1
|
Chen X, Mercedes-Camacho AY, Wilson KA, Bouchard JJ, Peng JW, Etzkorn FA. Pin1 WW Domain Ligand Library Synthesized with an Easy Solid-Phase Phosphorylating Reagent. Biochemistry 2024; 63:2803-2815. [PMID: 39377814 PMCID: PMC11542186 DOI: 10.1021/acs.biochem.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
Cell cycle regulatory enzyme Pin1 both catalyzes pSer/Thr-cis/trans-Pro isomerization and binds the same motif separately in its WW domain. To better understand the function of Pin1, a way to separate these activities is needed. An unnatural peptide library, R1CO-pSer-Pro-NHR2, was designed to identify ligands specific for the Pin1 WW domain. A new solid-phase phosphorylating reagent (SPPR) containing a phosphoramidite functional group was synthesized in one step from Wang resin. The SPPR was used in the preparation of the library by parallel synthesis. The final 315-member library was screened with our WW-domain-specific, enzyme-linked enzyme-binding assay (ELEBA). Four of the best hits were resynthesized, and the competitive dissociation constants were measured by ELEBA. NMR chemical-shift perturbations (CSP) of ligands with 15N-labeled Pin1 were used to measure Kd for the best four ligands directly, demonstrating that they were specific Pin1 WW domain ligands. Models of the ligands bound to the Pin1 WW domain were used to visualize the mode of binding in the WW domain.
Collapse
Affiliation(s)
- Xingguo
R. Chen
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | | - Kimberly A. Wilson
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Jill J. Bouchard
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Jeffrey W. Peng
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Felicia A. Etzkorn
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Boussetta T, Raad H, Bedouhene S, Arabi Derkawi R, Gougerot-Pocidalo MA, Hayem G, Dang PMC, El-Benna J. The peptidyl-prolyl isomerase Pin1 controls GM-CSF-induced priming of NADPH oxidase in human neutrophils and priming at inflammatory sites. Int Immunopharmacol 2024; 137:112425. [PMID: 38851160 DOI: 10.1016/j.intimp.2024.112425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/09/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
The production of superoxide anions and other reactive oxygen species (ROS) by neutrophils is necessary for host defense against microbes. However, excessive ROS production can induce cell damage that participates in the inflammatory response. Superoxide anions are produced by the phagocyte NADPH oxidase, a multicomponent enzyme system consisting of two transmembrane proteins (gp91phox/NOX2 and p22phox) and four soluble cytosolic proteins (p40phox, p47phox, p67phox and the small G proteins Rac1/2). Stimulation of neutrophils by various agonists, such as the bacterial peptide formyl-Met-Leu-Phe (fMLF), induces NADPH oxidase activation and superoxide production, a process that is enhanced by the pro-inflammatory cytokines such as GM-CSF. The pathways involved in this GM-CSF-induced up-regulation or priming are not fully understood. Here we show that GM-CSF induces the activation of the prolyl cis/trans isomerase Pin1 in human neutrophils. Juglone and PiB, two selective Pin1 inhibitors, were able to block GM-CSF-induced priming of ROS production by human neutrophils. Interestingly, GM-CSF induced Pin1 binding to phosphorylated p47phox at Ser345. Neutrophils isolated from synovial fluid of patients with rheumatoid arthritis are known to be primed. Here we show that Pin1 activity was also increased in these neutrophils and that Pin1 inhibitors effectively inhibited ROS hyperproduction by the same cells. These results suggest that the prolyl cis/trans isomerase Pin1 may control GM-CSF-induced priming of ROS production by neutrophils and priming of neutrophils in synovial fluid of rheumatoid arthritis patients. Pharmacological targeting of Pin1 may be a valuable approach to the treatment of inflammation.
Collapse
Affiliation(s)
- Tarek Boussetta
- INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris F-75018, France
| | - Houssam Raad
- INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris F-75018, France; Lebanese University - Faculty of Public Health, Branche 4, Zahlé-Bekaa, Lebanon
| | - Samia Bedouhene
- INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris F-75018, France; Laboratoire de Biochimie appliquée et de biotechnologie, Faculté des Sciences Biologiques et des Sciences Agronomiques, Université M. Mammeri, 15000 Tizi-Ouzou, Algeria
| | - Riad Arabi Derkawi
- INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris F-75018, France
| | - Marie-Anne Gougerot-Pocidalo
- INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris F-75018, France
| | - Gilles Hayem
- Rheumatology Department, Paris Saint-Joseph Hospital Group, Paris F75014, France
| | - Pham My-Chan Dang
- INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris F-75018, France
| | - Jamel El-Benna
- INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris F-75018, France.
| |
Collapse
|
3
|
Ganguly HK, Ludwig BA, Tressler CM, Bhatt MR, Pandey AK, Quinn CM, Bai S, Yap GPA, Zondlo NJ. 4,4-Difluoroproline as a Unique 19F NMR Probe of Proline Conformation. Biochemistry 2024; 63:1131-1146. [PMID: 38598681 DOI: 10.1021/acs.biochem.3c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Despite the importance of proline conformational equilibria (trans versus cis amide and exo versus endo ring pucker) on protein structure and function, there is a lack of convenient ways to probe proline conformation. 4,4-Difluoroproline (Dfp) was identified to be a sensitive 19F NMR-based probe of proline conformational biases and cis-trans isomerism. Within model compounds and disordered peptides, the diastereotopic fluorines of Dfp exhibit similar chemical shifts (ΔδFF = 0-3 ppm) when a trans X-Dfp amide bond is present. In contrast, the diastereotopic fluorines exhibit a large (ΔδFF = 5-12 ppm) difference in chemical shift in a cis X-Dfp prolyl amide bond. DFT calculations, X-ray crystallography, and solid-state NMR spectroscopy indicated that ΔδFF directly reports on the relative preference of one proline ring pucker over the other: a fluorine which is pseudo-axial (i.e., the pro-4R-F in an exo ring pucker, or the pro-4S-F in an endo ring pucker) is downfield, while a fluorine which is pseudo-equatorial (i.e., pro-4S-F when exo, or pro-4R-F when endo) is upfield. Thus, when a proline is disordered (a mixture of exo and endo ring puckers, as at trans-Pro in peptides in water), it exhibits a small Δδ. In contrast, when the Pro is ordered (i.e., when one ring pucker is strongly preferred, as in cis-Pro amide bonds, where the endo ring pucker is strongly favored), a large Δδ is observed. Dfp can be used to identify inherent induced order in peptides and to quantify proline cis-trans isomerism. Using Dfp, we discovered that the stable polyproline II helix (PPII) formed in the denatured state (8 M urea) exhibits essentially equal populations of the exo and endo proline ring puckers. In addition, the data with Dfp suggested the specific stabilization of PPII by water over other polar solvents. These data strongly support the importance of carbonyl solvation and n → π* interactions for the stabilization of PPII. Dfp was also employed to quantify proline cis-trans isomerism as a function of phosphorylation and the R406W mutation in peptides derived from the intrinsically disordered protein tau. Dfp is minimally sterically disruptive and can be incorporated in expressed proteins, suggesting its broad application in understanding proline cis-trans isomerization, protein folding, and local order in intrinsically disordered proteins.
Collapse
Affiliation(s)
- Himal K Ganguly
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Brice A Ludwig
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Caitlin M Tressler
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Megh R Bhatt
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Anil K Pandey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Shi Bai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Neal J Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
4
|
Landrieu I, Dupré E, Sinnaeve D, El Hajjar L, Smet-Nocca C. Deciphering the Structure and Formation of Amyloids in Neurodegenerative Diseases With Chemical Biology Tools. Front Chem 2022; 10:886382. [PMID: 35646824 PMCID: PMC9133342 DOI: 10.3389/fchem.2022.886382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Protein aggregation into highly ordered, regularly repeated cross-β sheet structures called amyloid fibrils is closely associated to human disorders such as neurodegenerative diseases including Alzheimer's and Parkinson's diseases, or systemic diseases like type II diabetes. Yet, in some cases, such as the HET-s prion, amyloids have biological functions. High-resolution structures of amyloids fibrils from cryo-electron microscopy have very recently highlighted their ultrastructural organization and polymorphisms. However, the molecular mechanisms and the role of co-factors (posttranslational modifications, non-proteinaceous components and other proteins) acting on the fibril formation are still poorly understood. Whether amyloid fibrils play a toxic or protective role in the pathogenesis of neurodegenerative diseases remains to be elucidated. Furthermore, such aberrant protein-protein interactions challenge the search of small-molecule drugs or immunotherapy approaches targeting amyloid formation. In this review, we describe how chemical biology tools contribute to new insights on the mode of action of amyloidogenic proteins and peptides, defining their structural signature and aggregation pathways by capturing their molecular details and conformational heterogeneity. Challenging the imagination of scientists, this constantly expanding field provides crucial tools to unravel mechanistic detail of amyloid formation such as semisynthetic proteins and small-molecule sensors of conformational changes and/or aggregation. Protein engineering methods and bioorthogonal chemistry for the introduction of protein chemical modifications are additional fruitful strategies to tackle the challenge of understanding amyloid formation.
