1
|
Lamačová LJ, Trnka J. Chelating mitochondrial iron and copper: Recipes, pitfalls and promise. Mitochondrion 2024; 78:101903. [PMID: 38777220 DOI: 10.1016/j.mito.2024.101903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Iron and copper chelation therapy plays a crucial role in treating conditions associated with metal overload, such as hemochromatosis or Wilson's disease. However, conventional chelators face challenges in reaching the core of iron and copper metabolism - the mitochondria. Mitochondria-targeted chelators can specifically target and remove metal ions from mitochondria, showing promise in treating diseases linked to mitochondrial dysfunction, including neurodegenerative diseases and cancer. Additionally, they serve as specific mitochondrial metal sensors. However, designing these new molecules presents its own set of challenges. Depending on the chelator's intended use to prevent or to promote redox cycling of the metals, the chelating moiety must possess different donor atoms and an optimal value of the electrode potential of the chelator-metal complex. Various targeting moieties can be employed for selective delivery into the mitochondria. This review also provides an overview of the current progress in the design of mitochondria-targeted chelators and their biological activity investigation.
Collapse
Affiliation(s)
- Lucie J Lamačová
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Praha, Czech Republic
| | - Jan Trnka
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Praha, Czech Republic.
| |
Collapse
|
2
|
Russo S, Rozeboom HJ, Wijma HJ, Poelarends GJ, Fraaije MW. Biochemical, kinetic, and structural characterization of a Bacillus tequilensis nitroreductase. FEBS J 2024; 291:3889-3903. [PMID: 38946302 DOI: 10.1111/febs.17210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/17/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Nitroreductases (NRs) are NAD(P)H-dependent flavoenzymes that reduce nitro aromatic compounds to their corresponding arylamines via the nitroso and hydroxylamine intermediates. Because of their broad substrate scope and versatility, NRs have found application in multiple fields such as biocatalysis, bioremediation, cell-imaging and prodrug activation. However, only a limited number of members of the broad NR superfamily (> 24 000 sequences) have been experimentally characterized. Within this group of enzymes, only few are capable of amine synthesis, which is a fundamental chemical transformation for the pharmaceutical, agricultural, and textile industries. Herein, we provide a comprehensive description of a recently discovered NR from Bacillus tequilensis, named BtNR. This enzyme has previously been demonstrated to have the capability to fully convert nitro aromatic and heterocyclic compounds to their respective primary amines. In this study, we determined its biochemical, kinetic and structural properties, including its apparent melting temperature (Tm) of 59 °C, broad pH activity range (from pH 3 to 10) and a notably low redox potential (-236 ± 1 mV) in comparison to other well-known NRs. We also determined its steady-state and pre-steady-state kinetic parameters, which are consistent with other NRs. Additionally, we elucidated the crystal structure of BtNR, which resembles the well-characterized Escherichia coli oxygen-insensitive NAD(P)H nitroreductase (NfsB), and investigated the substrate binding in its active site through docking and molecular dynamics studies with four nitro aromatic substrates. Guided by these structural analyses, we probed the functional roles of active site residues by site-directed mutagenesis. Our findings provide valuable insights into the biochemical and structural properties of BtNR, as well as its potential applications in biotechnology.
Collapse
Affiliation(s)
- Sara Russo
- Molecular Enzymology Group, University of Groningen, The Netherlands
- Department of Chemical and Pharmaceutical Biology, University of Groningen, The Netherlands
| | | | - Hein J Wijma
- Molecular Enzymology Group, University of Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, University of Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, The Netherlands
| |
Collapse
|
3
|
Rich MH, Sharrock AV, Mulligan TS, Matthews F, Brown AS, Lee-Harwood HR, Williams EM, Copp JN, Little RF, Francis JJB, Horvat CN, Stevenson LJ, Owen JG, Saxena MT, Mumm JS, Ackerley DF. A metagenomic library cloning strategy that promotes high-level expression of captured genes to enable efficient functional screening. Cell Chem Biol 2023; 30:1680-1691.e6. [PMID: 37898120 PMCID: PMC10842177 DOI: 10.1016/j.chembiol.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/17/2023] [Accepted: 10/02/2023] [Indexed: 10/30/2023]
Abstract
Functional screening of environmental DNA (eDNA) libraries is a potentially powerful approach to discover enzymatic "unknown unknowns", but is usually heavily biased toward the tiny subset of genes preferentially transcribed and translated by the screening strain. We have overcome this by preparing an eDNA library via partial digest with restriction enzyme FatI (cuts CATG), causing a substantial proportion of ATG start codons to be precisely aligned with strong plasmid-encoded promoter and ribosome-binding sequences. Whereas we were unable to select nitroreductases from standard metagenome libraries, our FatI strategy yielded 21 nitroreductases spanning eight different enzyme families, each conferring resistance to the nitro-antibiotic niclosamide and sensitivity to the nitro-prodrug metronidazole. We showed expression could be improved by co-expressing rare tRNAs and encoded proteins purified directly using an embedded His6-tag. In a transgenic zebrafish model of metronidazole-mediated targeted cell ablation, our lead MhqN-family nitroreductase proved ∼5-fold more effective than the canonical nitroreductase NfsB.
