1
|
Foo SH, Mak NWJ, Todd PA. Singapore's urbanised coral reefs: Changes in heavy metal pollution between 1994 and 2021. MARINE POLLUTION BULLETIN 2024; 208:116959. [PMID: 39305841 DOI: 10.1016/j.marpolbul.2024.116959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024]
Abstract
The heavy metal load in coral reefs of Singapore has not been comprehensively assessed since 1994. Here, we repeated the surveys conducted 27 years ago to quantify the levels of Cd, Cu, Cr, Fe, Pb, Ti, Zn in sediment and the sea urchin Diadema setosum from seven reefs. Cu and Cd showed significant reductions, Pb and Cr remained stable, while Fe, Ti and Zn had increased significantly. Overall, based on the Pollution Load Index (PLI), Singapore's reefs would not be considered polluted. Nevertheless, elevated concentrations of Cu, Pb and Zn were detected in sediment, with Cu and Pb exceeding the Threshold Effect Level. The spatial distribution of metal loads between sediment and sea urchin tissues were decoupled, underscoring the complexity of metal uptake and bioavailability. We reveal a mixed temporal trend among the heavy metals examined, each presenting different toxicity potentials and hence risks to local marine assemblages.
Collapse
Affiliation(s)
- Sze Hui Foo
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Block S3, 16 Science Drive 4, 117558, Singapore
| | - Nicholas Wei Jie Mak
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Block S3, 16 Science Drive 4, 117558, Singapore
| | - Peter A Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Block S3, 16 Science Drive 4, 117558, Singapore.
| |
Collapse
|
2
|
Yahiaoui Bouiba S, Bendimerad MEA, Rouane-Hacene O, Boualga A, Richir J. Metallic trace element dynamics in Paracentrotus lividus from Algeria: Environmental large-scale survey and human health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169492. [PMID: 38142987 DOI: 10.1016/j.scitotenv.2023.169492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
This paper evaluates the dynamics of Metallic Trace Elements (MTEs; Cd, Pb, Fe, Cu, Zn, Ni and Co) in the gonads of the sea urchin Paracentrotus lividus collected in five sites: four contaminated and one reference, along the Western coast of Algeria, recontextualizes this contamination within a wider geographical distribution area throughout 83 sites among the Mediterranean Sea and Atlantic and focuses on the potential risk of their consumption on human health for the first time in Algeria. The trace element pollution index places Algeria, and generally the North African coasts, as the region most contaminated by MTEs. The geographical variability in metal contamination levels is greater in the Mediterranean Sea than in the Atlantic. The health risk assessment indicates that Pb exceeds the maximum limit set by the Commission Regulation (EC) No 1881/2006 at two of the four Algerian contaminated sites.
Collapse
Affiliation(s)
- Samira Yahiaoui Bouiba
- Department of Ecology and Environment, Faculty of Nature and Life Sciences, Laboratory of Valorization of Human Actions for the Protection of the Environment and Application in Public Health, Abou Bekr Belkaid University, Tlemcen, Algeria.
| | - Mohammed El Amine Bendimerad
- Department of Ecology and Environment, Faculty of Nature and Life Sciences, Laboratory of Valorization of Human Actions for the Protection of the Environment and Application in Public Health, Abou Bekr Belkaid University, Tlemcen, Algeria
| | - Omar Rouane-Hacene
- University of Oran 1 Ahmed Ben Bella, Department of Biology, El M'naouer, Oran, Algeria
| | - Ahmed Boualga
- Laboratory of Clinical and Metabolic Nutrition, Faculty of Natural and Life Sciences, University of Oran 1 Ahmed Ben Bella, Oran, Algeria.
| | - Jonathan Richir
- SciSca SRL, 5330 Maillen, Belgium; Station de Recherches Sous-marines et Océanographiques, Punta Revellata, BP33, 20260 Calvi, France
| |
Collapse
|
3
|
Sarly MS, Pedro CA, Bruno CS, Raposo A, Quadros HC, Pombo A, Gonçalves SC. Use of the gonadal tissue of the sea urchin Paracentrotus lividus as a target for environmental contamination by trace metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89559-89580. [PMID: 37454008 PMCID: PMC10412469 DOI: 10.1007/s11356-023-28472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Many environmental monitoring works have been carried out using biomarkers as a tool to identify the effects of oil contamination on marine organisms; however, only a few studies have used sea urchin gonadal tissue for this purpose. Within this context, the present work aimed to understand the impact of an oil spill, proposing the use of sea urchin gonadal tissue as a biomarker for environmental contamination by trace metals in the species Paracentrotus lividus. Biometric analysis, quantification analyses of the elements Cd, Pb, Ni, Fe, Mn, Zn, and Cu, as well as histopathological evaluations were performed in gonads of P. lividus collected from an area affected by hydrocarbons, named as impacted shore (IS) and an area not affected, named reference shore (RS). The results showed that carapace diameter (DC), total wet weight (WW), and Cd concentrations in the gonads were significantly influenced by the interaction between the rocky shores of origin, the months of sampling, and by the sex of the individuals. Moreover, from July until September, the levels of Zn and Cd were significantly lower in male than in female gonads. In July (the month of the oil spill), the indexes of histopathological alterations (IHPA) of membrane dilation were significantly higher in individuals from the IS, compared to the individuals from the RS. In addition, there were significant correlations between biometric variables (wet weight, diameter of carapace, gonadal weight, and gonadosomatic index) and the elements Cd, Cu, Ni, and Mn concentrations. Lastly, a delay in the gametogenic cycle of the sea urchins from IS was also observed. Taken together, these findings suggest that direct exposure to trace metals induces histopathological lesions in P. lividus' gonads and affects its reproductive cycle.
