin, schistosomes also can express their own endogenous ILPs, which can activate the parasite insulin signal pathway, thereby playing a critical role in worm growth, development and fertility. Conclusions These findings shed new light on ILPs in schistosomes, providing further insight into the distinct and specialised functions of SjIR1 and 2 in S. japonicum and their interaction with host insulin. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2095-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaofeng Du
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Pengfei Cai
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Wei Hu
- School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 207 Ruijin Er Road, Shanghai, 200025, China
| | - Hong You
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
23
|
Gelmedin V, Morel M, Hahnel S, Cailliau K, Dissous C, Grevelding CG. Evidence for Integrin - Venus Kinase Receptor 1 Alliance in the Ovary of Schistosoma mansoni Females Controlling Cell Survival. PLoS Pathog 2017; 13:e1006147. [PMID: 28114363 PMCID: PMC5289644 DOI: 10.1371/journal.ppat.1006147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/02/2017] [Accepted: 12/21/2016] [Indexed: 12/21/2022] Open
Abstract
In metazoan integrin signaling is an important process of mediating extracellular and intracellular communication processes. This can be achieved by cooperation of integrins with growth factor receptors (GFRs). Schistosoma mansoni is a helminth parasite inducing schistosomiasis, an infectious disease of worldwide significance for humans and animals. First studies on schistosome integrins revealed their role in reproductive processes, being involved in spermatogenesis and oogenesis. With respect to the roles of eggs for maintaining the parasite´s life cycle and for inducing the pathology of schistosomiasis, elucidating reproductive processes is of high importance. Here we studied the interaction of the integrin receptor Smβ-Int1 with the venus kinase receptor SmVKR1 in S. mansoni. To this end we cloned and characterized SmILK, SmPINCH, and SmNck2, three putative bridging molecules for their role in mediating Smβ-Int1/SmVKR1 cooperation. Phylogenetic analyses showed that these molecules form clusters that are specific for parasitic platyhelminths as it was shown for integrins before. Transcripts of all genes colocalized in the ovary. In Xenopus oocytes germinal vesicle breakdown (GVBD) was only induced if all members were simultaneously expressed. Coimmunoprecipitation results suggest that a Smβ-Int1-SmILK-SmPINCH-SmNck2-SmVKR1 complex can be formed leading to the phosphorylation and activation of SmVKR1. These results indicate that SmVKR1 can be activated in a ligand-independent manner by receptor-complex interaction. RNAi and inhibitor studies to knock-down SmILK as a representative complex member concurrently revealed effects on the extracellular matrix surrounding the ovary and oocyte localization within the ovary, oocyte survival, and egg production. By TUNEL assays, confocal laser scanning microscopy (CLSM), Caspase-3 assay, and transcript profiling of the pro-apoptotic BCL-2 family members BAK/BAX we obtained first evidence for roles of this signaling complex in mediating cell death in immature and primary oocytes. These results suggest that the Smβ-Int1/SmVKR1 signaling complex is important for differentiation and survival in oocytes of paired schistosomes. Parasites of the genus Schistosoma cause schistosomiasis, a life-threatening infectious disease for humans and animals worldwide. Among the remarkable biological features of schistosomes is the differentiation of the female gonads which is controlled by pairing with the male and a prerequisite for egg production. Eggs, however, are not only important for the maintenance of the life-cycle; they also cause the pathological consequences of schistosomiasis. Part of the eggs gets trapped in host tissues such as liver and spleen and trigger inflammatory processes, finally leading to liver cirrhosis. Research activities of the last decade have indicated that different families of cellular and receptor-type kinases but also integrins contribute to the control of mitogenic activity and differentiation the female goands. In this context an unusual class of receptor tyrosine kinases (RTKs) has been identified, the venus kinase receptors (SmVKRs). By biochemical and molecular approaches we demonstrate that SmVKR1 activation can be achieved by cooperation with a signaling complex consisting of the beta integrin receptor Smβ-Int1 and the bridging molecules SmILK, SmPINCH, SmNck2. Besides unravelling a novel way of SmVKR1 activation, we provide evidence that this complex controls the differentiation status of oocytes by regulating cell death-associated processes.
Collapse
Affiliation(s)
- Verena Gelmedin
- Institute for Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Marion Morel
- CIIL – Center for Infection and Immunity of Lille Inserm U1019 - CNRS UMR 8204, University Lille, Lille, France
| | - Steffen Hahnel
- Institute for Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Katia Cailliau
- UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR 8576, University Lille, Lille, France
| | - Colette Dissous
- CIIL – Center for Infection and Immunity of Lille Inserm U1019 - CNRS UMR 8204, University Lille, Lille, France
| | | |
Collapse
|
24
|
Ressurreição M, Elbeyioglu F, Kirk RS, Rollinson D, Emery AM, Page NM, Walker AJ. Molecular characterization of host-parasite cell signalling in Schistosoma mansoni during early development. Sci Rep 2016; 6:35614. [PMID: 27762399 PMCID: PMC5071895 DOI: 10.1038/srep35614] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/04/2016] [Indexed: 02/04/2023] Open
Abstract
During infection of their human definitive host, schistosomes transform rapidly from free-swimming infective cercariae in freshwater to endoparasitic schistosomules. The 'somules' next migrate within the skin to access the vasculature and are surrounded by host molecules that might activate intracellular pathways that influence somule survival, development and/or behaviour. However, such 'transactivation' by host factors in schistosomes is not well defined. In the present study, we have characterized and functionally localized the dynamics of protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) activation during early somule development in vitro and demonstrate activation of these protein kinases by human epidermal growth factor, insulin, and insulin-like growth factor I, particularly at the parasite surface. Further, we provide evidence that support the existence of specialized signalling domains called lipid rafts in schistosomes and propose that correct signalling to ERK requires proper raft organization. Finally, we show that modulation of PKC and ERK activities in somules affects motility and reduces somule survival. Thus, PKC and ERK are important mediators of host-ligand regulated transactivation events in schistosomes, and represent potential targets for anti-schistosome therapy aimed at reducing parasite survival in the human host.