Collapse
Affiliation(s)
- Michelle H Rich
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Abigail V Sharrock
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Timothy S Mulligan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Frazer Matthews
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alistair S Brown
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Hannah R Lee-Harwood
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Elsie M Williams
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Janine N Copp
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Rory F Little
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jenni J B Francis
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Claire N Horvat
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Luke J Stevenson
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeremy G Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Meera T Saxena
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jeff S Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand.
| |
Collapse
|
4
|
Rich MH, Sharrock AV, Mulligan TS, Matthews F, Brown AS, Lee-Harwood HR, Williams EM, Copp JN, Little RF, Francis JJB, Horvat CN, Stevenson LJ, Owen JG, Saxena MT, Mumm JS, Ackerley DF. A metagenomic library cloning strategy that promotes high-level expression of captured genes to enable efficient functional screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534183. [PMID: 36993673 PMCID: PMC10055417 DOI: 10.1101/2023.03.24.534183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Functional screening of environmental DNA (eDNA) libraries is a potentially powerful approach to discover enzymatic "unknown unknowns", but is usually heavily biased toward the tiny subset of genes preferentially transcribed and translated by the screening strain. We have overcome this by preparing an eDNA library via partial digest with restriction enzyme FatI (cuts CATG), causing a substantial proportion of ATG start codons to be precisely aligned with strong plasmid-encoded promoter and ribosome-binding sequences. Whereas we were unable to select nitroreductases from standard metagenome libraries, our FatI strategy yielded 21 nitroreductases spanning eight different enzyme families, each conferring resistance to the nitro-antibiotic niclosamide and sensitivity to the nitro-prodrug metronidazole. We showed expression could be improved by co-expressing rare tRNAs and encoded proteins purified directly using an embedded His6-tag. In a transgenic zebrafish model of metronidazole-mediated targeted cell ablation, our lead MhqN-family nitroreductase proved ~5-fold more effective than the canonical nitroreductase NfsB.
Collapse
Affiliation(s)
- Michelle H Rich
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Abigail V Sharrock
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Timothy S Mulligan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Frazer Matthews
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alistair S Brown
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Hannah R Lee-Harwood
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Elsie M Williams
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Current address: Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Janine N Copp
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Current addresses: Michael Smith Laboratories, University of British Columbia, Vancouver BC V6T 1Z4, Canada; Abcellera Biologics Inc, Vancouver BC V5Y 0A1, Canada
| | - Rory F Little
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Current address: Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Jenni JB Francis
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Claire N Horvat
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Current address: Teva Pharmaceuticals, Sydney, New South Wales 2113, Australia
| | - Luke J Stevenson
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeremy G Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Meera T Saxena
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jeff S Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
5
|
Ghatge S, Yang Y, Moon S, Song WY, Kim TY, Liu KH, Hur HG. A novel pathway for initial biotransformation of dinitroaniline herbicide butralin from a newly isolated bacterium Sphingopyxis sp. strain HMH. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123510. [PMID: 32736179 DOI: 10.1016/j.jhazmat.2020.123510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 05/27/2023]
Abstract
Butralin (N-sec- Butyl-4-tert-butyl-2,6-dinitroaniline) is a highly persistent dinitroaniline herbicide frequently detected in the environment. In this study, butralin-degrading soil bacterium, Sphingopyxis sp. strain HMH was isolated from agricultural soil samples. Based on whole genome sequence analysis of the strain HMH, the gene encoding a nitroreductase NfnB was identified and expressed in Escherichia coli (E. coli), and protein was purified to homogeneity. NfnB is a flavin-nitroreductase, found to be a functional tetramer, composed of subunit molecular mass of 25 kDa. The metabolites from butralin degradation by strain HMH and purified NfnB were identified using ultra performance liquid chromatography high resolution mass spectrometry (UPLC-HRMS), and a novel mechanism of butralin degradation was proposed. NfnB selectively nitro-reduced butralin into N- (sec-Butyl)-4-(tert-butyl)-6-nitrobenzene- 1,2-diamine, followed by formation of 5-(tert-Butyl)-3 -nitrobenzene-1,2-diamine and butanone by N- dealkylation through possible hydroxylation reaction onto the carbon linked amine of the N-(sec-Butyl) moiety. In our study, we could not detect the hydroxylated product 2-(2-Amino-4-tert-butyl-6-nitro- phenylamino)-butan-2-ol) (carbinolamine), instead its Schiff base product (E)-2-(Butan-2-yildeneamino)-5- (tert-butyl)-3-nitroaniline was detected. The release of butanone was further confirmed by derivatization with 2,4- dinitrophenylhydrazine (DNPH) followed by MS analysis. In conclusion, this study explores a novel multi-functional flavin- nitroreductase family enzyme NfnB, catalyzing unique and sequential nitroreduction and N-dealkylation through oxidative hydroxylation of dinitroaniline herbicide butralin.
