1
|
Wang Y, Li X, Li N, Du J, Qin X, Sun X, Wang Y, Li C. Integrated Proteomic and Metabolomic Analysis of Muscle Atrophy Induced by Hindlimb Unloading. Biomolecules 2024; 15:14. [PMID: 39858409 PMCID: PMC11764416 DOI: 10.3390/biom15010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
Skeletal muscle atrophy, which is induced by factors such as disuse, spaceflight, certain medications, neurological disorders, and malnutrition, is a global health issue that lacks effective treatment. Hindlimb unloading is a commonly used model of muscle atrophy. However, the underlying mechanism of muscle atrophy induced by hindlimb unloading remains unclear, particularly from the perspective of the myocyte proteome and metabolism. We first used mass spectrometry for proteomic sequencing and untargeted metabolomics to analyze soleus muscle changes in rats with hindlimb unloading. The study found 1052 proteins and 377 metabolites (with the MS2 name) that were differentially expressed between the hindlimb unloading group and the control group. Proteins like ACTN3, MYH4, MYBPC2, and MYOZ1, typically found in fast-twitch muscles, were upregulated, along with metabolism-related proteins GLUL, GSTM4, and NDUFS4. Metabolites arachidylcarnitine and 7,8-dihydrobiopterin, as well as pathways like histidine, taurine, and hypotaurine metabolism, were linked to muscle atrophy. Protein and metabolism joint analyses revealed that some pathways, such as glutathione metabolism, ferroptosis, and lysosome pathways, were likely to be involved in soleus atrophy. In this study, we have applied integrated deep proteomic and metabolomic analyses. The upregulation of proteins that are expressed in fast-twitch fibers indicates the conversion of slow-twitch fibers to fast-twitch fibers under hindlimb unloading. In addition, some differentially abundant metabolites and pathways revealed the important role of metabolism in muscle atrophy of the soleus. As shown in the graphical abstract, our study provides insights into the pathogenesis and treatment of muscle atrophy that results from unloading by integrating proteomics and metabolomics of the soleus muscles.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.W.); (X.L.); (N.L.); (X.S.)
| | - Xi Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.W.); (X.L.); (N.L.); (X.S.)
| | - Na Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.W.); (X.L.); (N.L.); (X.S.)
| | - Jiawei Du
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing 100084, China;
| | - Xiaodong Qin
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.W.); (X.L.); (N.L.); (X.S.)
| | - Xiqing Sun
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.W.); (X.L.); (N.L.); (X.S.)
| | - Yongchun Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.W.); (X.L.); (N.L.); (X.S.)
| | - Chengfei Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.W.); (X.L.); (N.L.); (X.S.)
| |
Collapse
|
2
|
Mousavi Ghahfarrokhi SS, Mohamadzadeh M, Samadi N, Fazeli MR, Khaki S, Khameneh B, Khameneh Bagheri R. Management of Cardiovascular Diseases by Short-Chain Fatty Acid Postbiotics. Curr Nutr Rep 2024; 13:294-313. [PMID: 38656688 DOI: 10.1007/s13668-024-00531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE OF REVIEW Global health concerns persist in the realm of cardiovascular diseases (CVDs), necessitating innovative strategies for both prevention and treatment. This narrative review aims to explore the potential of short-chain fatty acids (SCFAs)-namely, acetate, propionate, and butyrate-as agents in the realm of postbiotics for the management of CVDs. RECENT FINDINGS We commence our discussion by elucidating the concept of postbiotics and their pivotal significance in mitigating various aspects of cardiovascular diseases. This review centers on a comprehensive examination of diverse SCFAs and their associated receptors, notably GPR41, GPR43, and GPR109a. In addition, we delve into the intricate cellular and pharmacological mechanisms through which these receptors operate, providing insights into their specific roles in managing cardiovascular conditions such as hypertension, atherosclerosis, heart failure, and stroke. The integration of current information in our analysis highlights the potential of both SCFAs and their receptors as a promising path for innovative therapeutic approaches in the field of cardiovascular health. The idea of postbiotics arises as an optimistic and inventive method, presenting new opportunities for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Seyed Sadeq Mousavi Ghahfarrokhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nasrin Samadi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Fazeli
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Khaki
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ramin Khameneh Bagheri
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Chilton PM, Ghare SS, Charpentier BT, Myers SA, Rao AV, Petrosino JF, Hoffman KL, Greenwell JC, Tyagi N, Behera J, Wang Y, Sloan LJ, Zhang J, Shields CB, Cooper GE, Gobejishvili L, Whittemore SR, McClain CJ, Barve SS. Age-associated temporal decline in butyrate-producing bacteria plays a key pathogenic role in the onset and progression of neuropathology and memory deficits in 3×Tg-AD mice. Gut Microbes 2024; 16:2389319. [PMID: 39182227 PMCID: PMC11346541 DOI: 10.1080/19490976.2024.2389319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Alterations in the gut-microbiome-brain axis are increasingly being recognized to be involved in Alzheimer's disease (AD) pathogenesis. However, the functional consequences of enteric dysbiosis linking gut microbiota and brain pathology in AD progression remain largely undetermined. The present work investigated the causal role of age-associated temporal decline in butyrate-producing bacteria and butyrate in the etiopathogenesis of AD. Longitudinal metagenomics, neuropathological, and memory analyses were performed in the 3×Tg-AD mouse model. Metataxonomic analyses showed a significant temporal decline in the alpha diversity marked by a decrease in butyrate-producing bacterial communities and a concurrent reduction in cecal butyrate production. Inferred metagenomics analysis identified the bacterial acetyl-CoA pathway as the main butyrate synthesis pathway impacted. Concomitantly, there was an age-associated decline in the transcriptionally permissive acetylation of histone 3 at lysines 9 and 14 (H3K9/K14-Ac) in hippocampal neurons. Importantly, these microbiome-gut-brain changes preceded AD-related neuropathology, including oxidative stress, tau hyperphosphorylation, memory deficits, and neuromuscular dysfunction, which manifest by 17-18 months. Initiation of oral administration of tributyrin, a butyrate prodrug, at 6 months of age mitigated the age-related decline in butyrate-producing bacteria, protected the H3K9/K14-Ac status, and attenuated the development of neuropathological and cognitive changes associated with AD pathogenesis. These data causally implicate age-associated decline in butyrate-producing bacteria as a key pathogenic feature of the microbiome-gut-brain axis affecting the onset and progression of AD. Importantly, the regulation of butyrate-producing bacteria and consequent butyrate synthesis could be a significant therapeutic strategy in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Paula M. Chilton
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
- UofL Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, USA
- Norton Neuroscience Institute, 4915 Norton Healthcare Blvd, Louisville, KY, USA
| | - Smita S. Ghare
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
- UofL Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, USA
- Norton Neuroscience Institute, 4915 Norton Healthcare Blvd, Louisville, KY, USA
- UofL Hepatobiology COBRE, University of Louisville School of Medicine, Louisville, KY, USA
| | - Benjamin T. Charpentier
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
- UofL Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Scott A. Myers
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
- UofL Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Aakarsha V. Rao
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
- UofL Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Joseph F. Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Kristi L. Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - John C. Greenwell
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
- UofL Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Neetu Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jyotirmaya Behera
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Yali Wang
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
- UofL Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Lucy J. Sloan
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
- UofL Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - JingWen Zhang
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
- UofL Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Christopher B. Shields
- Norton Neuroscience Institute, 4915 Norton Healthcare Blvd, Louisville, KY, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Gregory E. Cooper
- Norton Neuroscience Institute, 4915 Norton Healthcare Blvd, Louisville, KY, USA
| | - Leila Gobejishvili
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
- UofL Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, USA
- UofL Hepatobiology COBRE, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Scott R. Whittemore
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Craig J. McClain
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
- UofL Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, USA
- UofL Hepatobiology COBRE, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Medicine, Robley Rex VA Medical Center, Louisville, KY, USA
| | - Shirish S. Barve
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
- UofL Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, USA
- Norton Neuroscience Institute, 4915 Norton Healthcare Blvd, Louisville, KY, USA
- UofL Hepatobiology COBRE, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
4
|
Lu Y, Zhang Y, Zhao X, Shang C, Xiang M, Li L, Cui X. Microbiota-derived short-chain fatty acids: Implications for cardiovascular and metabolic disease. Front Cardiovasc Med 2022; 9:900381. [PMID: 36035928 PMCID: PMC9403138 DOI: 10.3389/fcvm.2022.900381] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) have been on the rise around the globe in the past few decades despite the existing guidelines for prevention and treatment. Short-chain fatty acids (SCFAs) are the main metabolites of certain colonic anaerobic bacterial fermentation in the gastrointestinal tract and have been found to be the key metabolites in the host of CVDs. Accumulating evidence suggest that the end-products of SCFAs (including acetate, propionate, and butyrate) interact with CVDs through maintaining intestinal integrity, anti-inflammation, modulating glucolipid metabolism, blood pressure, and activating gut-brain axis. Recent advances suggest a promising way to prevent and treat CVDs by controlling SCFAs. Hence, this review tends to summarize the functional roles carried out by SCFAs that are reported in CVDs studies. This review also highlights several novel therapeutic interventions for SCFAs to prevent and treat CVDs.