Collapse
Affiliation(s)
- Isabelle Landrieu
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Elian Dupré
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Davy Sinnaeve
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Léa El Hajjar
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Caroline Smet-Nocca
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| |
Collapse
|
5
|
Prolyl-Isomerase Pin1 Controls Key fMLP-Induced Neutrophil Functions. Biomedicines 2021; 9:biomedicines9091130. [PMID: 34572316 PMCID: PMC8472638 DOI: 10.3390/biomedicines9091130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Neutrophils are key cells of the innate immune and inflammatory responses. They are the first blood cells to migrate to the infection site where they release high amounts of reactive oxygen species (ROS) and several peptides and enzymes required for microbial killing. However, excessive neutrophil activation can induce tissue injury participating in inflammation, thus the characterization of the enzymes involved in neutrophil activation could help to identify new pharmacological targets to treat inflammation. The prolyl-isomerase Pin1 is a ubiquitous enzyme involved in several functions, however, its role in neutrophil functions is less known. In this study, we show that the bacterial peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP or fMLF), a G-protein coupled receptor (GPCR) agonist-induced Pin1 activation in human neutrophils. PiB and juglone, two Pin1 inhibitors inhibited Pin1 activity in neutrophils and consequently inhibited fMLP-induced chemotaxis and -degranulation of azurophil and specific granules as measured by myeloperoxidase and neutrophil gelatinase-associated lipocalin (NGAL) release respectively. We also showed that PiB inhibited TNFα + fMLP-induced superoxide production, confirming the effect of juglone. These data show that inhibitors of Pin1 impaired key pro-inflammatory neutrophil functions elicited by GPCR activation and suggest that Pin1 could control neutrophil inflammatory functions.
Collapse
|
6
|
Cantrelle FX, Loyens A, Trivelli X, Reimann O, Despres C, Gandhi NS, Hackenberger CPR, Landrieu I, Smet-Nocca C. Phosphorylation and O-GlcNAcylation of the PHF-1 Epitope of Tau Protein Induce Local Conformational Changes of the C-Terminus and Modulate Tau Self-Assembly Into Fibrillar Aggregates. Front Mol Neurosci 2021; 14:661368. [PMID: 34220449 PMCID: PMC8249575 DOI: 10.3389/fnmol.2021.661368] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Phosphorylation of the neuronal microtubule-associated Tau protein plays a critical role in the aggregation process leading to the formation of insoluble intraneuronal fibrils within Alzheimer's disease (AD) brains. In recent years, other posttranslational modifications (PTMs) have been highlighted in the regulation of Tau (dys)functions. Among these PTMs, the O-β-linked N-acetylglucosaminylation (O-GlcNAcylation) modulates Tau phosphorylation and aggregation. We here focus on the role of the PHF-1 phospho-epitope of Tau C-terminal domain that is hyperphosphorylated in AD (at pS396/pS404) and encompasses S400 as the major O-GlcNAc site of Tau while two additional O-GlcNAc sites were found in the extreme C-terminus at S412 and S413. Using high resolution NMR spectroscopy, we showed that the O-GlcNAc glycosylation reduces phosphorylation of PHF-1 epitope by GSK3β alone or after priming by CDK2/cyclin A. Furthermore, investigations of the impact of PTMs on local conformation performed in small peptides highlight the role of S404 phosphorylation in inducing helical propensity in the region downstream pS404 that is exacerbated by other phosphorylations of PHF-1 epitope at S396 and S400, or O-GlcNAcylation of S400. Finally, the role of phosphorylation and O-GlcNAcylation of PHF-1 epitope was probed in in-vitro fibrillization assays in which O-GlcNAcylation slows down the rate of fibrillar assembly while GSK3β phosphorylation stimulates aggregation counteracting the effect of glycosylation.
Collapse
Affiliation(s)
- François-Xavier Cantrelle
- Risk Factors and Molecular Determinants of Aging-Related Diseases, U1167, Institut Pasteur de Lille, CHU Lille, INSERM, University of Lille, Lille, France.,CNRS, ERL9002 - Integrative Structural Biology, Lille, France
| | - Anne Loyens
- Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, U1172, CHU Lille, INSERM, University of Lille, Lille, France
| | - Xavier Trivelli
- Université de Lille, CNRS, INRAE, Centrale Lille, Université d'Artois, Lille, France
| | - Oliver Reimann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.,Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clément Despres
- Risk Factors and Molecular Determinants of Aging-Related Diseases, U1167, Institut Pasteur de Lille, CHU Lille, INSERM, University of Lille, Lille, France
| | - Neha S Gandhi
- Centre for Genomics and Personalised Health, Cancer and Ageing Research Program, School of Chemistry and Physics, Faculty of Science and Engineering, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.,Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Isabelle Landrieu
- Risk Factors and Molecular Determinants of Aging-Related Diseases, U1167, Institut Pasteur de Lille, CHU Lille, INSERM, University of Lille, Lille, France.,CNRS, ERL9002 - Integrative Structural Biology, Lille, France
| | - Caroline Smet-Nocca
- Risk Factors and Molecular Determinants of Aging-Related Diseases, U1167, Institut Pasteur de Lille, CHU Lille, INSERM, University of Lille, Lille, France.,CNRS, ERL9002 - Integrative Structural Biology, Lille, France
| |
Collapse
|
7
|
Wang L, Zhou Y, Chen D, Lee TH. Peptidyl-Prolyl Cis/Trans Isomerase Pin1 and Alzheimer's Disease. Front Cell Dev Biol 2020; 8:355. [PMID: 32500074 PMCID: PMC7243138 DOI: 10.3389/fcell.2020.00355] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia with cognitive decline. The neuropathology of AD is characterized by intracellular aggregation of neurofibrillary tangles consisting of hyperphosphorylated tau and extracellular deposition of senile plaques composed of beta-amyloid peptides derived from amyloid precursor protein (APP). The peptidyl-prolyl cis/trans isomerase Pin1 binds to phosphorylated serine or threonine residues preceding proline and regulates the biological functions of its substrates. Although Pin1 is tightly regulated under physiological conditions, Pin1 deregulation in the brain contributes to the development of neurodegenerative diseases, including AD. In this review, we discuss the expression and regulatory mechanisms of Pin1 in AD. We also focus on the molecular mechanisms by which Pin1 controls two major proteins, tau and APP, after phosphorylation and their signaling cascades. Moreover, the major impact of Pin1 deregulation on the progression of AD in animal models is discussed. This information will lead to a better understanding of Pin1 signaling pathways in the brain and may provide therapeutic options for the treatment of AD.
Collapse
Affiliation(s)
- Long Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ying Zhou
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Dongmei Chen
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tae Ho Lee
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Lian X, Lin YM, Kozono S, Herbert MK, Li X, Yuan X, Guo J, Guo Y, Tang M, Lin J, Huang Y, Wang B, Qiu C, Tsai CY, Xie J, Gao ZJ, Wu Y, Liu H, Zhou XZ, Lu KP, Chen Y. Pin1 inhibition exerts potent activity against acute myeloid leukemia through blocking multiple cancer-driving pathways. J Hematol Oncol 2018; 11:73. [PMID: 29848341 PMCID: PMC5977460 DOI: 10.1186/s13045-018-0611-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/29/2018] [Indexed: 12/14/2022] Open
Abstract
Background The increasing genomic complexity of acute myeloid leukemia (AML), the most common form of acute leukemia, poses a major challenge to its therapy. To identify potent therapeutic targets with the ability to block multiple cancer-driving pathways is thus imperative. The unique peptidyl-prolyl cis-trans isomerase Pin1 has been reported to promote tumorigenesis through upregulation of numerous cancer-driving pathways. Although Pin1 is a key drug target for treating acute promyelocytic leukemia (APL) caused by a fusion oncogene, much less is known about the role of Pin1 in other heterogeneous leukemia. Methods The mRNA and protein levels of Pin1 were detected in samples from de novo leukemia patients and healthy controls using real-time quantitative RT-PCR (qRT-PCR) and western blot. The establishment of the lentiviral stable-expressed short hairpin RNA (shRNA) system and the tetracycline-inducible shRNA system for targeting Pin1 were used to analyze the biological function of Pin1 in AML cells. The expression of cancer-related Pin1 downstream oncoproteins in shPin1 (Pin1 knockdown) and Pin1 inhibitor all-trans retinoic acid (ATRA) treated leukemia cells were examined by western blot, followed by evaluating the effects of genetic and chemical inhibition of Pin1 in leukemia cells on transformed phenotype, including cell proliferation and colony formation ability, using trypan blue, cell counting assay, and colony formation assay in vitro, as well as the tumorigenesis ability using in vivo xenograft mouse models. Results First, we found that the expression of Pin1 mRNA and protein was significantly increased in both de novo leukemia clinical samples and multiple leukemia cell lines, compared with healthy controls. Furthermore, genetic or chemical inhibition of Pin1 in human multiple leukemia cell lines potently inhibited multiple Pin1 substrate oncoproteins and effectively suppressed leukemia cell proliferation and colony formation ability in cell culture models in vitro. Moreover, tetracycline-inducible Pin1 knockdown and slow-releasing ATRA potently inhibited tumorigenicity of U937 and HL-60 leukemia cells in xenograft mouse models. Conclusions We demonstrate that Pin1 is highly overexpressed in human AML and is a promising therapeutic target to block multiple cancer-driving pathways in AML. Electronic supplementary material The online version of this article (10.1186/s13045-018-0611-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaolan Lian
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, 350108, Fujian, China
| | - Yu-Min Lin
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Shingo Kozono
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Megan K Herbert
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Xin Li
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Xiaohong Yuan
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Jiangrui Guo
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Yafei Guo
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Min Tang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Jia Lin
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Yiping Huang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Bixin Wang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Chenxi Qiu
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Cheng-Yu Tsai
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jane Xie
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ziang Jeff Gao
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Yong Wu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Hekun Liu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, 350108, Fujian, China
| | - Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, 350108, Fujian, China.
