1
|
Charco JM, Eraña H, Venegas V, García-Martínez S, López-Moreno R, González-Miranda E, Pérez-Castro MÁ, Castilla J. Recombinant PrP and Its Contribution to Research on Transmissible Spongiform Encephalopathies. Pathogens 2017; 6:E67. [PMID: 29240682 PMCID: PMC5750591 DOI: 10.3390/pathogens6040067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023] Open
Abstract
The misfolding of the cellular prion protein (PrPC) into the disease-associated isoform (PrPSc) and its accumulation as amyloid fibrils in the central nervous system is one of the central events in transmissible spongiform encephalopathies (TSEs). Due to the proteinaceous nature of the causal agent the molecular mechanisms of misfolding, interspecies transmission, neurotoxicity and strain phenomenon remain mostly ill-defined or unknown. Significant advances were made using in vivo and in cellula models, but the limitations of these, primarily due to their inherent complexity and the small amounts of PrPSc that can be obtained, gave rise to the necessity of new model systems. The production of recombinant PrP using E. coli and subsequent induction of misfolding to the aberrant isoform using different techniques paved the way for the development of cell-free systems that complement the previous models. The generation of the first infectious recombinant prion proteins with identical properties of brain-derived PrPSc increased the value of cell-free systems for research on TSEs. The versatility and ease of implementation of these models have made them invaluable for the study of the molecular mechanisms of prion formation and propagation, and have enabled improvements in diagnosis, high-throughput screening of putative anti-prion compounds and the design of novel therapeutic strategies. Here, we provide an overview of the resultant advances in the prion field due to the development of recombinant PrP and its use in cell-free systems.
Collapse
Affiliation(s)
- Jorge M. Charco
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Hasier Eraña
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Vanessa Venegas
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Sandra García-Martínez
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Rafael López-Moreno
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Ezequiel González-Miranda
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Miguel Ángel Pérez-Castro
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
2
|
Eigenbrod S, Frick P, Bertsch U, Mitteregger-Kretzschmar G, Mielke J, Maringer M, Piening N, Hepp A, Daude N, Windl O, Levin J, Giese A, Sakthivelu V, Tatzelt J, Kretzschmar H, Westaway D. Substitutions of PrP N-terminal histidine residues modulate scrapie disease pathogenesis and incubation time in transgenic mice. PLoS One 2017; 12:e0188989. [PMID: 29220360 PMCID: PMC5722314 DOI: 10.1371/journal.pone.0188989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/16/2017] [Indexed: 12/31/2022] Open
Abstract
Prion diseases have been linked to impaired copper homeostasis and copper induced-oxidative damage to the brain. Divalent metal ions, such as Cu2+ and Zn2+, bind to cellular prion protein (PrPC) at octapeptide repeat (OR) and non-OR sites within the N-terminal half of the protein but information on the impact of such binding on conversion to the misfolded isoform often derives from studies using either OR and non-OR peptides or bacterially-expressed recombinant PrP. Here we created new transgenic mouse lines expressing PrP with disrupted copper binding sites within all four histidine-containing OR's (sites 1-4, H60G, H68G, H76G, H84G, "TetraH>G" allele) or at site 5 (composed of residues His-95 and His-110; "H95G" allele) and monitored the formation of misfolded PrP in vivo. Novel transgenic mice expressing PrP(TetraH>G) at levels comparable to wild-type (wt) controls were susceptible to mouse-adapted scrapie strain RML but showed significantly prolonged incubation times. In contrast, amino acid replacement at residue 95 accelerated disease progression in corresponding PrP(H95G) mice. Neuropathological lesions in terminally ill transgenic mice were similar to scrapie-infected wt controls, but less severe. The pattern of PrPSc deposition, however, was not synaptic as seen in wt animals, but instead dense globular plaque-like accumulations of PrPSc in TgPrP(TetraH>G) mice and diffuse PrPSc deposition in (TgPrP(H95G) mice), were observed throughout all brain sections. We conclude that OR and site 5 histidine substitutions have divergent phenotypic impacts and that cis interactions between the OR region and the site 5 region modulate pathogenic outcomes by affecting the PrP globular domain.