Collapse
Affiliation(s)
- Monique S Sarly
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Carmen A Pedro
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Catarina S Bruno
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Andreia Raposo
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Helenita C Quadros
- Gonçalo Moniz Institute - Oswaldo Cruz Foundation (Fiocruz), Salvador, 40296-710, Brazil
| | - Ana Pombo
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Sílvia C Gonçalves
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal.
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517, Coimbra, Portugal.
| |
Collapse
|
4
|
El Idrissi O, Ternengo S, Monnier B, Lepoint G, Aiello A, Bastien R, Lourkisti R, Bonnin M, Santini J, Pasqualini V, Gobert S. Assessment of trace element contamination and effects on Paracentrotus lividus using several approaches: Pollution indices, accumulation factors and biochemical tools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161686. [PMID: 36690107 DOI: 10.1016/j.scitotenv.2023.161686] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/05/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Among the most common contaminants in marine ecosystems, trace elements are recognized as serious pollutants. In Corsica (NW Mediterranean Sea), near the old asbestos mine at Canari, trace elements from the leaching of mine residues have been discharged into the sea for several decades. The aim of this study was to assess the levels of contamination in this area and the potential effects on Paracentrotus lividus (Lamarck, 1816) using pollution indices, accumulation factors and biochemical tools. For this purpose, the concentration of 24 trace elements was measured in sea urchins (gonads and gut content), macroalgae, seawater column and sediment collected at 12 stations nearby the old asbestos mine and at a reference site. The bioaccumulation of trace elements occurs as follows: macroalgae > gut > gonads. TEPI contribute to highlight contamination gradients which are mainly due to the dominant marine currents allowing the migration of mining waste along the coastline. This hypothesis was supported by TESVI, which identified characteristic trace elements in the southern area of the mine. High hydrogen peroxide content, associated with elevated catalase and glutathione-S-transferase enzyme activities, were also identified at these sites and at the reference site. Trace elements contamination as well as several abiotic factors could explain these results (e.g. microbiological contamination, hydrodynamic events, etc.). The results obtained in this study suggest that oxidative stress induced by contamination does not affect the health of Paracentrotus lividus. This work has provided a useful dataset allowing better use of sea urchins and various tools for assessing trace element contamination in coastal ecosystems.
Collapse
Affiliation(s)
- O El Idrissi
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France; Université de Corse Pasquale Paoli, UAR CNRS 3514 Plateforme marine Stella Mare, 20620 Biguglia, France; Université de Liège, Centre MARE, Focus, Laboratoire d'Océanologie, Sart Tilman, B6c, 4000 Liège, Belgium.
| | - S Ternengo
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France; Université de Corse Pasquale Paoli, UAR CNRS 3514 Plateforme marine Stella Mare, 20620 Biguglia, France
| | - B Monnier
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France
| | - G Lepoint
- Université de Liège, Centre MARE, Focus, Laboratoire d'Océanologie, Sart Tilman, B6c, 4000 Liège, Belgium
| | - A Aiello
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France; Université de Corse Pasquale Paoli, UAR CNRS 3514 Plateforme marine Stella Mare, 20620 Biguglia, France
| | - R Bastien
- Université de Corse Pasquale Paoli, UAR CNRS 3514 Plateforme marine Stella Mare, 20620 Biguglia, France
| | - R Lourkisti
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France
| | - M Bonnin
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France
| | - J Santini
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France
| | - V Pasqualini
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France; Université de Corse Pasquale Paoli, UAR CNRS 3514 Plateforme marine Stella Mare, 20620 Biguglia, France
| | - S Gobert
- Université de Liège, Centre MARE, Focus, Laboratoire d'Océanologie, Sart Tilman, B6c, 4000 Liège, Belgium; STAtion de REcherche Sous-marines et Océanographiques (STARESO), 20260 Calvi, France
| |
Collapse
|
5
|
Bouiba S, Bendimerad MEA, Rouane-Hacene O, Boualga A, Richir J. Metallic trace element dynamics in Paracentrotus lividus from Algeria: Environmental and human health risk assessment. MARINE POLLUTION BULLETIN 2023; 187:114485. [PMID: 36584435 DOI: 10.1016/j.marpolbul.2022.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
This paper evaluates the dynamic of Metallic Trace Elements (MTEs; Cd, Pb, Fe, Cu, Zn, Ni and Co) in the sea urchin Paracentrotus lividus collected in five sites: four contaminated and one reference, along the western coast of Algeria, recontextualizes this contamination within a wider geographical distribution area throughout 84 sites among the Mediterranean Sea and Atlantic and focuses on the potential risk on human health for the first time in Algeria. The Trace Element Pollution Index places Algeria, and generally the North African coasts, as the region most contaminated by MTEs. The Trace Element Spatial Variation Index ranks Pb as a MTE of key environmental concern according to global spatial variability. The health risk assessment indicates that Cd and Pb exceed the maximum limits set by the Commission Regulation (EC) No 1881/2006 on three of the four contaminated sites.