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, 350108, Fujian, China.
| | - Yuanzhong Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
9
|
Enhanced Sampling of Interdomain Motion Using Map-Restrained Langevin Dynamics and NMR: Application to Pin1. J Mol Biol 2018; 430:2164-2180. [PMID: 29775635 DOI: 10.1016/j.jmb.2018.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 11/20/2022]
Abstract
Many signaling proteins consist of globular domains connected by flexible linkers that allow for substantial domain motion. Because these domains often serve as complementary functional modules, the possibility of functionally important domain motions arises. To explore this possibility, we require knowledge of the ensemble of protein conformations sampled by interdomain motion. Measurements of NMR residual dipolar couplings (RDCs) of backbone HN bonds offer a per-residue characterization of interdomain dynamics, as the couplings are sensitive to domain orientation. A challenge in reaching this potential is the need to interpret the RDCs as averages over dynamic ensembles of domain conformations. Here, we address this challenge by introducing an efficient protocol for generating conformational ensembles appropriate for flexible, multi-domain proteins. The protocol uses map-restrained self-guided Langevin dynamics simulations to promote collective, interdomain motion while restraining the internal domain motion to near rigidity. Critically, the simulations retain an all-atom description for facile inclusion of site-specific NMR RDC restraints. The result is the rapid generation of conformational ensembles consistent with the RDC data. We illustrate this protocol on human Pin1, a two-domain peptidyl-prolyl isomerase relevant for cancer and Alzheimer's disease. The results include the ensemble of domain orientations sampled by Pin1, as well as those of a dysfunctional variant, I28A-Pin1. The differences between the ensembles corroborate our previous spin relaxation results that showed weakened interdomain contact in the I28A variant relative to wild type. Our protocol extends our abilities to explore the functional significance of protein domain motions.
Collapse
|
10
|
Ettelaie C, Collier MEW, Featherby S, Greenman J, Maraveyas A. Peptidyl-prolyl isomerase 1 (Pin1) preserves the phosphorylation state of tissue factor and prolongs its release within microvesicles. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:12-24. [PMID: 28962834 DOI: 10.1016/j.bbamcr.2017.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/07/2017] [Accepted: 09/24/2017] [Indexed: 01/23/2023]
Abstract
The exposure and release of TF is regulated by post-translational modifications of its cytoplasmic domain. Here, the potential of Pin1 to interact with the cytoplasmic domain of TF, and the outcome on TF function was examined. MDA-MB-231 and transfected-primary endothelial cells were incubated with either Pin1 deactivator Juglone, or its control Plumbagin, as well as transfected with Pin1-specific or control siRNA. TF release into microvesicles following activation, and also phosphorylation and ubiquitination states of cellular-TF were then assessed. Furthermore, the ability of Pin1 to bind wild-type and mutant forms of overexpressed TF-tGFP was investigated by co-immunoprecipitation. Additionally, the ability of recombinant or cellular Pin1 to bind to peptides of the C-terminus of TF, synthesised in different phosphorylation states was examined by binding assays and spectroscopically. Finally, the influence of recombinant Pin1 on the ubiquitination and dephosphorylation of the TF-peptides was examined. Pre-incubation of Pin1 with Juglone but not Plumbagin, reduced TF release as microvesicles and was also achievable following transfection with Pin1-siRNA. This was concurrent with early ubiquitination and dephosphorylation of cellular TF at Ser253. Pin1 co-immunoprecipitated with overexpressed wild-type TF-tGFP but not Ser258→Ala or Pro259→Ala substituted mutants. Pin1 did interact with Ser258-phosphorylated and double-phosphorylated TF-peptides, with the former having higher affinity. Finally, recombinant Pin1 was capable of interfering with the ubiquitination and dephosphorylation of TF-derived peptides. In conclusion, Pin1 is a fast-acting enzyme which may be utilised by cells to protect the phosphorylation state of TF in activated cells prolonging TF activity and release, and therefore ensuring adequate haemostasis.
Collapse
Affiliation(s)
- Camille Ettelaie
- Biomedical Section, Department of Biological Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK.
| | - Mary E W Collier
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester LE3 9QP, UK
| | - Sophie Featherby
- Biomedical Section, Department of Biological Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - John Greenman
- Biomedical Section, Department of Biological Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Anthony Maraveyas
- Division of Cancer, Hull York Medical School University of Hull, Cottingham Road, Hull HU6 7RX, UK
| |
Collapse
|
11
|
Danis C, Despres C, Bessa LM, Malki I, Merzougui H, Huvent I, Qi H, Lippens G, Cantrelle FX, Schneider R, Hanoulle X, Smet-Nocca C, Landrieu I. Nuclear Magnetic Resonance Spectroscopy for the Identification of Multiple Phosphorylations of Intrinsically Disordered Proteins. J Vis Exp 2016. [PMID: 28060278 DOI: 10.3791/55001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aggregates of the neuronal Tau protein are found inside neurons of Alzheimer's disease patients. Development of the disease is accompanied by increased, abnormal phosphorylation of Tau. In the course of the molecular investigation of Tau functions and dysfunctions in the disease, nuclear magnetic resonance (NMR) spectroscopy is used to identify the multiple phosphorylations of Tau. We present here detailed protocols of recombinant production of Tau in bacteria, with isotopic enrichment for NMR studies. Purification steps that take advantage of Tau's heat stability and high isoelectric point are described. The protocol for in vitro phosphorylation of Tau by recombinant activated ERK2 allows for generating multiple phosphorylations. The protein sample is ready for data acquisition at the issue of these steps. The parameter setup to start recording on the spectrometer is considered next. Finally, the strategy to identify phosphorylation sites of modified Tau, based on NMR data, is explained. The benefit of this methodology compared to other techniques used to identify phosphorylation sites, such as immuno-detection or mass spectrometry (MS), is discussed.
Collapse
Affiliation(s)
- Clément Danis
- UMR8576, CNRS, Lille University; UMR-S1172, INSERM CNRS, Lille University
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kamah A, Cantrelle FX, Huvent I, Giustiniani J, Guillemeau K, Byrne C, Jacquot Y, Landrieu I, Baulieu EE, Smet C, Chambraud B, Lippens G. Isomerization and Oligomerization of Truncated and Mutated Tau Forms by FKBP52 are Independent Processes. J Mol Biol 2016; 428:1080-1090. [PMID: 26903089 DOI: 10.1016/j.jmb.2016.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/23/2015] [Accepted: 02/13/2016] [Indexed: 10/22/2022]
Abstract
The aggregation of the neuronal Tau protein is one molecular hallmark of Alzheimer's disease and other related tauopathies, but the precise molecular mechanisms of the aggregation process remain unclear. The FK506 binding protein FKBP52 is able to induce oligomers in the pathogenic Tau P301L mutant and in a truncated form of the wild-type human Tau protein. Here, we investigate whether FKBP52's capacity to induce Tau oligomers depends on its prolyl cis/trans isomerase activity. We find that FKBP52 indeed can isomerize selected prolyl bonds in the different Tau proteins, and that this activity is carried solely by its first FK506 binding domain. Its capacity to oligomerize Tau is, however, not linked to this peptidyl-prolyl isomerase activity. In addition, we identified a novel molecular interaction implying the PHF6 peptide of Tau and the FK1/FK2 domains of FKBP52 independent of FK506 binding; these data point toward a non-catalytic molecular interaction that might govern the effect of FKBP52 on Tau.
Collapse
Affiliation(s)
- A Kamah
- University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France
| | - F X Cantrelle
- University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France
| | - I Huvent
- University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France
| | - J Giustiniani
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1195, Université Paris XI, Le Kremlin Bicêtre, France
| | - K Guillemeau
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1195, Université Paris XI, Le Kremlin Bicêtre, France
| | - C Byrne
- Sorbonne Universités, UPMC Univ Paris06, Ecole Normale Supérieure-PSL Research University, CNRS UMR 7203, Laboratoire des Biomolécules, 4, Place Jussieu, 75252 Paris Cedex 05, France
| | - Y Jacquot
- Sorbonne Universités, UPMC Univ Paris06, Ecole Normale Supérieure-PSL Research University, CNRS UMR 7203, Laboratoire des Biomolécules, 4, Place Jussieu, 75252 Paris Cedex 05, France
| | - I Landrieu
- University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France
| | - E E Baulieu
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1195, Université Paris XI, Le Kremlin Bicêtre, France
| | - C Smet
- University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France
| | - B Chambraud
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1195, Université Paris XI, Le Kremlin Bicêtre, France
| | - G Lippens
- University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France; CNRS, INSA-Université Paul Sabatier, LISBP UMR5504, Toulouse, France.
| |
Collapse
|
13
|
Ueberham U, Rohn S, Ueberham E, Wodischeck S, Hilbrich I, Holzer M, Brückner MK, Gruschka H, Arendt T. Pin1 promotes degradation of Smad proteins and their interaction with phosphorylated tau in Alzheimer's disease. Neuropathol Appl Neurobiol 2015; 40:815-32. [PMID: 24964035 DOI: 10.1111/nan.12163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/13/2014] [Indexed: 11/29/2022]
Abstract
AIMS Neurodegeneration in Alzheimer's disease (AD) is characterized by pathological protein aggregates and inadequate activation of cell cycle regulating proteins. Recently, Smad proteins were identified to control the expression of AD relevant proteins such as APP, CDK4 and CDK inhibitors, both critical regulators of cell cycle activation. This might indicate a central role for Smads in AD pathology where they show a substantial deficiency and disturbed subcellular distribution in neurones. Still, the mechanisms driving relocation and decrease of neuronal Smad in AD are not well understood. However, Pin1, a peptidyl-prolyl-cis/trans-isomerase, which allows isomerization of tau protein, was recently identified also controlling the fate of Smads. Here we analyse a possible role of Pin1 for Smad disturbances in AD. METHODS Multiple immunofluorescence labelling and confocal laser-scanning microscopy were performed to examine the localization of Smad and Pin1 in human control and AD hippocampi. Ectopic Pin1 expression in neuronal cell cultures combined with Western blot analysis and immunoprecipitation allowed studying Smad level and subcellular distribution. Luciferase reporter assays, electromobility shift, RNAi-technique and qRT-PCR revealed a potential transcriptional impact of Smad on Pin1 promoter. RESULTS We report on a colocalization of phosphorylated Smad in AD with Pin1. Pin1 does not only affect Smad phosphorylation and stability but also regulates subcellular localization of Smad2 and supports its binding to phosphorylated tau protein. Smads, in turn, exert a negative feed-back regulation on Pin1. CONCLUSION Our data suggest both Smad proteins and Pin1 to be elements of a vicious circle with potential pathogenetic significance in AD.