Collapse
Affiliation(s)
- Margarida Ressurreição
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, KT1 2EE, United Kingdom
| | - Firat Elbeyioglu
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, KT1 2EE, United Kingdom
| | - Ruth S. Kirk
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, KT1 2EE, United Kingdom
| | - David Rollinson
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, United Kingdom
| | - Aidan M. Emery
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, United Kingdom
| | - Nigel M. Page
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, KT1 2EE, United Kingdom
| | - Anthony J. Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, KT1 2EE, United Kingdom
| |
Collapse
|
25
|
Identification of Host Insulin Binding Sites on Schistosoma japonicum Insulin Receptors. PLoS One 2016; 11:e0159704. [PMID: 27441998 PMCID: PMC4956214 DOI: 10.1371/journal.pone.0159704] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022] Open
Abstract
Schistosoma japonicum insulin receptors (SjIRs) have been identified as encouraging vaccine candidates. Interrupting or blocking the binding between host insulin and the schistosome insulin receptors (IRs) may result in reduced glucose uptake leading to starvation and stunting of worms with a reduction in egg output. To further understand how schistosomes are able to exploit host insulin for development and growth, and whether these parasites and their mammalian hosts compete for the same insulin source, we identified insulin binding sites on the SjIRs. Based on sequence analysis and the predicted antigenic structure of the primary sequences of the SjIRs, we designed nine and eleven peptide analogues from SjIR-1 and SjIR-2, respectively. Using the Octet RED system, we identified analogues derived from SjIR-1 (10) and SjIR-2 (20, 21 and 22) with insulin-binding sequences specific for S. japonicum. Nevertheless, the human insulin receptor (HIR) may compete with the SjIRs in binding human insulin in other positions which are important for HIR binding to insulin. However, no binding occurred between insulin and parasite analogues derived from SjIR-1 (2, 7 and 8) and SjIR-2 (14, 16 and 18) at the same locations as HIR sequences which have been shown to have strong insulin binding affinities. Importantly, we found two analogues (1 and 3), derived from SjIR-1, and two analogues (13 and 15) derived from SjIR-2, were responsible for the major insulin binding affinity in S. japonicum. These peptide analogues were shown to have more than 10 times (in KD value) stronger binding capacity for human insulin compared with peptides derived from the HIR in the same sequence positions. Paradoxically, analogues 1, 3, 13 and 15 do not appear to contain major antigenic determinants which resulted in poor antibody responses to native S. japonicum protein. This argues against their future development as peptide-vaccine candidates.
Collapse
|
26
|
Aizen J, Chandler JC, Fitzgibbon QP, Sagi A, Battaglene SC, Elizur A, Ventura T. Production of recombinant insulin-like androgenic gland hormones from three decapod species: In vitro testicular phosphorylation and activation of a newly identified tyrosine kinase receptor from the Eastern spiny lobster, Sagmariasus verreauxi. Gen Comp Endocrinol 2016; 229:8-18. [PMID: 26883686 DOI: 10.1016/j.ygcen.2016.02.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/05/2016] [Accepted: 02/12/2016] [Indexed: 10/22/2022]
Abstract
In crustaceans the insulin-like androgenic gland hormone (IAG) is responsible for male sexual differentiation. To date, the biochemical pathways through which IAG exerts its effects are poorly understood and could be elucidated through the production of a functional recombinant IAG (rIAG). We have successfully expressed glycosylated, biologically active IAG using the Pichia pastoris yeast expression system. We co-expressed recombinant single-chain precursor molecules consisting of the B and A chains (the mature hormone) tethered by a flexible linker, producing rIAGs of the following commercially important species: Eastern spiny lobster Sagmariasus verreauxi (Sv), redclaw crayfish Cherax quadricarinatus (Cq) and giant freshwater prawn Macrobrachium rosenbergii (Mr). We then tested the biological activity of each, through the ability to increase phosphorylation in the testis; both Sv and Cq rIAGs significantly elevated phosphorylation specific to their species, and in a dose-dependent manner. Mr rIAG was tested on Macrobrachium australiense (Ma), eliciting a similar response. Moreover, using bioinformatics analyses of the de novo assembled spiny lobster transcriptome, we identified a spiny lobster tyrosine kinase insulin receptor (Sv-TKIR). We validated this discovery with a receptor activation assay in COS-7 cells expressing Sv-TKIR, using a reporter SRE-LUC system designed for RTKs, with each of the rIAG proteins acting as the activation ligand. Using recombinant proteins, we aim to develop specific tools to control sexual development through the administration of IAG within the critical sexual differentiation time window. The biologically active rIAGs generated might facilitate commercially feasible solutions for the long sought techniques for sex-change induction and monosex population culture in crustaceans and shed new light on the physiological mode of action of IAG in crustaceans.
Collapse
Affiliation(s)
- Joseph Aizen
- Faculty of Science, Health, Education and Engineering, GeneCology Research Centre, University of the Sunshine Coast, Queensland 4558, Australia
| | - Jennifer C Chandler
- Faculty of Science, Health, Education and Engineering, GeneCology Research Centre, University of the Sunshine Coast, Queensland 4558, Australia
| | - Quinn P Fitzgibbon
- Fisheries and Aquaculture, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Amir Sagi
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Stephen C Battaglene
- Fisheries and Aquaculture, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Abigail Elizur
- Faculty of Science, Health, Education and Engineering, GeneCology Research Centre, University of the Sunshine Coast, Queensland 4558, Australia
| | - Tomer Ventura
- Faculty of Science, Health, Education and Engineering, GeneCology Research Centre, University of the Sunshine Coast, Queensland 4558, Australia.
| |
Collapse
|
27
|
Cai P, Gobert GN, You H, McManus DP. The Tao survivorship of schistosomes: implications for schistosomiasis control. Int J Parasitol 2016; 46:453-63. [PMID: 26873753 DOI: 10.1016/j.ijpara.2016.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 01/06/2023]
Abstract
Schistosomiasis, caused by blood flukes of the genus Schistosoma, is a major public health problem which contributes substantially to the economic and financial burdens of many nations in the developing world. An array of survival strategies, such as the unique structure of the tegument which acts as a major host-parasite interface, immune modulation mechanisms, gene regulation, and apoptosis and self-renewal have been adopted by schistosome parasites over the course of long-term evolution with their mammalian definitive hosts. Recent generation of complete schistosome genomes together with numerous biological, immunological, high-throughput "-omics" and gene function studies have revealed the Tao or strategies that schistosomes employ not only to promote long-term survival, but also to ensure effective life cycle transmission. New scenarios for the future control of this important neglected tropical disease will present themselves as our understanding of these Tao increases.
