1
|
Monitoring the effect of SDS on the solvation dynamics and structural conformation of β-casein. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Vázquez-Ulloa E, Lin KL, Lizano M, Sahlgren C. Reversible and bidirectional signaling of notch ligands. Crit Rev Biochem Mol Biol 2022; 57:377-398. [PMID: 36048510 DOI: 10.1080/10409238.2022.2113029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Notch signaling pathway is a direct cell-cell communication system involved in a wide variety of biological processes, and its disruption is observed in several pathologies. The pathway is comprised of a ligand-expressing (sender) cell and a receptor-expressing (receiver) cell. The canonical ligands are members of the Delta/Serrate/Lag-1 (DSL) family of proteins. Their binding to a Notch receptor in a neighboring cell induces a conformational change in the receptor, which will undergo regulated intramembrane proteolysis (RIP), liberating the Notch intracellular domain (NICD). The NICD is translocated to the nucleus and promotes gene transcription. It has been demonstrated that the ligands can also undergo RIP and nuclear translocation, suggesting a function for the ligands in the sender cell and possible bidirectionality of the Notch pathway. Although the complete mechanism of ligand processing is not entirely understood, and its dependence on Notch receptors has not been ruled out. Also, ligands have autonomous functions beyond Notch activation. Here we review the concepts of reverse and bidirectional signalization of DSL proteins and discuss the characteristics that make them more than just ligands of the Notch pathway.
Collapse
Affiliation(s)
- Elenaé Vázquez-Ulloa
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kai-Lan Lin
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Medicina Genomica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Cecilia Sahlgren
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
3
|
Cai J, Liu W, Li W, Zhao L, Chen G, Bai Y, Ma D, Fu C, Wang Y, Zhang X. Downregulation of miR156-Targeted PvSPL6 in Switchgrass Delays Flowering and Increases Biomass Yield. FRONTIERS IN PLANT SCIENCE 2022; 13:834431. [PMID: 35251105 PMCID: PMC8894730 DOI: 10.3389/fpls.2022.834431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
MiR156/SQUAMOSA PROMOTER BINDING-LIKEs (SPLs) module is the key regulatory hub of juvenile-to-adult phase transition as a critical flowering regulator. In this study, a miR156-targeted PvSPL6 was identified and characterized in switchgrass (Panicum virgatum L.), a dual-purpose fodder and biofuel crop. Overexpression of PvSPL6 in switchgrass promoted flowering and reduced internode length, internode number, and plant height, whereas downregulation of PvSPL6 delayed flowering and increased internode length, internode number, and plant height. Protein subcellular localization analysis revealed that PvSPL6 localizes to both the plasma membrane and nucleus. We produced transgenic switchgrass plants that overexpressed a PvSPL6-GFP fusion gene, and callus were induced from inflorescences of selected PvSPL6-GFPOE transgenic lines. We found that the PvSPL6-GFP fusion protein accumulated mainly in the nucleus in callus and was present in both the plasma membrane and nucleus in regenerating callus. However, during subsequent development, the signal of the PvSPL6-GFP fusion protein was detected only in the nucleus in the roots and leaves of plantlets. In addition, PvSPL6 protein was rapidly transported from the nucleus to the plasma membrane after exogenous GA3 application, and returned from the plasma membrane to nucleus after treated with the GA3 inhibitor (paclobutrazol). Taken together, our results demonstrate that PvSPL6 is not only an important target that can be used to develop improved cultivars of forage and biofuel crops that show delayed flowering and high biomass yields, but also has the potential to regulate plant regeneration in response to GA3.