Collapse
Affiliation(s)
- Uwe Ueberham
- Department for Molecular and Cellular Mechanisms of Neurodegeneration, University of Leipzig, Paul Flechsig Institute of Brain Research, Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang X, Mahoney BJ, Zhang M, Zintsmaster JS, Peng JW. Negative Regulation of Peptidyl-Prolyl Isomerase Activity by Interdomain Contact in Human Pin1. Structure 2015; 23:2224-2233. [PMID: 26602185 DOI: 10.1016/j.str.2015.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 08/22/2015] [Accepted: 08/24/2015] [Indexed: 01/10/2023]
Abstract
Pin1 is a modular peptidyl-prolyl isomerase specific for phosphorylated Ser/Thr-Pro (pS/T-P) motifs, typically within intrinsically disordered regions of signaling proteins. Pin1 consists of two flexibly linked domains: an N-terminal WW domain for substrate binding and a larger C-terminal peptidyl-prolyl isomerase (PPIase) domain. Previous studies showed that binding of phosphopeptide substrates to Pin1 could alter Pin1 interdomain contact, strengthening or weakening it depending on the substrate sequence. Thus, substrate-induced changes in interdomain contact may act as a trigger within the Pin1 mechanism. Here, we investigate this possibility via nuclear magnetic resonance studies of several Pin1 mutants. Our findings provide new mechanistic insights for those substrates that reduce interdomain contact. Specifically, the reduced interdomain contact can allosterically enhance PPIase activity relative to that when the contact is sustained. These findings suggest Pin1 interdomain contact can negatively regulate its activity.
Collapse
Affiliation(s)
- Xingsheng Wang
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Brendan J Mahoney
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Meiling Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - John S Zintsmaster
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Jeffrey W Peng
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA.
| |
Collapse
|
15
|
Hanes SD. Prolyl isomerases in gene transcription. Biochim Biophys Acta Gen Subj 2014; 1850:2017-34. [PMID: 25450176 DOI: 10.1016/j.bbagen.2014.10.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Peptidyl-prolyl isomerases (PPIases) are enzymes that assist in the folding of newly-synthesized proteins and regulate the stability, localization, and activity of mature proteins. They do so by catalyzing reversible (cis-trans) rotation about the peptide bond that precedes proline, inducing conformational changes in target proteins. SCOPE OF REVIEW This review will discuss how PPIases regulate gene transcription by controlling the activity of (1) DNA-binding transcription regulatory proteins, (2) RNA polymerase II, and (3) chromatin and histone modifying enzymes. MAJOR CONCLUSIONS Members of each family of PPIase (cyclophilins, FKBPs, and parvulins) regulate gene transcription at multiple levels. In all but a few cases, the exact mechanisms remain elusive. Structure studies, development of specific inhibitors, and new methodologies for studying cis/trans isomerization in vivo represent some of the challenges in this new frontier that merges two important fields. GENERAL SIGNIFICANCE Prolyl isomerases have been found to play key regulatory roles in all phases of the transcription process. Moreover, PPIases control upstream signaling pathways that regulate gene-specific transcription during development, hormone response and environmental stress. Although transcription is often rate-limiting in the production of enzymes and structural proteins, post-transcriptional modifications are also critical, and PPIases play key roles here as well (see other reviews in this issue). This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Steven D Hanes
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E Adams St., Syracuse, NY 13210 USA.
| |
Collapse
|
16
|
Di Martino GP, Masetti M, Cavalli A, Recanatini M. Mechanistic insights into Pin1 peptidyl-prolyl cis-trans isomerization from umbrella sampling simulations. Proteins 2014; 82:2943-56. [PMID: 25066180 DOI: 10.1002/prot.24650] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/25/2014] [Accepted: 07/15/2014] [Indexed: 12/22/2022]
Abstract
The peptidyl-proyl isomerase Pin1 plays a key role in the regulation of phospho(p)-Ser/Thr-Pro proteins, acting as a molecular timer of the cell cycle. After recognition of these motifs, Pin1 catalyzes the rapid cis-trans isomerization of proline amide bonds of substrates, contributing to maintain the equilibrium between the two conformations. Although a great interest has arisen on this enzyme, its catalytic mechanism has long been debated. Here, the cis-trans isomerization of a model peptide system was investigated by means of umbrella sampling simulations in the Pin1-bound and unbound states. We obtained free energy barriers consistent with experimental data, and identified several enzymatic features directly linked to the acceleration of the prolyl bond isomerization. In particular, an enhanced autocatalysis, the stabilization of perturbed ground state conformations, and the substrate binding in a procatalytic conformation were found as main contributions to explain the lowering of the isomerization free energy barrier.
Collapse
Affiliation(s)
- Giovanni Paolo Di Martino
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Università di Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | | | | | | |
Collapse
|
17
|
Guo C, Hou X, Dong L, Marakovits J, Greasley S, Dagostino E, Ferre R, Johnson MC, Humphries PS, Li H, Paderes GD, Piraino J, Kraynov E, Murray BW. Structure-based design of novel human Pin1 inhibitors (III): optimizing affinity beyond the phosphate recognition pocket. Bioorg Med Chem Lett 2014; 24:4187-91. [PMID: 25091930 DOI: 10.1016/j.bmcl.2014.07.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 11/18/2022]
Abstract
The design of potent Pin1 inhibitors has been challenging because its active site specifically recognizes a phospho-protein epitope. The de novo design of phosphate-based Pin1 inhibitors focusing on the phosphate recognition pocket and the successful replacement of the phosphate group with a carboxylate have been previously reported. The potency of the carboxylate series is now further improved through structure-based optimization of ligand-protein interactions in the proline binding site which exploits the H-bond interactions necessary for Pin1 catalytic function. Further optimization using a focused library approach led to the discovery of low nanomolar non-phosphate small molecular Pin1 inhibitors. Structural modifications designed to improve cell permeability resulted in Pin1 inhibitors with low micromolar anti-proliferative activities against cancer cells.
Collapse
Affiliation(s)
- Chuangxing Guo
- Oncology Medicinal Chemistry, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA.
| | - Xinjun Hou
- Oncology Medicinal Chemistry, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Liming Dong
- Oncology Medicinal Chemistry, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Joseph Marakovits
- Oncology Medicinal Chemistry, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Samantha Greasley
- Oncology Medicinal Chemistry, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Eleanor Dagostino
- Oncology Research Unit, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - RoseAnn Ferre
- Oncology Medicinal Chemistry, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - M Catherine Johnson
- Oncology Medicinal Chemistry, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Paul S Humphries
- Oncology Medicinal Chemistry, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Haitao Li
- Oncology Medicinal Chemistry, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Genevieve D Paderes
- Oncology Medicinal Chemistry, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Joseph Piraino
- Oncology Research Unit, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Eugenia Kraynov
- Pharmacokinetics and Drug Metabolism, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Brion W Murray
- Oncology Research Unit, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA.
| |
Collapse
|
18
|
Abstract
The MYC oncoprotein is an essential transcription factor that regulates the expression of many genes involved in cell growth, proliferation, and metabolic pathways. Thus, it is important to keep MYC activity in check in normal cells in order to avoid unwanted oncogenic changes. Normal cells have adapted several ways to control MYC levels, and these mechanisms can be disrupted in cancer cells. One of the major ways in which MYC levels are controlled in cells is through targeted degradation by the ubiquitin-proteasome system (UPS). Here, we discuss the role of the UPS in the regulation of MYC protein levels and review some of the many proteins that have been shown to regulate MYC protein stability. In addition, we discuss how this relates to MYC transcriptional activity, human cancers, and therapeutic targeting.
Collapse
Affiliation(s)
- Amy S Farrell
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | | |
Collapse
|
19
|
The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:316-33. [PMID: 24530645 DOI: 10.1016/j.bbagrm.2014.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/23/2022]
Abstract
Ess1 is a prolyl isomerase that regulates the structure and function of eukaryotic RNA polymerase II. Ess1 works by catalyzing the cis/trans conversion of pSer5-Pro6 bonds, and to a lesser extent pSer2-Pro3 bonds, within the carboxy-terminal domain (CTD) of Rpb1, the largest subunit of RNA pol II. Ess1 is conserved in organisms ranging from yeast to humans. In budding yeast, Ess1 is essential for growth and is required for efficient transcription initiation and termination, RNA processing, and suppression of cryptic transcription. In mammals, Ess1 (called Pin1) functions in a variety of pathways, including transcription, but it is not essential. Recent work has shown that Ess1 coordinates the binding and release of CTD-binding proteins that function as co-factors in the RNA pol II complex. In this way, Ess1 plays an integral role in writing (and reading) the so-called CTD code to promote production of mature RNA pol II transcripts including non-coding RNAs and mRNAs.