Collapse
Affiliation(s)
- Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia.
| | - Geoffrey N Gobert
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia.
| |
Collapse
|
28
|
You H, Gobert GN, Cai P, Mou R, Nawaratna S, Fang G, Villinger F, McManus DP. Suppression of the Insulin Receptors in Adult Schistosoma japonicum Impacts on Parasite Growth and Development: Further Evidence of Vaccine Potential. PLoS Negl Trop Dis 2015; 9:e0003730. [PMID: 25961574 PMCID: PMC4427307 DOI: 10.1371/journal.pntd.0003730] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/30/2015] [Indexed: 12/19/2022] Open
Abstract
To further investigate the importance of insulin signaling in the growth, development, sexual maturation and egg production of adult schistosomes, we have focused attention on the insulin receptors (SjIRs) of Schistosoma japonicum, which we have previously cloned and partially characterised. We now show, by Biolayer Interferometry, that human insulin can bind the L1 subdomain (insulin binding domain) of recombinant (r)SjIR1 and rSjIR2 (designated SjLD1 and SjLD2) produced using the Drosophila S2 protein expression system. We have then used RNA interference (RNAi) to knock down the expression of the SjIRs in adult S. japonicum in vitro and show that, in addition to their reduced transcription, the transcript levels of other important downstream genes within the insulin pathway, associated with glucose metabolism and schistosome fecundity, were also impacted substantially. Further, a significant decrease in glucose uptake was observed in the SjIR-knockdown worms compared with luciferase controls. In vaccine/challenge experiments, we found that rSjLD1 and rSjLD2 depressed female growth, intestinal granuloma density and faecal egg production in S. japonicum in mice presented with a low dose challenge infection. These data re-emphasize the potential of the SjIRs as veterinary transmission blocking vaccine candidates against zoonotic schistosomiasis japonica in China and the Philippines. Schistosomiasis affects over 200 million people globally. An anti-schistosome vaccine is not currently available. Schistosome eggs play a critical role in host pathology and the transmission of schistosomiasis; thus a vaccine targeting parasite fecundity and/or egg viability represents a realistic strategy for blocking transmission, promoting disease control in endemic areas. Based on our previous studies on the insulin receptors (SjIRs) of Schistosoma japonicum, as potential vaccine candidates, we have now further investigated the impact of insulin signaling on the growth, development, sexual maturation and egg production of adult schistosomes. Protein binding assays and RNAi strongly support our hypothesis that the insulin pathway in schistosomes is activated by the binding between host insulin and the parasite IRs, regulating the transcription of downstream genes integrally involved in glucose uptake and fecundity in these parasites. This feature was reflected in the striking decreased glucose levels of worms when the SjIRs were knocked down. Furthermore, the importance of the SjIRs in the growth and fecundity of adult S. japonicum was further demonstrated in murine vaccine trials using a low dose cercarial challenge which resulted in depressed female growth and faecal egg production in mice vaccinated with the recombinant L1 subdomains of SjIR1 and SjIR2.
Collapse
Affiliation(s)
- Hong You
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- * E-mail: (HY); (DPM)
| | - Geoffrey N. Gobert
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Pengfei Cai
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rong Mou
- Department of Parasitology, Guiyang Medical University, Guiyang, China
| | - Sujeevi Nawaratna
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Guofu Fang
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Francois Villinger
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Donald P. McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- * E-mail: (HY); (DPM)
| |
Collapse
|
29
|
Abstract
For decades, Praziquantel (PZQ) is the drug of choice against one of the most afflicting helminthic diseases worldwide, schistosomiasis. With respect to the fear of upcoming PZQ resistance, efforts are needed to find new chemotherapeutic options. Protein kinases (PKs) are essential molecules in signaling processes and indispensable to life. Aberrant PK functions take distinctive roles in human diseases and represent targets in chemotherapies. In schistosomes, conserved PKs were found to possess similar pivotal roles contributing not only to reproduction processes, but also to the pathology of schistosomiasis, which is closely associated to egg production. Exploiting the similarity of PKs of humans and schistosomes, PK inhibitors designed to treat human diseases may serve as lead compounds for new drugs against schistosomiasis.
Collapse
|
30
|
Dissous C. Venus Kinase Receptors at the Crossroads of Insulin Signaling: Their Role in Reproduction for Helminths and Insects. Front Endocrinol (Lausanne) 2015; 6:118. [PMID: 26284029 PMCID: PMC4522560 DOI: 10.3389/fendo.2015.00118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/17/2015] [Indexed: 11/13/2022] Open
Abstract
Venus kinase receptors (VKRs) are invertebrate receptor tyrosine kinases (TKs) first discovered in the human parasite Schistosoma. They contain an extracellular Venus FlyTrap module similar to the ligand-binding domain of G protein-coupled receptors of class C and an intracellular TK domain similar to that of insulin receptors. VKRs are present from cnidarians to echinoderms. They were shown to be activated by amino-acids, to induce insulin-like intracellular pathways, and to be highly expressed in larvae and in gonads of helminths and insects. The function of VKR in gametogenesis was demonstrated in schistosomes by VKR silencing and recent studies in Aedes aegypti have confirmed the importance of VKR in mosquito egg formation. AaeVKR was shown to bind to ovary ecdysteroidogenic hormone and to activate the production of ecdysteroids by the ovary, independently of signaling mediated by insulin-like peptides. These new data confirm and specify the function of VKRs in the reproduction of helminths and insects and they open interesting perspectives for elucidating the role of VKRs in other models. VKR targeting would also provide opportunities for the control of parasites and various vector-borne infectious diseases.