Collapse
Affiliation(s)
- Jinjun Cai
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, China
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Wenwen Liu
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Weiqian Li
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Lijuan Zhao
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
| | - Gang Chen
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yangyang Bai
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Dongmei Ma
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
| | - Chunxiang Fu
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Yamei Wang
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xinchang Zhang
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, China
| |
Collapse
|
4
|
Gadhave K, Kumar P, Kumar A, Bhardwaj T, Garg N, Giri R. Conformational dynamics of 13 amino acids long NSP11 of SARS-CoV-2 under membrane mimetics and different solvent conditions. Microb Pathog 2021; 158:105041. [PMID: 34119626 PMCID: PMC8191288 DOI: 10.1016/j.micpath.2021.105041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
The intrinsically disordered proteins/regions (IDPs/IDPRs) are known to be responsible for multiple cellular processes and are associated with many chronic diseases. In viruses, the existence of a disordered proteome is also proven and is related to its conformational dynamics inside the host. The SARS-CoV-2 has a large proteome, in which, structure and functions of all proteins are not known yet, along with non-structural protein 11 (nsp11). In this study, we have performed extensive experimentation on nsp11. Our results based on the CD spectroscopy gives characteristic disordered spectrum for IDPs. Further, we investigated the conformational behavior of nsp11 in the presence of membrane mimetic environment, α-helix inducer, and natural osmolyte. In the presence of negatively charged and neutral liposomes, nsp11 remains disordered. However, with SDS micelle, it adopted an α-helical conformation, suggesting the helical propensity of nsp11. Finally, we again confirmed the IDP behavior of nsp11 using MD simulations. In future, this conformational dynamic study could help to clarify its functional importance in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Ankur Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Taniya Bhardwaj
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|
5
|
Kumar A, Kumar A, Kumar P, Garg N, Giri R. SARS-CoV-2 NSP1 C-terminal (residues 131-180) is an intrinsically disordered region in isolation. CURRENT RESEARCH IN VIROLOGICAL SCIENCE 2021; 2:100007. [PMID: 34189489 PMCID: PMC8020630 DOI: 10.1016/j.crviro.2021.100007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
The NSP1- C terminal structure in complex with ribosome using cryo-EM is available now, and the N-terminal region structure in isolation is also deciphered in literature. However, as a reductionist approach, the conformation of NSP1- C terminal region (NSP1-CTR; amino acids 131-180) has not been studied in isolation. We found that NSP1-CTR conformation is disordered in an aqueous solution. Further, we examined the conformational propensity towards alpha-helical structure using trifluoroethanol, we observed induction of helical structure conformation using CD spectroscopy. Additionally, in SDS, NSP1-CTR shows a conformational change from disordered to ordered, possibly gaining alpha-helix in part. But in the presence of neutral lipid DOPC, a slight change in conformation is observed, which implies the possible role of hydrophobic interaction and electrostatic interaction on the conformational changes of NSP1. Fluorescence-based studies have shown a blue shift and fluorescence quenching in the presence of SDS, TFE, and lipid vesicles. In agreement with these results, fluorescence lifetime and fluorescence anisotropy decay suggest a change in conformational dynamics. The zeta potential studies further validated that the conformational dynamics are primarily because of hydrophobic interaction. These experimental studies were complemented through Molecular Dynamics (MD) simulations, which have shown a good correlation and testifies our experiments. We believe that the intrinsically disordered nature of the NSP1-CTR will have implications for enhanced molecular recognition feature properties of this IDR, which may add disorder to order transition and disorder-based binding promiscuity with its interacting proteins.
Collapse
Affiliation(s)
- Amit Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh, 175005, India
| | - Ankur Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh, 175005, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh, 175005, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh, 175005, India
| |
Collapse
|
6
|
PiP 2 favors an α-helical structure of non-recombinant Hsp12 of Saccharomyces cerevisiae. Protein Expr Purif 2021; 181:105830. [PMID: 33485946 DOI: 10.1016/j.pep.2021.105830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 11/23/2022]
Abstract
Hsp12 is a small heat shock protein of Saccharomyces cerevisiae upregulated in response to various stresses. Non recombinant Hsp12 has been purified and characterized. Using circular dichroism (CD), Isothermal Titration Calorimetry (ITC) and Differential Scanning Calorimetry (DSC), it has been demonstrated that the native Hsp12 is monomeric and intrinsically disordered (IDP). Hsp12 gains in structure in the presence of specific lipids (PiP2). The helical form binds to liposomes models membrane with high affinity, leading to their rigidification. These results suggest that hydrophobic and ionic interactions are involved. Hsp12 is most likely a membrane chaperone expressed during stresses in Saccharomyces cerevisiae.