Collapse
Affiliation(s)
- Yingdong Lu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Zhang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Zhao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chang Shang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mi Xiang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Li Li,
| | - Xiangning Cui
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Xiangning Cui,
| |
Collapse
|
5
|
Usefulness of Melatonin and Other Compounds as Antioxidants and Epidrugs in the Treatment of Head and Neck Cancer. Antioxidants (Basel) 2021; 11:antiox11010035. [PMID: 35052539 PMCID: PMC8773331 DOI: 10.3390/antiox11010035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Along with genetic mutations, aberrant epigenetic alterations are the initiators of head and neck cancer carcinogenesis. Currently, several drugs are being developed to correct these epigenetic alterations, known as epidrugs. Some compounds with an antioxidant effect have been shown to be effective in preventing these malignant lesions and in minimizing the complications derived from cytotoxic treatment. Furthermore, in vitro and in vivo studies show a promising role in the treatment of head and neck squamous cell carcinoma (HNSCC). This is the case of supplements with DNA methylation inhibitory function (DNMTi), such as epigallocatechin gallate, sulforaphane, and folic acid; histone deacetylase inhibitors (HDACi), such as sodium butyrate and melatonin or histone acetyltransferase inhibitors (HATi), such as curcumin. The objective of this review is to describe the role of some antioxidants and their epigenetic mechanism of action, with special emphasis on melatonin and butyric acid given their organic production, in the prevention and treatment of HNSCC.
Collapse
|
6
|
Evenepoel P, Dejongh S, Verbeke K, Meijers B. The Role of Gut Dysbiosis in the Bone-Vascular Axis in Chronic Kidney Disease. Toxins (Basel) 2020; 12:toxins12050285. [PMID: 32365480 PMCID: PMC7290823 DOI: 10.3390/toxins12050285] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Patients with chronic kidney disease (CKD) are at increased risk of bone mineral density loss and vascular calcification. Bone demineralization and vascular mineralization often concur in CKD, similar to what observed in the general population. This contradictory association is commonly referred to as the 'calcification paradox' or the bone-vascular axis. Mounting evidence indicates that CKD-associated gut dysbiosis may be involved in the pathogenesis of the bone-vascular axis. A disrupted intestinal barrier function, a metabolic shift from a predominant saccharolytic to a proteolytic fermentation pattern, and a decreased generation of vitamin K may, alone or in concert, drive a vascular and skeletal pathobiology in CKD patients. A better understanding of the role of gut dysbiosis in the bone-vascular axis may open avenues for novel therapeutics, including nutriceuticals.
Collapse
Affiliation(s)
- Pieter Evenepoel
- Laboratory of Nephrology, Department of Immunology and Microbiology, KU Leuven—University of Leuven, B-3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, B-3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-16-344591; Fax: +32-16-344599
| | - Sander Dejongh
- Laboratory of Nephrology, Department of Immunology and Microbiology, KU Leuven—University of Leuven, B-3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven—University of Leuven, B-3000 Leuven, Belgium
| | - Bjorn Meijers
- Laboratory of Nephrology, Department of Immunology and Microbiology, KU Leuven—University of Leuven, B-3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
7
|
Zirak MR, Mehri S, Karimani A, Zeinali M, Hayes AW, Karimi G. Mechanisms behind the atherothrombotic effects of acrolein, a review. Food Chem Toxicol 2019; 129:38-53. [DOI: 10.1016/j.fct.2019.04.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/18/2019] [Accepted: 04/18/2019] [Indexed: 12/31/2022]
|
8
|
Cellular Effects of Butyrate on Vascular Smooth Muscle Cells are Mediated through Disparate Actions on Dual Targets, Histone Deacetylase (HDAC) Activity and PI3K/Akt Signaling Network. Int J Mol Sci 2019; 20:ijms20122902. [PMID: 31197106 PMCID: PMC6628026 DOI: 10.3390/ijms20122902] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Vascular remodeling is a characteristic feature of cardiovascular diseases. Altered cellular processes of vascular smooth muscle cells (VSMCs) is a crucial component in vascular remodeling. Histone deacetylase inhibitor (HDACI), butyrate, arrests VSMC proliferation and promotes cell growth. The objective of the study is to determine the mechanism of butyrate-induced VSMC growth. Using proliferating VSMCs exposed to 5 mM butyrate, immunoblotting studies are performed to determine whether PI3K/Akt pathway that regulates different cellular effects is a target of butyrate-induced VSMC growth. Butyrate inhibits phosphorylation-dependent activation of PI3K, PDK1, and Akt, eliciting differential effects on downstream targets of Akt. Along with previously reported Ser9 phosphorylation-mediated GSK3 inactivation leading to stability, increased expression and accumulation of cyclin D1, and epigenetic histone modifications, inactivation of Akt by butyrate results in: transcriptional activation of FOXO1 and FOXO3 promoting G1 arrest through p21Cip1/Waf1 and p15INK4B upregulation; inactivation of mTOR inhibiting activation of its targets p70S6K and 4E-BP1 impeding protein synthesis; inhibition of caspase 3 cleavage and downregulation of PARP preventing apoptosis. Our findings imply butyrate abrogates Akt activation, causing differential effects on Akt targets promoting convergence of cross-talk between their complimentary actions leading to VSMC growth by arresting proliferation and inhibiting apoptosis through its effect on dual targets, HDAC activity and PI3K/Akt pathway network.
Collapse
|
9
|
Zhang H, Song C, Xie J, Ge X, Liu B, Zhang Y, Sun C, Zhou Q, Yang Z. Comparative proteomic analysis of hepatic mechanisms of Megalobrama amblycephala infected by Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2018; 82:339-349. [PMID: 30081179 DOI: 10.1016/j.fsi.2018.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Hemorrhage syndrome is one of the most prevalent and epidemic diseases that is mainly caused by Aeromonas hydrophila invasion in Megalobrama amblycephala. Recent studies have uncovered a number of immune enzymes and transcripts that are differently expressed in this disease, but the molecular mechanism elicited still remain largely unknown. Here, we constructed an in vivo A. hydrophila infection to investigate the immune mechanism in M. amblycephala using comparative proteomic approach at the one day after infection. 30 altered protein spots were found to undergo differential expression against A. hydrophila infection in the hepatopancreas of M. amblycephala based on 2-DE and were all successfully identified using MALDI-TOF/TOF, representing 18 unique proteins. These proteins were functionally classified into metabolism, antioxidant, cofactors and vitamins, chaperone and signal transduction. Network interaction and Gene Ontology annotation indicated 13 unique proteins were closely related to immune response and directly regulated by each other. Compared with the control group, A. hydrophila infection significantly decreased the metabolism-related mRNA expressions of ENO3, APOA1, CAT and FASN, but increased the mRNA expressions of MDH, ALDOB and RSP12, which was consistent with the protein expression. Nevertheless, FAH was down-regulated at both levels but had no significant difference in mRNA level, ALDH8a1 was down-regulated at protein level but non-significantly up-regulated at the mRNA level. GSTm was up-regulated at protein level but down-regulated at the mRNA level. Consequently, these results revealed that A. hydrophila infection altered the related antioxidative proteins via complex regulatory mechanisms and reduced the immune ability of M. amblycephala at the one day after infection.