Collapse
Affiliation(s)
- Colette Dissous
- Center for Infection and Immunity of Lille, INSERM U1019, University Lille Nord de France, Lille, France
- CNRS-UMR 8204, Institut Pasteur de Lille, University Lille Nord de France, Lille, France
- *Correspondence: Colette Dissous,
| |
Collapse
|
31
|
Exploring the role of two interacting phosphoinositide 3-kinases of Haemonchus contortus. Parasit Vectors 2014; 7:498. [PMID: 25388625 PMCID: PMC4233088 DOI: 10.1186/s13071-014-0498-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/21/2014] [Indexed: 12/04/2022] Open
Abstract
Background Phosphoinositide 3-kinases (PI3Ks) are relatively conserved and important intracellular lipid kinases involved in signalling and other biological pathways. In the free-living nematode Caenorhabditis elegans, the heterodimeric form of PI3K consists of catalytic (AGE-1) and regulatory (AAP-1) subunits. These subunits are key components of the insulin-like signalling pathway and play roles in the regulation of the entry into and exit from dauer. Although, in parasitic nematodes, similar components are proposed to regulate the transition from free-living or arrested stages to parasitic larvae, nothing is known about PI3Ks in relation to the transition of third-stage larvae (L3s) to parasitism in Haemonchus contortus. Methods An integrated molecular approach was used to investigate age-1 and aap-1 of H. contortus (Hc-age-1 and Hc-aap-1) in C. elegans. Results The two genes Hc-age-1 and Hc-aap-1 were transcribed in all life stages, with the highest levels in the egg, infective L3 and adult female of H. contortus. The expression of these genes was localized to the intestine, contrasting the pattern of their orthologues in C. elegans (where they are expressed in both head neurons and the intestine). The yeast two-hybrid analysis demonstrated that the adaptor-binding domain of Hc-AGE-1 interacted strongly with the Hc-AAP-1; however, this complex did not rescue the function of its orthologue in age-1-deficient C. elegans. Conclusions This is the first time that the PI3K-encoding genes have been characterized from a strongylid parasitic nematode. The findings provide insights into the role of the PI3K heterodimer represented by Hc-age-1 and Hc-aap-1 in the developmental biology of H. contortus. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0498-2) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Morel M, Vanderstraete M, Cailliau K, Lescuyer A, Lancelot J, Dissous C. Compound library screening identified Akt/PKB kinase pathway inhibitors as potential key molecules for the development of new chemotherapeutics against schistosomiasis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 4:256-66. [PMID: 25516836 PMCID: PMC4266776 DOI: 10.1016/j.ijpddr.2014.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A wide range of PK inhibitors affects schistosome viability and reproduction. Structure and activity of the Akt/PKB protein are highly conserved in Schistosoma mansoni. Commercial Akt inhibitors are active on the recombinant SmAkt protein. Akt pathway inhibitors have schistosomicidal activity in vitro. SmAkt can be considered as a potential target for the control of schistosomiasis.
Protein kinases (PKs) are one of the largest protein families in most eukaryotic organisms. These enzymes are involved in the control of cell proliferation, differentiation and metabolism and a large number of the anticancer drugs currently used are directed against PKs. The structure and function of PKs are well conserved throughout evolution. In schistosome parasites, PKs were shown to be involved in essential functions at every stage of the parasite life cycle, making these enzymes promising anti-parasite drug targets. In this study, we tested a panel of commercial inhibitors for various PKs and analyzed their effects on pairing and egg production by schistosomes as well as their toxicity towards schistosomula larvae. Results obtained confirmed the deleterious effect of PK targeting on Schistosoma mansoni physiology and the important function of different tyrosine and serine/threonine kinases in the biology and reproduction of this parasite. They also indicated for the first time that the Protein kinase B (also called Akt) which is a major downstream target of many receptor tyrosine kinases and a central player at the crossroads of signal transduction pathways activated in response to growth factors and insulin, can constitute a novel target for anti-schistosome chemotherapy. Structural and functional studies have shown that SmAkt is a conserved kinase and that its activity can be inhibited by commercially available Akt inhibitors. In treated adult worms, Akt/PKB kinase pathway inhibitors induced profound alterations in pairing and egg laying and they also greatly affected the viability of schistosomula larvae.
Collapse
Affiliation(s)
- Marion Morel
- CIIL - Center of Infection and Immunity of Lille, Université Lille Nord de France, Inserm U1019, CNRS-UMR 8204, Institut Pasteur de Lille, 59019 Lille Cedex, France
| | - Mathieu Vanderstraete
- CIIL - Center of Infection and Immunity of Lille, Université Lille Nord de France, Inserm U1019, CNRS-UMR 8204, Institut Pasteur de Lille, 59019 Lille Cedex, France
| | - Katia Cailliau
- Laboratoire de Régulation des Signaux de Division, Université Lille 1 Sciences et Technology, EA 4479, IFR 147, 59655 Villeneuve d'Ascq Cedex, France
| | - Arlette Lescuyer
- Laboratoire de Régulation des Signaux de Division, Université Lille 1 Sciences et Technology, EA 4479, IFR 147, 59655 Villeneuve d'Ascq Cedex, France
| | - Julien Lancelot
- CIIL - Center of Infection and Immunity of Lille, Université Lille Nord de France, Inserm U1019, CNRS-UMR 8204, Institut Pasteur de Lille, 59019 Lille Cedex, France
| | - Colette Dissous
- CIIL - Center of Infection and Immunity of Lille, Université Lille Nord de France, Inserm U1019, CNRS-UMR 8204, Institut Pasteur de Lille, 59019 Lille Cedex, France
| |
Collapse
|
33
|
Walker AJ, Ressurreição M, Rothermel R. Exploring the function of protein kinases in schistosomes: perspectives from the laboratory and from comparative genomics. Front Genet 2014; 5:229. [PMID: 25132840 PMCID: PMC4117187 DOI: 10.3389/fgene.2014.00229] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/30/2014] [Indexed: 01/09/2023] Open
Abstract
Eukaryotic protein kinases are well conserved through evolution. The genome of Schistosoma mansoni, which causes intestinal schistosomiasis, encodes over 250 putative protein kinases with all of the main eukaryotic groups represented. However, unraveling functional roles for these kinases is a considerable endeavor, particularly as protein kinases regulate multiple and sometimes overlapping cell and tissue functions in organisms. In this article, elucidating protein kinase signal transduction and function in schistosomes is considered from the perspective of the state-of-the-art methodologies used and comparative organismal biology, with a focus on current advances and future directions. Using the free-living nematode Caenorhabditis elegans as a comparator we predict roles for various schistosome protein kinases in processes vital for host invasion and successful parasitism such as sensory behavior, growth and development. It is anticipated that the characterization of schistosome protein kinases in the context of parasite function will catalyze cutting edge research into host-parasite interactions and will reveal new targets for developing drug interventions against human schistosomiasis.