Collapse
Affiliation(s)
- Samira Bouiba
- Department of Ecology and Environment, Faculty of Nature and Life Sciences, Laboratory of Valorization of Human Actions for the Protection of the Environment and Application in Public Health, Abou Bekr Belkaid University, Tlemcen, Algeria.
| | - Mohammed El Amine Bendimerad
- Department of Ecology and Environment, Faculty of Nature and Life Sciences, Laboratory of Valorization of Human Actions for the Protection of the Environment and Application in Public Health, Abou Bekr Belkaid University, Tlemcen, Algeria
| | - Omar Rouane-Hacene
- University of Oran 1 Ahmed Ben Bella, Department of Biology, El M'naouer, Oran, Algeria
| | - Ahmed Boualga
- Laboratory of Clinical and Metabolic Nutrition, Faculty of Natural and Life Sciences, University of Oran 1 Ahmed Ben Bella, Oran, Algeria.
| | | |
Collapse
|
6
|
Weng N, Guagliardo P, Jiang H, Wang WX. NanoSIMS Imaging of Bioaccumulation and Subcellular Distribution of Manganese During Oyster Gametogenesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8223-8235. [PMID: 34032398 DOI: 10.1021/acs.est.1c02393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many bivalve mollusks display remarkable sex differentiation of gonadal accumulation of manganese (Mn), but the underlying processes responsible for such differences have seldom been explored. In this study, the accumulation of Mn in male and female gonads during the reproductive cycle of oysters was first examined, and the distributions of Mn in oocytes and sperm cells at different developmental stages were imaged by the nanoscale secondary ion mass spectrometry (NanoSIMS) at the subcellular level. We found that the distribution and accumulation of Mn during oogenesis were closely associated with the formation and translocation of cortical granules. This is the first time that the enrichment of Mn was directly visualized in cortical granules, which was identified as the major storage site of Mn in oocytes of oysters. Yolk granules were revealed as another storage pool of Mn in oyster oocytes with lower accumulation. In contrast, Mn was mainly distributed in the nucleus of sperm cells with accumulation levels much lower than those in cortical and yolk granules of oocytes. These results demonstrated great differences of the subcellular localization and accumulation capacity of Mn between oocytes and sperm cells in oysters, implying the sex differentiation in susceptibility of reproductive response to Mn stress. Our study also highlights the importance of gender difference in future biomonitoring and ecotoxicological studies of Mn in marine bivalves.
Collapse
Affiliation(s)
- Nanyan Weng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Haibo Jiang
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, Western Australia 6009, Australia
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Wen-Xiong Wang
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- School of Energy and Environment and State Key Laboratory of Marine Pollution, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
7
|
Figueiredo D, Santos WS, Montoni F, Iwai LK, Silva Junior PI. Toposome: Source of antimicrobial molecules in the gonads of the sea urchin Lytechinus variegatus (Lamarck, 1816). FISH & SHELLFISH IMMUNOLOGY 2021; 109:51-61. [PMID: 33276094 DOI: 10.1016/j.fsi.2020.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Sea urchins live in a challenging environment that requires rapid and efficient responses against pathogens and invaders. This response may be also important in reproductive processes once males and females release their gametes into water. In addition, the gonads are organs with dual function: reproductive organ and nutrient reserve, therefore it needs efficient protective mechanisms to preserve the nutrients as well as the reproductive cells. The aim of this study was to evaluate the presence and characterize antimicrobial molecules in the male and female gonads of the sea urchin Lytechinus variegatus. Through HPLC purification, antimicrobial activity test and mass spectrometry several antimicrobial molecules were found in the gonads of both gender. Computational in silico analyses showed that they are fragments of a glycoprotein called toposome, also known as major yolk protein (MYP) which is one of the major proteins found in the gonads. Although different functions have been reported for this protein, this is the first description of a direct antimicrobial activity in Lytechinus variegatus. The results indicate that when undergoing proteolysis the toposome generates different fragments with antimicrobial activity which may indicate the importance of a rapid defense response strategy against invading microorganisms in the gonads used by both males and females sea urchins.
Collapse
Affiliation(s)
- Dal Figueiredo
- Laboratory for Applied Toxinology (LETA/CeTICS), Butantan Institute, São Paulo CEP, 05503-900, SP, Brazil; Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP, 05508-900, SP, Brazil
| | - W S Santos
- Laboratory for Applied Toxinology (LETA/CeTICS), Butantan Institute, São Paulo CEP, 05503-900, SP, Brazil
| | - Fabio Montoni
- Laboratory for Applied Toxinology (LETA/CeTICS), Butantan Institute, São Paulo CEP, 05503-900, SP, Brazil
| | - Leo Kei Iwai
- Laboratory for Applied Toxinology (LETA/CeTICS), Butantan Institute, São Paulo CEP, 05503-900, SP, Brazil
| | - P I Silva Junior
- Laboratory for Applied Toxinology (LETA/CeTICS), Butantan Institute, São Paulo CEP, 05503-900, SP, Brazil; Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP, 05508-900, SP, Brazil.