Collapse
Affiliation(s)
- Huimin Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
| | - Changyou Song
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Jun Xie
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Yuanyuan Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Cunxin Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Qunlan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Zhenfei Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| |
Collapse
|
10
|
Glueck B, Han Y, Cresci GAM. Tributyrin Supplementation Protects Immune Responses and Vasculature and Reduces Oxidative Stress in the Proximal Colon of Mice Exposed to Chronic-Binge Ethanol Feeding. J Immunol Res 2018; 2018:9671919. [PMID: 30211234 PMCID: PMC6120279 DOI: 10.1155/2018/9671919] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/06/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022] Open
Abstract
Excessive ethanol consumption causes adverse effects and contributes to organ dysfunction. Ethanol metabolism triggers oxidative stress, altered immune function, and gut dysbiosis. The gut microbiome is known to contribute to the maintenance of intestinal homeostasis, and disturbances are associated with pathology. A consequence of gut dysbiosis is also alterations in its metabolic and fermentation byproducts. The gut microbiota ferments undigested dietary polysaccharides to yield short-chain fatty acids, predominantly acetate, propionate, and butyrate. Butyrate has many biological mechanisms of action including anti-inflammatory and immunoprotective effects, and its depletion is associated with intestinal injury. We previously showed that butyrate protects gut-liver injury during ethanol exposure. While the intestine is the largest immune organ in the body, little is known regarding the effects of ethanol on intestinal immune function. This work is aimed at investigating the effects of butyrate supplementation, in the form of the structured triglyceride tributyrin, on intestinal innate immune responses and oxidative stress following chronic-binge ethanol exposure in mice. Our work suggests that tributyrin supplementation preserved immune responses and reduced oxidative stress in the proximal colon during chronic-binge ethanol exposure. Our results also indicate a possible involvement of tributyrin in maintaining the integrity of intestinal villi vasculature disrupted by chronic-binge ethanol exposure.
Collapse
Affiliation(s)
- B. Glueck
- Lerner Research Institute, Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Y. Han
- Lerner Research Institute, Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - G. A. M. Cresci
- Lerner Research Institute, Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
- Pediatric Institute, Gastroenterology, Cleveland Clinic, Cleveland, OH, USA
- Digestive Disease & Surgery Institute, Gastroenterology, Hepatology & Nutrition Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
11
|
García-González I, López-Díaz RI, Canché-Pech JR, Solís-Cárdenas ADJ, Flores-Ocampo JA, Mendoza-Alcocer R, Herrera-Sánchez LF, Jiménez-Rico MA, Ceballos-López AA, López-Novelo ME. Epistasis analysis of metabolic genes polymorphisms associated with ischemic heart disease in Yucatan. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2018; 30:102-111. [PMID: 29395491 DOI: 10.1016/j.arteri.2017.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE Epistasis is a type of genetic interaction that could explain much of the phenotypic variability of complex diseases. In this work, the effect of epistasis of metabolic genes and cardiovascular risk on the susceptibility to the development of ischemic heart disease in Yucatan was determined. METHODS Case-control study in 79 Yucatecan patients with ischemic heart disease and 101 healthy controls matched by age and origin with cases. The polymorphisms -108CT, Q192R, L55M (paraoxonase 1; PON1), C677T, A1298C (methylenetetrahydrofolate reductase; MTHFR), and the presence/absence of the glutathione S-transferase T1 (GSTT1) gene were genotyped. Epistasis analysis was performed using the multifactorial dimensional reduction method. The best risk prediction model was selected based on precision (%), statistical significance (P<0.05), and cross-validation consistency. RESULTS We found an independent association of the null genotype GSTT1*0/0 (OR=3.39, CI: 1.29-8.87, P=0.017) and the null allele (OR=1.86, CI: 1.19-2.91, P=0.007) with ischemic heart disease. The GSTT1*0 deletion and the 677TT genotype (MTHFR) were identified as being at a high cardiovascular risk, whereas the GSTT1*1 wild type genotype and the CC677 variant were at low risk. The gene-environment interaction identified the GSTT1 gene, C677T polymorphism (MTHFR), and hypertension as the factors that best explain ischemic heart disease in the study population. CONCLUSIONS The interaction of the MTHFR, GSTT1 and hypertension may constitute a predictive model of risk for early onset ischemic heart disease in the population of Yucatan.
Collapse
Affiliation(s)
- Igrid García-González
- Departamento de Biología Molecular, Laboratorios Biomédicos de Mérida, Mérida, Yucatán, México.
| | - Roger Iván López-Díaz
- Departamento de Biología Molecular, Laboratorios Biomédicos de Mérida, Mérida, Yucatán, México
| | - José Reyes Canché-Pech
- Departamento de Biología Molecular, Laboratorios Biomédicos de Mérida, Mérida, Yucatán, México
| | | | | | | | | | | | | | - María E López-Novelo
- Departamento de Biología Molecular, Laboratorios Biomédicos de Mérida, Mérida, Yucatán, México
| |
Collapse
|
12
|
Luo J, Chen G, Liang M, Xie A, Li Q, Guo Q, Sharma R, Cheng J. Reduced Expression of Glutathione S-Transferase α 4 Promotes Vascular Neointimal Hyperplasia in CKD. J Am Soc Nephrol 2017; 29:505-517. [PMID: 29127112 DOI: 10.1681/asn.2017030290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/27/2017] [Indexed: 11/03/2022] Open
Abstract
Neointima formation is the leading cause of arteriovenous fistula (AVF) failure. We have shown that CKD accelerates this process by transforming the vascular smooth muscle cells (SMCs) lining the AVF from a contractile to the synthetic phenotype. However, the underlying mechanisms affecting this transformation are not clear. Previous studies have shown that the α-class glutathione transferase isozymes have an important role in regulating 4-hydroxynonenal (4-HNE)-mediated proliferative signaling of cells. Here, using both the loss- and gain-of-function approaches, we investigated the role of glutathione S-transferase α4 (GSTA4) in modulating cellular 4-HNE levels for the transformation and proliferation of SMCs. Compared with non-CKD controls, mice with CKD had downregulated expression of GSTA4 at the mRNA and protein levels, with concomitant increase in 4-HNE in arteries and veins. This effect was associated with upregulated phosphorylation of MAPK signaling pathway proteins in proliferating SMCs. Overexpressing GSTA4 blocked 4-HNE-induced SMC proliferation. Additionally, inhibitors of MAPK signaling inhibited the 4-HNE-induced responses. Compared with wild-type mice, mice lacking GSTA4 exhibited increased CKD-induced neointima formation in AVF. Transient expression of an activated form of GSTA4, achieved using a combined Tet-On/Cre induction system in mice, lowered levels of 4-HNE and reduced the proliferation of SMCs. Together, these results demonstrate the critical role of GSTA4 in blocking CKD-induced neointima formation and AVF failure.
Collapse
Affiliation(s)
- Jinlong Luo
- Department of Emergency, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Guang Chen
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Integrative Traditional Chinese & Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; and
| | - Ming Liang
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, China
| | - Aini Xie
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Qingtian Li
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Qunying Guo
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Rajendra Sharma
- Department of Integrative Traditional Chinese & Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; and
| | - Jizhong Cheng
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas;
| |
Collapse
|
13
|
Zhang Z, Wang W, Jin L, Cao X, Jian G, Wu N, Xu X, Yao Y, Wang D. iTRAQ-Based Quantitative Proteomics Analysis of the Protective Effect of Yinchenwuling Powder on Hyperlipidemic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:3275096. [PMID: 28883884 PMCID: PMC5573101 DOI: 10.1155/2017/3275096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/16/2017] [Accepted: 06/08/2017] [Indexed: 01/08/2023]
Abstract
Yinchenwuling powder (YCL) is an effective traditional Chinese medicine formula to modulate lipid levels. In this study, we established hyperlipidemic rat models and treated them with YCL. The serum concentrations of lipid, malondialdehyde (MDA), endothelin-1 (ET-1), and calcitonin gene-related peptide (CGRP) were measured. Adventitia-free vascular proteins between hyperlipidemic rats and YCL-treated rats were identified using iTRAQ-based quantitative proteomics research approach. Proteins with 1.3-fold difference were analyzed through bioinformatics, and proteomic results were verified by Western blot. The results showed that the serum levels of TC, TG, LDL-C, ET-1, and MDA were significantly decreased, whereas the HDL-C and CGRP levels were significantly increased in the YCL-treated group. Proteomics technology identified 4,382 proteins, and 15 proteins were selected on the basis of their expression levels and bioinformatics. Of these proteins, 2 (Adipoq and Gsta1) were upregulated and 13 (C3, C4, C6, Cfh, Cfp, C8g, C8b, Lgals1, Fndc1, Fgb, Fgg, Kng1, and ApoH) were downregulated in the YCL-treated rats. Their functions were related to immunity, inflammation, coagulation and hemostasis, oxidation and antioxidation, and lipid metabolism and transport. The validated results of ApoH were consistent with the proteomics results. This study enhanced our understanding on the therapeutic effects and mechanism of YCL on hyperlipidemia.