Collapse
|
7
|
Zamoon J, Madhu D, Ahmed I. Dynamic oligomerization of hRAGE's transmembrane and cytoplasmic domains within SDS micelles. Int J Biol Macromol 2019; 130:10-18. [PMID: 30794903 DOI: 10.1016/j.ijbiomac.2019.02.108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 01/12/2023]
Abstract
The human Receptor for Advanced Glycation End Products (hRAGE) is a pattern recognition receptor implicated in inflammation and adhesion. It is involved in both innate and adaptive immunity. Its aberrant signaling is tied to the pathogenesis of diabetic complications, neurodegenerative disorders, and chronic inflammatory responses. Previous structural studies have focused on its extracellular domains with their canonical constant and variable Ig folds, and to a much lesser extent, the intrinsically disorder cytoplasmic domain. No experimental data are reported on the transmembrane domain, which is integral to signaling. We have constructed, expressed and purified the transmembrane domain attached to the cytoplasmic domain of hRAGE in E. coli. Multiple self-associated forms of these domains were observed in vitro. This pattern of mixed oligomers resembled previously reported in vivo forms of the complete receptor. The self-association of these two domains was further characterized using: SDS-PAGE, intrinsic tryptophan fluorescence and heteronuclear NMR spectroscopy. NMR conditions were assessed across time and temperature within micelles. Our data show that the transmembrane and cytoplasmic domains of hRAGE undergo dynamic oligomerizations that can occur in the absence of its extracellular domains or ligand binding. And, such associations are only partially disrupted even with prolonged incubation in strong detergents.
Collapse
Affiliation(s)
- Jamillah Zamoon
- Department of Biological Sciences (Biochemistry Program), Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Kuwait.
| | - Dhanya Madhu
- Department of Biological Sciences (Biochemistry Program), Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Kuwait
| | - Ikhlas Ahmed
- Department of Biological Sciences (Biochemistry Program), Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Kuwait
| |
Collapse
|
8
|
Liu Y, Li P, Fan L, Wu M. The nuclear transportation routes of membrane-bound transcription factors. Cell Commun Signal 2018; 16:12. [PMID: 29615051 PMCID: PMC5883603 DOI: 10.1186/s12964-018-0224-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Membrane-bound transcription factors (MTFs) are transcription factors (TFs) that are anchored in membranes in a dormant state. Activated by external or internal stimuli, MTFs are released from parent membranes and are transported to the nucleus. Existing research indicates that some plasma membrane (PM)-bound proteins and some endoplasmic reticulum (ER) membrane-bound proteins have the ability to enter the nucleus. Upon specific signal recognition cues, some PM-bound TFs undergo proteolytic cleavage to liberate the intracellular fragments that enter the nucleus to control gene transcription. However, lipid-anchored PM-bound proteins enter the nucleus in their full length for depalmitoylation. In addition, some PM-bound TFs exist as full-length proteins in cell nucleus via trafficking to the Golgi and the ER, where membrane-releasing mechanisms rely on endocytosis. In contrast, the ER membrane-bound TFs relocate to the nucleus directly or by trafficking to the Golgi. In both of these pathways, only the fragments of the ER membrane-bound TFs transit to the nucleus. Several different nuclear trafficking modes of MTFs are summarized in this review, providing an effective supplement to the mechanisms of signal transduction and gene regulation. Moreover, targeting intracellular movement pathways of disease-associated MTFs may significantly improve the survival of patients.