| |
Collapse
|
8
|
Xu D, Zhou S, Sun L. RNA-seq based transcriptional analysis reveals dynamic genes expression profiles and immune-associated regulation under heat stress in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2018; 78:169-176. [PMID: 29684611 DOI: 10.1016/j.fsi.2018.04.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/08/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
In this study, we explored the gene expression profiles in Apostichopus japonicus under continuous heat stress (6 h, 48 h and 192 h) by applying RNA-seq technique. A total of 676, 1010 and 1083 differentially expressed genes were detected at three heat stress groups respectively, which suggested complex regulation of various biological processes. Then we focused on the changing of immune system under HS in sea cucumbers. Key immune-associated genes were involved in heat stress response, which were classified into six groups: heat shock proteins, transferrin superfamily members, effector genes, proteases, complement system, and pattern recognition receptors and signaling. Moreover, the mRNA expression of the immune-associated genes were validated by the real time PCR. Our results showed that an immunological strategy in this species was developed to confront abrupt elevated temperatures in the environment.
Collapse
Affiliation(s)
- Dongxue Xu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shun Zhou
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Lina Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
9
|
Ternengo S, Marengo M, El Idrissi O, Yepka J, Pasqualini V, Gobert S. Spatial variations in trace element concentrations of the sea urchin, Paracentrotus lividus, a first reference study in the Mediterranean Sea. MARINE POLLUTION BULLETIN 2018; 129:293-298. [PMID: 29680551 DOI: 10.1016/j.marpolbul.2018.02.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/19/2018] [Accepted: 02/24/2018] [Indexed: 06/08/2023]
Abstract
A study on Trace Elements (TE) from sea urchin gonads has been conducted in the western Mediterranean Sea. Contamination data were used to determine a Trace Method Pollution Index (TEPI). TE concentrations varied considerably depending on the location of the sampling stations. The results showed that five trace elements (Zn, Fe, As, Al, Cu) are ubiquitous. The geographical area considered (Corsica) represents an important range of environmental conditions and types of pressure that can be found in the western Mediterranean Sea. TEPI was used to classify the studied sites according to their degree of contamination and allowed reliable comparison of TE contamination between local and international sites. TE contamination of the western Mediterranean Sea displayed a north-to-south gradient, from the Italian coasts down through the insular Corsican coasts to the north African littoral. Due to the increasing environmental pressure on the Mediterranean Sea, a regular monitoring of TE levels in marine organisms is necessary to prevent any further environmental deterioration.
Collapse
Affiliation(s)
- S Ternengo
- Université de Corse Pascal Paoli, UMR 6134 CNRS-UCPP Sciences pour l'Environnement, 20250 Corte, France; Université de Corse Pascal Paoli, UMS 3514 CNRS-UCPP Plateforme marine Stella Mare, 20620 Biguglia, France.
| | - M Marengo
- Université de Corse Pascal Paoli, UMR 6134 CNRS-UCPP Sciences pour l'Environnement, 20250 Corte, France; Université de Liège, Centre MARE, Focus, Laboratoire d'Océanologie, Sart-Tilman, B6c, 4000 Liège, Belgium
| | - O El Idrissi
- Université de Corse Pascal Paoli, UMR 6134 CNRS-UCPP Sciences pour l'Environnement, 20250 Corte, France; Université de Corse Pascal Paoli, UMS 3514 CNRS-UCPP Plateforme marine Stella Mare, 20620 Biguglia, France
| | - J Yepka
- Université de Liège, Centre MARE, Focus, Laboratoire d'Océanologie, Sart-Tilman, B6c, 4000 Liège, Belgium
| | - V Pasqualini
- Université de Corse Pascal Paoli, UMR 6134 CNRS-UCPP Sciences pour l'Environnement, 20250 Corte, France; Université de Corse Pascal Paoli, UMS 3514 CNRS-UCPP Plateforme marine Stella Mare, 20620 Biguglia, France
| | - S Gobert
- Université de Liège, Centre MARE, Focus, Laboratoire d'Océanologie, Sart-Tilman, B6c, 4000 Liège, Belgium; STAtion de REcherche Sous-marines et Océanographiques (STARESO), 20260 Calvi, France
| |
Collapse
|
10
|
Biotic and environmental stress induces nitration and changes in structure and function of the sea urchin major yolk protein toposome. Sci Rep 2018; 8:4610. [PMID: 29545577 PMCID: PMC5854732 DOI: 10.1038/s41598-018-22861-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 03/02/2018] [Indexed: 12/17/2022] Open
Abstract
The major yolk protein toposome plays crucial roles during gametogenesis and development of sea urchins. We previously found that nitration of toposome increases in the gonads of a Paracentrotus lividus population living in a marine protected area affected by toxic blooms of Ostreospsis cf. ovata, compared to control populations. This modification is associated with ovatoxin accumulation, high levels of nitric oxide in the gonads, and a remarkable impairment of progeny development. However, nothing is known about the environmental-mediated-regulation of the structure and biological function of toposome. Here, we characterize through wide-ranging biochemical and structural analyses the nitrated toposome of sea urchins exposed to the bloom, and subsequently detoxified. The increased number of nitrated tyrosines in toposome of sea urchins collected during algal bloom induced structural changes and improvement of the Ca2+-binding affinity of the protein. After 3 months’ detoxification, ovatoxin was undetectable, and the number of nitric oxide-modified tyrosines was reduced. However, the nitration of specific residues was irreversible and occurred also in embryos treated with metals, used as a proxy of environmental pollutants. The structural and functional changes of toposome caused by nitration under adverse environmental conditions may be related to the defective development of sea urchins’ progeny.