Collapse
Affiliation(s)
- Sabina Eigenbrod
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Petra Frick
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Uwe Bertsch
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | | | - Janina Mielke
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Marko Maringer
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Niklas Piening
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Alexander Hepp
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Otto Windl
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Johannes Levin
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Vignesh Sakthivelu
- Department of Metabolic Biochemistry/Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University, Munich, Germany
| | - Jörg Tatzelt
- Department of Metabolic Biochemistry/Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University, Munich, Germany
| | - Hans Kretzschmar
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Insights into the mechanisms of copper dyshomeostasis in amyotrophic lateral sclerosis. Expert Rev Mol Med 2017; 19:e7. [PMID: 28597807 DOI: 10.1017/erm.2017.9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe neuromuscular disease characterised by a progressive loss of motor neurons that usually results in paralysis and death within 2 to 5 years after disease onset. The pathophysiological mechanisms involved in ALS remain largely unknown and to date there is no effective treatment for this disease. Here, we review clinical and experimental evidence suggesting that dysregulation of copper homeostasis in the central nervous system is a crucial underlying event in motor neuron degeneration and ALS pathophysiology. We also review and discuss novel approaches seeking to target copper delivery to treat ALS. These novel approaches may be clinically relevant not only for ALS but also for other neurological disorders with abnormal copper homeostasis, such as Parkinson's, Huntington's and Prion diseases.
Collapse
|
4
|
Yen CF, Harischandra DS, Kanthasamy A, Sivasankar S. Copper-induced structural conversion templates prion protein oligomerization and neurotoxicity. SCIENCE ADVANCES 2016; 2:e1600014. [PMID: 27419232 PMCID: PMC4942324 DOI: 10.1126/sciadv.1600014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/27/2016] [Indexed: 05/26/2023]
Abstract
Prion protein (PrP) misfolding and oligomerization are key pathogenic events in prion disease. Copper exposure has been linked to prion pathogenesis; however, its mechanistic basis is unknown. We resolve, with single-molecule precision, the molecular mechanism of Cu(2+)-induced misfolding of PrP under physiological conditions. We also demonstrate that misfolded PrPs serve as seeds for templated formation of aggregates, which mediate inflammation and degeneration of neuronal tissue. Using a single-molecule fluorescence assay, we demonstrate that Cu(2+) induces PrP monomers to misfold before oligomer assembly; the disordered amino-terminal region mediates this structural change. Single-molecule force spectroscopy measurements show that the misfolded monomers have a 900-fold higher binding affinity compared to the native isoform, which promotes their oligomerization. Real-time quaking-induced conversion demonstrates that misfolded PrPs serve as seeds that template amyloid formation. Finally, organotypic slice cultures show that misfolded PrPs mediate inflammation and degeneration of neuronal tissue. Our study establishes a direct link, at the molecular level, between copper exposure and PrP neurotoxicity.
Collapse
Affiliation(s)
- Chi-Fu Yen
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
| | - Dilshan S. Harischandra
- Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Anumantha Kanthasamy
- Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Sanjeevi Sivasankar
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
5
|
Do prion protein gene polymorphisms induce apoptosis in non-mammals? J Biosci 2016; 41:97-107. [PMID: 26949092 DOI: 10.1007/s12038-015-9584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Genetic variations such as single nucleotide polymorphisms (SNPs) in prion protein coding gene, Prnp, greatly affect susceptibility to prion diseases in mammals. Here, the coding region of Prnp was screened for polymorphisms in redeared turtle, Trachemys scripta. Four polymorphisms, L203V, N205I, V225A and M237V, were common in 15 out of 30 turtles; in one sample, three SNPs, L203V, N205I and M237V, and in the remaining 14 samples, only L203V and N205I polymorphisms, were investigated. Besides, C658T, C664T, C670A and C823A SNPs were silent mutations. To elucidate the relationship between the SNPs and apoptosis, TUNEL assays and active caspase-3 immunodetection techniques in brain sections of the polymorphic samples were performed. The results revealed that TUNEL-positive cells and active caspase-3-positive cells in the turtles with four polymorphisms were significantly increased compared with those of the turtles with two polymorphisms (P less than 0.01 and P less than 0.05, respectively). In conclusion, this study provides preliminary information about the possible relationship between SNPs within the Prnp locus and apoptosis in a non-mammalian species, Trachemys scripta, in which prion disease has never been reported.
Collapse
|
6
|
Ganesan SJ, Matysiak S. Interplay between the hydrophobic effect and dipole interactions in peptide aggregation at interfaces. Phys Chem Chem Phys 2016; 18:2449-58. [DOI: 10.1039/c5cp05867h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amphipathic octapeptide aggregation at hydrophobic–hydrophilic interfaces is largely driven by backbone dipole interactions in peptide aggregation at interfaces.