Collapse
Affiliation(s)
- Zheyu Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenbo Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ling Jin
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xin Cao
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gonghui Jian
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ning Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xia Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ye Yao
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dongsheng Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
14
|
Tan X, Feng L, Huang X, Yang Y, Yang C, Gao Y. Histone deacetylase inhibitors promote eNOS expression in vascular smooth muscle cells and suppress hypoxia-induced cell growth. J Cell Mol Med 2017; 21:2022-2035. [PMID: 28266122 PMCID: PMC5571528 DOI: 10.1111/jcmm.13122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/13/2017] [Indexed: 12/25/2022] Open
Abstract
Hypoxia stimulates excessive growth of vascular smooth muscle cells (VSMCs) contributing to vascular remodelling. Recent studies have shown that histone deacetylase inhibitors (HDIs) suppress VSMC proliferation and activate eNOS expression. However, the effects of HDI on hypoxia-induced VSMC growth and the role of activated eNOS in VSMCs are unclear. Using an EdU incorporation assay and flow cytometry analysis, we found that the HDIs, butyrate (Bur) and suberoylanilide hydroxamic acid (SAHA) significantly suppressed the proliferation of hypoxic VSMC lines and induced apoptosis. Remarkable induction of cleaved caspase 3, p21 expression and reduction of PCNA expression were also observed. Increased eNOS expression and enhanced NO secretion by hypoxic VSMC lines were detected using Bur or SAHA treatment. Knockdown of eNOS by siRNA transfection or exposure of hypoxic VSMCs to NO scavengers weakened the effects of Bur and SAHA on the growth of hypoxic VSMCs. In animal experiments, administration of Bur to Wistar rats exposed to hypobaric hypoxia for 28 days ameliorated the thickness and collagen deposition in pulmonary artery walls. Although the mean pulmonary arterial pressure (mPAP) was not obviously decreased with Bur in hypoxic rats, right ventricle hypertrophy index (RVHI) was decreased and the oxygen partial pressure of arterial blood was elevated. Furthermore, cell viability was decreased and eNOS and cleaved caspase 3 were induced in HDI-treated rat pulmonary arterial SMCs. These findings imply that HDIs prevent hypoxia-induced VSMC growth, in correlation with activated eNOS expression and activity in hypoxic VSMCs.
Collapse
Affiliation(s)
- Xiaoling Tan
- Department of High Altitude Physiology & Biology, College of High Altitude Medicine, Third Military Medical University, Chongqing, China
| | - Lan Feng
- Department of High Altitude Physiology & Biology, College of High Altitude Medicine, Third Military Medical University, Chongqing, China
| | - Xiaoyong Huang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yidong Yang
- Department of Pathophysiology & High Altitude Pathology, College of High Altitude Medicine, Third Military Medical University, Chongqing, China
| | - Chengzhong Yang
- Department of High Altitude Physiology & Biology, College of High Altitude Medicine, Third Military Medical University, Chongqing, China
| | - Yuqi Gao
- Department of Pathophysiology & High Altitude Pathology, College of High Altitude Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
15
|
Chan YK, Brar MS, Kirjavainen PV, Chen Y, Peng J, Li D, Leung FCC, El-Nezami H. High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE -/- mice. BMC Microbiol 2016; 16:264. [PMID: 27821063 PMCID: PMC5100306 DOI: 10.1186/s12866-016-0883-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 10/29/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Atherosclerosis appears to have multifactorial causes - microbial component like lipopolysaccharides (LPS) and other pathogen associated molecular patterns may be plausible factors. The gut microbiota is an ample source of such stimulants, and its dependent metabolites and altered gut metagenome has been an established link to atherosclerosis. In this exploratory pilot study, we aimed to elucidate whether microbial intervention with probiotics L. rhamnosus GG (LGG) or pharmaceuticals telmisartan (TLM) could improve atherosclerosis in a gut microbiota associated manner. METHODS Atherosclerotic phenotype was established by 12 weeks feeding of high fat (HF) diet as opposed to normal chow diet (ND) in apolipoprotein E knockout (ApoE-/-) mice. LGG or TLM supplementation to HF diet was studied. RESULTS Both LGG and TLM significantly reduced atherosclerotic plaque size and improved various biomarkers including endotoxin to different extents. Colonial microbiota analysis revealed that TLM restored HF diet induced increase in Firmicutes/Bacteroidetes ratio and decrease in alpha diversity; and led to a more distinct microbial clustering closer to ND in PCoA plot. Eubacteria, Anaeroplasma, Roseburia, Oscillospira and Dehalobacteria appeared to be protective against atherosclerosis and showed significant negative correlation with atherosclerotic plaque size and plasma adipocyte - fatty acid binding protein (A-FABP) and cholesterol. CONCLUSION LGG and TLM improved atherosclerosis with TLM having a more distinct alteration in the colonic gut microbiota. Altered bacteria genera and reduced alpha diversity had significant correlations to atherosclerotic plaque size, plasma A-FABP and cholesterol. Future studies on such bacterial functional influence in lipid metabolism will be warranted.
Collapse
Affiliation(s)
- Yee Kwan Chan
- 5S12, Kadoorie Biological Sciences Building, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Manreetpal Singh Brar
- 5N01, Kadoorie Biological Sciences Building, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Pirkka V Kirjavainen
- Food and Research Health Centre, University of Eastern Finland, Joensuu, Finland
| | - Yan Chen
- L943, Laboratory Block, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Jiao Peng
- L943, Laboratory Block, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Daxu Li
- L943, Laboratory Block, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Frederick Chi-Ching Leung
- 5N01, Kadoorie Biological Sciences Building, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Bioinformatics Center, Nanjing Agricultural University, Nanjing, China
| | - Hani El-Nezami
- 5S12, Kadoorie Biological Sciences Building, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong. .,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland. .,5S13, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
16
|
Aguilar EC, Santos LCD, Leonel AJ, de Oliveira JS, Santos EA, Navia-Pelaez JM, da Silva JF, Mendes BP, Capettini LSA, Teixeira LG, Lemos VS, Alvarez-Leite JI. Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism involving NADPH oxidase down-regulation in endothelial cells. J Nutr Biochem 2016; 34:99-105. [PMID: 27261536 DOI: 10.1016/j.jnutbio.2016.05.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/22/2016] [Accepted: 05/03/2016] [Indexed: 12/31/2022]
Abstract
Butyrate is a 4-carbon fatty acid that has antiinflammatory and antioxidative properties. It has been demonstrated that butyrate is able to reduce atherosclerotic development in animal models by reducing inflammatory factors. However, the contribution of its antioxidative effects of butyrate on atherogenesis has not yet been studied. We investigated the influence of butyrate on oxidative status, reactive oxygen species (ROS) release and oxidative enzymes (NADPH oxidase and iNOS) in atherosclerotic lesions of ApoE(-/-) mice and in oxLDL-stimulated peritoneal macrophages and endothelial cells (EA.hy926). The lesion area in aorta was reduced while in the aortic valve, although lesion area was unaltered, superoxide production and protein nitrosylation were reduced in butyrate-supplemented mice. Peritoneal macrophages from the butyrate group presented a lower free radical release after zymosan stimulus. When endothelial cells were pretreated with butyrate before oxLDL stimulus, the CCL-2 and superoxide ion productions and NADPH oxidase subunit p22phox were reduced. In macrophage cultures, in addition to a reduction in ROS release, nitric oxide and iNOS expression were down-regulated. The data suggest that one mechanism related to the effect of butyrate on atherosclerotic development is the reduction of oxidative stress in the lesion site. The reduction of oxidative stress related to NADPH oxidase and iNOS expression levels associated to butyrate supplementation attenuates endothelium dysfunction and macrophage migration and activation in the lesion site.