Collapse
|
11
|
González-Fernández C, Albentosa M, Sokolova I. Interactive effects of nutrition, reproductive state and pollution on molecular stress responses of mussels, Mytilus galloprovincialis Lamarck, 1819. MARINE ENVIRONMENTAL RESEARCH 2017; 131:103-115. [PMID: 28967508 DOI: 10.1016/j.marenvres.2017.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
Marine bivalves including mussels Mytilus galloprovincialis are commonly used as sentinels for pollution monitoring and ecosystem health assessment in the coastal zones. Use of biomarkers to assess the pollution effects assumes that the effects of pollutants on the biomarkers exceed the natural background variability; yet this assumption has rarely been tested. We exposed mussels at different reproductive stages and nutritive states to two concentrations of a polycyclic aromatic hydrocarbon (fluoranthene, 3 and 60 μg L-1) for three weeks. Expression levels of the molecular biomarkers related to the detoxification and general stress response [cytochrome P450 oxidase (CYP450), glutathione S-transferases (GST-α; GST-S1; GST-S2), the multixenobiotic resistance protein P-glycoprotein (PgP), metallothioneins (MT10 and MT20), heat shock proteins (HSP22, HSP70-2; HSP70-3; HSP70-4), as well as mRNA expression of two reproduction-related genes, vitellogenin (Vitel) and vitelline coat lysin M7 (VCLM7)] were measured. The mussels' nutrition and reproductive state affected the baseline mRNA levels of molecular biomarkers and modulated the transcriptional responses of biomarker genes to the pollutant exposure. Thus, mussel physiological state could act as a confounding factor in the evaluation of the response of pollution through molecular biomarkers. The biomarker baseline levels must be determined across a range of physiological states to enable the use of biomarkers in monitoring programs.
Collapse
Affiliation(s)
- Carmen González-Fernández
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA; Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Varadero, 1, 30740 San Pedro del Pinatar, Murcia, Spain.
| | - Marina Albentosa
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Varadero, 1, 30740 San Pedro del Pinatar, Murcia, Spain
| | - Inna Sokolova
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA; Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
12
|
Chen M, Li X, Zhu A, Storey KB, Sun L, Gao T, Wang T. Understanding mechanism of sea cucumber Apostichopus japonicus aestivation: Insights from TMT-based proteomic study. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 19:78-89. [DOI: 10.1016/j.cbd.2016.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/31/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2022]
|
13
|
Proteomic changes occurring along gonad maturation in the edible sea urchin Paracentrotus lividus. J Proteomics 2016; 144:63-72. [DOI: 10.1016/j.jprot.2016.05.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 12/20/2022]
|
14
|
Zazueta-Novoa V, Onorato TM, Reyes G, Oulhen N, Wessel GM. Complexity of Yolk Proteins and Their Dynamics in the Sea Star Patiria miniata. THE BIOLOGICAL BULLETIN 2016; 230:209-19. [PMID: 27365416 PMCID: PMC5103698 DOI: 10.1086/bblv230n3p209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Oviparous animals store yolk proteins within the developing oocyte. These proteins are used in gametogenesis and as a nutritional source for embryogenesis. Vitellogenin and the major yolk protein are two of the most important yolk proteins among diverse species of invertebrates and vertebrates. Among the echinoderms, members of the subphyla Echinozoa (sea urchins and sea cucumbers) express the major yolk protein (MYP) but not vitellogenin (Vtg), while an initial report has documented that two Asterozoa (sea stars) express a vitellogenin. Our results show that sea stars contain two vitellogenins, Vtg 1 and Vtg 2, and MYP. In Patiria miniata, these genes are differentially expressed in the somatic and germ cells of the ovary: Vtg 1 is enriched in the somatic cells of the ovary but not in the oocytes, and Vtg 2 accumulates in both oocytes and somatic cells; MYP is not robustly present in either. Remarkably, Vtg 2 and MYP mRNA reappear in larvae; Vtg 2 is detected within cells of the ectoderm, and MYP accumulates in the coelomic pouches, the intestine, and the posterior enterocoel (PE), the site of germ line formation in this animal. Additionally, the Vtg 2 protein is present in oocytes, follicle cells, and developing embryos, but becomes undetectable following gastrulation. These results help elucidate the mechanisms involved in yolk dynamics, and provide molecular information that allows for greater understanding of the evolution of these important gene products.