Collapse
Affiliation(s)
- Anthony J Walker
- Laboratory of Molecular Parasitology, School of Life Sciences, Kingston University Kingston upon Thames, UK
| | - Margarida Ressurreição
- Laboratory of Molecular Parasitology, School of Life Sciences, Kingston University Kingston upon Thames, UK
| | - Rolf Rothermel
- Laboratory of Molecular Parasitology, School of Life Sciences, Kingston University Kingston upon Thames, UK
| |
Collapse
|
34
|
Morel M, Vanderstraete M, Hahnel S, Grevelding CG, Dissous C. Receptor tyrosine kinases and schistosome reproduction: new targets for chemotherapy. Front Genet 2014; 5:238. [PMID: 25101117 PMCID: PMC4102852 DOI: 10.3389/fgene.2014.00238] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/03/2014] [Indexed: 12/31/2022] Open
Abstract
Schistosome parasites still represent a serious public health concern and a major economic problem in developing countries. Pathology of schistosomiasis is mainly due to massive egg production by these parasites and to inflammatory responses raised against the eggs which are trapped in host tissues. Tyrosine kinases (TKs) are key molecules that control cell differentiation and proliferation and they already represent important targets in cancer therapy. During recent years, it has been shown that receptor tyrosine kinases (RTK) signaling was active in reproductive organs and that it could regulate sexual maturation of schistosomes and egg production. This opens interesting perspectives for the control of transmission and pathogenesis of schistosomiasis based on new therapies targeting schistosome RTKs. This review relates the numerous data showing the major roles of kinase signaling in schistosome reproduction. It describes the conserved and particular features of schistosome RTKs, their implication in gametogenesis and reproduction processes and summarizes recent works indicating that RTKs and their signaling partners are interesting chemotherapeutical targets in new programs of control.
Collapse
Affiliation(s)
- Marion Morel
- Center for Infection and Immunity of Lille, INSERM U1019, CNRS-UMR 8204, Institut Pasteur de Lille, University Lille Nord de France Lille Cedex, France
| | - Mathieu Vanderstraete
- Center for Infection and Immunity of Lille, INSERM U1019, CNRS-UMR 8204, Institut Pasteur de Lille, University Lille Nord de France Lille Cedex, France
| | - Steffen Hahnel
- Biomedical Centre for Research Seltersberg, Institute of Parasitology, Justus-Liebig-University Giessen Giessen, Germany
| | - Christoph G Grevelding
- Biomedical Centre for Research Seltersberg, Institute of Parasitology, Justus-Liebig-University Giessen Giessen, Germany
| | - Colette Dissous
- Center for Infection and Immunity of Lille, INSERM U1019, CNRS-UMR 8204, Institut Pasteur de Lille, University Lille Nord de France Lille Cedex, France
| |
Collapse
|
35
|
You H, Stephenson RJ, Gobert GN, McManus DP. Revisiting glucose uptake and metabolism in schistosomes: new molecular insights for improved schistosomiasis therapies. Front Genet 2014; 5:176. [PMID: 24966871 PMCID: PMC4052099 DOI: 10.3389/fgene.2014.00176] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/23/2014] [Indexed: 12/27/2022] Open
Abstract
A better understanding of the molecular mechanisms required for schistosomes to take up glucose, the major nutritional source exploited by these blood flukes from their mammalian hosts and the subsequent metabolism required to fuel growth and fecundity, can provide new avenues for developing novel interventions for the control of schistosomiasis. This aspect of parasitism is particularly important to paired adult schistosomes, due to their considerable requirements for the energy needed to produce the extensive numbers of eggs laid daily by the female worm. This review describes recent advances in characterizing glucose metabolism in adult schistosomes. Potential intervention targets are discussed within the insulin signaling and glycolysis pathways, both of which play critical roles in the carbohydrate and energy requirements of schistosomes.
Collapse
Affiliation(s)
- Hong You
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research InstituteBrisbane, QLD, Australia
| | - Rachel J. Stephenson
- Faculty of Science, School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbane, QLD, Australia
| | - Geoffrey N. Gobert
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research InstituteBrisbane, QLD, Australia
| | - Donald P. McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research InstituteBrisbane, QLD, Australia
| |
Collapse
|
36
|
Hemer S, Konrad C, Spiliotis M, Koziol U, Schaack D, Förster S, Gelmedin V, Stadelmann B, Dandekar T, Hemphill A, Brehm K. Host insulin stimulates Echinococcus multilocularis insulin signalling pathways and larval development. BMC Biol 2014; 12:5. [PMID: 24468049 PMCID: PMC3923246 DOI: 10.1186/1741-7007-12-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/21/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host's liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood. RESULTS Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite's glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin. CONCLUSIONS Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Klaus Brehm
- University of Würzburg, Institute of Hygiene and Microbiology, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany.