Collapse
Affiliation(s)
- Sunil Ghatge
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Youri Yang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Seonyun Moon
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Woo-Young Song
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
6
|
Boddu RS, Perumal O, K D. Microbial nitroreductases: A versatile tool for biomedical and environmental applications. Biotechnol Appl Biochem 2020; 68:1518-1530. [PMID: 33156534 DOI: 10.1002/bab.2073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
Nitroreductases, enzymes found mostly in bacteria and also in few eukaryotes, use nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor for their activity and metabolize an enormous list of a diverse nitro group-containing compounds. Nitroreductases that are capable of metabolizing nitroaromatic and nitro heterocyclic compounds have drawn great attention in recent years owing to their biotechnological, biomedical, environmental, and human impact. These enzymes attracted medicinal chemists and pharmacologists because of their prodrug selectivity for activation/reduction of nitro compounds that wipe out pathogens/cancer cells, leaving the host/normal cells unharmed. It is applied in diverse fields of study like prodrug activation in treating cancer and leishmaniasis, designing fluorescent probes for hypoxia detection, cell imaging, ablation of specific cell types, biodegradation of nitro-pollutants, and interpretation of mutagenicity of nitro compounds. Keeping in view the immense prospects of these enzymes and a large number of research contributions in this area, the present review encompasses the enzymatic reaction mechanism, their role in antibiotic resistance, hypoxia sensing, cell imaging, cancer therapy, reduction of recalcitrant nitro chemicals, enzyme variants, and their specificity to substrates, reaction products, and their applications.
Collapse
Affiliation(s)
- Ramya Sree Boddu
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Onkara Perumal
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Divakar K
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, India
| |
Collapse
|
7
|
Ni H, Li N, Qian M, He J, Chen Q, Huang Y, Zou L, Long ZE, Wang F. Identification of a Novel Nitroreductase LNR and Its Role in Pendimethalin Catabolism in Bacillus subtilis Y3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12816-12823. [PMID: 31675231 DOI: 10.1021/acs.jafc.9b04354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbial degradation plays a major role in the dissipation of pendimethalin, and nitroreduction is an initial and detoxicating step. Previously, a pendimethalin nitroreductase, PNR, was identified in Bacillus subtilis Y3. Here, another pendimethalin nitroreductase from strain Y3, LNR, was identified. LNR shares only 40% identity with PNR and reduces the aromatic ring C-6 nitro group of pendimethalin and both nitro groups of trifluralin, butralin, and oryzalin. The catalytic activities against the four dinitroanilines were much higher for LNR than for PNR. lnr deletion significantly reduced the pendimethalin-reduction activity (60% activity loss), while pnr deletion led to only 30% activity loss, indicating that both LNR and PNR were involved in pendimethalin nitroreduction in strain Y3; however, LNR played the major role. This study facilitates the elucidation of pendimethalin catabolism and provides degrading enzyme resources for the removal of dinitroaniline herbicide residues in environment and agricultural products.
Collapse
Affiliation(s)
- Haiyan Ni
- College of Life Sciences , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Na Li
- School of Life Science and Technology , Nanyang Normal University , Nanyang , Henan 473061 , China
| | - Meng Qian
- Laboratory Center of Life Science, College of Life Sciences , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Jian He
- Laboratory Center of Life Science, College of Life Sciences , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Qing Chen
- College of Life Sciences , Zaozhuang University , Zaozhuang , Shandong 277160 , China
| | - Yunhong Huang
- College of Life Sciences , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Long Zou
- College of Life Sciences , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Zhong-Er Long
- College of Life Sciences , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Fei Wang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering , Jiangxi Agricultural University , Nanchang , Jiangxi 330045 , China
| |
Collapse
|
8
|
Copp JN, Akiva E, Babbitt PC, Tokuriki N. Revealing Unexplored Sequence-Function Space Using Sequence Similarity Networks. Biochemistry 2018; 57:4651-4662. [PMID: 30052428 DOI: 10.1021/acs.biochem.8b00473] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rapidly expanding number of protein sequences found in public databases can improve our understanding of how protein functions evolve. However, our current knowledge of protein function likely represents a small fraction of the diverse repertoire that exists in nature. Integrative computational methods can facilitate the discovery of new protein functions and enzymatic reactions through the observation and investigation of the complex sequence-structure-function relationships within protein superfamilies. Here, we highlight the use of sequence similarity networks (SSNs) to identify previously unexplored sequence and function space. We exemplify this approach using the nitroreductase (NTR) superfamily. We demonstrate that SSN investigations can provide a rapid and effective means to classify groups of proteins, therefore exposing experimentally unexplored sequences that may exhibit novel functionality. Integration of such approaches with systematic experimental characterization will expand our understanding of the functional diversity of enzymes and their associated physiological roles.