Collapse
|
20
|
Jamiyandorj U, Bae JS, Noh SJ, Jachin S, Choi JE, Jang KY, Chung MJ, Kang MJ, Lee DG, Moon WS. Expression of peptidyl-prolyl isomerase PIN1 and its role in the pathogenesis of extrahepatic cholangiocarcinoma. Oncol Lett 2013; 6:1421-1426. [PMID: 24179535 PMCID: PMC3813802 DOI: 10.3892/ol.2013.1525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 08/07/2013] [Indexed: 01/11/2023] Open
Abstract
The phosphorylation of proteins on serine/threonine residues that immediately precede proline (pSer/Thr-Pro) is a key signaling mechanism by which cell cycle regulation and cell differentiation and proliferation occur. The peptidyl-prolyl isomerase PIN1-catalyzed conformational changes of the pSer/Thr-Pro motifs may have profound effects on the function of numerous oncogenic and cell signaling pathways. To date, no studies have examined the expression of PIN1 and its potential role in the pathogenesis of extrahepatic cholangiocarcinoma (ECC). Therefore, the present study performed an immunohistochemistry analysis of the expression of PIN1 in 67 cases of ECC and evaluated its association with clinicopathological factors. In addition, the role of PIN1 was examined using synthetic small interfering RNA (siRNA) to silence PIN1 gene expression in human CC RBE cells. Positive PIN1 expression was observed in 35 of the 67 (52.2%) ECC cases and was predominantly localized to the nucleus of the tumor cells. The immunoreactive score for PIN1 was significantly higher in the tumor cells (4.07±0.4) compared with the adjacent benign bile duct cells (1.19±0.4) (P<0.001). PIN1 expression was significantly correlated with tumor cell proliferation (Ki-67 labeling index; P=0.024). Silencing PIN1 expression using siRNA significantly decreased the proliferation, migration and invasion of the tumor cells. In conclusion, the results indicated that the expression of PIN1 may play a key role in the development and progression of ECC.
Collapse
Affiliation(s)
- Urangoo Jamiyandorj
- Department of Pathology, Chonbuk National University, Medical School, Research Institute of Clinical Medicine and Research Institute for Endocrine Sciences, Jeonju, Chonbuk 561-756, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Steger M, Murina O, Hühn D, Ferretti LP, Walser R, Hänggi K, Lafranchi L, Neugebauer C, Paliwal S, Janscak P, Gerrits B, Del Sal G, Zerbe O, Sartori AA. Prolyl isomerase PIN1 regulates DNA double-strand break repair by counteracting DNA end resection. Mol Cell 2013; 50:333-43. [PMID: 23623683 DOI: 10.1016/j.molcel.2013.03.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/02/2013] [Accepted: 03/22/2013] [Indexed: 10/26/2022]
Abstract
The regulation of DNA double-strand break (DSB) repair by phosphorylation-dependent signaling pathways is crucial for the maintenance of genome stability; however, remarkably little is known about the molecular mechanisms by which phosphorylation controls DSB repair. Here, we show that PIN1, a phosphorylation-specific prolyl isomerase, interacts with key DSB repair factors and affects the relative contributions of homologous recombination (HR) and nonhomologous end-joining (NHEJ) to DSB repair. We find that PIN1-deficient cells display reduced NHEJ due to increased DNA end resection, whereas resection and HR are compromised in PIN1-overexpressing cells. Moreover, we identify CtIP as a substrate of PIN1 and show that DSBs become hyperresected in cells expressing a CtIP mutant refractory to PIN1 recognition. Mechanistically, we provide evidence that PIN1 impinges on CtIP stability by promoting its ubiquitylation and subsequent proteasomal degradation. Collectively, these data uncover PIN1-mediated isomerization as a regulatory mechanism coordinating DSB repair.
Collapse
Affiliation(s)
- Martin Steger
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Theillet FX, Kalmar L, Tompa P, Han KH, Selenko P, Dunker AK, Daughdrill GW, Uversky VN. The alphabet of intrinsic disorder: I. Act like a Pro: On the abundance and roles of proline residues in intrinsically disordered proteins. INTRINSICALLY DISORDERED PROTEINS 2013; 1:e24360. [PMID: 28516008 PMCID: PMC5424786 DOI: 10.4161/idp.24360] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 03/17/2013] [Indexed: 11/19/2022]
Abstract
A significant fraction of every proteome is occupied by biologically active proteins that do not form unique three-dimensional structures. These intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) have essential biological functions and are characterized by extensive structural plasticity. Such structural and functional behavior is encoded in the amino acid sequences of IDPs/IDPRs, which are enriched in disorder-promoting residues and depleted in order-promoting residues. In fact, amino acid residues can be arranged according to their disorder-promoting tendency to form an alphabet of intrinsic disorder that defines the structural complexity and diversity of IDPs/IDPRs. This review is the first in a series of publications dedicated to the roles that different amino acid residues play in defining the phenomenon of protein intrinsic disorder. We start with proline because data suggests that of the 20 common amino acid residues, this one is the most disorder-promoting.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- In-cell NMR Spectroscopy; Leibniz Institute of Molecular Pharmacology (FMP Berlin); Berlin, Germany
| | - Lajos Kalmar
- VIB Department of Structural Biology; Vrije Universiteit Brussel; Brussels, Belgium
| | - Peter Tompa
- VIB Department of Structural Biology; Vrije Universiteit Brussel; Brussels, Belgium.,Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest, Hungary
| | - Kyou-Hoon Han
- Department of Bioinformatics; University of Science and Technology; Daejeon, Yuseong-gu, Korea.,Biomedical Translational Research Center; Division of Convergent Biomedical Research; Korea Research Institute of Bioscience and Biotechnology; Daejeon, Yuseong-gu, Korea
| | - Philipp Selenko
- In-cell NMR Spectroscopy; Leibniz Institute of Molecular Pharmacology (FMP Berlin); Berlin, Germany
| | - A Keith Dunker
- Center for Computational Biology and Bioinformatics; Department of Biochemistry and Molecular Biology; Indiana University School of Medicine; Indianapolis, IN USA
| | - Gary W Daughdrill
- Center for Drug Discovery and Innovation; Department of Cell Biology, Microbiology and Molecular Biology; University of South Florida; Tampa, FL USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; College of Medicine; University of South Florida; Tampa, FL USA.,Institute for Biological Instrumentation; Russian Academy of Sciences; Moscow Region, Russia
| |
Collapse
|
23
|
Chu KL, Lew QJ, Rajasegaran V, Kung JT, Zheng L, Yang Q, Shaw R, Cheong N, Liou YC, Chao SH. Regulation of PRDX1 peroxidase activity by Pin1. Cell Cycle 2013; 12:944-52. [PMID: 23421996 DOI: 10.4161/cc.23916] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pin1 isomerizes the phosphorylated Ser/Thr-Pro peptide bonds and regulates the functions of its binding proteins by inducing conformational changes. Involvement of Pin1 in the aging process has been suggested based on the phenotype of Pin1-knockout mice and its interaction with lifespan regulator protein, p66 (Shc) . In this study, we utilize a proteomic approach and identify peroxiredoxin 1 (PRDX1), another regulator of aging, as a novel Pin1 binding protein. Pin1 binds to PRDX1 through interacting with the phospho-Thr ( 90) -Pro ( 91) motif of PRDX1, and this interaction is abolished when the Thr ( 90) of PRDX1 is mutated. The Pin1 binding motif, Thr-Pro, is conserved in the 2-Cys PRDXs, PRDX1-4 and the interactions between Pin1 and PRDX2-4 are also demonstrated. An increase in hydrogen peroxide buildup and a decrease in the peroxidase activity of 2-Cys PRDXs were observed in Pin1 (-/-) mouse embryonic fibroblasts (MEFs), with the activity of PRDXs restored when Pin1 was re-introduced into the cells. Phosphorylation of PRDX1 at Thr ( 90) has been shown to inhibit its peroxidase activity; however, how exactly the activity of PRDX1 is regulated by phosphorylation still remains unknown. Here, we demonstrate that Pin1 facilitates the protein phosphatase 2A-mediated dephosphorylation of PRDX1, which helps to explain the accumulation of the inactive phosphorylated form of PRDX1 in Pin1 (-/-) MEFs. Collectively, we identify Pin1 as a novel PRDX1 binding protein and propose a mechanism for Pin1 in regulating the metabolism of reactive oxygen species in cells.
Collapse
Affiliation(s)
- Kai Ling Chu
- Expression Engineering Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Innes BT, Bailey ML, Brandl CJ, Shilton BH, Litchfield DW. Non-catalytic participation of the Pin1 peptidyl-prolyl isomerase domain in target binding. Front Physiol 2013; 4:18. [PMID: 23407864 PMCID: PMC3571201 DOI: 10.3389/fphys.2013.00018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 01/24/2013] [Indexed: 01/19/2023] Open
Abstract
Pin1 is a phosphorylation-dependent peptidyl-prolyl isomerase (PPIase) that has the potential to add an additional level of regulation within protein kinase mediated signaling pathways. Furthermore, there is a mounting body of evidence implicating Pin1 in the emergence of pathological phenotypes in neurodegeneration and cancer through the isomerization of a wide variety of substrates at peptidyl-prolyl bonds where the residue preceding proline is a phosphorylated serine or threonine residue (i.e., pS/T-P motifs). A key step in this regulatory process is the interaction of Pin-1 with its substrates. This is a complex process since Pin1 is composed of two domains, the catalytic PPIase domain, and a type IV WW domain, both of which recognize pS/T-P motifs. The observation that the WW domain exhibits considerably higher binding affinity for pS/T-P motifs has led to predictions that the two domains may have distinct roles in mediating the actions of Pin1 on its substrates. To evaluate the participation of its individual domains in target binding, we performed GST pulldowns to monitor interactions between various forms of Pin1 and mitotic phospho-proteins that revealed two classes of Pin-1 interacting proteins, differing in their requirement for residues within the PPIase domain. From these observations, we consider models for Pin1-substrate interactions and the potential functions of the different classes of Pin1 interacting proteins. We also compare sequences that are recognized by Pin1 within its individual interaction partners to investigate the underlying basis for its different types of interactions.