Collapse
Affiliation(s)
- Edenil C Aguilar
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais; Departamento de Fisiologia, Universidade Federal de Minas Gerais
| | | | - Alda J Leonel
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais
| | | | | | | | | | | | | | | | - Virginia S Lemos
- Departamento de Fisiologia, Universidade Federal de Minas Gerais
| | | |
Collapse
|
17
|
He BR, Lu F, Zhang L, Hao DJ, Yang H. An Alternative Long-Term Culture System for Highly-Pure Mouse Spermatogonial Stem Cells. J Cell Physiol 2015; 230:1365-75. [DOI: 10.1002/jcp.24880] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/05/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Bao-Rong He
- Department of Spine Surgery; Hong Hui Hospital; Xi'an Jiaotong University College of Medicine; Shaanxi
| | - Fan Lu
- Department of Biochemistry and Molecular Biology; The Fourth Military Medical University; Xi'an China
| | - Lingling Zhang
- Translational Medicine Center; Hong Hui Hospital; Xi'an Jiaotong University College of Medicine; Shaanxi
| | - Ding-Jun Hao
- Department of Spine Surgery; Hong Hui Hospital; Xi'an Jiaotong University College of Medicine; Shaanxi
| | - Hao Yang
- Translational Medicine Center; Hong Hui Hospital; Xi'an Jiaotong University College of Medicine; Shaanxi
- State Key Laboratory of OncogenesRelated Genes; Ren ji-Med-X Clinical Stem Cell Research Center; Renji Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai China
| |
Collapse
|
18
|
Mathew OP, Ranganna K, Milton SG. Involvement of the Antioxidant Effect and Anti-inflammatory Response in Butyrate-Inhibited Vascular Smooth Muscle Cell Proliferation. Pharmaceuticals (Basel) 2014; 7:1008-27. [PMID: 25390157 PMCID: PMC4246201 DOI: 10.3390/ph7111008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/15/2014] [Accepted: 10/31/2014] [Indexed: 01/13/2023] Open
Abstract
Epigenetic mechanisms by altering the expression and, in turn, functions of target genes have potential to modify cellular processes that are characteristics of atherosclerosis, including inflammation, proliferation, migration and apoptosis/cell death. Butyrate, a natural epigenetic modifier and a histone deacetylase inhibitor (HDACi), is an inhibitor of vascular smooth muscle cell (VSMC) proliferation, a critical event in atherogenesis. Here, we examined whether glutathione peroxidases (GPxs), a family of antioxidant enzymes, are modulated by butyrate, contributing to its antiproliferation action on VSMC through the regulation of the inflammatory response by using western blotting, immunostaining methods and activity assay. Treatment of VSMC with butyrate not only upregulates glutathione peroxidase (GPx) 3 and GPx4, but also increases the overall catalytic activity of GPx supporting involvement of antioxidant effect in butyrate arrested VSMC proliferation. Moreover, analysis of the redox-sensitive NF-κB transcription factor system, the target of GPx, reveals that butyrate causes downregulation of IKKα, IKKβ, IkBα and NF-κBp65 expression and prevents NF-κBp65 phosphorylation at serine536 causing inhibition of the expression NF-κB target inflammatory genes, including inducible nitric oxide synthase, VCAM-1 and cyclooxygenase-2. Overall, these observations suggest a link between the antioxidant effect and anti-inflammatory response in butyrate-arrested VSMC proliferation, accentuating the atheroprotective and therapeutic potential of natural products, like butyrate, in vascular proliferative diseases.
Collapse
Affiliation(s)
- Omana P Mathew
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston 77004, Texas, USA,.
| | - Kasturi Ranganna
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston 77004, Texas, USA,.
| | - Shirlette G Milton
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston 77004, Texas, USA,.
| |
Collapse
|
19
|
Bozaykut P, Karademir B, Yazgan B, Sozen E, Siow RCM, Mann GE, Ozer NK. Effects of vitamin E on peroxisome proliferator-activated receptor γ and nuclear factor-erythroid 2-related factor 2 in hypercholesterolemia-induced atherosclerosis. Free Radic Biol Med 2014; 70:174-81. [PMID: 24583459 DOI: 10.1016/j.freeradbiomed.2014.02.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/13/2014] [Accepted: 02/16/2014] [Indexed: 12/30/2022]
Abstract
Atherosclerosis and associated cardiovascular complications such as stroke and myocardial infarction are major causes of morbidity and mortality. We have previously reported a significant increase in mRNA levels of the scavenger receptor CD36 in aortae of cholesterol-fed rabbits and shown that vitamin E treatment attenuated increased CD36 mRNA expression. In the present study, we further investigated the redox signaling pathways associated with protection against atherogenesis induced by high dietary cholesterol and correlated these with CD36 expression and the effects of vitamin E supplementation in a rabbit model. Male albino rabbits were assigned to either a control group fed with a low vitamin E diet alone or a test group fed with a low vitamin E diet containing 2% cholesterol in the absence or presence of daily intramuscular injections of vitamin E (50mg/kg). To elucidate the mechanisms by which vitamin E supplementation alters the effects of hypercholesterolemia in rabbit aortae, we measured peroxisome proliferator-activated receptor γ (PPARγ), ATP-binding cassette transporter A1 (ABCA1), and matrix metalloproteinase-1 (MMP-1) mRNA levels by quantitative RT-PCR and the expression of MMP-1, nuclear factor-erythroid 2-related factor 2 (Nrf2), and glutathione S-transferase α (GSTα) protein by immunoblotting. The increased MMP-1 and decreased GSTα expression observed suggests that a cholesterol-rich diet contributes to the development of atherosclerosis, whereas vitamin E supplementation affords protection by decreasing MMP-1 and increasing PPARγ, GSTα, and ABCA1 levels in aortae of rabbits fed a cholesterol-rich diet. Notably, protein expression of Nrf2, the antioxidant transcription factor, was increased in both the cholesterol-fed and the vitamin E-supplemented groups. Although Nrf2 activation can promote CD36-mediated cholesterol uptake by macrophages, the increased induction of Nrf2-mediated antioxidant genes is likely to contribute to decreased lesion progression. Thus, our study demonstrates that Nrf2 can mediate both pro- and antiatherosclerotic effects.
Collapse
Affiliation(s)
- Perinur Bozaykut
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center, Marmara University, 34668 Haydarpasa, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center, Marmara University, 34668 Haydarpasa, Istanbul, Turkey
| | - Burak Yazgan
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center, Marmara University, 34668 Haydarpasa, Istanbul, Turkey
| | - Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center, Marmara University, 34668 Haydarpasa, Istanbul, Turkey
| | - Richard C M Siow
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, London SE1 9NH, UK
| | - Giovanni E Mann
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, London SE1 9NH, UK
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center, Marmara University, 34668 Haydarpasa, Istanbul, Turkey.
| |
Collapse
|
20
|
The role of intestinal microbiota in development of irinotecan toxicity and in toxicity reduction through dietary fibres in rats. PLoS One 2014; 9:e83644. [PMID: 24454707 PMCID: PMC3891650 DOI: 10.1371/journal.pone.0083644] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/06/2013] [Indexed: 01/10/2023] Open
Abstract
CPT-11 is a drug used as chemotherapy for colorectal cancer. CPT-11 causes toxic side-effects in patients. CPT-11 toxicity has been attributed to the activity of intestinal microbiota, however, intestinal microbiota may also have protective effects in CP!-11 chemotherapy. This study aimed to elucidate mechanisms through which microbiota and dietary fibres could modify host health. Rats bearing a Ward colon carcinoma were treated with a two-cycle CPT-11/5-fluorouracil therapy recapitulating clinical therapy of colorectal cancer. Animals were fed with a semi-purified diet or a semi-purified diet was supplemented with non-digestible carbohydrates (isomalto-oligosaccharides, resistant starch, fructo-oligosaccharides, or inulin) in 3 independent experiments. Changes in intestinal microbiota, bacteria translocating to mesenteric lymphnodes, cecal GUD activity, and cecal SCFA production, and the intestinal concentration of CPT-11 and its metabolites were analysed. Non-digestible carbohydrates significantly influenced feed intake, body weight and other indicators of animal health. The identification of translocating bacteria and their quantification in cecal microbiota indicated that overgrowth of the intestine by opportunistic pathogens was not a major contributor to CPT-11 toxicity. Remarkably, fecal GUD activity positively correlated to body weight and feed intake but negatively correlated to cecal SN-38 concentrations and IL1-β. The reduction in CPT-11 toxicity by non-digestible carbohydrates did not correlate to stimulation of specific bacterial taxa. However, cecal butyrate concentrations and feed intake were highly correlated. The protective role of intestinal butyrate production was substantiated by a positive correlation of the host expression of MCT1 (monocarboxylate transporter 1) with body weight as well as a positive correlation of the abundance of bacterial butyryl-CoA gene with cecal butyrate concentrations. These correlations support the interpretation that the influence of dietary fibre on CPT-11 toxicity is partially mediated by an increased cecal production of butyrate.