| |
Collapse
|
37
|
Wang S, Luo X, Zhang S, Yin C, Dou Y, Cai X. Identification of putative insulin-like peptides and components of insulin signaling pathways in parasitic platyhelminths by the use of genome-wide screening. FEBS J 2013; 281:877-93. [PMID: 24286276 DOI: 10.1111/febs.12655] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/31/2013] [Accepted: 11/21/2013] [Indexed: 11/28/2022]
Abstract
No endogenous insulin-like peptides in parasitic flatworms have been reported. Insulin receptors from flukes and tapeworms have been shown to interact directly with the host-derived insulin molecule, which suggests the exploitation of host-derived insulin. In this study, a strategy of genome-wide searches followed by comprehensive analyses of strictly conserved features of the insulin family was used to demonstrate the presence of putative insulin-like peptides in the genomes of six tapeworms and two flukes. In addition, whole insulin signaling pathways were annotated on a genome-wide scale. Two putative insulin-like peptide genes in each genome of tapeworms and one insulin-like peptide gene in each genome of flukes were identified. The comprehensive analyses revealed that all of these peptides showed the common features shared by other members of the insulin family, and the phylogenetic analysis implied a putative gene duplication event in the Cestoda during the evolution of insulin-like peptide genes. The quantitative expression analysis and immunolocalization results suggested a putative role of these peptides in reproduction. Entire sets of major components of the classic insulin signaling pathway were successfully identified, suggesting that this pathway in parasitic flatworms might also regulate many other important biological activities. We believe that the identification of the insulin-like peptides gives us a better understanding of the insulin signaling pathway in these parasites, as well as host-parasite interactions.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | | | | | | | | | | |
Collapse
|
38
|
Brehm K. Protein Kinases as Drug Targets in the Treatment of Alveolar Echinococcosis. PROTEIN PHOSPHORYLATION IN PARASITES 2013:357-373. [DOI: 10.1002/9783527675401.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
39
|
Dual targeting of insulin and venus kinase Receptors of Schistosoma mansoni for novel anti-schistosome therapy. PLoS Negl Trop Dis 2013; 7:e2226. [PMID: 23696913 PMCID: PMC3656120 DOI: 10.1371/journal.pntd.0002226] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/09/2013] [Indexed: 11/21/2022] Open
Abstract
Background Chemotherapy of schistosomiasis relies on a single drug, Praziquantel (PZQ) and mass-use of this compound has led to emergence of resistant strains of Schistosoma mansoni, therefore pointing out the necessity to find alternative drugs. Through their essential functions in development and metabolism, receptor tyrosine kinases (RTK) could represent valuable drug targets for novel anti-schistosome chemotherapies. Taking advantage of the similarity between the catalytic domains of S. mansoni insulin receptors (SmIR1 and SmIR2) and Venus Kinase Receptors (SmVKR1 and SmVKR2), we studied the possibility to fight schistosomes by targeting simultaneously the four receptors with a single drug. Methodology/Principal Findings Several commercial RTK inhibitors were tested for their potential to inhibit the kinase activities of SmIR1, SmIR2, SmVKR1 and SmVKR2 intracellular domains (ICD) expressed in Xenopus oocytes. We measured the inhibitory effect of chemicals on meiosis resumption induced by the active ICD of the schistosome kinases in oocytes. The IR inhibitor, tyrphostin AG1024, was the most potent inhibitory compound towards SmIR and SmVKR kinases. In vitro studies then allowed us to show that AG1024 affected the viability of both schistosomula and adult worms of S. mansoni. At micromolar doses, AG1024 induced apoptosis and caused schistosomula death in a dose-dependent manner. In adult worms, AG1024 provoked alterations of reproductive organs, as observed by confocal laser scanner microscopy. With 5 µM AG1024, parasites were no more feeding and laying eggs, and they died within 48 h with 10 µM. Conclusion/Significance IRs and VKRs are essential in S. mansoni for key biological processes including glucose uptake, metabolism and reproduction. Our results demonstrate that inhibiting the kinase potential and function of these receptors by a single chemical compound AG1024 at low concentrations, leads to death of schistosomula and adult worms. Thus, AG1024 represents a valuable hit compound for further design of anti-kinase drugs applicable to anti-schistosome chemotherapy. Schistosomiasis is a chronic, debilitating disease that affects over 200 million people in the world. The pathology of schistosomiasis is caused mainly by host immune responses to parasite eggs and due to the formation of granulomas in liver and other tissues. There is no vaccine for schistosomiasis and treatment relies essentially on a single drug, Praziquantel. However, reduced susceptibility of schistosome isolates to Praziquantel has been reported, raising serious concerns about the need to develop new drugs against schistosomes. Receptor tyrosine kinases (RTKs) control many cellular and developmental processes and they are important targets in cancer therapy. In this paper, we have investigated the possibility to fight schistosomes by targeting with a single drug, insulin receptors (IRs) involved in parasite growth and metabolism and Venus Kinase Receptors (VKRs) which are unusual IR-like RTKs expressed in the parasite reproductive organs of Schistosoma mansoni. Diverse RTK inhibitors have been tested on kinase activities of these RTKs. The well-known IR inhibitor, tyrphostin AG1024, was demonstrated to be a potent inhibitor of both S. mansoni VKRs and IRs, able to induce in vitro death of larvae and adult worms at micromolar doses. AG1024 could represent a good hit compound for the development of novel drugs against schistosomes.
Collapse
|
40
|
Qiu C, Fu Z, Shi Y, Hong Y, Liu S, Lin J. A retinoid X receptor (RXR1) homolog from Schistosoma japonicum: Its ligand-binding domain may bind to 9-cis-retinoic acid. Mol Biochem Parasitol 2013; 188:40-50. [DOI: 10.1016/j.molbiopara.2013.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 01/31/2013] [Accepted: 02/05/2013] [Indexed: 01/28/2023]
|
41
|
McVeigh P, Atkinson L, Marks NJ, Mousley A, Dalzell JJ, Sluder A, Hammerland L, Maule AG. Parasite neuropeptide biology: Seeding rational drug target selection? Int J Parasitol Drugs Drug Resist 2012; 2:76-91. [PMID: 24533265 PMCID: PMC3862435 DOI: 10.1016/j.ijpddr.2011.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 01/16/2023]
Abstract
The rationale for identifying drug targets within helminth neuromuscular signalling systems is based on the premise that adequate nerve and muscle function is essential for many of the key behavioural determinants of helminth parasitism, including sensory perception/host location, invasion, locomotion/orientation, attachment, feeding and reproduction. This premise is validated by the tendency of current anthelmintics to act on classical neurotransmitter-gated ion channels present on helminth nerve and/or muscle, yielding therapeutic endpoints associated with paralysis and/or death. Supplementary to classical neurotransmitters, helminth nervous systems are peptide-rich and encompass associated biosynthetic and signal transduction components - putative drug targets that remain to be exploited by anthelmintic chemotherapy. At this time, no neuropeptide system-targeting lead compounds have been reported, and given that our basic knowledge of neuropeptide biology in parasitic helminths remains inadequate, the short-term prospects for such drugs remain poor. Here, we review current knowledge of neuropeptide signalling in Nematoda and Platyhelminthes, and highlight a suite of 19 protein families that yield deleterious phenotypes in helminth reverse genetics screens. We suggest that orthologues of some of these peptidergic signalling components represent appealing therapeutic targets in parasitic helminths.