Collapse
Affiliation(s)
- Vanesa Zazueta-Novoa
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, 185 Meeting Street, Box G-SFH, Providence, Rhode Island 02912; and
| | - Thomas M Onorato
- Department of Natural Sciences, LaGuardia Community College/CUNY, Room M207, 31-10 Thomson Avenue, Long Island City, New York 11101
| | - Gerardo Reyes
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, 185 Meeting Street, Box G-SFH, Providence, Rhode Island 02912; and Department of Natural Sciences, LaGuardia Community College/CUNY, Room M207, 31-10 Thomson Avenue, Long Island City, New York 11101
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, 185 Meeting Street, Box G-SFH, Providence, Rhode Island 02912; and
| | - Gary M Wessel
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, 185 Meeting Street, Box G-SFH, Providence, Rhode Island 02912; and
| |
Collapse
|
15
|
Strogyloudi E, Pancucci-Papadopoulou MA, Papadopoulos GL. Metal and metallothionein concentrations in Paracentrotus lividus from Amvrakikos gulf (Ionian Sea-Greece). ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:5489-5499. [PMID: 24833020 DOI: 10.1007/s10661-014-3798-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 04/30/2014] [Indexed: 06/03/2023]
Abstract
Concentrations of Cd, Cu, Cr, Ni, Zn, Fe and metallothioneins (MTs) were measured in the gonads of Paracentrotus lividus from Amvrakikos gulf (Ionian Sea, Greece). Three natural populations were selected; two of them, growing inside the gulf (Agios Thomas and Koronisia), presented higher density and smaller body size than the population living in a coastal area just outside the gulf (Mytikas). Metal and MT levels were not elevated, with the exception of Zn, showing high values related to the reproduction stage of the sea urchins. Significant geographical variations were recorded in the concentrations of Cu, Zn, Cd, Cr and MTs. The highest mean and maximum values of Cu, Zn and MTs were recorded in Agios Thomas while Cd and Cr were higher in Mytikas population. Copper, Zn, Fe and MT concentrations were negatively correlated to the sea urchin body size, while a positive concentration-size relationship was observed for Cd. Although all studied populations grow in a low metal level marine environment, urchins with smaller body size living in a food limited marine environment showed higher gonadosomatic index, metal concentrations and MT levels in their gonads (Agios Thomas and Koronisia) than larger specimens growing in a food unlimited area (Mytikas).
Collapse
Affiliation(s)
- Evangelia Strogyloudi
- Hellenic Centre for Marine Research, Institute of Oceanography, P.O. Box 712, Mavro Lithari, 19013, Anavissos, Greece,
| | | | | |
Collapse
|
16
|
Dev S, Robinson JJ. Comparative biochemical analysis of the major yolk protein in the sea urchin egg and coelomic fluid. Dev Growth Differ 2014; 56:480-90. [DOI: 10.1111/dgd.12148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Shemul Dev
- Department of Biochemistry; Memorial University of Newfoundland; St. John's Newfoundland A1B3X9 Canada
| | - John J. Robinson
- Department of Biochemistry; Memorial University of Newfoundland; St. John's Newfoundland A1B3X9 Canada
| |
Collapse
|
17
|
Abstract
Vitellogenin genes (vtg) encode large lipid transfer proteins (LLTPs) that are typically female-specific, functioning as precursors to major yolk proteins (MYPs). Within the phylum Echinodermata, however, the MYP of the Echinozoa (Echinoidea + Holothuroidea) is expressed by an unrelated transferrin-like gene that has a reproductive function in both sexes. We investigated egg proteins in the Asterozoa (Asteroidea + Ophiuroidea), a sister clade to the Echinozoa, showing that eggs of the asteroid Parvulastra exigua contain a vitellogenin protein (Vtg). vtg is expressed by P. exigua, a species with large eggs and nonfeeding larvae, and by the related asterinid Patiriella regularis which has small eggs and feeding larvae. In the Asteroidea, therefore, the reproductive function of vtg is conserved despite significant life history evolution. Like the echinozoan MYP gene, asteroid vtg is expressed in both sexes and may play a role in the development of both ovaries and testes. Phylogenetic analysis indicated that a putative Vtg from the sea urchin genome, a likely pseudogene, does not clade with asteroid Vtg. We propose the following sequence as a potential pathway for the evolution of YP genes in the Echinodermata: (1) the ancestral echinoderm produced YPs derived from Vtg, (2) bisexual vtg expression subsequently evolved in the echinoderm lineage, (3) the reproductive function of vtg was assumed by a transferrin-like gene in the ancestral echinozoan, and (4) redundant echinozoan vtg was released from stabilizing selection.
Collapse
|
18
|
Walker CW, Lesser M, Unuma T. Sea Urchin Gametogenesis – Structural, Functional and Molecular/Genomic Biology. DEVELOPMENTS IN AQUACULTURE AND FISHERIES SCIENCE 2013. [DOI: 10.1016/b978-0-12-396491-5.00003-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
Vaschenko MA, Zhadan PM, Aminin DL, Almyashova TN. Lipofuscin-like pigment in gonads of Sea Urchin Strongylocentrotus intermedius as a potential biomarker of marine pollution: a field study. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 62:599-613. [PMID: 22138826 DOI: 10.1007/s00244-011-9733-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 11/17/2011] [Indexed: 05/31/2023]
Abstract
Accumulation of lipofuscin-like pigments (LLPs) has been shown to be an appropriate index of both age and stress in some aquatic invertebrates. In the present study, LLP was quantified by measuring its autofluorescence intensity (ex 450 nm/em 512 nm) in nutritive phagocytes (NPs) of sea urchins Strongylocentrotus intermedius inhabiting polluted and relatively clean areas of Japan Sea. To avoid variations in LLP content related to sea urchin reproductive condition, only developing gonads with acini occupied mostly by NPs were used for LLP quantification as well as semiquantitative histopathological analysis. LLP concentrations ranged from 0.0 to 4.57 ± 0.53% area fraction in female gonads and from 0.0 to 4.61 ± 0.35% in male gonads. The presence of specimens with extremely high LLP concentrations (>1.5%) in all examined samples, including specimens from the reference station, as well as the absence of strong correlations between LLP concentrations and several parameters related to pollution (heavy-metal concentrations in sea urchin gonads and concentrations of heavy metals, DDT, hexachlorocyclohexane, and total petroleum hydrocarbons in sediments), allow us to conclude that LLP content in sea urchin NPs can not be used as a biomarker in marine pollution monitoring.