Collapse
Affiliation(s)
- Janine N Copp
- Michael Smith Laboratories , University of British Columbia , 2185 East Mall , Vancouver , British Columbia V6T 1Z4 , Canada
| | - Eyal Akiva
- Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , California 94158 , United States.,Quantitative Biosciences Institute , University of California , San Francisco , California 94143 , United States
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , California 94158 , United States.,Quantitative Biosciences Institute , University of California , San Francisco , California 94143 , United States
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories , University of British Columbia , 2185 East Mall , Vancouver , British Columbia V6T 1Z4 , Canada
| |
Collapse
|
9
|
Kimata S, Mochizuki D, Satoh J, Kitano K, Kanesaki Y, Takeda K, Abe A, Kawasaki S, Niimura Y. Intracellular free flavin and its associated enzymes participate in oxygen and iron metabolism in Amphibacillus xylanus lacking a respiratory chain. FEBS Open Bio 2018; 8:947-961. [PMID: 29928575 PMCID: PMC5986008 DOI: 10.1002/2211-5463.12425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/10/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023] Open
Abstract
Amphibacillus xylanus is a recently identified bacterium which grows well under both aerobic and anaerobic conditions and may prove useful for biomass utilization. Amphibacillus xylanus, despite lacking a respiratory chain, consumes oxygen at a similar rate to Escherichia coli (130-140 μmol oxygen·min-1·g-1 dry cells at 37 °C), suggesting that it has an alternative system that uses a large amount of oxygen. Amphibacillus xylanus NADH oxidase (Nox) was previously reported to rapidly reduce molecular oxygen content in the presence of exogenously added free flavin. Here, we established a quantitative method for determining the intracellular concentrations of free flavins in A. xylanus, involving French pressure and ultrafiltration membranes. The intracellular concentrations of flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and riboflavin were estimated to be approximately 8, 3, and 1 μm, respectively. In the presence of FAD, the predominant free flavin species, two flavoproteins Nox (which binds FAD) and NAD(P)H oxidoreductase (Npo, which binds FMN), were identified as central free flavin-associated enzymes in the oxygen metabolic pathway. Under 8 μm free FAD, the catalytic efficiency (kcat/Km) of recombinant Nox and Npo for oxygen increased by approximately fivefold and ninefold, respectively. Nox and Npo levels were increased, and intracellular FAD formation was stimulated following exposure of A. xylanus to oxygen. This suggests that these two enzymes and free FAD contribute to effective oxygen detoxification and NAD(P)+ regeneration to maintain redox balance during aerobic growth. Furthermore, A. xylanus required iron to grow aerobically. We also discuss the contribution of the free flavin-associated system to the process of iron utilization.
Collapse
Affiliation(s)
- Shinya Kimata
- Department of Bioscience Tokyo University of Agriculture Japan
| | | | - Junichi Satoh
- Department of Bioscience Tokyo University of Agriculture Japan
| | - Ken Kitano
- Graduate School of Biological Science Nara Institute of Science and Technology Ikoma Japan
| | - Yu Kanesaki
- Nodai Genome Research Center Tokyo University of Agriculture Japan
| | - Kouji Takeda
- Teacher Education Course Tokyo University of Agriculture Japan
| | - Akira Abe
- Department of Ophthalmology Sapporo Medical University Hokkaido Japan
| | - Shinji Kawasaki
- Department of Bioscience Tokyo University of Agriculture Japan
| | - Youichi Niimura
- Department of Bioscience Tokyo University of Agriculture Japan
| |
Collapse
|
10
|
Synthesis, in vitro antimalarial activities and cytotoxicities of amino-artemisinin-ferrocene derivatives. Bioorg Med Chem Lett 2017; 28:289-292. [PMID: 29317166 DOI: 10.1016/j.bmcl.2017.12.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/20/2017] [Accepted: 12/23/2017] [Indexed: 11/22/2022]
Abstract
Novel derivatives bearing a ferrocene attached via a piperazine linker to C-10 of the artemisinin nucleus were prepared from dihydroartemisinin and screened against chloroquine (CQ) sensitive NF54 and CQ resistant K1 and W2 strains of Plasmodium falciparum (Pf) parasites. The overall aim is to imprint oxidant (from the artemisinin) and redox (from the ferrocene) activities. In a preliminary assessment, these compounds were shown to possess activities in the low nM range with the most active being compound 6 with IC50 values of 2.79 nM against Pf K1 and 3.2 nM against Pf W2. Overall the resistance indices indicate that the compounds have a low potential for cross resistance. Cytotoxicities were determined with Hek293 human embryonic kidney cells and activities against proliferating cells were assessed against A375 human malignant melanoma cells. The selectivity indices of the amino-artemisinin ferrocene derivatives indicate there is overall an appreciably higher selectivity towards the malaria parasite than mammalian cells.