Collapse
Affiliation(s)
- Brendan T Innes
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| | | | | | | | | |
Collapse
|
25
|
Kimura T, Tsutsumi K, Taoka M, Saito T, Masuda-Suzukake M, Ishiguro K, Plattner F, Uchida T, Isobe T, Hasegawa M, Hisanaga SI. Isomerase Pin1 stimulates dephosphorylation of tau protein at cyclin-dependent kinase (Cdk5)-dependent Alzheimer phosphorylation sites. J Biol Chem 2013; 288:7968-7977. [PMID: 23362255 DOI: 10.1074/jbc.m112.433326] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases associated with the pathological aggregation of microtubule-associated protein Tau are classified as tauopathies. Alzheimer disease, the most common tauopathy, is characterized by neurofibrillary tangles that are mainly composed of abnormally phosphorylated Tau. Similar hyperphosphorylated Tau lesions are found in patients with frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) that is induced by mutations within the tau gene. To further understand the etiology of tauopathies, it will be important to elucidate the mechanism underlying Tau hyperphosphorylation. Tau phosphorylation occurs mainly at proline-directed Ser/Thr sites, which are targeted by protein kinases such as GSK3β and Cdk5. We reported previously that dephosphorylation of Tau at Cdk5-mediated sites was enhanced by Pin1, a peptidyl-prolyl isomerase that stimulates dephosphorylation at proline-directed sites by protein phosphatase 2A. Pin1 deficiency is suggested to cause Tau hyperphosphorylation in Alzheimer disease. Up to the present, Pin1 binding was only shown for two Tau phosphorylation sites (Thr-212 and Thr-231) despite the presence of many more hyperphosphorylated sites. Here, we analyzed the interaction of Pin1 with Tau phosphorylated by Cdk5-p25 using a GST pulldown assay and Biacore approach. We found that Pin1 binds and stimulates dephosphorylation of Tau at all Cdk5-mediated sites (Ser-202, Thr-205, Ser-235, and Ser-404). Furthermore, FTDP-17 mutant Tau (P301L or R406W) showed slightly weaker Pin1 binding than non-mutated Tau, suggesting that FTDP-17 mutations induce hyperphosphorylation by reducing the interaction between Pin1 and Tau. Together, these results indicate that Pin1 is generally involved in the regulation of Tau hyperphosphorylation and hence the etiology of tauopathies.
Collapse
Affiliation(s)
- Taeko Kimura
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Koji Tsutsumi
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Masato Taoka
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Taro Saito
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | | | - Koichi Ishiguro
- Mitsubishi Kagaku Institute of Life Science, Machida, Tokyo 194-8511, Japan
| | - Florian Plattner
- University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070
| | - Takafumi Uchida
- Department of Molecular Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Masato Hasegawa
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
26
|
Jasnovidova O, Stefl R. The CTD code of RNA polymerase II: a structural view. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:1-16. [DOI: 10.1002/wrna.1138] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Sun L, Wu X, Peng Y, Goh JY, Liou YC, Lin D, Zhao Y. Solution structural analysis of the single-domain parvulin TbPin1. PLoS One 2012; 7:e43017. [PMID: 22900083 PMCID: PMC3416822 DOI: 10.1371/journal.pone.0043017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 07/16/2012] [Indexed: 12/24/2022] Open
Abstract
Background Pin1-type parvulins are phosphorylation-dependent peptidyl-prolyl cis-trans isomerases. Their functions have been widely reported to be involved in a variety of cellular responses or processes, such as cell division, transcription, and apoptosis, as well as in human diseases including Alzheimer's disease and cancers. TbPin1 was identified as a novel class of Pin1-type parvulins from Trypanosoma brucei, containing a unique PPIase domain, which can catalyze the isomerization of phosphorylated Ser/Thr-Pro peptide bond. Methodology/Principal Findings We determined the solution structure of TbPin1 and performed 15N relaxation measurements to analyze its backbone dynamics using multi-dimensional heteronuclear NMR spectroscopy. The average RMSD values of the 20 lowest energy structures are 0.50±0.05 Å for backbone heavy atoms and 0.85±0.08 Å for all heavy atoms. TbPin1 adopts the typical catalytic tertiary structure of Pin1-type parvulins, which comprises a globular fold with a four-stranded anti-parallel β-sheet core surrounded by three α-helices and one 310-helix. The global structure of TbPin1 is relatively rigid except the active site. The 2D EXSY spectra illustrate that TbPin1 possesses a phosphorylation-dependent PPIase activity. The binding sites of TbPin1 for a phosphorylated peptide substrate {SSYFSG[p]TPLEDDSD} were determined by the chemical shift perturbation approach. Residues Ser15, Arg18, Asn19, Val21, Ser22, Val32, Gly66, Ser67, Met83, Asp105 and Gly107 are involved in substantial contact with the substrate. Conclusions/Significance The solution structure of TbPin1 and the binding sites of the phosphorylated peptide substrate on TbPin1 were determined. The work is helpful for further understanding the molecular basis of the substrate specificity for Pin1-type parvulin family and enzyme catalysis.
Collapse
Affiliation(s)
- Lifang Sun
- The Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xueji Wu
- The Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yu Peng
- NMR Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jian Yuan Goh
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Yih-Cherng Liou
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Donghai Lin
- The Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- * E-mail: (DL); (YZ)
| | - Yufen Zhao
- The Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- * E-mail: (DL); (YZ)
| |
Collapse
|
28
|
Gu B, Zhu WG. Surf the post-translational modification network of p53 regulation. Int J Biol Sci 2012; 8:672-84. [PMID: 22606048 PMCID: PMC3354625 DOI: 10.7150/ijbs.4283] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 05/07/2012] [Indexed: 02/07/2023] Open
Abstract
Among the human genome, p53 is one of the first tumor suppressor genes to be discovered. It has a wide range of functions covering cell cycle control, apoptosis, genome integrity maintenance, metabolism, fertility, cellular reprogramming and autophagy. Although different possible underlying mechanisms for p53 regulation have been proposed for decades, none of them is conclusive. While much literature focuses on the importance of individual post-translational modifications, further explorations indicate a new layer of p53 coordination through the interplay of the modifications, which builds up a complex 'network'. This review focuses on the necessity, characteristics and mechanisms of the crosstalk among post-translational modifications and its effects on the precise and selective behavior of p53.
Collapse
Affiliation(s)
- Bo Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | | |
Collapse
|
29
|
Abstract
Viral replication is a complex process relying on a network of interacting viral and cellular proteins, in which particularly protein kinases play an important regulatory role. The specific phosphorylation of substrate proteins induces activation, inactivation, or other functional modification and thus determines virus-host cell interregulation. During herpesviral infections, both viral and cellular protein kinases are expressed and provide activities crucial for the efficiency of virus replication. The protein kinase pUL97 encoded by human cytomegalovirus (HCMV) is a multifunctional regulatory enzyme which exerts strong regulatory effects on early and late steps of the viral replication cycle. A number of interacting proteins and substrates of pUL97 have been described, including retinoblastoma (Rb) protein, nuclear lamins and viral pUL69. Recently, it was demonstrated that pUL97 has structural and functional resemblance to cyclin-dependent protein kinases (CDKs) and thus represents a CDK ortholog. pUL97 can phosphorylate and inactivate Rb, resulting in a stimulation of cell cycle progression. In addition, the association of pUL97 activity with nucleocytoplasmic export of viral capsids has been demonstrated by several investigators. We could show that pUL97 is able to phosphorylate nuclear lamins and to contribute to the HCMV-induced reorganization of the nuclear lamina. On the basis of very recent findings, it is becoming increasingly clear that pUL97 is a component of a multiprotein nuclear egress complex (NEC). The NEC contains a small number of egress proteins involved in the recruitment of protein kinases, such as pUL97 and cellular protein kinase C (PKC), to specific sites of the nuclear lamina. Current information about the composition, function, and regulatory complexity of the NEC leads to a mechanistic concept which may set the key features of HCMV nuclear egress in a new light.
Collapse
|
30
|
Liou YC, Zhou XZ, Lu KP. Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem Sci 2011; 36:501-14. [PMID: 21852138 DOI: 10.1016/j.tibs.2011.07.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/15/2011] [Accepted: 07/15/2011] [Indexed: 12/13/2022]
Abstract
Pin1 is a highly conserved enzyme that only isomerizes specific phosphorylated Ser/Thr-Pro bonds in certain proteins, thereby inducing conformational changes. Such conformational changes represent a novel and tightly controlled signaling mechanism regulating a spectrum of protein activities in physiology and disease; often through phosphorylation-dependent, ubiquitin-mediated proteasomal degradation. In this review, we summarize recent advances in elucidating the role and regulation of Pin1 in controlling protein stability. We also propose a mechanism by which Pin1 functions as a molecular switch to control the fates of phosphoproteins. We finally stress the need to develop tools to visualize directly Pin1-catalyzed protein conformational changes as a way to determine their roles in the development and treatment of human diseases.