Collapse
Affiliation(s)
- Marina A Vaschenko
- A. V. Zhirmunsky Institute of Marine Biology, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia.
| | | | | | | |
Collapse
|
20
|
Unuma T, Sawaguchi S, Yamano K, Ohta H. Accumulation of the major yolk protein and zinc in the agametogenic sea urchin gonad. THE BIOLOGICAL BULLETIN 2011; 221:227-237. [PMID: 22042441 DOI: 10.1086/bblv221n2p227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sea urchins of both sexes store the nutrients necessary for gametogenesis in nutritive phagocytes of the agametogenic gonad. A zinc-binding protein termed the major yolk protein (MYP) is stored here as two isoforms: the egg-type (predominant in egg yolk granules) and the coelomic fluid-type (a precursor with greater zinc-binding capacity). MYP is used during gametogenesis as material for synthesizing gametic proteins and other components. We investigated its accumulation and relationship to zinc contents in gonads during the non-reproductive season in Pseudocentrotus depressus. MYP constituted most of the protein in coelomic fluid and gonads. Both ovaries and testes grew gradually, accumulating MYP and zinc during the year. Total zinc contents and the ratio of coelomic fluid-type to egg-type protein were higher in ovaries than in testes as gametogenesis approached. Most of the zinc in the coelomic fluid was bound to MYP, and the concentrations of MYP and zinc were elevated toward the onset of oogenesis in the female coelomic fluid. Thus, MYP accumulates in the agametogenic ovaries and testes during the non-reproductive season, playing a role as a carrier to transport zinc to the gonad. Transportation of zinc by MYP is more active in females than in males.
Collapse
Affiliation(s)
- Tatsuya Unuma
- Hokkaido National Fisheries Research Institute, Fisheries Research Agency, Kushiro, Hokkaido 085-0802, Japan.
| | | | | | | |
Collapse
|
21
|
Molecular characterization of the major yolk protein of the Japanese common sea cucumber (Apostichopus japonicus) and its expression profile during ovarian development. Comp Biochem Physiol A Mol Integr Physiol 2010; 155:34-40. [DOI: 10.1016/j.cbpa.2009.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/02/2009] [Accepted: 09/02/2009] [Indexed: 11/23/2022]
|
22
|
The sea urchin major yolk protein is synthesized mainly in the gut inner epithelium and the gonadal nutritive phagocytes before and during gametogenesis. Mol Reprod Dev 2009; 77:59-68. [DOI: 10.1002/mrd.21103] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Ramírez-Gómez F, Ortiz-Pineda PA, Rivera-Cardona G, García-Arrarás JE. LPS-induced genes in intestinal tissue of the sea cucumber Holothuria glaberrima. PLoS One 2009; 4:e6178. [PMID: 19584914 PMCID: PMC2702171 DOI: 10.1371/journal.pone.0006178] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 06/16/2009] [Indexed: 01/16/2023] Open
Abstract
Metazoan immunity is mainly associated with specialized cells that are directly involved with the immune response. Nevertheless, both in vertebrates and invertebrates other organs might respond to immune activation and participate either directly or indirectly in the ongoing immune process. However, most of what is known about invertebrate immunity has been restricted to immune effector cells and little information is available on the immune responses of other tissues or organs. We now focus on the immune reactions of the intestinal tissue of an echinoderm. Our study employs a non-conventional model, the echinoderm Holothuria glaberrima, to identify intestinal molecules expressed after an immune challenge presented by an intra-coelomic injection of lipopolysaccharides (LPS). The expression profiles of intestinal genes expressed differentially between LPS-injected animals and control sea water-injected animals were determined using a custom-made Agilent microarray with 7209 sea cucumber intestinal ESTs. Fifty (50) unique sequences were found to be differentially expressed in the intestine of LPS-treated sea cucumbers. Seven (7) of these sequences represented homologues of known proteins, while the remaining (43) had no significant similarity with any protein, EST or RNA database. The known sequences corresponded to cytoskeletal proteins (Actin and alpha-actinin), metabolic enzymes (GAPDH, Ahcy and Gnmt), metal ion transport/metabolism (major yolk protein) and defense/recognition (fibrinogen-like protein). The expression pattern of 11 genes was validated using semi-quantitative RT-PCR. Nine of these corroborated the microarray results and the remaining two showed a similar trend but without statistical significance. Our results show some of the molecular events by which the holothurian intestine responds to an immune challenge and provide important information to the study of the evolution of the immune response.