Collapse
Affiliation(s)
- Paul McVeigh
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Louise Atkinson
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Nikki J. Marks
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Angela Mousley
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Johnathan J. Dalzell
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Ann Sluder
- Scynexis Inc., P.O. Box 12878, Research Triangle Park, NC 27709-2878, USA
| | | | - Aaron G. Maule
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
42
|
You H, Gobert GN, Duke MG, Zhang W, Li Y, Jones MK, McManus DP. The insulin receptor is a transmission blocking veterinary vaccine target for zoonotic Schistosoma japonicum. Int J Parasitol 2012; 42:801-7. [PMID: 22771861 DOI: 10.1016/j.ijpara.2012.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/01/2012] [Accepted: 06/04/2012] [Indexed: 12/25/2022]
Abstract
Insulin receptors have been previously identified in Schistosoma japonicum that can bind human insulin. We used the purified recombined protein of the ligand domain of S.japonicum insulin receptor 2 (SjLD2) in three independent murine vaccine/challenge trials. Compared with controls, vaccination of mice with SjLD2 resulted in a significant reduction in faecal eggs, the stunting of adult worms and a reduction in liver granuloma density in all three trials. Furthermore, in the final trial, in which mature intestinal eggs were also quantified, there was a reduction in their number. These results suggest that development of a vaccine based on rSjLD2 for preventing transmission of zoonotic schistosomiasis is feasible.
Collapse
Affiliation(s)
- Hong You
- Molecular Parasitology Laboratory, Infectious Diseases Division, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
43
|
Wilson RA. The cell biology of schistosomes: a window on the evolution of the early metazoa. PROTOPLASMA 2012; 249:503-518. [PMID: 21976269 DOI: 10.1007/s00709-011-0326-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/26/2011] [Indexed: 05/31/2023]
Abstract
This review of schistosome cell biology has a dual purpose; its intent is to alert two separate research communities to the activities of the other. Schistosomes are by far and away the best-characterised platyhelminths, due to their medical and economic importance, but seem to be almost totally ignored by researchers on the free-living lower metazoans. Equally, in their enthusiasm for the parasitic way of life, schistosome researchers seldom pay attention to the work on free-living animals that could inform their molecular investigations. The publication of transcriptomes and/or genomes for Schistosoma mansoni and Schistosoma japonicum, the sponge Archimedon, the cnidarians Nematostella and Hydra and the planarian Schmidtea provide the raw material for comparisons. Apart from interrogation of the databases for molecular similarities, there have been differences in technical approach to these lower metazoans; widespread application of whole mount in situ hybridisation to Schmidtea contrasts with the application of targeted proteomics to schistosomes. Using schistosome cell biology as the template, the key topics of cell adhesion, development, signalling pathways, nerve and muscle, and epithelia, are reviewed, where possible interspersing comparisons with the sponge, cnidarian and planarian data. The biggest jump in the evolution of cellular capabilities appears to be in the transition from a diploblast to triploblast level of organisation associated with development of a mobile and plastic body form.
Collapse
Affiliation(s)
- R Alan Wilson
- Centre for Immunology and Infection, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
44
|
Abou Elseoud SMF, Abdel Fattah NS, Ezz El Din HM, Abdel Al H, Mossalem H, Elleboudy N. Potential Correlation between Carboxylic Acid Metabolites in Biomphalaria alexandrina Snails after Exposure to Schistosoma mansoni Infection. THE KOREAN JOURNAL OF PARASITOLOGY 2012; 50:119-26. [PMID: 22711922 PMCID: PMC3375449 DOI: 10.3347/kjp.2012.50.2.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 01/31/2012] [Accepted: 01/31/2012] [Indexed: 11/23/2022]
Abstract
Carboxylic acids play an important role in both aerobic and anaerobic metabolic pathways of both the snail and the parasite. Monitoring the effects of infection by schistosome on Biomphalaria alexandrina carboxylic acids metabolic profiles represents a promising additional source of information about the state of metabolic system. We separated and quantified pyruvic, fumaric, malic, oxalic, and acetic acids using ion-suppression reversed-phase high performance liquid chromatography (HPLC) to detect correlations between these acids in both hemolymph and digestive gland gonad complex (DGG's) samples in a total of 300 B. alexandrina snails (150 infected and 150 controls) at different stages of infection. The results showed that the majority of metabolite pairs did not show significant correlations. However, some high correlations were found between the studied acids within the control group but not in other groups. More striking was the existence of reversed correlations between the same acids at different stages of infection. Some possible explanations of the underlying mechanisms were discussed. Ultimately, however, further data are required for resolving the responsible regulatory events. These findings highlight the potential of metabolomics as a novel approach for fundamental investigations of host-pathogen interactions as well as disease surveillance and control.
Collapse
|
45
|
MicroRNAs: potentially important regulators for schistosome development and therapeutic targets against schistosomiasis. Parasitology 2012; 139:669-79. [PMID: 22309492 DOI: 10.1017/s0031182011001855] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small, endogenous non-coding RNA molecules that regulate gene expression post-transcriptionally by targeting the 3' untranslated region (3' UTR) of messenger RNAs. Since the discovery of the first miRNA in Caenorhabditis elegans, important regulatory roles for miRNAs in many key biological processes including development, cell proliferation, cell differentiation and apoptosis of many organisms have been described. Hundreds of miRNAs have been identified in various multicellular organisms and many are evolutionarily conserved. Schistosomes are multi-cellular eukaryotes with a complex life-cycle that require genes to be expressed and regulated precisely. Recently, miRNAs have been identified in two major schistosome species, Schistosoma japonicum and S. mansoni. These miRNAs are likely to play critical roles in schistosome development and gene regulation. Here, we review recent studies on schistosome miRNAs and discuss the potential roles of miRNAs in schistosome development and gene regulation. We also summarize the current status for targeting miRNAs and the potential of this approach for therapy against schistosomiasis.