Collapse
Affiliation(s)
- Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543.
| | | | | |
Collapse
|
31
|
Sami F, Smet-Nocca C, Khan M, Landrieu I, Lippens G, Brautigan DL. Molecular basis for an ancient partnership between prolyl isomerase Pin1 and phosphatase inhibitor-2. Biochemistry 2011; 50:6567-78. [PMID: 21714498 DOI: 10.1021/bi200553e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pin1 is a prolyl isomerase that recognizes phosphorylated Ser/Thr-Pro sites, and phosphatase inhibitor-2 (I-2) is phosphorylated during mitosis at a PSpTP site that is expected to be a Pin1 substrate. However, we previously discovered I-2, but not phospho-I-2, bound to Pin1 as an allosteric modifier of Pin1 substrate specificity [Li, M., et al. (2008) Biochemistry 47, 292]. Here, we use binding assays and NMR spectroscopy to map the interactions on Pin1 and I-2 to elucidate the organization of this complex. Despite having sequences that are ∼50% identical, human, Xenopus, and Drosophila I-2 proteins all exhibited identical, saturable binding to GST-Pin1 with K(0.5) values of 0.3 μM. The (1)H-(15)N heteronuclear single-quantum coherence spectra for both the WW domain and isomerase domain of Pin1 showed distinctive shifts upon addition of I-2. Conversely, as shown by NMR spectroscopy, specific regions of I-2 were affected by addition of Pin1. A single-residue I68A substitution in I-2 weakened binding to Pin1 by half and essentially eliminated binding to the isolated WW domain. On the other hand, truncation of I-2 to residue 152 had a minimal effect on binding to the WW domain but eliminated binding to the isomerase domain. Size exclusion chromatography revealed that wild-type I-2 and Pin1 formed a large (>300 kDa) complex and I-2(I68A) formed a complex of half the size that we propose are a heterotetramer and a heterodimer, respectively. Pin1 and I-2 are conserved among eukaryotes from yeast to humans, and we propose they make up an ancient partnership that provides a means for regulating Pin1 specificity and function.
Collapse
Affiliation(s)
- Furqan Sami
- Center for Cell Signaling and Department of Microbiology, University of Virginia School of Medicine, Box 800577-MSB7225, Charlottesville, Virginia 22908, United States
| | | | | | | | | | | |
Collapse
|
32
|
Gerard M, Deleersnijder A, Demeulemeester J, Debyser Z, Baekelandt V. Unraveling the role of peptidyl-prolyl isomerases in neurodegeneration. Mol Neurobiol 2011; 44:13-27. [PMID: 21553017 DOI: 10.1007/s12035-011-8184-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 04/14/2011] [Indexed: 02/07/2023]
Abstract
Immunophilins are a family of highly conserved proteins with a peptidyl-prolyl isomerase activity that binds immunosuppressive drugs such as FK506, cyclosporin A, and rapamycin. Immunophilins can be divided into two subfamilies, the cyclophilins, and the FK506 binding proteins (FKBPs). Next to the immunophilins, a third group of peptidyl-prolyl isomerases exist, the parvulins, which do not influence the immune system. The beneficial role of immunophilin ligands in neurodegenerative disease models has been known for more than a decade but remains largely unexplained in terms of molecular mechanisms. In this review, we summarize reported effects of parvulins, immunophilins, and their ligands in the context of neurodegeneration. We focus on the role of FKBP12 in Parkinson's disease and propose it as a novel drug target for therapy of Parkinson's disease.
Collapse
Affiliation(s)
- Melanie Gerard
- Laboratory of Biochemistry, IRC, K.U. Leuven-Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Flanders, Belgium
| | | | | | | | | |
Collapse
|
33
|
Peptide Bond cis/trans Isomerases: A Biocatalysis Perspective of Conformational Dynamics in Proteins. Top Curr Chem (Cham) 2011; 328:35-67. [DOI: 10.1007/128_2011_151] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Saxena UH, Owens L, Graham JR, Cooper GM, Hansen U. Prolyl isomerase Pin1 regulates transcription factor LSF (TFCP2) by facilitating dephosphorylation at two serine-proline motifs. J Biol Chem 2010; 285:31139-47. [PMID: 20682773 DOI: 10.1074/jbc.m109.078808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transcription factor LSF is essential for cell cycle progression, being required for activating expression of the thymidylate synthase (Tyms) gene at the G1/S transition. We previously established that phosphorylation of LSF in early G1 at Ser-291 and Ser-309 inhibits its transcriptional activity and that dephosphorylation later in G1 is required for its reactivation. Here we reveal the role of prolyl cis-trans isomerase Pin1 in activating LSF, by facilitating dephosphorylation at both Ser-291 and Ser-309. We demonstrate that Pin1 binds LSF both in vitro and in vivo. Using coimmunoprecipitation assays, we identify three SP/TP motifs in LSF (at residues Ser-291, Ser-309, and Thr-329) that are required and sufficient for association with Pin1. Co-expression of Pin1 enhances LSF transactivation potential in reporter assays. The Pin1-dependent enhancement of LSF activity requires residue Thr-329 in LSF, requires both the WW and PPiase domains of Pin1, and correlates with hypophosphorylation of LSF at Ser-291 and Ser-309. These findings support a model in which the binding of Pin1 at the Thr-329-Pro-330 motif in LSF permits isomerization by Pin1 of the peptide bonds at the nearby phosphorylated SP motifs (Ser-291 and Ser-309) to the trans configuration, thereby facilitating their dephosphorylation.
Collapse
Affiliation(s)
- Utsav H Saxena
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
35
|
Davis TL, Walker JR, Campagna-Slater V, Finerty PJ, Paramanathan R, Bernstein G, MacKenzie F, Tempel W, Ouyang H, Lee WH, Eisenmesser EZ, Dhe-Paganon S. Structural and biochemical characterization of the human cyclophilin family of peptidyl-prolyl isomerases. PLoS Biol 2010; 8:e1000439. [PMID: 20676357 PMCID: PMC2911226 DOI: 10.1371/journal.pbio.1000439] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 06/16/2010] [Indexed: 11/29/2022] Open
Abstract
Peptidyl-prolyl isomerases catalyze the conversion between cis and trans isomers of proline. The cyclophilin family of peptidyl-prolyl isomerases is well known for being the target of the immunosuppressive drug cyclosporin, used to combat organ transplant rejection. There is great interest in both the substrate specificity of these enzymes and the design of isoform-selective ligands for them. However, the dearth of available data for individual family members inhibits attempts to design drug specificity; additionally, in order to define physiological functions for the cyclophilins, definitive isoform characterization is required. In the current study, enzymatic activity was assayed for 15 of the 17 human cyclophilin isomerase domains, and binding to the cyclosporin scaffold was tested. In order to rationalize the observed isoform diversity, the high-resolution crystallographic structures of seven cyclophilin domains were determined. These models, combined with seven previously solved cyclophilin isoforms, provide the basis for a family-wide structure:function analysis. Detailed structural analysis of the human cyclophilin isomerase explains why cyclophilin activity against short peptides is correlated with an ability to ligate cyclosporin and why certain isoforms are not competent for either activity. In addition, we find that regions of the isomerase domain outside the proline-binding surface impart isoform specificity for both in vivo substrates and drug design. We hypothesize that there is a well-defined molecular surface corresponding to the substrate-binding S2 position that is a site of diversity in the cyclophilin family. Computational simulations of substrate binding in this region support our observations. Our data indicate that unique isoform determinants exist that may be exploited for development of selective ligands and suggest that the currently available small-molecule and peptide-based ligands for this class of enzyme are insufficient for isoform specificity.
Collapse
Affiliation(s)
- Tara L. Davis
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - John R. Walker
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | - Patrick J. Finerty
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Ragika Paramanathan
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Galina Bernstein
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Farrell MacKenzie
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Hui Ouyang
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Wen Hwa Lee
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- University of Oxford, Headington, United Kingdom
| | - Elan Z. Eisenmesser
- Department of Biochemistry & Molecular Genetics, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Sirano Dhe-Paganon
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
NMR spectroscopy of the neuronal tau protein: normal function and implication in Alzheimer's disease. Biochem Soc Trans 2010; 38:1006-11. [DOI: 10.1042/bst0381006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NMR spectroscopy was used to explore the different aspects of the normal and pathological functions of tau, but proved challenging because the protein contains 441 amino acids and has poor signal dispersion. We have set out to dissect the phosphorylation patterns of tau in order to understand better its role in the aggregation process and microtubule-binding regulation. Our current knowledge on the functional consequences of specific phosphorylations is still limited, mainly because producing and assessing quantitatively phosphorylated tau samples is far from straightforward, even in vitro. We use NMR spectroscopy as a proteomics tool to characterize the phosphorylation patterns of tau, after in vitro phosphorylation by recombinant kinases. The phosphorylated tau can next be use for functional assays or interaction assays with phospho-dependent protein partners, such as the prolyl cis–trans isomerase Pin1.