Collapse
|
21
|
Chen D, Liu J, Rui B, Gao M, Zhao N, Sun S, Bi A, Yang T, Guo Y, Yin Z, Luo L. GSTpi protects against angiotensin II-induced proliferation and migration of vascular smooth muscle cells by preventing signal transducer and activator of transcription 3 activation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:454-63. [PMID: 24321768 DOI: 10.1016/j.bbamcr.2013.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/20/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
Angiotensin II (Ang II)-elicited excessive proliferation, hypertrophy and migration of vascular smooth muscle cells (VSMCs) are vital to the pathogenesis of atheroclerosis. Glutathione S-transferase pi (GSTpi) exists extensively in various kinds of cells and protects cells against different stresses. However, knowledge remains limited about what GSTpi acts in VSMCs. We investigated the effect of GSTpi on Ang II-induced VSMC proliferation, hypertrophy and migration and its latent mechanism. Overexpression and RNAi experiments demonstrated that GSTpi inhibited Ang II-induced proliferation, hypertrophy and migration of VSMCs and arrested progression of cell cycle from G0/G1 to S phase. Immunoprecipitation, mass spectrometry and confocal microscopy analyses showed that GSTpi directly associated with signal transducer and activator of transcription 3 (STAT3) to prevent Ang II-triggered binding of Src to STAT3 and thus suppressed Ang II-stimulated phosphorylation and nuclear translocation of STAT3, as well as cyclin D1 expression. In contrast, GSTpi didn't affect Ang II-activated extracellular signal-regulated kinase (ERK1/2). GSTpi acts as a negative regulator to prevent Ang II-triggered proliferative signaling in VSMCs, suggesting that it may protect vessels against the stresses associated with atherosclerosis formation.
Collapse
Affiliation(s)
- Dan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210097, People's Republic of China
| | - Jinjiao Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210097, People's Republic of China
| | - Bing Rui
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210097, People's Republic of China
| | - Min Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210097, People's Republic of China
| | - Ningwei Zhao
- School of Biotechnology, Royal Institute of Technology, No. 21, Roslagstullsbacken, Stockholm SE-10691, Sweden
| | - Shuai Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210097, People's Republic of China
| | - Aijing Bi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210097, People's Republic of China
| | - Tingting Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210097, People's Republic of China
| | - Yingtao Guo
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, People's Republic of China.
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210097, People's Republic of China.
| |
Collapse
|
22
|
Timme-Laragy AR, Goldstone JV, Imhoff BR, Stegeman JJ, Hahn ME, Hansen JM. Glutathione redox dynamics and expression of glutathione-related genes in the developing embryo. Free Radic Biol Med 2013; 65:89-101. [PMID: 23770340 PMCID: PMC3823629 DOI: 10.1016/j.freeradbiomed.2013.06.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/14/2013] [Accepted: 06/05/2013] [Indexed: 01/18/2023]
Abstract
Embryonic development involves dramatic changes in cell proliferation and differentiation that must be highly coordinated and tightly regulated. Cellular redox balance is critical for cell fate decisions, but it is susceptible to disruption by endogenous and exogenous sources of oxidative stress. The most abundant endogenous nonprotein antioxidant defense molecule is the tripeptide glutathione (γ-glutamylcysteinylglycine, GSH), but the ontogeny of GSH concentration and redox state during early life stages is poorly understood. Here, we describe the GSH redox dynamics during embryonic and early larval development (0-5 days postfertilization) in the zebrafish (Danio rerio), a model vertebrate embryo. We measured reduced and oxidized glutathione using HPLC and calculated the whole embryo total glutathione (GSHT) concentrations and redox potentials (Eh) over 0-120 h of zebrafish development (including mature oocytes, fertilization, midblastula transition, gastrulation, somitogenesis, pharyngula, prehatch embryos, and hatched eleutheroembryos). GSHT concentration doubled between 12h postfertilization (hpf) and hatching. The GSH Eh increased, becoming more oxidizing during the first 12h, and then oscillated around -190 mV through organogenesis, followed by a rapid change, associated with hatching, to a more negative (more reducing) Eh (-220 mV). After hatching, Eh stabilized and remained steady through 120 hpf. The dynamic changes in GSH redox status and concentration defined discrete windows of development: primary organogenesis, organ differentiation, and larval growth. We identified the set of zebrafish genes involved in the synthesis, utilization, and recycling of GSH, including several novel paralogs, and measured how expression of these genes changes during development. Ontogenic changes in the expression of GSH-related genes support the hypothesis that GSH redox state is tightly regulated early in development. This study provides a foundation for understanding the redox regulation of developmental signaling and investigating the effects of oxidative stress during embryogenesis.
Collapse
Affiliation(s)
- Alicia R. Timme-Laragy
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- Division of Environmental Health, Department of Public Health, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Jared V. Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Barry R. Imhoff
- Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - John J. Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Jason M. Hansen
- Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
23
|
Harris C, Hansen JM. Nrf2-mediated resistance to oxidant-induced redox disruption in embryos. ACTA ACUST UNITED AC 2012; 95:213-8. [PMID: 22495766 DOI: 10.1002/bdrb.21005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/19/2012] [Indexed: 12/20/2022]
Abstract
Events that control developmental changes occur during specific windows of gestation and if disrupted, can lead to dysmorphogenesis or embryolethality. One largely understudied aspect of developmental control is redox regulation, where the untimely disruption of intracellular redox potentials (E(h) ) may alter development, suggesting that tight control of developmental-stage-specific redox states is necessary to support normal development. In this study, mouse gestational day 8.5 embryos in whole embryo culture were treated with 10 μM dithiole-3-thione (D3T), an inducer of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). After 14 hr, D3T-treated and -untreated conceptuses were challenged with 200 μM hydrogen peroxide (H₂O₂) to induce oxidant-induced change to intracellular E(h) s. Redox potentials of glutathione (GSH), thioredoxin-1 (Trx1), and mitochondrial thioredoxin-2 (Trx2) were then measured over a 2-hr rebounding period following H₂O₂ treatment. D3T treatment increased embryonic expression of known Nrf2-regulated genes, including those responsible for redox regulation of major intracellular redox couples. Exposure to H₂O₂ without prior D3T treatment produced significant oxidation of GSH, Trx1, and Trx2, based on E(h) values, where GSH and Trx2 E(h) recovered, reaching to pre-H₂O₂ E(h) ranges, but Trx1 E(h) remained oxidized. Following H₂O₂ addition in culture to embryos that received D3T pretreatments, GSH, Trx1, and Trx2 were insulated from significant oxidation. These data show that Nrf2 activation may serve as a means to protect the embryo from chemically induced oxidative stress through the preservation of intracellular redox states during development, allowing normal morphogenesis to ensue.
Collapse
Affiliation(s)
- Craig Harris
- Developmental Toxicology Laboratory, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
24
|
Mathew OP, Ranganna K, Yatsu FM. Butyrate, an HDAC inhibitor, stimulates interplay between different posttranslational modifications of histone H3 and differently alters G1-specific cell cycle proteins in vascular smooth muscle cells. Biomed Pharmacother 2011; 64:733-40. [PMID: 20970954 DOI: 10.1016/j.biopha.2010.09.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 02/23/2010] [Accepted: 09/10/2010] [Indexed: 12/12/2022] Open
Abstract
HDACs and HATs regulate histone acetylation, an epigenetic modification that controls chromatin structure and through it, gene expression. Butyrate, a dietary HDAC inhibitor, inhibits VSMC proliferation, a crucial factor in atherogenesis, and the principle mechanism in arterial and in-stent restenosis. Here, the link between antiproliferation action of butyrate and the portraits of global covalent modifications of histone H3 that it induces are characterized to understand the mechanics of butyrate-arrested VSMC proliferation. Analysis of histone H3 modifications specific to butyrate arrested VSMC proliferation display induction of histone H3-Lysine9 acetylation, inhibition of histone H3-Serine10 phosphorylation, reduction of histone H3-Lysine9 dimethylation and stimulation of histone H3-Lysine4 di-methylation, which is linked to transcriptional activation, cell cycle/mitosis, transcriptional suppression and activation, respectively. Conversely, untreated VSMCs exhibit inhibition of H3-Lysine9 acetylation, induction of H3-Serine10 phosphorylation, stimulation of H3-Lysine9 di-methylation and reduction in H3-Lysine4 di-methylation. Butyrate's cooperative effects on H3-Lysine9 acetylation and H3-Serine10 phosphorylation, and contrasting effects on di-methylation of H3-Lysine9 and H3-Lysine4 suggests that the interplay between these site-specific modifications cause distinct chromatin alterations that allow cyclin D1 and D3 induction, G1-specific cdk4, cdk6 and cdk2 downregulation, and upregulation of cdk inhibitors, p15INK4b and p21Cip1. Regardless of butyrate's effect on D-type cyclins, downregulation of G1-specific cdks and upregulation of cdk inhibitors by butyrate prevents cell cycle progression by failing to inactivate Rb. Overall, through chromatin remodeling, butyrate appears to differentially alter G1-specific cell cycle proteins to ensure proliferation arrest of VSMCs, a crucial cellular component of blood vessel wall.