Collapse
Affiliation(s)
- Yang Liu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Peiyao Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Li Fan
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China. .,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
9
|
Palombo M, Bonucci A, Etienne E, Ciurli S, Uversky VN, Guigliarelli B, Belle V, Mileo E, Zambelli B. The relationship between folding and activity in UreG, an intrinsically disordered enzyme. Sci Rep 2017; 7:5977. [PMID: 28729736 PMCID: PMC5519622 DOI: 10.1038/s41598-017-06330-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/12/2017] [Indexed: 12/02/2022] Open
Abstract
A growing body of literature on intrinsically disordered proteins (IDPs) led scientists to rethink the structure-function paradigm of protein folding. Enzymes are often considered an exception to the rule of intrinsic disorder (ID), believed to require a unique structure for catalysis. However, recent studies revealed the presence of disorder in several functional native enzymes. In the present work, we address the importance of dynamics for catalysis, by investigating the relationship between folding and activity in Sporosarcina pasteurii UreG (SpUreG), a P-loop GTPase and the first discovered native ID enzyme, involved in the maturation of the nickel-containing urease. The effect of denaturants and osmolytes on protein structure and activity was analyzed using circular dichroism (CD), Site-Directed Spin Labeling (SDSL) coupled to EPR spectroscopy, and enzymatic assays. Our data show that SpUreG needs a "flexibility window" to be catalytically competent, with both too low and too high mobility being detrimental for its activity.
Collapse
Affiliation(s)
- Marta Palombo
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, Bologna, 40127, Italy
| | - Alessio Bonucci
- Aix-Marseille Univ, CNRS, IMM (FR 3479), BIP (UMR 7281), 31 chemin Joseph Aiguier, Marseille, 13402, France
| | - Emilien Etienne
- Aix-Marseille Univ, CNRS, IMM (FR 3479), BIP (UMR 7281), 31 chemin Joseph Aiguier, Marseille, 13402, France
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, Bologna, 40127, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, MDC07, USA
| | - Bruno Guigliarelli
- Aix-Marseille Univ, CNRS, IMM (FR 3479), BIP (UMR 7281), 31 chemin Joseph Aiguier, Marseille, 13402, France
| | - Valérie Belle
- Aix-Marseille Univ, CNRS, IMM (FR 3479), BIP (UMR 7281), 31 chemin Joseph Aiguier, Marseille, 13402, France
| | - Elisabetta Mileo
- Aix-Marseille Univ, CNRS, IMM (FR 3479), BIP (UMR 7281), 31 chemin Joseph Aiguier, Marseille, 13402, France.
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, Bologna, 40127, Italy.
| |
Collapse
|
10
|
Chukhlieb M, Raasakka A, Ruskamo S, Kursula P. The N-terminal cytoplasmic domain of neuregulin 1 type III is intrinsically disordered. Amino Acids 2015; 47:1567-77. [PMID: 25944317 DOI: 10.1007/s00726-015-1998-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/21/2015] [Indexed: 11/30/2022]
Abstract
Axonally expressed neuregulin 1 (NRG1) type III is a transmembrane protein involved in various neurodevelopmental processes, including myelination and Schwann cell migration. NRG1 type III has one transmembrane domain and a C-terminal extracellular segment, which contains an epidermal growth factor homology domain. Little is known, however, about the intracellular N terminus of NRG1 type III, and the structure-function relationships of this cytoplasmic domain have remained uncharacterized. In the current study, we carried out the first structural and functional studies on the NRG1 type III cytoplasmic domain. Based on sequence analyses, the domain is predicted to be largely disordered, while a strictly conserved region close to the transmembrane segment may contain helical structure and bind metal ions. As shown by synchrotron radiation circular dichroism spectroscopy, the recombinant NRG1 type III cytoplasmic domain was disordered in solution, but it was able to fold partially into a helical structure, especially when both metals and membrane-mimicking compounds were present. NRG1 cytoplasmic tail binding to metals was further confirmed by calorimetry. These results suggest that the juxtamembrane segment of the NRG1 type III cytoplasmic domain may fold onto the membrane surface upon metal binding. Using synchrotron small-angle X-ray scattering, we further proved that the NRG1 cytoplasmic domain is intrinsically disordered, highly elongated, and behaves like a random polymer. Our work provides the first biochemical and biophysical data on the previously unexplored cytoplasmic domain of NRG1 type III, which will help elucidate the detailed structure-function relationships of this domain.