Collapse
Affiliation(s)
- Sai J. Ganesan
- Fischell Department of Bioengineering
- University of Maryland
- College Park
- USA
| | - Silvina Matysiak
- Fischell Department of Bioengineering and Biophysics Program
- University of Maryland
- College Park
- USA
| |
Collapse
|
7
|
Ellett LJ, Coleman BM, Shambrook MC, Johanssen VA, Collins SJ, Masters CL, Hill AF, Lawson VA. Glycosaminoglycan sulfation determines the biochemical properties of prion protein aggregates. Glycobiology 2015; 25:745-55. [PMID: 25701659 DOI: 10.1093/glycob/cwv014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 02/15/2015] [Indexed: 02/06/2023] Open
Abstract
Prion diseases are transmissible neurodegenerative disorders associated with the conversion of the cellular prion protein, PrP(C), to a misfolded isoform called PrP(Sc). Although PrP(Sc) is a necessary component of the infectious prion, additional factors, or cofactors, have been shown to contribute to the efficient formation of transmissible PrP(Sc). Glycosaminoglycans (GAGs) are attractive cofactor candidates as they can be found associated with PrP(Sc) deposits, have been shown to enhance PrP misfolding in vitro, are found in the same cellular compartments as PrP(C) and have been shown to be disease modifying in vivo. Here we investigated the effects of the sulfated GAGs, heparin and heparan sulfate (HS), on disease associated misfolding of full-length recombinant PrP. More specifically, the degree of sulfation of these molecules was investigated for its role in modulating the disease-associated characteristics of PrP. Both heparin and HS induced a β-sheet conformation in recombinant PrP that was associated with the formation of aggregated species; however, the biochemical properties of the aggregates formed in the presence of heparin or HS varied in solubility and protease resistance. Furthermore, these properties could be modified by changes in GAG sulfation, indicating that subtle changes in the properties of prion disease cofactors could initiate disease associated misfolding.
Collapse
Affiliation(s)
| | - Bradley M Coleman
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute
| | - Mitch C Shambrook
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute
| | | | | | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University Of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew F Hill
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute
| | | |
Collapse
|
8
|
Heparin-like native protein aggregate dissociation by 1-alkyl-3-methyl imidazolium chloride ionic liquids. Int J Biol Macromol 2015; 73:23-30. [DOI: 10.1016/j.ijbiomac.2014.10.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 02/03/2023]
|
9
|
Pathogenic mutations within the hydrophobic domain of the prion protein lead to the formation of protease-sensitive prion species with increased lethality. J Virol 2013; 88:2690-703. [PMID: 24352465 DOI: 10.1128/jvi.02720-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Prion diseases are a group of fatal and incurable neurodegenerative diseases affecting both humans and animals. The principal mechanism of these diseases involves the misfolding the host-encoded cellular prion protein, PrP(C), into the disease-associated isoform, PrP(Sc). Familial forms of human prion disease include those associated with the mutations G114V and A117V, which lie in the hydrophobic domain of PrP. Here we have studied the murine homologues (G113V and A116V) of these mutations using cell-based and animal models of prion infection. Under normal circumstances, the mutant forms of PrP(C) share similar processing, cellular localization, and physicochemical properties with wild-type mouse PrP (MoPrP). However, upon exposure of susceptible cell lines expressing these mutants to infectious prions, very low levels of protease-resistant aggregated PrP(Sc) are formed. Subsequent mouse bioassay revealed high levels of infectivity present in these cells. Thus, these mutations appear to limit the formation of aggregated PrP(Sc), giving rise to the accumulation of a relatively soluble, protease sensitive, prion species that is highly neurotoxic. Given that these mutations lie next to the glycine-rich region of PrP that can abrogate prion infection, these findings provide further support for small, protease-sensitive prion species having a significant role in the progression of prion disease and that the hydrophobic domain is an important determinant of PrP conversion. IMPORTANCE Prion diseases are transmissible neurodegenerative diseases associated with an infectious agent called a prion. Prions are comprised of an abnormally folded form of the prion protein (PrP) that is normally resistant to enzymes called proteases. In humans, prion disease can occur in individuals who inherited mutations in the prion protein gene. Here we have studied the effects of two of these mutations and show that they influence the properties of the prions that can be formed. We show that the mutants make highly infectious prions that are more sensitive to protease treatment. This study highlights a certain region of the prion protein as being involved in this effect and demonstrates that prions are not always resistant to protease treatment.