Collapse
Affiliation(s)
- Omana P Mathew
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas Southern University, 3100, Cleburne Street, Houston, Texas 77004, USA
| | | | | |
Collapse
|
25
|
Kulinskiĭ VI, Kolesnichenko LS. [Nuclear glutathione and its functions]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2011; 56:657-62. [PMID: 21395068 DOI: 10.18097/pbmc20105606657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During recent years the nuclear localization of glutathione has been confirmed and this fraction has been quantitatively determined. The nuclear GSH and the enzymes of its metabolism realize independent and important functions. They considerably differ from functions of hyaloplasmic and mitochondrial GSH. Glutathione interacts with regulatory pathways, involved into signal transmission into the nucleus.
Collapse
|
26
|
Potential risk modifications of GSTT1, GSTM1 and GSTP1 (glutathione-S-transferases) variants and their association to CAD in patients with type-2 diabetes. Biochem Biophys Res Commun 2011; 407:49-53. [PMID: 21352813 DOI: 10.1016/j.bbrc.2011.02.097] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 02/20/2011] [Indexed: 11/22/2022]
Abstract
BACKGROUND Type-2 diabetes mellitus (T2DM) is a major risk factor for coronary artery disease (CAD) resulting in high morbidity and mortality. Glutathione S-transferases (GSTM1, GSTT1 and GSTP1) are known for their broad range of detoxification and in the metabolism of xenobiotics. Recent studies revealed the relationship of GSTs variants with T2DM and CAD. In this case-control study we ascertained the association of GSTs variants in association with the development of CAD in patients with T2DM. METHODS From the Southern part of India, we enrolled 222 T2DM patients, 290 T2DM patients with CAD and 270 healthy controls matched for age, sex and origin. Serum lipid profiles were measured and DNA was extracted from the blood samples. Multiplex PCR for GSTM1/T1 (null polymorphism) and PCR-RFLP for GSTP1 (105 A>G), were performed for genotyping of study participants. Gene frequency and lipid profiles were statistically analyzed for disease association. RESULTS Regression analysis showed that, GSTM1-null genotype is associated with a 2-fold increase (OR=2.925; 95% CI=2.078-4.119; P<0.0001) and GSTT1-null genotype is associated with a 3-fold increase (OR=3.114; 95% CI=2.176-4.456; P<0.0001) to T2DM development. Ile/Val and Val/Val genotypes of GSTP1 also showed a significant risk for T2DM (OR=1.423, CI=1.041-1.946; P=0.027 and OR=1.829, CI=1.064-3.142; P=0.029). Increased odds ratio showed that GSTT1-null genotype had a moderately higher occurrence in T2DM-CAD patients (OR=1.918, 95% CI=1.144-3.214; P=0.014) than T2DM patients without CAD. The level of HDL has significantly decreased in GSTT1-present than in GSTT1-null genotype (43.50±4.10 vs. 45.20±3.90; P=0.004) when compared with control and T2DM patients. However, LDL level showed a significant increase in GSTT1-null than GSTT1-present genotype (108.70±16.90 vs. 102.20±12.60; P=0.005). Although the GSTM1-null polymorphism showed no correlation with lipid profiles among T2DM and T2DM with CAD patients, GSTT1-null polymorphism attained a statistical significance for the level of LDL (127±28.20 vs. 134±29.10; P=0.039) and triglycerides in T2DM with CAD patients (182.10±21.10 vs. 191.20±24.10; P=0.018). CONCLUSION Our work concludes that GSTM1, GSTT1 and GSTP1 variants might contribute to the development of T2DM and GSTT1 variant alone is involved in the development of T2DM associated CAD complications in the South Indian population.
Collapse
|
27
|
Kulinsky VI, Kolesnichenko LS. The nuclear glutathione and its functions. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2010. [DOI: 10.1134/s1990750810030029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
KUMAR APUNEETH, CHOUGALA MALLIKARJUN, NANDINI C, SALIMATH P. EFFECT OF BUTYRIC ACID SUPPLEMENTATION ON SERUM AND RENAL ANTIOXIDANT ENZYME ACTIVITIES IN STREPTOZOTOCIN-INDUCED DIABETIC RATS. J Food Biochem 2010. [DOI: 10.1111/j.1745-4514.2009.00284.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
The common variant in the GSTM1 and GSTT1 genes is related to markers of oxidative stress and inflammation in patients with coronary artery disease: a case-only study. Mol Biol Rep 2009; 37:405-10. [DOI: 10.1007/s11033-009-9877-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 09/30/2009] [Indexed: 12/13/2022]
|
30
|
Scharlau D, Borowicki A, Habermann N, Hofmann T, Klenow S, Miene C, Munjal U, Stein K, Glei M. Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat Res 2009; 682:39-53. [PMID: 19383551 DOI: 10.1016/j.mrrev.2009.04.001] [Citation(s) in RCA: 231] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 04/08/2009] [Accepted: 04/14/2009] [Indexed: 05/27/2023]
Abstract
Dietary fibres are indigestible food ingredients that reach the colon and are then fermented by colonic bacteria, resulting mainly in the formation of short-chain fatty acids (SCFA) such as acetate, propionate, and butyrate. Those SCFA, especially butyrate, are recognised for their potential to act on secondary chemoprevention by slowing growth and activating apoptosis in colon cancer cells. Additionally, SCFA can also act on primary prevention by activation of different drug metabolising enzymes. This can reduce the burden of carcinogens and, therefore, decrease the number of mutations, reducing cancer risk. Activation of GSTs by butyrate has been studied on mRNA, protein, and enzyme activity level by real-time RT-PCR, cDNA microarrays, Western blotting, or photometrical approaches, respectively. Butyrate had differential effects in colon cells of different stages of cancer development. In HT29 tumour cells, e.g., mRNA GSTA4, GSTP1, GSTM2, and GSTT2 were induced. In LT97 adenoma cells, GSTM3, GSTT2, and MGST3 were induced, whereas GSTA2, GSTT2, and catalase (CAT) were elevated in primary colon cells. Colon cells of different stages of carcinogenesis differed in post-transcriptional regulatory mechanisms because butyrate increased protein levels of different GST isoforms and total GST enzyme activity in HT29 cells, whereas in LT97 cells, GST protein levels and activity were slightly reduced. Because butyrate increased histone acetylation and phosphorylation of ERK in HT29 cells, inhibition of histone deacetylases and the influence on MAPK signalling are possible mechanisms of GST activation by butyrate. Functional consequences of this activation include a reduction of DNA damage caused by carcinogens like hydrogen peroxide or 4-hydroxynonenal (HNE) in butyrate-treated colon cells. Treatment of colon cells with the supernatant from an in vitro fermentation of inulin increased GST activity and decreased HNE-induced DNA damage in HT29 cells. Additional animal and human studies are needed to define the exact role of dietary fibre and butyrate in inducing GST activity and reducing the risk of colon cancer.
Collapse
Affiliation(s)
- Daniel Scharlau
- Institute for Nutrition, Friedrich Schiller University Jena, Dornburger Strasse 24, 07743 Jena, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cui PL, Lv D, Zhang J, Yao SW, Wang YB, Yang ZX. Oxidative stress damage and HIF-1α expression in rat intestinal mucosa during acute necrotic pancreatitis. Shijie Huaren Xiaohua Zazhi 2009; 17:24-30. [DOI: 10.11569/wcjd.v17.i1.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the role of oxidative stress in intestinal mucosal barrier damage during ANP, and to explore the putative mechanism of HIF-1α during this process.
METHODS: Male Wistar rats were divided randomly into three groups: group A (n = 18) and B (n = 18) served as ANP models, group C (n = 10) was designated as a normal control (sham operation). In group A and C, rats were treated with normal saline therapy, while in group B, rats were treated with DMSO therapy. During the observation period, the morphological changes of intestinal mucosa and pancreatic tissue were observed, and the intestinal permeability was evaluated by FITC-labeled Dextran method and DAO activity detection. The activities of SOD, MPO and the level of MDA and GSH were measured and also the expression of HIF-1α protein was assayed.