Collapse
|
11
|
Akiva E, Copp JN, Tokuriki N, Babbitt PC. Evolutionary and molecular foundations of multiple contemporary functions of the nitroreductase superfamily. Proc Natl Acad Sci U S A 2017; 114:E9549-E9558. [PMID: 29078300 PMCID: PMC5692541 DOI: 10.1073/pnas.1706849114] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Insight regarding how diverse enzymatic functions and reactions have evolved from ancestral scaffolds is fundamental to understanding chemical and evolutionary biology, and for the exploitation of enzymes for biotechnology. We undertook an extensive computational analysis using a unique and comprehensive combination of tools that include large-scale phylogenetic reconstruction to determine the sequence, structural, and functional relationships of the functionally diverse flavin mononucleotide-dependent nitroreductase (NTR) superfamily (>24,000 sequences from all domains of life, 54 structures, and >10 enzymatic functions). Our results suggest an evolutionary model in which contemporary subgroups of the superfamily have diverged in a radial manner from a minimal flavin-binding scaffold. We identified the structural design principle for this divergence: Insertions at key positions in the minimal scaffold that, combined with the fixation of key residues, have led to functional specialization. These results will aid future efforts to delineate the emergence of functional diversity in enzyme superfamilies, provide clues for functional inference for superfamily members of unknown function, and facilitate rational redesign of the NTR scaffold.
Collapse
Affiliation(s)
- Eyal Akiva
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
| | - Janine N Copp
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4;
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158;
- California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158
| |
Collapse
|
12
|
Diverse molecular resistance mechanisms of Bacillus megaterium during metal removal present in a spent catalyst. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0019-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Pendimethalin Nitroreductase Is Responsible for the Initial Pendimethalin Degradation Step in Bacillus subtilis Y3. Appl Environ Microbiol 2016; 82:7052-7062. [PMID: 27694234 DOI: 10.1128/aem.01771-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/22/2016] [Indexed: 11/20/2022] Open
Abstract
Pendimethalin [N-(1-ethylpropyl)-2,6-dinitro-3,4-xylidine] is a selective preemergence dinitroaniline herbicide. Several fungi and bacteria have been reported to degrade pendimethalin, but the enzymes or genes involved in this process have not been characterized. Nitroreduction is the initial degradation and detoxification step for pendimethalin. In this study, a pendimethalin nitroreductase (PNR), responsible for the nitroreduction of pendimethalin, was purified from the pendimethalin-degrading strain Bacillus subtilis Y3. Based on a comparison of its mass fingerprints with all of the deduced proteins from the draft genome of strain Y3, a protein annotated as a nitroreductase was identified, and its corresponding encoding gene was termed pnr PNR was a functional homodimer with a subunit molecular mass of approximately 23 kDa. PNR reduced the C-6 nitro group of the aromatic ring of pendimethalin, yielding 2-nitro-6-amino-N-(1-ethylpropyl)-3,4-xylidine. PNR could also catalyze the nitroreduction of three other major varieties of dinitroaniline herbicides, including butralin, oryzalin, and trifluralin. However, the number of reduced nitro groups was two instead of one, which differed from the nitroreduction of pendimethalin by PNR and which may be due to the symmetry in the chemical structures of the two nitro groups. A detoxification assay revealed that 2-nitro-6-amino-N-(1-ethylpropyl)-3,4-xylidine (PNR-reduced pendimethalin) showed no inhibitory effect on the growth of Saccharomyces cerevisiae BY4741, whereas pendimethalin showed an obvious inhibitory effect on its growth, indicating the detoxification effect of pendimethalin by PNR. Therefore, PNR has potential in pendimethalin detoxification applications. This report describes an enzyme (and corresponding gene) involved in the biodegradation of pendimethalin and dinitroaniline herbicides. IMPORTANCE Pendimethalin [N-(1-ethylpropyl)-2,6-dinitro-3,4-xylidine] is a widely used selective preemergence dinitroaniline herbicide, and its residue has been frequently detected in the environment. The U.S. Environmental Protection Agency (EPA) has classified pendimethalin as a persistent bioaccumulative toxin. To date, no enzymes or genes involved in pendimethalin biodegradation have been reported. In the present study, the gene pnr, which encodes the nitroreductase PNR, responsible for the nitroreduction of pendimethalin, was cloned from the pendimethalin-degrading strain Bacillus subtilis Y3. PNR could also catalyze the nitroreduction of three other major varieties of dinitroaniline herbicides, including butralin, oryzalin, and trifluralin. The reduction of pendimethalin by PNR might eliminate its toxicity against Saccharomyces cerevisiae BY4741, indicating the application potential of PNR in the detoxification of pendimethalin.