Collapse
Affiliation(s)
- Maryna Chukhlieb
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|
11
|
Faustino AF, Guerra GM, Huber RG, Hollmann A, Domingues MM, Barbosa GM, Enguita FJ, Bond PJ, Castanho MARB, Da Poian AT, Almeida FCL, Santos NC, Martins IC. Understanding dengue virus capsid protein disordered N-Terminus and pep14-23-based inhibition. ACS Chem Biol 2015; 10:517-26. [PMID: 25412346 DOI: 10.1021/cb500640t] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dengue virus (DENV) infection affects millions of people and is becoming a major global disease for which there is no specific available treatment. pep14-23 is a recently designed peptide, based on a conserved segment of DENV capsid (C) protein. It inhibits the interaction of DENV C with host intracellular lipid droplets (LDs), which is crucial for viral replication. Combining bioinformatics and biophysics, here, we analyzed pep14-23 structure and ability to bind different phospholipids, relating that information with the full-length DENV C. We show that pep14-23 acquires α-helical conformation upon binding to negatively charged phospholipid membranes, displaying an asymmetric charge distribution structural arrangement. Structure prediction for the N-terminal segment reveals four viable homodimer orientations that alternatively shield or expose the DENV C hydrophobic pocket. Taken together, these findings suggest a new biological role for the disordered N-terminal region, which may function as an autoinhibitory domain mediating DENV C interaction with its biological targets. The results fit with our current understanding of DENV C and pep14-23 structure and function, paving the way for similar approaches to understanding disordered proteins and improved peptidomimetics drug development strategies against DENV and similar Flavivirus infections.
Collapse
Affiliation(s)
- André F. Faustino
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Gabriela M. Guerra
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Roland G. Huber
- Bioinformatics
Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis
Street, #07-01 Matrix, 138671 Singapore, Singapore
| | - Axel Hollmann
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Marco M. Domingues
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Glauce M. Barbosa
- Instituto
de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Francisco J. Enguita
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Peter J. Bond
- Bioinformatics
Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis
Street, #07-01 Matrix, 138671 Singapore, Singapore
- Department
of Biological Sciences, National University of Singapore, 14 Science
Drive 4, 117543 Singapore, Singapore
| | - Miguel A. R. B. Castanho
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Andrea T. Da Poian
- Instituto
de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Fabio C. L. Almeida
- Instituto
de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Centro
Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro and National Institute of Structural Biology and Bioimage, Rio de Janeiro, RJ 21941-902, Brazil
| | - Nuno C. Santos
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Ivo C. Martins
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
12
|
Protein Misfolding in Lipid-Mimetic Environments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:33-66. [PMID: 26149925 DOI: 10.1007/978-3-319-17344-3_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Among various cellular factors contributing to protein misfolding and subsequent aggregation, membranes occupy a special position due to the two-way relations between the aggregating proteins and cell membranes. On one hand, the unstable, toxic pre-fibrillar aggregates may interact with cell membranes, impairing their functions, altering ion distribution across the membranes, and possibly forming non-specific membrane pores. On the other hand, membranes, too, can modify structures of many proteins and affect the misfolding and aggregation of amyloidogenic proteins. The effects of membranes on protein structure and aggregation can be described in terms of the "membrane field" that takes into account both the negative electrostatic potential of the membrane surface and the local decrease in the dielectric constant. Water-alcohol (or other organic solvent) mixtures at moderately low pH are used as model systems to study the joint action of the local decrease of pH and dielectric constant near the membrane surface on the structure and aggregation of proteins. This chapter describes general mechanisms of structural changes of proteins in such model environments and provides examples of various proteins aggregating in the "membrane field" or in lipid-mimetic environments.