Collapse
|
10
|
Xu Y, Seeman D, Yan Y, Sun L, Post J, Dubin PL. Effect of Heparin on Protein Aggregation: Inhibition versus Promotion. Biomacromolecules 2012; 13:1642-51. [DOI: 10.1021/bm3003539] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yisheng Xu
- Department of Chemistry, University of Massachusetts, 710 North
Pleasant Street, Amherst, Massachusetts 01003
| | - Daniel Seeman
- Department of Chemistry, University of Massachusetts, 710 North
Pleasant Street, Amherst, Massachusetts 01003
| | - Yunfeng Yan
- Department of Chemistry, University of Massachusetts, 710 North
Pleasant Street, Amherst, Massachusetts 01003
| | - Lianhong Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Jared Post
- Department of Chemistry, University of Massachusetts, 710 North
Pleasant Street, Amherst, Massachusetts 01003
| | - Paul L. Dubin
- Department of Chemistry, University of Massachusetts, 710 North
Pleasant Street, Amherst, Massachusetts 01003
| |
Collapse
|
11
|
Abstract
Glycosaminoglycans (GAGs) are basic building blocks of the ground substance of the extracellular matrix and present at the cellular level as an important component of the glycocalyx covering the cell membrane. In addition to the general role of GAGs in maintaining the integrity of the cell and extracellular matrix by retaining water, certain GAGs exhibit anticoagulant and neuroprotective properties and serve as cell-surface receptors for various molecules. Although heparin, a highly sulfated GAG, has been used as a drug for more than 70 years due to its anticoagulant attributes, the neuroprotective properties of GAGs came into focus only in recent years. The discovery of some of the roles GAGs play in the pathomechanism of numerous neurodegenerative disorders as well as shedding light on the neuroprotective properties of these compounds in animal studies raised the possibility that GAGs may provide an entirely new avenue in the treatment of neurodegenerative diseases. Indeed, some GAGs were successfully used to improve the cognitive function of patients with various neurodegenerative conditions (Ban et al. (1991, 1992); Conti et al. (1989a, b); Passeri and Cucinotta, (1989); Santini (1989). Although the mechanism by which the GAGs exhibit neuroprotective properties is not entirely clear, there is a general consensus that the major factors of the neuroprotective attributes of GAGs include the impact of GAGs on amyloidogenesis and the regulatory action of GAGs in the apoptotic pathway.
Collapse
Affiliation(s)
- B Dudas
- Neuroendocrine Organization Laboratory, Lake Erie College of Osteopathic Medicine, PA 1509, USA.
| | | |
Collapse
|
12
|
Li B, Qing L, Yan J, Kong Q. Instability of the octarepeat region of the human prion protein gene. PLoS One 2011; 6:e26635. [PMID: 22028931 PMCID: PMC3197570 DOI: 10.1371/journal.pone.0026635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 09/30/2011] [Indexed: 01/24/2023] Open
Abstract
Prion diseases are a family of unique fatal transmissible neurodegenerative diseases that affect humans and many animals. Sporadic Creutzfeldt-Jakob disease (sCJD) is the most common prion disease in humans, accounting for 85–90% of all human prion cases, and exhibits a high degree of diversity in phenotypes. The etiology of sCJD remains to be elucidated. The human prion protein gene has an octapeptide repeat region (octarepeats) that normally contains 5 repeats of 24–27 bp (1 nonapeptide and 4 octapeptide coding sequences). An increase of the octarepeat numbers to six or more or a decrease of the octarepeat number to three is linked to genetic prion diseases with heterogeneous phenotypes in humans. Here we report that the human octarepeat region is prone to either contraction or expansion when subjected to PCR amplification in vitro using Taq or Pwo polymerase and when replicated in wild type E. coli cells. Octarepeat insertion mutants were even less stable, and the mutation rate for the wild type octarepeats was much higher when replicated in DNA mismatch repair-deficient E.coli cells. All observed octarepeat mutants resulting from DNA replication in E.coli were contained in head-to-head plasmid dimers and DNA mfold analysis (http://mfold.rna.albany.edu/?q=mfold/DNA-Folding-Form) indicates that both DNA strands of the octarepeat region would likely form multiple stable hairpin structures, suggesting that the octarepeat sequence may form stable hairpin structures during DNA replication or repair to cause octarepeat instability. These results provide the first evidence supporting a somatic octarepeat mutation-based model for human sCJD etiology: 1) the instability of the octarepeat region leads to accumulation of somatic octarepeat mutations in brain cells during development and aging, 2) this instability is augmented by compromised DNA mismatch repair in aged cells, and 3) eventually some of the octarepeat mutation-containing brain cells start spontaneous de novo prion formation and replication to initiate sCJD.