Collapse
|
14
|
Synechocystis ferredoxin-NADP+ oxidoreductase is capable of functioning as ferric reductase and of driving the Fenton reaction in the absence or presence of free flavin. Biometals 2011; 24:311-21. [DOI: 10.1007/s10534-010-9397-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 12/08/2010] [Indexed: 11/25/2022]
|
15
|
Chlorella vulgaris aldehyde reductase is capable of functioning as ferric reductase and of driving the fenton reaction in the presence of free flavin. Biosci Biotechnol Biochem 2010; 74:854-7. [PMID: 20445323 DOI: 10.1271/bbb.90798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The free flavin-dependent Fenton reaction was detected in cell-free extracts of Chlorella. The corresponding enzyme was purified to homogeneity, and its N-terminal sequence was highly homologous to those of aldo-keto reductase family enzymes. The purified enzyme displayed aldehyde reductase activity in the presence of NADPH. Additionally, it showed ferric reductase activity and drove the Fenton reaction in the presence of free FAD and NADH.
Collapse
|
16
|
Structure and function of CinD (YtjD) of Lactococcus lactis, a copper-induced nitroreductase involved in defense against oxidative stress. J Bacteriol 2010; 192:4172-80. [PMID: 20562311 DOI: 10.1128/jb.00372-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Lactococcus lactis IL1403, 14 genes are under the control of the copper-inducible CopR repressor. This so-called CopR regulon encompasses the CopR regulator, two putative CPx-type copper ATPases, a copper chaperone, and 10 additional genes of unknown function. We addressed here the function of one of these genes, ytjD, which we renamed cinD (copper-induced nitroreductase). Copper, cadmium, and silver induced cinD in vivo, as shown by real-time quantitative PCR. A knockout mutant of cinD was more sensitive to oxidative stress exerted by 4-nitroquinoline-N-oxide and copper. Purified CinD is a flavoprotein and reduced 2,6-dichlorophenolindophenol and 4-nitroquinoline-N-oxide with k(cat) values of 27 and 11 s(-1), respectively, using NADH as a reductant. CinD also exhibited significant catalase activity in vitro. The X-ray structure of CinD was resolved at 1.35 A and resembles those of other nitroreductases. CinD is thus a nitroreductase which can protect L. lactis against oxidative stress that could be exerted by nitroaromatic compounds and copper.
Collapse
|
17
|
Escherichia coli ferredoxin-NADP+ reductase and oxygen-insensitive nitroreductase are capable of functioning as ferric reductase and of driving the Fenton reaction. Biometals 2010; 23:727-37. [PMID: 20407804 DOI: 10.1007/s10534-010-9339-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 04/08/2010] [Indexed: 10/19/2022]
Abstract
Two free flavin-independent enzymes were purified by detecting the NAD(P)H oxidation in the presence of Fe(III)-EDTA and t-butyl hydroperoxide from E. coli. The enzyme that requires NADH or NADPH as an electron donor was a 28 kDa protein, and N-terminal sequencing revealed it to be oxygen-insensitive nitroreductase (NfnB). The second enzyme that requires NADPH as an electron donor was a 30 kDa protein, and N-terminal sequencing revealed it to be ferredoxin-NADP(+) reductase (Fpr). The chemical stoichiometry of the Fenton activities of both NfnB and Fpr in the presence of Fe(III)-EDTA, NAD(P)H and hydrogen peroxide was investigated. Both enzymes showed a one-electron reduction in the reaction forming hydroxyl radical from hydrogen peroxide. Also, the observed Fenton activities of both enzymes in the presence of synthetic chelate iron compounds were higher than their activities in the presence of natural chelate iron compounds. When the Fenton reaction occurs, the ferric iron must be reduced to ferrous iron. The ferric reductase activities of both NfnB and Fpr occurred with synthetic chelate iron compounds. Unlike NfnB, Fpr also showed the ferric reductase activity on an iron storage protein, ferritin, and various natural iron chelate compounds including siderophore. The Fenton and ferric reductase reactions of both NfnB and Fpr occurred in the absence of free flavin. Although the k(cat)/K(m) value of NfnB for Fe(III)-EDTA was not affected by free flavin, the k(cat)/K(m) value of Fpr for Fe(III)-EDTA was 12-times greater in the presence of free FAD than in the absence of free FAD.