Collapse
|
37
|
Dong L, Marakovits J, Hou X, Guo C, Greasley S, Dagostino E, Ferre R, Johnson MC, Kraynov E, Thomson J, Pathak V, Murray BW. Structure-based design of novel human Pin1 inhibitors (II). Bioorg Med Chem Lett 2010; 20:2210-4. [DOI: 10.1016/j.bmcl.2010.02.033] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 02/08/2010] [Accepted: 02/08/2010] [Indexed: 01/12/2023]
|
38
|
Silencing Pin1 suppresses the expression and bioactivity of MMP-9 through NF-κB in colorectal carcinoma SW480 cells. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11805-010-0012-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Milbradt J, Webel R, Auerochs S, Sticht H, Marschall M. Novel mode of phosphorylation-triggered reorganization of the nuclear lamina during nuclear egress of human cytomegalovirus. J Biol Chem 2010; 285:13979-89. [PMID: 20202933 DOI: 10.1074/jbc.m109.063628] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleocytoplasmic egress of viral capsids is a rate-limiting step in the replication of the human cytomegalovirus (HCMV). As reported recently, an HCMV-specific nuclear egress complex is composed of viral and cellular proteins, in particular protein kinases with the capacity to induce destabilization of the nuclear lamina. Viral protein kinase pUL97 and cellular protein kinase C (PKC) play important roles by phosphorylating several types of nuclear lamins. Using pUL97 mutants, we show that the lamin-phosphorylating activity of pUL97 is associated with a reorganization of nuclear lamin A/C. Either pUL97 or PKC has the potential to induce distinct punctate lamina-depleted areas at the periphery of the nuclear envelope, which were detectable in transiently transfected and HCMV-infected cells. Using recombinant HCMV, which produces green fluorescent protein-labeled viral capsids, the direct transition of viral capsids through these areas could be visualized. This process was sensitive to an inhibitor of pUL97/PKC activity. The pUL97-mediated phosphorylation of lamin A/C at Ser(22) generated a novel binding motif for the peptidyl-prolyl cis/trans-isomerase Pin1. In HCMV-infected fibroblasts, the physiological localization of Pin1 was altered, leading to recruitment of Pin1 to viral replication centers and to the nuclear lamina. The local increase in Pin1 peptidyl-prolyl cis/trans-isomerase activity may promote conformational modulation of lamins. Thus, we postulate a novel phosphorylation-triggered mechanism for the reorganization of the nuclear lamina in HCMV-infected cells.
Collapse
Affiliation(s)
- Jens Milbradt
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, D-91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
40
|
G protein-coupled receptor kinase 2 (GRK2) modulation and cell cycle progression. Proc Natl Acad Sci U S A 2009; 107:1118-23. [PMID: 20080565 DOI: 10.1073/pnas.0905778107] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cell cycle progression requires changes in the activity or levels of a variety of key signaling proteins. G protein-coupled receptor kinase 2 (GRK2) plays a central role in G protein-coupled receptor regulation. Recent research is uncovering its involvement in additional cellular functions, but the potential role of GRK2 in the cell cycle has not been addressed. We report that GRK2 protein levels are transiently down-regulated during the G2/M transition by a mechanism involving CDK2-mediated phosphorylation of GRK2 at Serine670, which triggers binding to the prolyl-isomerase Pin1 and subsequent degradation. Prevention of GRK2 phosphorylation at S670 impedes normal GRK2 down-regulation and markedly delays cell cycle progression. Interestingly, we find that endogenous GRK2 down-regulation is prevented on activation of the G2/M checkpoint by doxorubicin and that stabilized GRK2 levels in such conditions inversely correlate with the p53 response and the induction of apoptosis, suggesting that GRK2 participates in the regulatory network controlling cell cycle arrest and survival in such conditions.
Collapse
|
41
|
|
42
|
Heikkinen O, Seppala R, Tossavainen H, Heikkinen S, Koskela H, Permi P, Kilpeläinen I. Solution structure of the parvulin-type PPIase domain of Staphylococcus aureus PrsA--implications for the catalytic mechanism of parvulins. BMC STRUCTURAL BIOLOGY 2009; 9:17. [PMID: 19309529 PMCID: PMC2678132 DOI: 10.1186/1472-6807-9-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 03/24/2009] [Indexed: 11/16/2022]
Abstract
Background Staphylococcus aureus is a Gram-positive pathogenic bacterium causing many kinds of infections from mild respiratory tract infections to life-threatening states as sepsis. Recent emergence of S. aureus strains resistant to numerous antibiotics has created a need for new antimicrobial agents and novel drug targets. S. aureus PrsA is a membrane associated extra-cytoplasmic lipoprotein which contains a parvulin-type peptidyl-prolyl cis-trans isomerase domain. PrsA is known to act as an essential folding factor for secreted proteins in Gram-positive bacteria and thus it is a potential target for antimicrobial drugs against S. aureus. Results We have solved a high-resolution solution structure of the parvulin-type peptidyl-prolyl cis-trans isomerase domain of S. aureus PrsA (PrsA-PPIase). The results of substrate peptide titrations pinpoint the active site and demonstrate the substrate preference of the enzyme. With detailed NMR spectroscopic investigation of the orientation and tautomeric state of the active site histidines we are able to give further insight into the structure of the catalytic site. NMR relaxation analysis gives information on the dynamic behaviour of PrsA-PPIase. Conclusion Detailed structural description of the S. aureus PrsA-PPIase lays the foundation for structure-based design of enzyme inhibitors. The structure resembles hPin1-type parvulins both structurally and regarding substrate preference. Even though a wealth of structural data is available on parvulins, the catalytic mechanism has yet to be resolved. The structure of S. aureus PrsA-PPIase and our findings on the role of the conserved active site histidines help in designing further experiments to solve the detailed catalytic mechanism.
Collapse
Affiliation(s)
- Outi Heikkinen
- Department of Chemistry, University of Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
43
|
ERK1/2, but not ERK5, is necessary and sufficient for phosphorylation and activation of c-Fos. Cell Signal 2009; 21:969-77. [PMID: 19249353 DOI: 10.1016/j.cellsig.2009.02.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 02/16/2009] [Indexed: 12/22/2022]
Abstract
Growth factor-stimulated expression and activation of c-Fos is regulated by the ERK1/2 pathway. However, recent reports have also suggested a prominent role for the closely related ERK5 pathway in regulating the expression, transcriptional activation and nuclear localization of c-Fos. Here we have compared the role of ERK1/2 and ERK5 in regulating c-Fos using a combination of conditional protein kinases, selective biochemical inhibitors and ERK5 null fibroblasts. We demonstrate that activation of the ERK1/2 pathway, but not ERK5, is sufficient for c-Fos phosphorylation and transcriptional activation. Furthermore, growth factor-dependent expression of c-Fos is blocked by low doses of PD184352 that selectively inhibit the ERK1/2 pathway but proceeds normally in ERK5-/- 3T9 cells; in addition, nuclear localization of c-Fos is normal in ERK5-/- cells. ERK5-/- cells are, however, defective for c-Jun expression but this is reversed by re-expression of ERK5. In addition to ERK5, neither the JNK nor p38 pathways can substitute for ERK1/2 in the regulation of c-Fos transcriptional activity. These results demonstrate that c-Fos transcriptional activity is not regulated by the ERK5 pathway; rather, of all the MAPKs and SAPKs, c-Fos activation appears to be predominantly linked to the ERK1/2 pathway.
Collapse
|
44
|
Gianni' M, Boldetti A, Guarnaccia V, Rambaldi A, Parrella E, Raska I, Rochette-Egly C, Del Sal G, Rustighi A, Terao M, Garattini E. Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα. Cancer Res 2009; 69:1016-26. [DOI: 10.1158/0008-5472.can-08-2603] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Mandelkow EM, Thies E, Konzack S, Mandelkow E. Tau and Intracellular Transport in Neurons. INTRACELLULAR TRAFFIC AND NEURODEGENERATIVE DISORDERS 2009. [DOI: 10.1007/978-3-540-87941-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
46
|
Bailey ML, Shilton BH, Brandl CJ, Litchfield DW. The dual histidine motif in the active site of Pin1 has a structural rather than catalytic role. Biochemistry 2008; 47:11481-9. [PMID: 18844375 DOI: 10.1021/bi800964q] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic domain of the peptidyl-prolyl cis/ trans isomerase Pin1 is a member of the FKBP superfold family. Within its active site are two highly conserved histidine residues, H59 and H157. Despite their sequence conservation in parvulin PPIase domains, the role of these histidine residues remains unclear. Our previous work (Behrsin et al. (2007) J. Mol. Biol. 365, 1143- 1162.) was consistent with a model where one or both histidines had critical roles in a hydrogen bonding network in the active site. Here, we test this model by looking at the effect of mutations to H59 and H157 on Pin1 function, activity, and protein stability. Using a yeast complementation assay, we show that both H59 and H157 can be mutated to non-hydrogen bonding residues and still support viability. Surprisingly, a nonfunctional H59L mutation can be rescued by a mutation of H157, to leucine. This double mutation (H59L/H157L) also had about 5-fold greater isomerase activity than the H59L mutation with a phosphorylated substrate. Structural analyses suggest that rescue of function and activity results from partial rescue of protein stability. Our findings indicate that H59 and H157 are not required for hydrogen bonding within the active site, and in contrast to the active site C113, they do not participate directly in catalysis. Instead, we suggest these histidines play a key role in domain structure or stability.
Collapse
Affiliation(s)
- Melanie L Bailey
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | |
Collapse
|
47
|
Sergeant N, Bretteville A, Hamdane M, Caillet-Boudin ML, Grognet P, Bombois S, Blum D, Delacourte A, Pasquier F, Vanmechelen E, Schraen-Maschke S, Buée L. Biochemistry of Tau in Alzheimer's disease and related neurological disorders. Expert Rev Proteomics 2008; 5:207-24. [PMID: 18466052 DOI: 10.1586/14789450.5.2.207] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microtubule-associated Tau proteins belong to a family of factors that polymerize tubulin dimers and stabilize microtubules. Tau is strongly expressed in neurons, localized in the axon and is essential for neuronal plasticity and network. From the very beginning of Tau discovery, proteomics methods have been essential to the knowledge of Tau biochemistry and biology. In this review, we have summarized the main contributions of several proteomic methods in the understanding of Tau, including expression, post-translational modifications and structure, in both physiological and pathophysiological aspects. Finally, recent advances in proteomics technology are essential to develop further therapeutic targets and early predictive and discriminative diagnostic assays for Alzheimer's disease and related disorders.
Collapse
|