Collapse
Affiliation(s)
| | - Pablo A. Ortiz-Pineda
- Department of Biology, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico
| | | | - José E. García-Arrarás
- Department of Biology, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico
- * E-mail:
| |
Collapse
|
24
|
Unuma T, Konishi K, Kiyomoto M, Matranga V, Yamano K, Ohta H, Yokota Y. The major yolk protein is synthesized in the digestive tract and secreted into the body cavities in sea urchin larvae. Mol Reprod Dev 2009; 76:142-50. [PMID: 18500722 DOI: 10.1002/mrd.20939] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Major yolk protein (MYP), a transferrin superfamily protein contained in yolk granules of sea urchin eggs, also occurs in the coelomic fluid of male and female adult sea urchins regardless of their reproductive cycle. MYP in the coelomic fluid (CFMYP; 180 kDa) has a zinc-binding capacity and has a higher molecular mass than MYP in eggs (EGMYP; 170 kDa). CFMYP is thought to be synthesized in the digestive tract and secreted into the coelomic fluid where it is involved in the transport of zinc derived from food. To clarify when and where MYP synthesis starts, we investigated the expression of MYP during larval development and growth in Pseudocentrotus depressus. MYP mRNA was detected using RT-PCR in the early 8-arm pluteus stage and its expression persisted until after metamorphosis. Real-time RT-PCR revealed that MYP mRNA increased exponentially from the early 8-arm stage to metamorphosis. Western blotting showed that maternal EGMYP disappeared by the 4-arm stage and that newly synthesized CFMYP was present at and after the mid 8-arm stage. In the late 8-arm larvae, MYP mRNA was detected in the digestive tract using in situ hybridization, and the protein was found in the somatocoel and the blastocoel-derived space between the somatocoel and epidermis using immunohistochemistry. These results suggest that CFMYP is synthesized in the digestive tract and secreted into the body cavities at and after the early 8-arm stage. We assume that in larvae, CFMYP transports zinc derived from food via the body cavities to various tissues, as suggested for adults.
Collapse
Affiliation(s)
- Tatsuya Unuma
- Japan Sea National Fisheries Research Institute, Fisheries Research Agency, Suido-cho, Niigata, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Bebas P, Kotwica J, Joachimiak E, Giebultowicz JM. Yolk protein is expressed in the insect testis and interacts with sperm. BMC DEVELOPMENTAL BIOLOGY 2008; 8:64. [PMID: 18549506 PMCID: PMC2440742 DOI: 10.1186/1471-213x-8-64] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 06/13/2008] [Indexed: 12/02/2022]
Abstract
Background Male and female gametes follow diverse developmental pathways dictated by their distinct roles in fertilization. While oocytes of oviparous animals accumulate yolk in the cytoplasm, spermatozoa slough off most of their cytoplasm in the process of individualization. Mammalian spermatozoa released from the testis undergo extensive modifications in the seminal ducts involving a variety of glycoproteins. Ultrastructural studies suggest that glycoproteins are involved in sperm maturation in insects; however, their characterization at the molecular level is lacking. We reported previously that the circadian clock controls sperm release and maturation in several insect species. In the moth, Spodoptera littoralis, the secretion of glycoproteins into the seminal fluid occurs in a daily rhythmic pattern. The purpose of this study was to characterize seminal fluid glycoproteins in this species and elucidate their role in the process of sperm maturation. Results We collected seminal fluid proteins from males before and after daily sperm release. These samples were separated by 2-D gel electrophoresis, and gels were treated with a glycoprotein-detecting probe. We observed a group of abundant glycoproteins in the sample collected after sperm release, which was absent in the sample collected before sperm release. Sequencing of these glycoproteins by mass spectroscopy revealed peptides bearing homology with components of yolk, which is known to accumulate in developing oocytes. This unexpected result was confirmed by Western blotting demonstrating that seminal fluid contains protein immunoreactive to antibody against yolk protein YP2 produced in the follicle cells surrounding developing oocytes. We cloned the fragment of yp2 cDNA from S. littoralis and determined that it is expressed in both ovaries and testes. yp2 mRNA and YP2 protein were detected in the somatic cyst cells enveloping sperm inside the testis. During the period of sperm release, YP2 protein appears in the seminal fluid and forms an external coat on spermatozoa. Conclusion One of the yolk protein precursors YP2, which in females accumulate in the oocytes to provision developing embryos, appears to have a second male-specific role. It is produced in the testes and released into the seminal fluid where it interacts with sperm. These data reveal unexpected common factor in the maturation of insect eggs and sperm.
Collapse
Affiliation(s)
- Piotr Bebas
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | | | | | | |
Collapse
|
26
|
Exogastrulation and interference with the expression of major yolk protein by estrogens administered to sea urchins. Cell Biol Toxicol 2008; 24:611-20. [DOI: 10.1007/s10565-008-9073-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
|
27
|
Pinsino A, Della Torre C, Sammarini V, Bonaventura R, Amato E, Matranga V. Sea urchin coelomocytes as a novel cellular biosensor of environmental stress: a field study in the Tremiti Island Marine Protected Area, Southern Adriatic Sea, Italy. Cell Biol Toxicol 2008; 24:541-52. [DOI: 10.1007/s10565-008-9055-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 01/02/2008] [Indexed: 01/23/2023]
|