Collapse
|
18
|
Elanskaya IV, Toporova VA, Grivennikova VG, Muronets EM, Lukashev EP, Timofeev KN. Reduction of photosystem I reaction center by recombinant DrgA protein in isolated thylakoid membranes of the cyanobacterium Synechocystis sp. PCC 6803. BIOCHEMISTRY (MOSCOW) 2009; 74:1080-7. [DOI: 10.1134/s0006297909100034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Shibata N, Ueda Y, Takeuchi D, Haruyama Y, Kojima S, Sato J, Niimura Y, Kitamura M, Higuchi Y. Structure analysis of the flavoredoxin from Desulfovibrio vulgaris Miyazaki F reveals key residues that discriminate the functions and properties of the flavin reductase family. FEBS J 2009; 276:4840-53. [PMID: 19708087 DOI: 10.1111/j.1742-4658.2009.07184.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The crystal structure of flavoredoxin from Desulfovibrio vulgaris Miyazaki F was determined at 1.05 A resolution and its ferric reductase activity was examined. The aim was to elucidate whether flavoredoxin has structural similarity to ferric reductase and ferric reductase activity, based on the sequence similarity to ferric reductase from Archaeoglobus fulgidus. As expected, flavoredoxin shared a common overall structure with A. fulgidus ferric reductase and displayed weak ferric reductase and flavin reductase activities; however, flavoredoxin contains two FMN molecules per dimer, unlike A. fulgidus ferric reductase, which has only one FMN molecule per dimer. Compared with A. fulgidus ferric reductase, flavoredoxin forms three additional hydrogen bonds and has a significantly smaller solvent-accessible surface area. These observations explain the higher affinity of flavoredoxin for FMN. Unexpectedly, an electron-density map indicated the presence of a Mes molecule on the re-side of the isoalloxazine ring of FMN, and that two zinc ions are bound to the two cysteine residues, Cys39 and Cys40, adjacent to FMN. These two cysteine residues are close to one of the putative ferric ion binding sites of ferric reductase. Based on their structural similarities, we conclude that the corresponding site of ferric reductase is the most plausible site for ferric ion binding. Comparing the structures with related flavin proteins revealed key structural features regarding the discrimination of function (ferric ion or flavin reduction) and a unique electron transport system.
Collapse
Affiliation(s)
- Naoki Shibata
- Department of Life Science, University of Hyogo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Harrington JM, Crumbliss AL. The redox hypothesis in siderophore-mediated iron uptake. Biometals 2009; 22:679-89. [DOI: 10.1007/s10534-009-9233-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 03/23/2009] [Indexed: 12/27/2022]
|
21
|
Ferredoxin-NADP+ reductase from Pseudomonas putida functions as a ferric reductase. J Bacteriol 2008; 191:1472-9. [PMID: 19114475 DOI: 10.1128/jb.01473-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida harbors two ferredoxin-NADP(+) reductases (Fprs) on its chromosome, and their functions remain largely unknown. Ferric reductase is structurally contained within the Fpr superfamily. Interestingly, ferric reductase is not annotated on the chromosome of P. putida. In an effort to elucidate the function of the Fpr as a ferric reductase, we used a variety of biochemical and physiological methods using the wild-type and mutant strains. In both the ferric reductase and flavin reductase assays, FprA and FprB preferentially used NADPH and NADH as electron donors, respectively. Two Fprs prefer a native ferric chelator to a synthetic ferric chelator and utilize free flavin mononucleotide (FMN) as an electron carrier. FprB has a higher k(cat)/K(m) value for reducing the ferric complex with free FMN. The growth rate of the fprB mutant was reduced more profoundly than that of the fprA mutant, the growth rate of which is also lower than the wild type in ferric iron-containing minimal media. Flavin reductase activity was diminished completely when the cell extracts of the fprB mutant plus NADH were utilized, but not the fprA mutant with NADPH. This indicates that other NADPH-dependent flavin reductases may exist. Interestingly, the structure of the NAD(P) region of FprB, but not of FprA, resembled the ferric reductase (Fre) of Escherichia coli in the homology modeling. This study demonstrates, for the first time, the functions of Fprs in P. putida as flavin and ferric reductases. Furthermore, our results indicated that FprB may perform a crucial role as a NADH-dependent ferric/flavin reductase under iron stress conditions.