Collapse
Affiliation(s)
- Baiya Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | | | | | | |
Collapse
|
13
|
Martin R, Chantepie S, Chapuis J, Le-Duc A, Maftah A, Papy-Garcia D, Laude H, Petit JM, Gallet PF. Variation in Chst8 gene expression level affects PrPC to PrPSc conversion efficiency in prion-infected Mov cells. Biochem Biophys Res Commun 2011; 414:587-91. [PMID: 21982770 DOI: 10.1016/j.bbrc.2011.09.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 09/24/2011] [Indexed: 10/17/2022]
Abstract
The conversion of the endogenous cellular prion protein to an abnormally folded isoform is a hallmark of transmissible spongiform encephalopathies. It occurs when a misfolded prion protein contacts the cellular PrP. Among the molecular partners suggested to be involved in the misfolding process, the glycosaminoglycans seem to be good candidates. The present study was aimed to examine a possible link between PrP conversion efficiency and transcript level of Chst8 gene that encodes the carbohydrate N-acetylgalactosamine 4-O-sulfotransferase 8. Mov cells expressing ovine PrP were transfected with shRNA directed against Chst8 transcripts. Resulting clones were characterized for their Chst8 and Prnp transcript levels, and for their content in sulfated glycosaminoglycans, more particularly sulfated chondroitins. Unexpectedly, the decreased amount of Chst8 transcript induced an increase of the chondroitin sulfate percentage among total GAGs, with an increased amount of 4-O-sulfation of GalNAc residues. Upon to infection by a sheep prion, a slight amount of PrP(Sc) was observed, which rapidly disappeared upon subpassaging. Together, these findings indicate that the Chst8 transcript level affects the glycosaminoglycan environment of the cellular prion protein, and as a consequence its ability for conversion into PrP(Sc).
Collapse
Affiliation(s)
- Renaud Martin
- INRA, UMR1061 Génétique Moléculaire Animale - Université de Limoges, 87060 Limoges, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Thakur AK, Srivastava AK, Srinivas V, Chary KVR, Rao CM. Copper alters aggregation behavior of prion protein and induces novel interactions between its N- and C-terminal regions. J Biol Chem 2011; 286:38533-38545. [PMID: 21900252 DOI: 10.1074/jbc.m111.265645] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Copper is reported to promote and prevent aggregation of prion protein. Conformational and functional consequences of Cu(2+)-binding to prion protein (PrP) are not well understood largely because most of the Cu(2+)-binding studies have been performed on fragments and truncated variants of the prion protein. In this context, we set out to investigate the conformational consequences of Cu(2+)-binding to full-length prion protein (PrP) by isothermal calorimetry, NMR, and small angle x-ray scattering. In this study, we report altered aggregation behavior of full-length PrP upon binding to Cu(2+). At physiological temperature, Cu(2+) did not promote aggregation suggesting that Cu(2+) may not play a role in the aggregation of PrP at physiological temperature (37 °C). However, Cu(2+)-bound PrP aggregated at lower temperatures. This temperature-dependent process is reversible. Our results show two novel intra-protein interactions upon Cu(2+)-binding. The N-terminal region (residues 90-120 that contain the site His-96/His-111) becomes proximal to helix-1 (residues 144-147) and its nearby loop region (residues 139-143), which may be important in preventing amyloid fibril formation in the presence of Cu(2+). In addition, we observed another novel interaction between the N-terminal region comprising the octapeptide repeats (residues 60-91) and helix-2 (residues 174-185) of PrP. Small angle x-ray scattering studies of full-length PrP show significant compactness upon Cu(2+)-binding. Our results demonstrate novel long range inter-domain interactions of the N- and C-terminal regions of PrP upon Cu(2+)-binding, which might have physiological significance.