Collapse
|
13
|
Popovic M, Zlatev V, Hodnik V, Anderluh G, Felli IC, Pongor S, Pintar A. Flexibility of the PDZ-binding motif in the micelle-bound form of Jagged-1 cytoplasmic tail. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1818:1706-16. [PMID: 22465068 DOI: 10.1016/j.bbamem.2012.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 01/07/2023]
Abstract
Human Jagged-1, one of the ligands of Notch receptors, is a transmembrane protein composed of a large extracellular region and a 125-residue cytoplasmic tail which bears a C-terminal PDZ recognition motif. To investigate the interaction between Jagged-1 cytoplasmic tail and the inner leaflet of the plasma membrane we determined, by solution NMR, the secondary structure and dynamics of the recombinant protein corresponding to the intracellular region of Jagged-1, J1_tmic, bound to negatively charged lysophospholipid micelles. NMR showed that the PDZ binding motif is preceded by four alpha-helical segments and that, despite the extensive interaction between J1_tmic and the micelle, the PDZ binding motif remains highly flexible. Binding of J1_tmic to negatively charged, but not to zwitterionic vesicles, was confirmed by surface plasmon resonance. To study the PDZ binding region in more detail, we prepared a peptide corresponding to the last 24 residues of Jagged-1, J1C24, and different phosphorylated variants of it. J1C24 displays a marked helical propensity and undergoes a coil-helix transition in the presence of negatively charged, but not zwitterionic, lysophospholipid micelles. Phosphorylation at different positions drastically decreases the helical propensity of the peptides and abolishes the coil-helix transition triggered by lysophospholipid micelles. We propose that phosphorylation of residues upstream of the PDZ binding motif may shift the equilibrium from an ordered, membrane-bound, interfacial form of Jagged-1 C-terminal region to a more disordered form with an increased accessibility of the PDZ recognition motif, thus playing an indirect role in the interaction between Jagged-1 and the PDZ-containing target protein.
Collapse
Affiliation(s)
- Matija Popovic
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park Padriciano 99, 1-34149 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
No evidence for a functional role of bi-directional Notch signaling during angiogenesis. PLoS One 2012; 7:e53074. [PMID: 23300864 PMCID: PMC3532505 DOI: 10.1371/journal.pone.0053074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/23/2012] [Indexed: 11/19/2022] Open
Abstract
The Delta-Notch pathway is a signal exchanger between adjacent cells to regulate numerous differentiation steps during embryonic development. Blood vessel formation by sprouting angiogenesis requires high expression of the Notch ligand DLL4 in the leading tip cell, while Notch receptors in the trailing stalk cells are activated by DLL4 to achieve strong Notch signaling activity. Upon ligand binding, Notch receptors are cleaved by ADAM proteases and gamma-secretase. This releases the intracellular Notch domain that acts as a transcription factor. There is evidence that also Notch ligands (DLL1, DLL4, JAG1, JAG2) are processed upon receptor binding to influence transcription in the ligand-expressing cell. Thus, the existence of bi-directional Delta-Notch signaling has been proposed. We report here that the Notch ligands DLL1 and JAG1 are processed in endothelial cells in a gamma-secretase-dependent manner and that the intracellular ligand domains accumulate in the cell nucleus. Overexpression of JAG1 intracellular domain (ICD) as well as DLL1-ICD, DLL4-ICD and NOTCH1-ICD inhibited endothelial proliferation. Whereas NOTCH1-ICD strongly repressed endothelial migration and sprouting angiogenesis, JAG1-ICD, DLL1-ICD and DLL4-ICD had no significant effects. Consistently, global gene expression patterns were only marginally affected by the processed Notch ligands. In addition to its effects as a transcription factor, NOTCH1-ICD promotes cell adhesion to the extracellular matrix in a transcription-independent manner. However, JAG1-ICD, DLL1-ICD and DLL4-ICD did not influence endothelial cell adhesion. In summary, reverse signaling of Notch ligands appears to be dispensable for angiogenesis in cellular systems.