Collapse
|
46
|
Lu HL, Pietrantonio PV. Insect insulin receptors: insights from sequence and caste expression analyses of two cloned hymenopteran insulin receptor cDNAs from the fire ant. INSECT MOLECULAR BIOLOGY 2011; 20:637-649. [PMID: 21797944 DOI: 10.1111/j.1365-2583.2011.01094.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The insulin and insulin-like growth factor (IGF) signalling (IIS) pathway in the honey bee (Apis mellifera) is linked to reproductive division of labour and foraging behaviour. Two insulin receptor genes are present in the released genomes of other social hymenopterans. Limited information is available on the IIS pathway role in ants. The predicted insulin receptor sequences from the recently released draft genome of the fire ant Solenopsis invicta (Hymenoptera: Formicidae) are incomplete and biologically significant data are also lacking. To elucidate the role of the IIS pathway in the fire ant, two putative insulin receptors (SiInR-1 and SiInR-2) were cloned; the first InR cDNAs cloned from social insects. Analyses of putative post-translational modification sites in SiInRs revealed the potential for differential regulation. We investigated the transcriptional expression of both receptors at different developmental stages, castes and queen tissues. In last instar larvae and pharate pupae of workers and reproductive, transcriptional abundance of both receptors was negatively correlated with body size and nutritional status. The expression level of both receptors in different queen tissues appears to correlate with requirements for queen reproductive physiology and behaviours. This study contributes new information to the understanding of social insects because in fire ants juvenile hormone acts as a gonadotropin and workers are fully sterile, contrary to honey bees.
Collapse
Affiliation(s)
- H-L Lu
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | | |
Collapse
|
47
|
Functional Diversity of the Schistosoma mansoni Tyrosine Kinases. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:603290. [PMID: 21776387 PMCID: PMC3135232 DOI: 10.1155/2011/603290] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/15/2011] [Accepted: 03/15/2011] [Indexed: 01/07/2023]
Abstract
Schistosoma mansoni, one of the causative agents of schistosomiasis, has a complex life cycle infecting over 200 million people worldwide. Such a successful and prolific parasite life cycle has been shown to be dependent on the adaptive interaction between the parasite and hosts. Tyrosine kinases (TKs) play a key role in signaling pathways as demonstrated by a large body of experimental work in eukaryotes. Furthermore, comparative genomics have allowed the identification of TK homologs and provided insights into the functional role of TKs in several biological systems. Finally, TK structural biology has provided a rational basis for obtaining selective inhibitors directed to the treatment of human diseases. This paper covers the important aspects of the phospho-tyrosine signaling network in S. mansoni, Caenorhabditis elegans, and humans, the main process of functional diversification of TKs, that is, protein-domain shuffling, and also discusses TKs as targets for the development of new anti-schistosome drugs.
Collapse
|
48
|
Hanna R, Gordon A, Moffett D, Edgar H, Oliver L, McConnell S, Shaw L, Brennan G, Fairweather I. Fasciola hepatica: Comparative effects of host resistance and parasite intra-specific interactions on size and reproductive histology in flukes from rats infected with isolates differing in triclabendazole sensitivity. Vet Parasitol 2011; 178:251-63. [DOI: 10.1016/j.vetpar.2011.01.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/05/2011] [Accepted: 01/20/2011] [Indexed: 11/30/2022]
|
49
|
Oliveira KC, Carvalho MLP, Maracaja-Coutinho V, Kitajima JP, Verjovski-Almeida S. Non-coding RNAs in schistosomes: an unexplored world. AN ACAD BRAS CIENC 2011; 83:673-94. [DOI: 10.1590/s0001-37652011000200026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 04/28/2011] [Indexed: 11/21/2022] Open
Abstract
Non-coding RNAs (ncRNAs) were recently given much higher attention due to technical advances in sequencing which expanded the characterization of transcriptomes in different organisms. ncRNAs have different lengths (22 nt to >1, 000 nt) and mechanisms of action that essentially comprise a sophisticated gene expression regulation network. Recent publication of schistosome genomes and transcriptomes has increased the description and characterization of a large number of parasite genes. Here we review the number of predicted genes and the coverage of genomic bases in face of the public ESTs dataset available, including a critical appraisal of the evidence and characterization of ncRNAs in schistosomes. We show expression data for ncRNAs in Schistosoma mansoni. We analyze three different microarray experiment datasets: (1) adult worms' large-scale expression measurements; (2) differentially expressed S. mansoni genes regulated by a human cytokine (TNF-α) in a parasite culture; and (3) a stage-specific expression of ncRNAs. All these data point to ncRNAs involved in different biological processes and physiological responses that suggest functionality of these new players in the parasite's biology. Exploring this world is a challenge for the scientists under a new molecular perspective of host-parasite interactions and parasite development.
Collapse
|
50
|
Gouignard N, Vanderstraete M, Cailliau K, Lescuyer A, Browaeys E, Dissous C. Schistosoma mansoni: structural and biochemical characterization of two distinct Venus Kinase Receptors. Exp Parasitol 2011; 132:32-9. [PMID: 21616067 DOI: 10.1016/j.exppara.2011.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/22/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
Venus Kinase Receptors (VKRs) are atypical transmembrane proteins composed of an extracellular Venus FlyTrap module linked through a single helix to a tyrosine kinase domain similar to that of insulin receptors. This structure was first described in Schistosoma mansoni, then in a selected range of invertebrates, including many insects. The preferential expression of VKRs in larvae and gonads suggested their role in development and reproduction. While a single vkr gene was consistently found in all genomes, we identified two distinct vkr genes in S. mansoni. Our data indicated that Smvkr1 and Smvkr2 are very similar in structure and likely originated from gene duplication. Both genes are expressed in all the parasite stages and encode homologous proteins with a conserved VKR structure. Recombinant SmVKR1 and SmVKR2 exhibit tyrosine kinase activities dependent on the binding of distinct small ligand molecules. SmVKR1 and SmVKR2 could represent paralogs with different functions in the parasite.
Collapse
Affiliation(s)
- Nadege Gouignard
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, Institut Pasteur de Lille, 59019 Lille, France
| | | | | | | | | | | |
Collapse
|