Collapse
Affiliation(s)
- Abhay Kumar Thakur
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India
| | - Atul Kumar Srivastava
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Volety Srinivas
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India
| | - Kandala Venkata Ramana Chary
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Chintalagiri Mohan Rao
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
15
|
Cho KR, Huang Y, Yu S, Yin S, Plomp M, Qiu SR, Lakshminarayanan R, Moradian-Oldak J, Sy MS, De Yoreo JJ. A multistage pathway for human prion protein aggregation in vitro: from multimeric seeds to β-oligomers and nonfibrillar structures. J Am Chem Soc 2011; 133:8586-93. [PMID: 21534611 PMCID: PMC4505822 DOI: 10.1021/ja1117446] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aberrant protein aggregation causes numerous neurological diseases including Creutzfeldt-Jakob disease (CJD), but the aggregation mechanisms remain poorly understood. Here, we report AFM results on the formation pathways of β-oligomers and nonfibrillar aggregates from wild-type full-length recombinant human prion protein (WT) and an insertion mutant (10OR) with five additional octapeptide repeats linked to familial CJD. Upon partial denaturing, seeds consisting of 3-4 monomers quickly appeared. Oligomers of ~11-22 monomers then formed through direct interaction of seeds, rather than by subsequent monomer attachment. All larger aggregates formed through association of these β-oligomers. Although both WT and 10OR exhibited identical aggregation mechanisms, the latter oligomerized faster due to lower solubility and, hence, thermodynamic stability. This novel aggregation pathway has implications for prion diseases as well as others caused by protein aggregation.
Collapse
Affiliation(s)
- Kang R. Cho
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Shaoman Yin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Marco Plomp
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - S. Roger Qiu
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Rajamani Lakshminarayanan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90033, United States
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90033, United States
| | - Man-Sun Sy
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - James J. De Yoreo
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
16
|
Kawahara M, Koyama H, Nagata T, Sadakane Y. Zinc, copper, and carnosine attenuate neurotoxicity of prion fragment PrP106-126. Metallomics 2011; 3:726-34. [PMID: 21442127 DOI: 10.1039/c1mt00015b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prion diseases are progressive neurodegenerative diseases that are associated with the conversion of normal cellular prion protein (PrP(C)) to abnormal pathogenic prion protein (PrP(SC)) by conformational changes. Prion protein is a metal-binding protein that is suggested to be involved in metal homeostasis. We investigated here the effects of trace elements on the conformational changes and neurotoxicity of synthetic prion peptide (PrP106-126). PrP106-126 exhibited the formation of β-sheet structures and enhanced neurotoxicity during the aging process. The co-existence of Zn(2+) or Cu(2+) during aging inhibited β-sheet formation by PrP106-126 and attenuated its neurotoxicity on primary cultured rat hippocampal neurons. Although PrP106-126 formed amyloid-like fibrils as observed by atomic force microscopy, the height of the fibers was decreased in the presence of Zn(2+) or Cu(2+). Carnosine (β-alanyl histidine) significantly inhibited both the β-sheet formation and the neurotoxicity of PrP106-126. Our results suggested that Zn(2+) and Cu(2+) might be involved in the pathogenesis of prion diseases. It is also possible that carnosine might become a candidate for therapeutic treatments for prion diseases.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Analytical Chemistry, School of Pharmaceutical Sciences Kyushu University of Health and Welfare, 1714-1 Yoshino-cho, Nobeoka-shi, Miyazaki. Japan.
| | | | | | | |
Collapse
|
17
|
Bazar E, Sheynis T, Dorosz J, Jelinek R. Heparin Inhibits Membrane Interactions and Lipid-Induced Fibrillation of a Prion Amyloidogenic Determinant. Chembiochem 2011; 12:761-7. [DOI: 10.1002/cbic.201000486] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Indexed: 12/22/2022]
|
18
|
Madsen O, Kortum TT, Hupkes M, Kohlen W, van Rheede T, de Jong WW. Loss of Octarepeats in two processed prion pseudogenes in the red squirrel, Sciurus vulgaris. J Mol Evol 2010; 71:356-63. [PMID: 20878152 PMCID: PMC2990005 DOI: 10.1007/s00239-010-9390-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 09/08/2010] [Indexed: 10/25/2022]
Abstract
The N-terminal region of the mammalian prion protein (PrP) contains an 'octapeptide' repeat which is involved in copper binding. This eight- or nine-residue peptide is repeated four to seven times, depending on the species, and polymorphisms in repeat number do occur. Alleles with three repeats are very rare in humans and goats, and deduced PrP sequences with two repeats have only been reported in two lemur species and in the red squirrel, Sciurus vulgaris. We here describe that the red squirrel two-repeat PrP sequence actually represents a retroposed pseudogene, and that an additional and older processed pseudogene with three repeats also occurs in this species as well as in ground squirrels. We argue that repeat numbers may tend to contract rather than expand in prion retropseudogenes, and that functional prion genes with two repeats may not be viable.