Collapse
|
15
|
Li J, Wang L, Wang L, Li F. Structure and transmembrane topology of slc11a1 TMD1-5 in lipid membranes. Biopolymers 2012; 98:224-33. [DOI: 10.1002/bip.22051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Popovic M, Bella J, Zlatev V, Hodnik V, Anderluh G, Barlow PN, Pintar A, Pongor S. The interaction of Jagged-1 cytoplasmic tail with afadin PDZ domain is local, folding-independent, and tuned by phosphorylation. J Mol Recognit 2011; 24:245-53. [DOI: 10.1002/jmr.1042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Boutilier J, Duncan R. The reovirus fusion-associated small transmembrane (FAST) proteins: virus-encoded cellular fusogens. CURRENT TOPICS IN MEMBRANES 2011; 68:107-40. [PMID: 21771497 DOI: 10.1016/b978-0-12-385891-7.00005-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Julie Boutilier
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
18
|
Intrinsically Disordered Proteins and Their Environment: Effects of Strong Denaturants, Temperature, pH, Counter Ions, Membranes, Binding Partners, Osmolytes, and Macromolecular Crowding. Protein J 2009; 28:305-25. [DOI: 10.1007/s10930-009-9201-4] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Multifaceted sequence-dependent and -independent roles for reovirus FAST protein cytoplasmic tails in fusion pore formation and syncytiogenesis. J Virol 2009; 83:12185-95. [PMID: 19759162 DOI: 10.1128/jvi.01667-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fusogenic reoviruses utilize the FAST proteins, a novel family of nonstructural viral membrane fusion proteins, to induce cell-cell fusion and syncytium formation. Unlike the paradigmatic enveloped virus fusion proteins, the FAST proteins position the majority of their mass within and internal to the membrane in which they reside, resulting in extended C-terminal cytoplasmic tails (CTs). Using tail truncations, we demonstrate that the last 8 residues of the 36-residue CT of the avian reovirus p10 FAST protein and the last 20 residues of the 68-residue CT of the reptilian reovirus p14 FAST protein enhance, but are not required for, pore expansion and syncytium formation. Further truncations indicate that the membrane-distal 12 residues of the p10 and 47 residues of the p14 CTs are essential for pore formation and that a residual tail of 21 to 24 residues that includes a conserved, membrane-proximal polybasic region present in all FAST proteins is insufficient to maintain FAST protein fusion activity. Unexpectedly, a reextension of the tail-truncated, nonfusogenic p10 and p14 constructs with scrambled versions of the deleted sequences restored pore formation and syncytiogenesis, while reextensions with heterologous sequences partially restored pore formation but failed to rescue syncytiogenesis. The membrane-distal regions of the FAST protein CTs therefore exert multiple effects on the membrane fusion reaction, serving in both sequence-dependent and sequence-independent manners as positive effectors of pore formation, pore expansion, and syncytiogenesis.
Collapse
|
20
|
Ausili A, Torrecillas A, Martínez-Senac MM, Corbalán-García S, Gómez-Fernández JC. The interaction of the Bax C-terminal domain with negatively charged lipids modifies the secondary structure and changes its way of insertion into membranes. J Struct Biol 2008; 164:146-52. [DOI: 10.1016/j.jsb.2008.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 07/04/2008] [Accepted: 07/07/2008] [Indexed: 10/21/2022]
|
21
|
De Biasio A, Guarnaccia C, Popovic M, Uversky VN, Pintar A, Pongor S. Prevalence of intrinsic disorder in the intracellular region of human single-pass type I proteins: the case of the notch ligand Delta-4. J Proteome Res 2008; 7:2496-506. [PMID: 18435556 DOI: 10.1021/pr800063u] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Intrinsic disorder (ID) is a widespread phenomenon found especially in signaling and regulation-related eukaryotic proteins. The functional importance of flexible disordered regions often resides in their ability to allow proteins to bind different partners. The incidence and location of intrinsic disorder in 369 human single-pass transmembrane receptors with the type I topology was assessed based on both disorder predictions and amino acid physico-chemical properties. We provide evidence that ID concentrates in the receptors' cytoplasmic region. As a benchmark for this analysis, we present a structural study on the previously uncharacterized intracellular region of human Delta-4 (DLL4_IC), a single-pass transmembrane protein and a ligand of Notch receptors. DLL4_IC is required for receptor/ligand endocytosis; it undergoes regulated intramembrane proteolysis, and mediates protein-protein interactions through its C-terminal PDZ binding motif. Using a recombinant purified protein, we demonstrate using various biophysical methods that DLL4_IC is mainly disordered in solution but can form interconvertible local secondary structures in response to variations in the physico-chemical milieu. Most of these conformational changes occur in the highly conserved C-terminal segment that includes the PDZ-binding motif. On the basis of our results, we propose that global disorder, in concert with local preorganization, may play a role in Notch signaling mediated by Delta-4.
Collapse
Affiliation(s)
- Alfredo De Biasio
- Protein Structure and Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, I-34012 Trieste, Italy
| | | | | | | | | | | |
Collapse
|