RESULTS: During the observation period of ANP, the intestinal mucosal barrier function was damaged seriously and the intestinal permeability was increased. As early as 6h, the DAO activity in the mucosa was decreased obviously (0.43 ± 0.07 U/L vs 0.91 ± 0.11 U/L, P < 0.05) while was attenuated by administration of DMSO. In the serum, the detection of DAO activity showed an opposite results. Also in ANP group, the activity of SOD and the level of GSH were highly decreased (SOD: 12.12 ± 2.24 U/mg vs 25.12 ± 3.86 U/mg; GSH: 160.75 ± 24.25 mg/g vs 412.45 ± 45.60 mg/g, both P < 0.01), while the activity of MPO and the level of MDA were markedly increased (MPO: 1.32 ± 0.18 U/mg vs 0.63 ± 0.11 U/mg; MDA: 2.85 ± 0.21 nmol/mg vs 1.34 ± 0.12 nmol/mg, both P < 0.01). However, administration of DMSO attenuated the damage to some extent, and mucosal barrier function was improved (P < 0.05). And the injury induced by oxidative stress was limited to some extent (P < 0.05). Western blot showed the expression of HIF-1α protein was up-regulated with ANP while down-regulated with DMSO.
CONCLUSION: The intestinal mucosal barrier is damaged during the process of ANP; oxidative stress plays an important role in the damage to mucosal barrier and OFR scavenger could maintain the integrity of mucosal barrier structure and function; HIF-1α is involved in the protection effect on intestinal mucosal barrier under hypoxia induced by ANP, which could be regulated through attenuating the mucosal barrier damage when OFR scavenger is used.
Collapse
|
32
|
Hamer HM, Jonkers DMAE, Bast A, Vanhoutvin SALW, Fischer MAJG, Kodde A, Troost FJ, Venema K, Brummer RJM. Butyrate modulates oxidative stress in the colonic mucosa of healthy humans. Clin Nutr 2008; 28:88-93. [PMID: 19108937 DOI: 10.1016/j.clnu.2008.11.002] [Citation(s) in RCA: 277] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 10/27/2008] [Accepted: 11/20/2008] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Butyrate, a short-chain fatty acid produced by colonic microbial fermentation of undigested carbohydrates, has been implicated in the maintenance of colonic health. This study evaluates whether butyrate plays a role in oxidative stress in the healthy colonic mucosa. METHODS A randomized, double blind, cross-over study with 16 healthy volunteers was performed. Treatments consisted of daily rectal administration of a 60 ml enema containing 100 mM sodium butyrate or saline for 2 weeks. After each treatment, a blood sample was taken and mucosal biopsies were obtained from the sigmoid colon. In biopsies, the trolox equivalent antioxidant capacity, activity of glutathione-S-transferase, concentration of uric acid, glutathione (GSH), glutathione disulfide and malondialdehyde, and expression of genes involved in GSH and uric acid metabolism was determined. Secondary outcome parameters were CRP, calprotectin and intestinal fatty acid binding protein in plasma and histological inflammatory scores. RESULTS Butyrate treatment resulted in significantly higher GSH (p<0.05) and lower uric acid (p<0.01) concentrations compared to placebo. Changes in GSH and uric acid were accompanied by increased and decreased expression, respectively, of their rate limiting enzymes determined by RT-PCR. No significant differences were found in other parameters. CONCLUSIONS This study demonstrated that butyrate is able to beneficially affect oxidative stress in the healthy human colon.
Collapse
|
33
|
Hu T, Luan R, Zhang H, Lau WB, Wang Q, Zhang Y, Wang HC, Tao L. Hydrogen peroxide enhances osteopontin expression and matrix metalloproteinase activity in aortic vascular smooth muscle cells. Clin Exp Pharmacol Physiol 2008; 36:626-30. [PMID: 19076167 DOI: 10.1111/j.1440-1681.2008.05124.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Restenosis after percutaneous coronary intervention (PCI) is a major clinical complication. However, the underlying mechanisms remain poorly understood. The present aim of the present study was to test the hypothesis that reactive oxygen species (ROS) enhance osteopontin (OPN) expression and increase matrix metalloproteinase (MMP)-2 activity (two major factors that contribute to restenosis) in aortic vascular smooth muscle cells (VSMC), thus facilitating restenosis. 2. Primary cultured rat aortic VSMC were exposed to different concentrations (10, 50 and 100 micromol/L) of H(2)O(2). The expression of OPN mRNA and protein was determined by reverse transcription-polymerase chain reaction and Western blotting, respectively. The activity of MMP-2 was determined by gelatin zymography. 3. The expression of OPN mRNA and protein in VSMC was enhanced by H(2)O(2) in a dose-dependent manner. In addition, H(2)O(2) at all concentrations tested (which are comparable to those seen in diabetic vascular tissues) significantly increased MMP-2 activity in VSMC. 4. Because vascular ROS production is significantly increased in patients with ischaemic disease and OPN and MMP-2 have been shown to play critical role in restenosis, the results of the present study strongly suggest that a ROS-initiated and OPN- and MMP-2-mediated signalling pathway may play an important role in accelerated restenosis after PCI in patients with ischaemic disease. Therefore, the H(2)O(2)-OPN/MMP-2 system may be a new therapeutic target in reducing restenosis in patients undergoing PCI.
Collapse
Affiliation(s)
- Tao Hu
- Deparrment of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Auclair S, Silberberg M, Gueux E, Morand C, Mazur A, Milenkovic D, Scalbert A. Apple polyphenols and fibers attenuate atherosclerosis in apolipoprotein E-deficient mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:5558-5563. [PMID: 18558693 DOI: 10.1021/jf800419s] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Atherosclerosis, which is closely linked to nutritional habits, is a major cause of mortality in Western countries. Most of the previous investigations carried out on health effects of apples have been focused on their capacity to lower lipid concentration as well as on their antioxidant effects. The aim of the present study was to investigate the antiatherosclerotic effects of apple polyphenols and fibers. A crude apple polyphenol extract and low-viscosity apple fibers isolated from cider apples were administered separately or in association with the diet of apo E-deficient mice. After 4 months of supplementation, lipemia and oxidative stress biomarkers were measured and atheroslerotic lesions assessed by histomorphometry. Total plasmatic cholesterol and triacylgycerol levels were not affected by supplementation, and hepatic cholesterol level was lower in the group supplemented with both fibers and polyphenols. Uric acid concentrations and antioxidant capacity (FRAP) in plasma were reduced in all groups supplemented with polyphenols or fibers. The mean lesion area was reduced by 17, 38, and 38%, respectively, for the polyphenol, fiber, and polyphenol + fiber groups. Apple constituents supplied at nutritional doses therefore limit the development of atherosclerotic lesions in the aorta of apo E-deficient mice. On the basis of the results, we hypothesize that apple fibers and polyphenols may play a role in preventing atherosclerosis disease by decreasing uric acid plasma level.
Collapse
Affiliation(s)
- Sylvain Auclair
- Unité de Nutrition Humaine, UMR1019, INRA, Centre de Recherche de Clermont Ferrand/Theix, 63122 Saint-Genès-Champanelle, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch Toxicol 2008; 82:273-99. [PMID: 18443763 DOI: 10.1007/s00204-008-0304-z] [Citation(s) in RCA: 323] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 04/03/2008] [Indexed: 02/06/2023]
Abstract
Oxidative stress can be defined as the imbalance between cellular oxidant species production and antioxidant capability. Reactive oxygen species (ROS) are involved in a variety of different cellular processes ranging from apoptosis and necrosis to cell proliferation and carcinogenesis. In fact, molecular events, such as induction of cell proliferation, decreased apoptosis, and oxidative DNA damage have been proposed to be critically involved in carcinogenesis. Carcinogenicity and aging are characterized by a set of complex endpoints, which appear as a series of molecular reactions. ROS can modify many intracellular signaling pathways including protein phosphatases, protein kinases, and transcription factors, suggesting that the majority of the effects of ROS are through their actions on signaling pathways rather than via non-specific damage of macromolecules; however, exact mechanisms by which redox status induces cells to proliferate or to die, and how oxidative stress can lead to processes evoking tumor formation are still under investigation.
Collapse
|