Collapse
Affiliation(s)
- Ole Madsen
- Biomolecular Chemistry, 271 Nijmegen Center of Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
19
|
Bazar E, Jelinek R. Divergent Heparin-Induced Fibrillation Pathways of a Prion Amyloidogenic Determinant. Chembiochem 2010; 11:1997-2002. [DOI: 10.1002/cbic.201000207] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Murdoch BM, Clawson ML, Laegreid WW, Stothard P, Settles M, McKay S, Prasad A, Wang Z, Moore SS, Williams JL. A 2cM genome-wide scan of European Holstein cattle affected by classical BSE. BMC Genet 2010; 11:20. [PMID: 20350325 PMCID: PMC2853485 DOI: 10.1186/1471-2156-11-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 03/29/2010] [Indexed: 11/18/2022] Open
Abstract
Background Classical bovine spongiform encephalopathy (BSE) is an acquired prion disease that is invariably fatal in cattle and has been implicated as a significant human health risk. Polymorphisms that alter the prion protein of sheep or humans have been associated with variations in transmissible spongiform encephalopathy susceptibility or resistance. In contrast, there is no strong evidence that non-synonymous mutations in the bovine prion gene (PRNP) are associated with classical BSE disease susceptibility. However, two bovine PRNP insertion/deletion polymorphisms, one within the promoter region and the other in intron 1, have been associated with susceptibility to classical BSE. These associations do not explain the full extent of BSE susceptibility, and loci outside of PRNP appear to be associated with disease incidence in some cattle populations. To test for associations with BSE susceptibility, we conducted a genome wide scan using a panel of 3,072 single nucleotide polymorphism (SNP) markers on 814 animals representing cases and control Holstein cattle from the United Kingdom BSE epidemic. Results Two sets of BSE affected Holstein cattle were analyzed in this study, one set with known family relationships and the second set of paired cases with controls. The family set comprises half-sibling progeny from six sires. The progeny from four of these sires had previously been scanned with microsatellite markers. The results obtained from the current analysis of the family set yielded both some supporting and new results compared with those obtained in the earlier study. The results revealed 27 SNPs representing 18 chromosomes associated with incidence of BSE disease. These results confirm a region previously reported on chromosome 20, and identify additional regions on chromosomes 2, 14, 16, 21 and 28. This study did not identify a significant association near the PRNP in the family sample set. The only association found in the PRNP region was in the case-control sample set and this was not significant after multiple test correction. The genome scan of the case-control animals did not identify any associations that passed a stringent genome-wide significance threshold. Conclusions Several regions of the genome are statistically associated with the incidence of classical BSE in European Holstein cattle. Further investigation of loci on chromosomes 2, 14, 16, 20, 21 and 28 will be required to uncover any biological significance underlying these marker associations.
Collapse
Affiliation(s)
- Brenda M Murdoch
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Heparan sulfate proteoglycans in amyloidosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:309-34. [PMID: 20807650 DOI: 10.1016/s1877-1173(10)93013-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloidosis is a generic term for a group of diseases characterized by deposits in different organ systems of insoluble materials composed mainly of distinct fibrillar proteins named amyloid. Besides amyloid, heparan sulfate proteoglycan (HSPG), is commonly found in most amyloid deposits, suggesting that HS/HSPG may be functionally involved in the pathogenesis of amyloidosis. HS or HSPG is found to interact with a number of amyloid proteins, displaying a promoting effect on amyloid fibrilization in vitro. In addition, HS is reported to be involved in processing amyloid precursor proteins and mediate amyloid toxicity. Although little is known about the in vivo mechanisms regarding the codeposition of HS with amyloid proteins in different amyloid diseases, experiments carried out in animal models, especially in transgenic mouse model where HS molecular structure is modified, support an active role for HS in amyloidogenesis. Further experimental evidence is required to strengthen these in vivo findings at a molecular level. Animal models that express mutant forms of HS due to knockout of the enzymes involved in glycosaminoglycan (GAG) biosynthesis are expected to provide valuable tools for studying the implications of HS, as well as other GAGs, in amyloid disorders.
Collapse
|