Collapse
|
22
|
Pérez-Reinado E, Roldán MD, Castillo F, Moreno-Vivián C. The NprA nitroreductase required for 2,4-dinitrophenol reduction in Rhodobacter capsulatus is a dihydropteridine reductase. Environ Microbiol 2008; 10:3174-83. [PMID: 18355323 DOI: 10.1111/j.1462-2920.2008.01585.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The Rhodobacter capsulatus nprA gene codes for a putative nitroreductase. A recombinant His(6)-NprA protein was overproduced in Escherichia coli and purified by affinity chromatography. This protein contained FMN and showed nitroreductase activity with a wide range of nitroaromatic compounds, such as 2-nitrophenol, 2,4-dinitrophenol, 2,6-dinitrophenol, 2,4,6-trinitrophenol (picric acid), 2,4-dinitrobenzoate and 2,4-dinitrotoluene, and with the nitrofuran derivatives nitrofurazone and furazolidone. NADPH was the main electron donor and the ortho nitro group was preferably reduced to the corresponding amino derivative. The apparent K(m) values of NprA for NADPH, 2,4-dinitrophenol, picric acid and furazolidone were 40 microM, 78 microM, 72 microM and 83 microM, respectively, at pH and temperature optima (pH 6.5, 30 degrees C). Escherichia coli cells overproducing the NprA protein were much more sensitive to the prodrug 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) used in cancer therapy than non-transformed cells. NprA showed the highest activity with the quinonoid form of 6,7-dimethyl-7,8-dihydropterine as substrate, so that NprA may be involved in the synthesis of tetrahydrobiopterin in R. capsulatus. Expression of a transcriptional nprA-lacZ gene fusion was induced by phenylalanine or tyrosine, but not by other amino acids like glutamate or alanine. Furthermore, both nitroreductase activity and phenylalanine assimilation were inhibited in vivo by ammonium. A mutant defective in the nprA gene showed better growth rate with Phe or Tyr as nitrogen source than the wild-type strain, although both strains showed similar growth in media with Glu or without added nitrogen. These results suggest that the NprA nitroreductase may act in vivo as a dihydropteridine reductase involved in aromatic amino acids metabolism.
Collapse
Affiliation(s)
- Eva Pérez-Reinado
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | | | | | | |
Collapse
|
23
|
Roldán MD, Pérez-Reinado E, Castillo F, Moreno-Vivián C. Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol Rev 2008; 32:474-500. [PMID: 18355273 DOI: 10.1111/j.1574-6976.2008.00107.x] [Citation(s) in RCA: 300] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Most nitroaromatic compounds are toxic and mutagenic for living organisms, but some microorganisms have developed oxidative or reductive pathways to degrade or transform these compounds. Reductive pathways are based either on the reduction of the aromatic ring by hydride additions or on the reduction of the nitro groups to hydroxylamino and/or amino derivatives. Bacterial nitroreductases are flavoenzymes that catalyze the NAD(P)H-dependent reduction of the nitro groups on nitroaromatic and nitroheterocyclic compounds. Nitroreductases have raised a great interest due to their potential applications in bioremediation, biocatalysis, and biomedicine, especially in prodrug activation for chemotherapeutic cancer treatments. Different bacterial nitroreductases have been purified and their biochemical and kinetic parameters have been determined. The crystal structure of some nitroreductases have also been solved. However, the physiological role(s) of these enzymes remains unclear. Nitroreductase genes are widely spread within bacterial genomes, but are also found in archaea and some eukaryotic species. Although studies on regulation of nitroreductase gene expression are scarce, it seems that nitroreductase genes may be controlled by the MarRA and SoxRS regulatory systems that are involved in responses to several antibiotics and environmental chemical hazards and to specific oxidative stress conditions. This review covers the microbial distribution, types, biochemical properties, structure and regulation of the bacterial nitroreductases. The possible physiological functions and the biotechnological applications of these enzymes are also discussed.
Collapse
Affiliation(s)
- María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain.
| | | | | | | |
Collapse
|
24
|
Koropatkin N, Randich AM, Bhattacharyya-Pakrasi M, Pakrasi HB, Smith TJ. The Structure of the Iron-binding Protein, FutA1, from Synechocystis 6803. J Biol Chem 2007; 282:27468-27477. [PMID: 17626019 DOI: 10.1074/jbc.m704136200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyanobacteria account for a significant percentage of aquatic primary productivity even in areas where the concentrations of essential micronutrients are extremely low. To better understand the mechanism of iron selectivity and transport, the structure of the solute binding domain of an ATP binding cassette iron transporter, FutA1, was determined in the presence and absence of iron. The iron ion is bound within the "C-clamp" structure via four tyrosine and one histidine residues. There are extensive interactions between these ligating residues and the rest of the protein such that the conformations of the side chains remain relatively unchanged as the iron is released by the opening of the metal binding cleft. This is in stark contrast to the zinc-binding protein, ZnuA, where the domains of the metal-binding protein remain relatively fixed, whereas the ligating residues rotate out of the binding pocket upon metal release. The rotation of the domains in FutA1 is facilitated by two flexible beta-strands running along the back of the protein that act like a hinge during domain motion. This motion may require relatively little energy since total contact area between the domains is the same whether the protein is in the open or closed conformation. Consistent with the pH dependence of iron binding, the main trigger for iron release is likely the histidine in the iron-binding site. Finally, neither FutA1 nor FutA2 binds iron as a siderophore complex or in the presence of anions, and both preferentially bind ferrous over ferric ions.
Collapse
Affiliation(s)
- Nicole Koropatkin
- Donald Danforth Plant Science Center, Saint Louis, Missouri 63132 and
| | - Amelia M Randich
- Donald Danforth Plant Science Center, Saint Louis, Missouri 63132 and
| | | | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Thomas J Smith
- Donald Danforth Plant Science Center, Saint Louis, Missouri 63132 and.
| |
Collapse
|